JP6862284B2 - Fuel injection valve and engine system - Google Patents

Fuel injection valve and engine system Download PDF

Info

Publication number
JP6862284B2
JP6862284B2 JP2017107319A JP2017107319A JP6862284B2 JP 6862284 B2 JP6862284 B2 JP 6862284B2 JP 2017107319 A JP2017107319 A JP 2017107319A JP 2017107319 A JP2017107319 A JP 2017107319A JP 6862284 B2 JP6862284 B2 JP 6862284B2
Authority
JP
Japan
Prior art keywords
fuel injection
fuel
injection hole
hole group
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017107319A
Other languages
Japanese (ja)
Other versions
JP2018204445A (en
Inventor
知幸 保坂
知幸 保坂
石井 英二
英二 石井
一樹 吉村
一樹 吉村
泰介 杉井
泰介 杉井
亮 草壁
亮 草壁
助川 義寛
義寛 助川
猿渡 匡行
匡行 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2017107319A priority Critical patent/JP6862284B2/en
Priority to PCT/JP2018/016524 priority patent/WO2018221076A1/en
Publication of JP2018204445A publication Critical patent/JP2018204445A/en
Application granted granted Critical
Publication of JP6862284B2 publication Critical patent/JP6862284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B31/00Modifying induction systems for imparting a rotation to the charge in the cylinder
    • F02B31/04Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
    • F02B31/06Movable means, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/14Arrangements of injectors with respect to engines; Mounting of injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

本発明は、ガソリンエンジン等の内燃機関に用いられる燃料噴射弁、及びエンジンシステムに関する。 The present invention relates to a fuel injection valve used in an internal combustion engine such as a gasoline engine, and an engine system.

近年、自動車におけるガソリンエンジンは燃費改善の要求が高まっており、燃費に優れたエンジンとして、燃焼室内に燃料を直接噴射し、噴射された燃料と吸入空気との混合気を点火プラグで点火して爆発させる筒内噴射式エンジンが普及してきている。しかし、筒内噴射式エンジンは噴射地点から壁面までの距離が短いために燃料が燃焼室内に付着しやすく、温度の低い壁面に付着した燃料が不完全燃焼することで発生する粒子状物質(Particulate Matter:PM)の抑制が課題となっている。この課題を解決するためには、燃焼室内の混合気形成の最適化が必要である。 In recent years, there has been an increasing demand for fuel efficiency improvement in gasoline engines in automobiles, and as an engine with excellent fuel efficiency, fuel is directly injected into the combustion chamber, and a mixture of the injected fuel and intake air is ignited by a spark plug. In-cylinder injection engines that explode are becoming widespread. However, in the in-cylinder injection engine, the distance from the injection point to the wall surface is short, so fuel easily adheres to the combustion chamber, and the particulate matter (Particulate) generated by incomplete combustion of the fuel adhering to the low temperature wall surface. Suppression of Matter: PM) has become an issue. In order to solve this problem, it is necessary to optimize the formation of the air-fuel mixture in the combustion chamber.

また、近年では、燃料と空気との理論混合比(ストイキ)よりも空気の比率を高くする希薄(リーン)燃焼を行い、冷却損失を低減し熱効率を向上する技術が注目されている。しかしながら、リーン燃焼では、燃焼室内の燃焼速度が低下することによってエンジンの効率が低下したり、異常燃焼が起こるなどの問題がある。この問題を解決するため、例えば特許文献1には、吸気ポートにバルブを設置し、希薄燃焼時に流路を絞り高速流を偏在させ、燃焼室内の流動(タンブル)を強化することで、燃焼速度を向上する技術が記載されている。一方で、希薄混合気を筒内に均質に分布させて燃焼する、均質希薄燃焼の高効率化のためには、均質度が高く、壁面への付着量の小さい噴霧の実現が求められる。特許文献2には、空気流動の小さい低回転領域での噴霧を最適化する技術が記載されている。 Further, in recent years, a technique for reducing cooling loss and improving thermal efficiency by performing lean combustion in which the ratio of air is higher than the theoretical mixture ratio (stoichi) of fuel and air has been attracting attention. However, lean combustion has problems such as a decrease in engine efficiency due to a decrease in the combustion speed in the combustion chamber and abnormal combustion. In order to solve this problem, for example, in Patent Document 1, a valve is installed in the intake port, the flow path is narrowed during lean combustion, the high-speed flow is unevenly distributed, and the flow (tumble) in the combustion chamber is strengthened to strengthen the combustion speed. The technology to improve is described. On the other hand, in order to improve the efficiency of homogeneous lean combustion in which the lean mixture is uniformly distributed in the cylinder and burned, it is required to realize spraying having high homogeneity and a small amount of adhesion to the wall surface. Patent Document 2 describes a technique for optimizing spraying in a low rotation region where air flow is small.

特開2001−55925号公報Japanese Unexamined Patent Publication No. 2001-55925 特開2005−248857号公報Japanese Unexamined Patent Publication No. 2005-248857

特許文献2に開示されている技術は、空気流動の小さい低回転領域での噴霧を最適化する。しかしながら、特許文献2に開示されている技術には、タンブル制御バルブ閉弁時の高速流が偏在する場合についての記載はなく、高均質混合気の形成と壁面付着の低減は困難であった。 The technique disclosed in Patent Document 2 optimizes spraying in a low rotation region where air flow is small. However, the technique disclosed in Patent Document 2 does not describe the case where the high-speed flow when the tumble control valve is closed is unevenly distributed, and it is difficult to form a highly homogeneous air-fuel mixture and reduce wall adhesion.

以上の課題を鑑みて、本発明の目的は、燃焼室内に高均質な燃料噴霧が形成でき、かつ壁面付着を低減する燃料噴射弁を提供することにある。 In view of the above problems, an object of the present invention is to provide a fuel injection valve capable of forming a highly homogeneous fuel spray in a combustion chamber and reducing wall adhesion.

上記課題を解決するために、本発明の燃料噴射弁は、燃焼室に直接、燃料を噴射する燃料噴射弁において、燃料噴射孔の中心軸がピストン上面中心よりも点火プラグ先端部の側を指向する第1噴射孔グループと、燃料噴射孔の中心軸が前記点火プラグ先端部よりも前記ピストン上面中心の側を指向する第2噴射孔グループを有し、前記第1噴射孔グループの燃料噴射孔は、前記第2噴射孔グループの燃料噴射孔から噴射される噴霧の流量よりも大きく、かつペネトレーションが小さくなるように構成される。 In order to solve the above problems, the fuel injection valve of the present invention is a fuel injection valve that injects fuel directly into the combustion chamber, in which the central axis of the fuel injection hole points toward the tip of the spark plug rather than the center of the upper surface of the piston. A first injection hole group and a second injection hole group in which the central axis of the fuel injection hole points toward the center of the upper surface of the piston with respect to the tip of the spark plug, and the fuel injection hole of the first injection hole group Is configured to be larger than the flow rate of the spray injected from the fuel injection hole of the second injection hole group and the penetration is small.

本発明によれば、燃焼室内に高均質な燃料噴霧が形成でき、かつ壁面付着を低減する燃料噴射弁を提供することができる。本発明のその他の構成、作用、効果については以下の実施例において詳細に説明する。 According to the present invention, it is possible to provide a fuel injection valve capable of forming a highly homogeneous fuel spray in a combustion chamber and reducing wall adhesion. Other configurations, actions, and effects of the present invention will be described in detail in the following examples.

本発明に係る内燃機関の構成の概要を示した図である。It is a figure which showed the outline of the structure of the internal combustion engine which concerns on this invention. 本発明の第1実施例に係るインジェクタを示した図である。It is a figure which showed the injector which concerns on 1st Example of this invention. 本発明の第1実施例に係る内燃機関の断面図(タンブル制御バルブ開弁時)である。It is sectional drawing (when the tumble control valve valve is opened) of the internal combustion engine which concerns on 1st Embodiment of this invention. 本発明の第1実施例に係る内燃機関の断面図(タンブル制御バルブ閉弁時)である。It is sectional drawing (when the tumble control valve is closed) of the internal combustion engine which concerns on 1st Embodiment of this invention. 本発明の第1実施例に係る内燃機関の燃料噴射を示した図である。It is a figure which showed the fuel injection of the internal combustion engine which concerns on 1st Example of this invention. 本発明の第1実施例に係る内燃機関の燃料噴射直後の混合気を示した図である。It is a figure which showed the air-fuel mixture immediately after the fuel injection of the internal combustion engine which concerns on 1st Example of this invention. 本発明の第1実施例に係る内燃機関の、圧縮行程中期における混合気を示した図である。It is a figure which showed the air-fuel mixture in the middle stage of a compression stroke of the internal combustion engine which concerns on 1st Example of this invention. 本発明の第1実施例に係る内燃機関の、圧縮行程後期における混合気を示した図である。It is a figure which showed the air-fuel mixture in the late compression stroke of the internal combustion engine which concerns on 1st Example of this invention. 本発明の第1実施例に係るインジェクタから噴射される噴霧を示した図である。It is a figure which showed the spray which is ejected from the injector which concerns on 1st Example of this invention. 本発明の第1実施例に係るインジェクタの先端の拡大正面図である。It is an enlarged front view of the tip of the injector which concerns on 1st Embodiment of this invention. 本発明の第1実施例に係るインジェクタの先端の拡大断面図である。It is an enlarged sectional view of the tip of the injector which concerns on 1st Example of this invention. 本発明の第1実施例に係るインジェクタの先端と噴霧を示した図である。It is a figure which showed the tip of the injector and the spray which concerns on 1st Example of this invention. 本発明の第1実施例に係る内燃機関の、タンブル制御バルブ開弁時の燃料噴射(制御前)を示した図である。It is a figure which showed the fuel injection (before control) at the time of opening a tumble control valve of the internal combustion engine which concerns on 1st Embodiment of this invention. 本発明の第1実施例に係る内燃機関の、タンブル制御バルブ開弁時の燃料噴射(制御後)を示した図である。It is a figure which showed the fuel injection (after control) at the time of opening a tumble control valve of the internal combustion engine which concerns on 1st Embodiment of this invention. 本発明の第1実施例に係る内燃機関の、タンブル制御バルブの開度による燃料供給圧力を示した図である。It is a figure which showed the fuel supply pressure by the opening degree of the tumble control valve of the internal combustion engine which concerns on 1st Embodiment of this invention. 本発明の第2実施例に係るインジェクタの先端の拡大正面図である。It is an enlarged front view of the tip of the injector which concerns on 2nd Embodiment of this invention. 本発明の第2実施例に係るインジェクタの先端の拡大断面図である。It is an enlarged sectional view of the tip of the injector which concerns on 2nd Embodiment of this invention. 本発明の第2実施例に係るインジェクタの先端と噴霧を示した図である。It is a figure which showed the tip of the injector and the spray which concerns on 2nd Example of this invention.

以下、本発明に係る実施例を説明する。 Hereinafter, examples according to the present invention will be described.

本発明の第1の実施例に係る内燃機関および燃料噴射弁(インジェクタ)について、図1と図2を用いて以下説明する。
図1は、筒内噴射式エンジンの構成の概要を示した図である。図1を用いて筒内噴射式エンジンの基本的な動作を説明する。図1において、シリンダヘッド101とシリンダブロック102、シリンダブロック102に挿入されたピストン103により燃焼室104が形成され、燃料室104に向けて吸気管105と排気管106がそれぞれ2つに分岐して接続されている。吸気管105の開口部には吸気弁107が、排気管106の開口部には排気弁108がそれぞれ設けられ、カム動作方式により開閉するように動作する。
The internal combustion engine and the fuel injection valve (injector) according to the first embodiment of the present invention will be described below with reference to FIGS. 1 and 2.
FIG. 1 is a diagram showing an outline of the configuration of an in-cylinder injection engine. The basic operation of the in-cylinder injection engine will be described with reference to FIG. In FIG. 1, a combustion chamber 104 is formed by a cylinder head 101, a cylinder block 102, and a piston 103 inserted into the cylinder block 102, and an intake pipe 105 and an exhaust pipe 106 are branched into two toward the fuel chamber 104, respectively. It is connected. An intake valve 107 is provided at the opening of the intake pipe 105, and an exhaust valve 108 is provided at the opening of the exhaust pipe 106, and operates so as to open and close according to a cam operation method.

ピストン103はコンロッド114を介してクランク軸115と連結されており、クランク角センサ116によりエンジン回転数を検知できる。回転数の値はECU(エンジンコントロールユニット)118に送られる。クランク軸115には図示しないセルモータが連結され、エンジン始動時にはセルモータによりクランク軸115を回転させ始動することができる。シリンダブロック102には水温センサ117が備えられ、図示しないエンジン冷却水の温度を検知できる。エンジン冷却水の温度はECU118に送られる。 The piston 103 is connected to the crankshaft 115 via a connecting rod 114, and the engine speed can be detected by the crank angle sensor 116. The value of the number of revolutions is sent to the ECU (engine control unit) 118. A starter motor (not shown) is connected to the crankshaft 115, and the crankshaft 115 can be rotated and started by the starter motor when the engine is started. The cylinder block 102 is provided with a water temperature sensor 117, and can detect the temperature of engine cooling water (not shown). The temperature of the engine cooling water is sent to the ECU 118.

図1は1気筒のみの記述だが、吸気管105の上流には図示しないコレクタが備えられ、気筒ごとに空気を分配する。コレクタの上流には図示しないエアフローセンサとスロットル弁が備えられ、燃料室104に吸入される空気量をスロットル弁の開度によって調節できる。 Although FIG. 1 shows only one cylinder, a collector (not shown) is provided upstream of the intake pipe 105 to distribute air to each cylinder. An air flow sensor and a throttle valve (not shown) are provided upstream of the collector, and the amount of air sucked into the fuel chamber 104 can be adjusted by the opening degree of the throttle valve.

燃料は燃料タンク109に貯蔵され、フィードポンプ110によって高圧燃料ポンプ111に送られる。フィードポンプ110は燃料を0.3MPa程度まで昇圧して高圧燃料ポンプ111に送る。高圧燃料ポンプ111により昇圧された燃料はコモンレール112に送られる。高圧燃料ポンプ111は燃料を30MPa程度まで昇圧してコモンレール112に送る。コモンレール112には燃圧センサ113が設けられ、燃料圧力(燃圧)を検知する。燃圧の値はECU118に送られる。 The fuel is stored in the fuel tank 109 and sent to the high pressure fuel pump 111 by the feed pump 110. The feed pump 110 boosts the fuel to about 0.3 MPa and sends it to the high-pressure fuel pump 111. The fuel boosted by the high-pressure fuel pump 111 is sent to the common rail 112. The high-pressure fuel pump 111 boosts the fuel to about 30 MPa and sends it to the common rail 112. A fuel pressure sensor 113 is provided on the common rail 112 to detect fuel pressure (fuel pressure). The fuel pressure value is sent to the ECU 118.

図2は、本実施例の燃料噴射弁の例として、電磁式燃料噴射弁の例を示す図である。図2を用いて噴射装置の基本的な動作を説明する。図2において、燃料は燃料供給口212から供給され、燃料噴射弁の内部に供給される。図2に示す電磁式燃料噴射弁119は、通常時閉型の電磁駆動式であって、コイル208に通電がないときには、弁体201がスプリング210によって付勢され、ノズル体204に溶接などで接合されたシート部材202に押し付けられ、燃料がシールされるようになっている。弁体201の弁体シート部が着座するシート部材202のシート部の下流側には複数の燃料噴射孔301(噴射孔)が形成される。このとき、筒内噴射用燃料噴射弁では、供給される燃料圧力がおよそ1MPaから50MPaの範囲である。 FIG. 2 is a diagram showing an example of an electromagnetic fuel injection valve as an example of the fuel injection valve of this embodiment. The basic operation of the injection device will be described with reference to FIG. In FIG. 2, the fuel is supplied from the fuel supply port 212 and is supplied to the inside of the fuel injection valve. The electromagnetic fuel injection valve 119 shown in FIG. 2 is an electromagnetically driven type that is normally closed. When the coil 208 is not energized, the valve body 201 is urged by the spring 210 and welded to the nozzle body 204. The fuel is sealed by being pressed against the joined sheet member 202. A plurality of fuel injection holes 301 (injection holes) are formed on the downstream side of the seat portion of the seat member 202 on which the valve body seat portion of the valve body 201 is seated. At this time, in the in-cylinder injection fuel injection valve, the fuel pressure supplied is in the range of about 1 MPa to 50 MPa.

コネクタ211を介してコイル208に通電されると、電磁弁の磁気回路を構成するコア(固定コア)207、ヨーク209、アンカー206に磁束密度を生じて、空隙のあるコア207とアンカー206の間に磁気吸引力を生じる。磁気吸引力が、スプリング210の付勢力と前述の燃料圧力による下流方向への付勢力を合算した付勢力よりも大きくなると、弁体201はガイド部材203、弁体ガイド205にガイドされながらアンカー206によってコア207側に吸引され、開弁状態となる。開弁状態となると、シート部材202のシート部から弁体201の弁体シート部が離座するため、これらの間に隙間が生じる。これにより高圧の燃料がシート部材202に形成された燃料噴射孔を介して、噴射される。燃料の噴射が開始されると、燃料圧力として与えられたエネルギは運動エネルギに変換され、燃料噴射弁下端部に空いた燃料噴射孔に至り噴射される。 When the coil 208 is energized via the connector 211, a magnetic flux density is generated in the core (fixed core) 207, the yoke 209, and the anchor 206 constituting the magnetic circuit of the solenoid valve, and between the core 207 and the anchor 206 having a gap. Generates magnetic attraction. When the magnetic attraction force becomes larger than the urging force obtained by adding the urging force of the spring 210 and the urging force in the downstream direction due to the fuel pressure described above, the valve body 201 is guided by the guide member 203 and the valve body guide 205 and the anchor 206. It is sucked to the core 207 side and the valve is opened. When the valve is opened, the valve body seat portion of the valve body 201 is separated from the seat portion of the seat member 202, so that a gap is formed between them. As a result, high-pressure fuel is injected through the fuel injection holes formed in the seat member 202. When the fuel injection is started, the energy given as the fuel pressure is converted into kinetic energy and reaches the fuel injection hole vacated at the lower end of the fuel injection valve to be injected.

図3は、図1と同じ断面の、燃焼室内の拡大図である。気筒の径方向側面部に燃料噴射弁119が備えられている。点火プラグ120は気筒の軸方向上面部で排気管106の近傍に備えられている。吸気ポート105には隔壁121が取り付けられる。この隔壁121は吸気ポート105の通路を気筒軸方向おいて上下に仕切るように構成される。つまり、吸気ポート105の空気流路が隔壁121により上側流路と下側流路とに分けられる。タンブル制御バルブ122は隔壁121の上流側に配置され、吸気ポート105の流路の一部が開閉されるように制御される。具体的にはタンブル制御バルブ122は隔壁121によって形成される吸気ポート105の下側流路の開閉を行う。 FIG. 3 is an enlarged view of the combustion chamber having the same cross section as that of FIG. A fuel injection valve 119 is provided on the radial side surface of the cylinder. The spark plug 120 is provided on the upper surface portion in the axial direction of the cylinder in the vicinity of the exhaust pipe 106. A partition wall 121 is attached to the intake port 105. The partition wall 121 is configured to partition the passage of the intake port 105 vertically in the cylinder axial direction. That is, the air flow path of the intake port 105 is divided into an upper flow path and a lower flow path by the partition wall 121. The tumble control valve 122 is arranged on the upstream side of the partition wall 121, and is controlled so that a part of the flow path of the intake port 105 is opened and closed. Specifically, the tumble control valve 122 opens and closes the lower flow path of the intake port 105 formed by the partition wall 121.

ECU118はセンサの信号をモニタし、第1の燃料噴射弁119や点火プラグ120、高圧燃料ポンプ111、タンブル制御バルブ122といったデバイスの作動を制御できる。ECU118のROMには一般的に用いられるエンジン回転数や水温、空燃比に応じた各種デバイスの設定値がマップデータとして記録されている。図3は、タンブル制御バルブ122が開き状態であり、吸気行程において隔壁121の上側流路を通る流れ123と隔壁の下部流路を通る流れ124が形成される。 The ECU 118 monitors the signal of the sensor and can control the operation of devices such as the first fuel injection valve 119, the spark plug 120, the high pressure fuel pump 111, and the tumble control valve 122. In the ROM of the ECU 118, set values of various devices according to the commonly used engine speed, water temperature, and air-fuel ratio are recorded as map data. In FIG. 3, the tumble control valve 122 is in an open state, and a flow 123 passing through the upper flow path of the partition wall 121 and a flow 124 passing through the lower flow path of the partition wall 121 are formed in the intake stroke.

図4は図3と同じ断面の、タンブル制御バルブ122が閉じた状態を示した図である。吸気ポート105に付与された隔壁121の上側流路を通る流れ125は、燃焼室内に強い流れを形成する。一方、隔壁121に阻害されることで、下側流路の流れ126は流れ125に比べて弱い流れとなる。このとき、バルブの中心軸127をピストン上部まで延在させて燃焼室内の領域を領域128と領域129に分けた場合、吸気行程において、領域128には強い流れが形成し、領域129には弱い流れが形成される。 FIG. 4 is a view showing a closed state of the tumble control valve 122 having the same cross section as that of FIG. The flow 125 passing through the upper flow path of the partition wall 121 provided to the intake port 105 forms a strong flow in the combustion chamber. On the other hand, the flow 126 in the lower flow path becomes weaker than the flow 125 because it is blocked by the partition wall 121. At this time, when the central axis 127 of the valve extends to the upper part of the piston and the region in the combustion chamber is divided into the region 128 and the region 129, a strong flow is formed in the region 128 and weak in the region 129 in the intake stroke. A flow is formed.

図5は、図4と同じ断面において、ピストン103が下降中に燃料噴射弁119から燃料を噴射した場合の模式図である。インジェクタ119から流動の強い領域128へと燃料噴霧130を噴射し、流動の弱い領域129へと燃料噴霧131を噴射する。すなわち、燃焼室104に直接、燃料を噴射するインジェクタ119において、燃料噴射孔301の中心軸305がピストン上面中心103aよりも点火プラグ先端部120aの側を指向する第1噴射孔グループ140と、燃料噴射孔の中心軸が点火プラグ先端部120aよりもピストン上面中心103aの側を指向する第2噴射孔グループ141を有する。そして第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)から燃料噴霧130を噴射し、第2噴射孔グループ141の燃料噴射孔(301d、301e、301f)から燃料噴霧131を噴射する。なお、燃料噴霧130は第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)のうちの一つの燃料噴射孔からの燃料噴霧を示し、同様に燃料噴霧131は第2噴射孔グループ141の燃料噴射孔(301d、301e、301f)のうちの一つの燃料噴射孔からの燃料噴霧を示す。132は燃料噴霧130の中心軸の噴霧方向を示し、これは第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)の中心軸とほぼ同様の方向である。同様に133は燃料噴霧131の中心軸の噴霧方向を示し、これは第2噴射孔グループ141の燃料噴射孔(301d、301e、301f)の中心軸とほぼ同様の方向である。 FIG. 5 is a schematic view of the same cross section as in FIG. 4 when fuel is injected from the fuel injection valve 119 while the piston 103 is descending. The fuel spray 130 is injected from the injector 119 into the region 128 where the flow is strong, and the fuel spray 131 is injected into the region 129 where the flow is weak. That is, in the injector 119 that injects fuel directly into the combustion chamber 104, the first injection hole group 140 in which the central axis 305 of the fuel injection hole 301 points toward the spark plug tip 120a with respect to the center 103a of the upper surface of the piston, and the fuel. The central axis of the injection hole has a second injection hole group 141 that points toward the center 103a of the upper surface of the piston with respect to the tip portion 120a of the spark plug. Then, the fuel spray 130 is injected from the fuel injection holes (301a, 301b, 301c) of the first injection hole group 140, and the fuel spray 131 is injected from the fuel injection holes (301d, 301e, 301f) of the second injection hole group 141. .. The fuel spray 130 indicates fuel spray from one of the fuel injection holes (301a, 301b, 301c) of the first injection hole group 140, and similarly, the fuel spray 131 is the second injection hole group 141. The fuel spray from one of the fuel injection holes (301d, 301e, 301f) of the above is shown. Reference numeral 132 denotes a spray direction of the central axis of the fuel spray 130, which is substantially the same direction as the central axis of the fuel injection holes (301a, 301b, 301c) of the first injection hole group 140. Similarly, reference numeral 133 denotes a spray direction of the central axis of the fuel spray 131, which is substantially the same direction as the central axis of the fuel injection holes (301d, 301e, 301f) of the second injection hole group 141.

そして本実施例の燃料噴射弁は、ピストン103が下死点にいる状態において、第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)は、第2噴射孔グループ141の燃料噴射孔(301d、301e、301f)から噴射される噴霧の流量よりも大きく、かつペネトレーションが小さくなるように構成される。つまり、流動の強い領域128に対しては、第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)により領域129への噴霧に比べて燃料の噴射流量が大きく、かつ噴霧の貫徹力(ペネトレーション)が小さくなるようにする。これにより、強い流動による燃料の分散効果を得ることができ、かつシリンダへの燃料の付着を低減することができる。一方、流動の弱い領域129に対しては第2噴射孔グループ141の燃料噴射孔(301d、301e、301f)により、領域128への噴霧に比べて燃料噴霧131が小流量とし、また流れによる分散性も弱いため、噴霧の貫徹力(ペネトレーション)が燃料噴霧130に比べて強くなるようにする。これにより、燃料噴霧131の有する運動量で燃料を拡散させることができる。 In the fuel injection valve of the present embodiment, when the piston 103 is at the bottom dead center, the fuel injection holes (301a, 301b, 301c) of the first injection hole group 140 are the fuel injection holes of the second injection hole group 141. It is configured so that it is larger than the flow rate of the spray injected from (301d, 301e, 301f) and the penetration is small. That is, for the region 128 where the flow is strong, the fuel injection flow rate is larger than the spray to the region 129 due to the fuel injection holes (301a, 301b, 301c) of the first injection hole group 140, and the penetration force of the spray is large. Make (penetration) small. As a result, the effect of dispersing the fuel due to the strong flow can be obtained, and the adhesion of the fuel to the cylinder can be reduced. On the other hand, for the region 129 where the flow is weak, the fuel injection holes (301d, 301e, 301f) of the second injection hole group 141 make the fuel spray 131 have a smaller flow rate than the spray to the region 128, and are dispersed by the flow. Since the property is also weak, the penetration force (penetration) of the spray is made stronger than that of the fuel spray 130. As a result, the fuel can be diffused by the momentum of the fuel spray 131.

すなわち、第1噴射孔グループの噴射孔から噴射される噴霧は、第2噴射孔グループの噴射孔から噴射される噴霧の流量よりも大きく、かつペネトレーションが小さくなるように構成することで、流動の強い領域128と流動の弱い領域129のそれぞれに対し、分散性に優れ、付着量の少ない噴霧を実現できる。 That is, the spray injected from the injection holes of the first injection hole group is configured to be larger than the flow rate of the spray injected from the injection holes of the second injection hole group and the penetration is small, so that the flow of the spray is increased. It is possible to realize spraying with excellent dispersibility and a small amount of adhesion to each of the strong region 128 and the weak flow region 129.

図6は、燃料噴射直後における燃料の存在領域を示した図である。燃料噴霧130は流量が多いために、広い範囲で燃料分布130aを形成し、燃料噴霧131は流動の弱い領域に燃料分布131aを形成する。このとき、筒内に形成された順タンブル方向(図の時計回り方向)のタンブル134によって、燃料分布は順タンブル方向に移動する。 FIG. 6 is a diagram showing a region where fuel exists immediately after fuel injection. Since the fuel spray 130 has a large flow rate, the fuel distribution 130a is formed in a wide range, and the fuel spray 131 forms the fuel distribution 131a in a region where the flow is weak. At this time, the fuel distribution moves in the forward tumble direction due to the tumble 134 in the forward tumble direction (clockwise direction in the figure) formed in the cylinder.

図7は、ピストン103が上方向に動作する圧縮行程中(圧縮行程初期)の燃料室内の燃料分布を示した図である。燃料分布130aと燃料分布131aは順タンブル方向に移動し、それぞれ燃料分布130bと燃料分布131bを形成する。図8は圧縮行程後期の燃料分布を示した図である。燃料分布130bと燃料分布131bは、燃料室内に均質混合気135を形成する。 FIG. 7 is a diagram showing the fuel distribution in the fuel chamber during the compression stroke (initial stage of the compression stroke) in which the piston 103 operates in the upward direction. The fuel distribution 130a and the fuel distribution 131a move in the forward tumble direction to form the fuel distribution 130b and the fuel distribution 131b, respectively. FIG. 8 is a diagram showing the fuel distribution in the latter half of the compression stroke. The fuel distribution 130b and the fuel distribution 131b form a homogeneous air-fuel mixture 135 in the fuel chamber.

以上の通り本実施例の燃料噴射弁は、上記したように燃料噴射孔301の中心軸303がピストン上面中心103aよりも点火プラグ先端部120aの側を指向する第1噴射孔グループ140と、燃料噴射孔301の中心軸303が点火プラグ先端部120aよりもピストン上面中心103aの側を指向する第2噴射孔グループ141を有する。そして、第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)は、第2噴射孔グループ141の燃料噴射孔(301d、301e、301f)から噴射される噴霧の流量よりも大きく、かつペネトレーションが小さくなるように構成される。これにより、流動の強い領域に対してはタンブル流による分散を、流動の弱い領域に対しては噴霧の運動量による分散を行う。よって、タンブル制御弁が閉まり高速流動が偏在する燃焼室においても、均質性の高く、壁面への付着の少ない混合気を形成することができる。 As described above, in the fuel injection valve of the present embodiment, as described above, the central shaft 303 of the fuel injection hole 301 has the first injection hole group 140 in which the central axis 303 of the fuel injection hole 301 faces the side of the spark plug tip 120a with respect to the center 103a of the upper surface of the piston, and the fuel. The central axis 303 of the injection hole 301 has a second injection hole group 141 that points toward the piston upper surface center 103a with respect to the spark plug tip portion 120a. The fuel injection holes (301a, 301b, 301c) of the first injection hole group 140 are larger than the flow rate of the spray injected from the fuel injection holes (301d, 301e, 301f) of the second injection hole group 141, and It is configured so that the penetration is small. As a result, dispersion by the tumble flow is performed in the region where the flow is strong, and dispersion by the momentum of the spray is performed in the region where the flow is weak. Therefore, even in a combustion chamber in which the tumble control valve is closed and high-speed flow is unevenly distributed, it is possible to form an air-fuel mixture having high homogeneity and less adhesion to the wall surface.

図9は、燃料噴射弁119に付与された第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)から噴射される燃料噴霧130と、第2噴射孔グループ141の燃料噴射孔(301d、301e、301f)から噴射される燃料噴霧131の模式図である。L130は第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)から噴射される燃料噴霧130のペネトレーションを表し、L131は第2噴射孔グループ141の燃料噴射孔(301d、301e、301f)から噴射される燃料噴霧131のペネトレーションを表す。第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)から噴射される噴霧は、第2噴射孔グループ141の燃料噴射孔(301d、301e、301f)から噴射される噴霧の流量よりも大きく、かつペネトレーションL130がペネトレーションL131よりも小さくなるように構成される。 FIG. 9 shows the fuel spray 130 injected from the fuel injection holes (301a, 301b, 301c) of the first injection hole group 140 provided to the fuel injection valve 119, and the fuel injection holes (301d) of the second injection hole group 141. , 301e, 301f) is a schematic view of the fuel spray 131 injected. L130 represents the penetration of the fuel spray 130 injected from the fuel injection holes (301a, 301b, 301c) of the first injection hole group 140, and L131 represents the fuel injection holes (301d, 301e, 301f) of the second injection hole group 141. Represents the penetration of the fuel spray 131 injected from. The spray injected from the fuel injection holes (301a, 301b, 301c) of the first injection hole group 140 is larger than the flow rate of the spray injected from the fuel injection holes (301d, 301e, 301f) of the second injection hole group 141. It is configured to be large and the penetration L130 is smaller than the penetration L131.

図10は、燃料噴射弁の先端の拡大図である。本実施例は、第1噴射孔グループ140が3つの燃料噴射孔(301a、301b、301c)からなり、第2噴射孔グループ141が3つの燃料噴射孔(301d、301e、301f)からなる、6噴射孔のマルチホール型の燃料噴射弁である。ただし、本発明は各噴射孔グループ(140、141)の燃料噴射孔の数が3つに限定されるものではない。本実施例において、第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)と第2噴射孔グループ141の燃料噴射孔(301d、301e、301f)とが異なる孔径となるように構成される。具体的には第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)に比べ、第2噴射孔グループ141の燃料噴射孔(301d、301e、301f)の孔径の方が小さくなるように構成される。これにより第2噴射孔グループ141の燃料噴射孔(301d、301e、301f)から噴射される噴霧に比べ、第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)から噴射される噴霧の流量を大きくすることができる。第2噴射孔グループ141の燃料噴射孔(301a、301b、301c)の中心軸303に垂直な方向の最小断面積が、第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)の中心軸303に垂直な方向の最小断面積と比べて小さくなるように構成されると言っても良い。 FIG. 10 is an enlarged view of the tip of the fuel injection valve. In this embodiment, the first injection hole group 140 is composed of three fuel injection holes (301a, 301b, 301c), and the second injection hole group 141 is composed of three fuel injection holes (301d, 301e, 301f). It is a multi-hole type fuel injection valve with injection holes. However, the present invention does not limit the number of fuel injection holes in each injection hole group (140, 141) to three. In this embodiment, the fuel injection holes (301a, 301b, 301c) of the first injection hole group 140 and the fuel injection holes (301d, 301e, 301f) of the second injection hole group 141 are configured to have different hole diameters. To. Specifically, the hole diameters of the fuel injection holes (301d, 301e, 301f) of the second injection hole group 141 are smaller than those of the fuel injection holes (301a, 301b, 301c) of the first injection hole group 140. It is composed. As a result, the spray injected from the fuel injection holes (301a, 301b, 301c) of the first injection hole group 140 is compared with the spray injected from the fuel injection holes (301d, 301e, 301f) of the second injection hole group 141. The flow rate can be increased. The minimum cross-sectional area in the direction perpendicular to the central axis 303 of the fuel injection holes (301a, 301b, 301c) of the second injection hole group 141 is the center of the fuel injection holes (301a, 301b, 301c) of the first injection hole group 140. It may be said that it is configured to be smaller than the minimum cross-sectional area in the direction perpendicular to the axis 303.

図11は、第1噴射孔グループ140に属する燃料噴射孔(301a、301b、301c)の噴射孔軸303と、弁体軸305に平行な、燃料噴射弁先端の拡大断面図である。燃料噴射弁先端は、弁体201、シート部材202、サック室302で、弁座面304などにより構成される。燃料は弁体201とシート部材202の隙間を通り、流れ311の経路を通って燃料噴射孔(301a、301b、301c)に流入するか、サック室302を経由し、流れ312の経路を通って燃料噴射孔(301a、301b、301c)に流入する。本実施例では、第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)は、出口に向かって断面積が拡大するように構成される。出口に向かって流路が広がることで、主流方向の流速が低下するとともに、噴射孔出口での噴射方向306が広がり、ペネトレーションが低下する。 FIG. 11 is an enlarged cross-sectional view of the injection hole shaft 303 of the fuel injection holes (301a, 301b, 301c) belonging to the first injection hole group 140 and the fuel injection valve tip parallel to the valve body shaft 305. The tip of the fuel injection valve is a valve body 201, a seat member 202, a sack chamber 302, and is composed of a valve seat surface 304 and the like. The fuel passes through the gap between the valve body 201 and the seat member 202, flows into the fuel injection holes (301a, 301b, 301c) through the path of the flow 311 or passes through the sack chamber 302 and passes through the path of the flow 312. It flows into the fuel injection holes (301a, 301b, 301c). In this embodiment, the fuel injection holes (301a, 301b, 301c) of the first injection hole group 140 are configured so that the cross-sectional area expands toward the outlet. By expanding the flow path toward the outlet, the flow velocity in the mainstream direction decreases, and the injection direction 306 at the outlet of the injection hole expands, so that the penetration decreases.

図12は、第1噴射孔グループ140から噴射される燃料噴霧130と、第2噴射孔グループ141から噴射される燃料噴霧131の、燃料噴射弁近傍の拡大図である。第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)は上記したように出口に向かって広がりテーパを有しており、噴射孔出口より下流で噴霧が広がることで、ペネトレーションが低下する。すなわち、第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)は噴射出口に向かって断面積が増加するテーパを有することで、第2噴射孔グループ141の燃料噴射孔(301d、301e、301f)から噴射される燃料噴霧131に比べ、ペネトレーションの小さい燃料噴霧130を噴射することができる。なお、第2噴射孔グループ141の燃料噴孔(301d、301e、301f)は、噴孔出口に向かって断面積が小さくなる、絞りテーパ形状としても良い。第2噴射孔グループ141の燃料噴孔(301d、301e、301f)を絞りテーパ形状とすることで、噴射孔出口での噴霧角が小さくなり、ペネトレーションが大きくなる。 FIG. 12 is an enlarged view of the fuel spray 130 injected from the first injection hole group 140 and the fuel spray 131 injected from the second injection hole group 141 in the vicinity of the fuel injection valve. The fuel injection holes (301a, 301b, 301c) of the first injection hole group 140 have a taper that spreads toward the outlet as described above, and the spray spreads downstream from the injection hole outlet, so that the penetration is reduced. .. That is, the fuel injection holes (301a, 301b, 301c) of the first injection hole group 140 have a taper whose cross-sectional area increases toward the injection outlet, so that the fuel injection holes (301d, 301e) of the second injection hole group 141 , 301f), the fuel spray 130 having a smaller penetration can be injected as compared with the fuel spray 131 injected. The fuel injection holes (301d, 301e, 301f) of the second injection hole group 141 may have a throttle taper shape in which the cross-sectional area becomes smaller toward the injection hole outlet. By narrowing and tapering the fuel injection holes (301d, 301e, 301f) of the second injection hole group 141, the spray angle at the injection hole outlet becomes small and the penetration becomes large.

次に、タンブル制御バルブ122の開度による制御方法を、図13を用いて説明する。図13は、タンブル制御バルブ122が開き状態での、燃料噴射を表した図である。タンブル制御バルブ122が開いた状態では、隔壁121の下部からの流れ込み124が発生することで、下向きの強い流れが形成される。これにより、貫徹力の弱い、第1噴射孔グループ140に属する燃料噴射孔(301a、301b、301c)から噴射される燃料噴霧は、流れに負けて下向きに流れてしまい、燃焼室内に十分に分散されない。そこで、燃料噴射圧力を上昇させることで、図14に示すように、噴霧の貫徹力を上昇させ、燃焼室内に十分に燃料を分散させることができる。すなわち、タンブル制御バルブ122の開度を大きくするに従って、燃料の供給圧力を高めるように制御することで、燃焼室内に均質な混合気を形成することができる。具体的にはコモンレール112に燃料を供給する高圧燃料ポンプ111を制御することで供給燃料が高くなるように制御する。 Next, a control method based on the opening degree of the tumble control valve 122 will be described with reference to FIG. FIG. 13 is a diagram showing fuel injection when the tumble control valve 122 is in the open state. When the tumble control valve 122 is open, the inflow 124 from the lower part of the partition wall 121 is generated, so that a strong downward flow is formed. As a result, the fuel spray injected from the fuel injection holes (301a, 301b, 301c) belonging to the first injection hole group 140, which has a weak penetration force, loses the flow and flows downward, and is sufficiently dispersed in the combustion chamber. Not done. Therefore, by increasing the fuel injection pressure, as shown in FIG. 14, the penetration force of the spray can be increased and the fuel can be sufficiently dispersed in the combustion chamber. That is, a homogeneous air-fuel mixture can be formed in the combustion chamber by controlling so as to increase the fuel supply pressure as the opening degree of the tumble control valve 122 is increased. Specifically, by controlling the high-pressure fuel pump 111 that supplies fuel to the common rail 112, the supply fuel is controlled to be high.

図15に、タンブル制御バルブ122と燃料供給圧力の関係を示す。内燃機関の制御装置であるECU118は、要求負荷が高い場合には、タンブル制御バルブ122の開度を上げる。このとき、燃料供給圧力をタンブル制御バルブ122の開度に応じて上げることで、第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)から噴射される噴霧の貫徹力を高め、燃焼室内に均質な混合気を形成することができる。一方、エンジンへの要求負荷が中・低負荷の場合には、リーン均質燃焼モードへと変わり、タンブル制御バルブ122の開度を小さくするように制御する。このとき、均質混合気と低付着量を両立するため、燃料供給圧力を下げ、第1噴射孔グループ140の燃料噴射孔(301a、301b、301c)から噴射される噴霧の貫徹力を下げるように制御する。 FIG. 15 shows the relationship between the tumble control valve 122 and the fuel supply pressure. The ECU 118, which is a control device for an internal combustion engine, increases the opening degree of the tumble control valve 122 when the required load is high. At this time, by increasing the fuel supply pressure according to the opening degree of the tumble control valve 122, the penetration force of the spray injected from the fuel injection holes (301a, 301b, 301c) of the first injection hole group 140 is increased, and combustion is performed. A homogeneous air-fuel mixture can be formed in the room. On the other hand, when the required load on the engine is medium or low, the mode is changed to the lean homogeneous combustion mode, and the tumble control valve 122 is controlled so as to reduce the opening degree. At this time, in order to achieve both a homogeneous air-fuel mixture and a low adhesion amount, the fuel supply pressure is lowered, and the penetration force of the spray injected from the fuel injection holes (301a, 301b, 301c) of the first injection hole group 140 is lowered. Control.

以上の通り図3に示したように、本実施例のエンジンシステムでは気筒の空気入口側の吸気ポート105に空気流路を気筒の軸方向上下に分ける隔壁121が設けられる。そしてこのエンジンシステムにおいて、隔壁121の下側流路を開閉する絞り弁122が設けられている。またこのエンジンシステムにおいて、低負荷、又は中負荷の状態で絞り弁122が閉じられるように制御する制御部を備えることが望ましい。またこのエンジンシステムにおいて、絞り弁122の開度を大きくするに従って、燃料噴射弁119に供給する燃料圧力を高めるように制御する制御部(ECU)を備えることが望ましい。 As described above, as shown in FIG. 3, in the engine system of this embodiment, the intake port 105 on the air inlet side of the cylinder is provided with a partition wall 121 that divides the air flow path vertically in the axial direction of the cylinder. In this engine system, a throttle valve 122 for opening and closing the lower flow path of the partition wall 121 is provided. Further, in this engine system, it is desirable to include a control unit that controls the throttle valve 122 to be closed under a low load or medium load state. Further, in this engine system, it is desirable to include a control unit (ECU) that controls so as to increase the fuel pressure supplied to the fuel injection valve 119 as the opening degree of the throttle valve 122 is increased.

以上の本実施例によれば、吸気ポート105の流路を絞り燃焼室内に高速流が形成されている場合に、高均質で、壁面付着を低減する燃料噴射弁、又はエンジンシステムを提供することが可能となる。 According to the above embodiment, a fuel injection valve or an engine system that is highly homogeneous and reduces wall adhesion when a high-speed flow is formed in the combustion chamber by narrowing the flow path of the intake port 105 is provided. Is possible.

本発明の第2の実施例に係る燃料噴射弁について、図16から図18を用いて以下説明する。実施例1と筒内噴射式エンジン、及び燃料噴射弁の基本的な構成は同じなので説明を省略する。また同様の符号は実施例1と同じ機能を示すため説明を省略する。本実施例に係る燃料噴射弁は、燃料噴射孔の中心軸がピストン上面中心103aよりも点火プラグ先端部120aの側を指向する第1噴射孔グループ143に属する燃料噴射孔(301a´、301b´、301c´)において、噴孔軸に垂直な方向の断面がオーバル形状で構成され、オーバル形状の長軸方向が噴射孔軸方向によって変化するねじり噴射孔により構成される。その他の構成は第1の実施例と同一とする。燃料噴射孔の中心軸が点火プラグ先端部120aよりもピストン上面中心103aの側を指向する第2噴射孔グループ144に属する燃料噴射孔(301d´、301e´、301f´)については実施例1の燃料噴射孔(301d、301e、301f)と同様に真円形状で形成される。なお、オーバル形状は卵形、長円形、又は楕円形などを含む形状であるが、本実施例では特に楕円形であることが望ましい。以下においては楕円を例として説明するが、本発明はこれに限定されるわけではない。 The fuel injection valve according to the second embodiment of the present invention will be described below with reference to FIGS. 16 to 18. Since the basic configurations of the in-cylinder injection engine and the fuel injection valve are the same as those of the first embodiment, the description thereof will be omitted. Further, since the same reference numerals indicate the same functions as those in the first embodiment, the description thereof will be omitted. In the fuel injection valve according to the present embodiment, the fuel injection holes (301a', 301b'" belong to the first injection hole group 143 in which the central axis of the fuel injection holes is directed toward the spark plug tip portion 120a with respect to the piston upper surface center 103a. , 301c ′), the cross section in the direction perpendicular to the injection hole axis is formed in an oval shape, and the long axis direction of the oval shape is composed of a torsion injection hole in which the direction in which the injection hole axis is changed. Other configurations are the same as those in the first embodiment. The fuel injection holes (301d', 301e', 301f') belonging to the second injection hole group 144 in which the central axis of the fuel injection hole faces the side of the piston upper surface center 103a with respect to the spark plug tip portion 120a are described in the first embodiment. Like the fuel injection holes (301d, 301e, 301f), it is formed in a perfect circular shape. The oval shape includes an oval shape, an oval shape, an elliptical shape, and the like, but in this embodiment, the oval shape is particularly desirable. In the following, an ellipse will be described as an example, but the present invention is not limited thereto.

図16は、図10と同様の、燃料噴射弁先端の拡大図である。第2の実施例では、第1噴射孔グループ143が楕円噴孔(301a´、301b´、301c´)で構成される。図17(a)に、図11と同様の、燃料噴射弁先端の拡大断面図を示す。本実施例に係る燃料噴射弁では、楕円噴孔(301a´、301b´、301c´)の中心軸303に垂直な方向の断面は楕円で構成される。なお、断面の一部は真円としてもよい。図17(b)に、噴射孔入口と噴射孔出口での断面形状を示す。本実施例では、楕円噴孔(301a´、301b´、301c´)の噴射孔入口の断面は真円で構成し、噴射孔出口の断面を楕円で構成する。また、楕円の長軸方向は、噴射孔軸方向によって変化するねじり噴射孔である。ねじり噴射孔を通る流れは、噴射孔の軸周りの回転方向の流れ(スワール)を形成する。 FIG. 16 is an enlarged view of the tip of the fuel injection valve, similar to FIG. 10. In the second embodiment, the first injection hole group 143 is composed of elliptical injection holes (301a', 301b', 301c'). FIG. 17A shows an enlarged cross-sectional view of the tip of the fuel injection valve similar to FIG. In the fuel injection valve according to the present embodiment, the cross section of the elliptical injection holes (301a', 301b', 301c') in the direction perpendicular to the central axis 303 is formed of an ellipse. A part of the cross section may be a perfect circle. FIG. 17B shows the cross-sectional shapes at the injection hole inlet and the injection hole outlet. In this embodiment, the cross section of the injection hole inlet of the elliptical injection hole (301a', 301b', 301c') is formed of a perfect circle, and the cross section of the injection hole outlet is formed of an ellipse. Further, the long axis direction of the ellipse is a torsion injection hole that changes depending on the direction of the injection hole axis. The flow through the torsion injection hole forms a rotational flow (swirl) around the axis of the injection hole.

図18は、第1噴射孔グループ143から噴射される燃料噴霧130と、第2噴射孔グループ144から噴射される燃料噴霧131の、燃料噴射弁近傍の拡大図である。第1噴射孔グループ143はねじり噴射孔(301a´、301b´、301c´)により構成され、噴射孔出口より下流で噴霧が広がることで、ペネトレーションが低下する。すなわち、第1噴射孔グループ143の燃料噴射孔(301a´、301b´、301c´)は噴孔軸303に垂直な方向の断面が楕円で構成され、楕円の長軸方向が噴射孔軸方向によって変化するねじり噴射孔により構成される。また実施例1と同様に第1噴射孔グループ143の全ての燃料噴射孔(301a´、301b´、301c´)の最小断面積と比べて第2噴射孔グループ144の全ての燃料噴射孔(301d´、301e´、301f´)の最小断面積が小さくなるように構成されることが望ましい。これにより、第2噴射孔グループ144の燃料噴射孔(301d´、301e´、301f´)から噴射される燃料噴霧133に比べ、流量は大きく、かつ、ペネトレーションの小さい噴霧を噴射することができる。 FIG. 18 is an enlarged view of the fuel spray 130 injected from the first injection hole group 143 and the fuel spray 131 injected from the second injection hole group 144 in the vicinity of the fuel injection valve. The first injection hole group 143 is composed of torsion injection holes (301a ′, 301b ′, 301c ′), and the spray spreads downstream from the injection hole outlet, so that the penetration is reduced. That is, the fuel injection holes (301a', 301b', 301c') of the first injection hole group 143 have an elliptical cross section in the direction perpendicular to the injection hole axis 303, and the major axis direction of the ellipse depends on the injection hole axis direction. It is composed of changing torsion injection holes. Further, as in the first embodiment, all the fuel injection holes (301d) of the second injection hole group 144 are compared with the minimum cross-sectional area of all the fuel injection holes (301a', 301b', 301c') of the first injection hole group 143. It is desirable that the minimum cross-sectional area of ′, 301e ′, 301f ′) is reduced. As a result, it is possible to inject a spray having a larger flow rate and a smaller penetration than the fuel spray 133 injected from the fuel injection holes (301d', 301e', 301f') of the second injection hole group 144.

101…シリンダヘッド
102…シリンダブロック
103…ピストン
104…燃焼室
105…吸気管
106…排気管
107…吸気弁
108…排気弁
109…燃料タンク
110…フィードポンプ
111…高圧燃料ポンプ
112…コモンレール
113…燃圧センサ
114…コンロッド
115…クランク軸
116…クランク角センサ
117…水温センサ
118…ECU
119…燃料噴射弁
120…点火プラグ
121…隔壁
122…タンブル制御バルブ
123…隔壁上部流れ
124…隔壁下部流れ
125…隔壁上部流れ(タンブル制御バルブ閉状態時)
126…隔壁下部流れ(タンブル制御バルブ閉状態時)
127…吸気バルブ中心軸
128…強流動領域
129…弱流動領域
130…第1噴射孔グループの噴射孔からの噴霧
131…第2噴射孔グループの噴射孔からの噴霧
132…第1噴射孔グループの噴射孔からの噴霧方向
133…第2噴射孔グループの噴射孔からの噴霧方向
134…タンブル流
135…混合気
140…第1噴射孔グループの噴射孔
141…第2噴射孔グループの噴射孔
201…弁体
202…シート部材
203…ガイド部材
204…ノズル体
205…弁体ガイド
206…アンカー
207…コア
208…コイル
209…ヨーク
210…スプリング
211…コネクタ
212…燃料供給口
301…噴射孔
302…サック室
303…噴射孔中心軸
304…弁座面
305…弁体中心軸
306…噴孔出口での速度ベクトル
307…噴孔出口での速度ベクトル
311…シート部側からの流れ込み
312…サック室側からの流れ込み
101 ... Cylinder head 102 ... Cylinder block 103 ... Piston 104 ... Combustion chamber 105 ... Intake pipe 106 ... Exhaust pipe 107 ... Intake valve 108 ... Exhaust valve 109 ... Fuel tank 110 ... Feed pump 111 ... High pressure fuel pump 112 ... Common rail 113 ... Fuel pressure Sensor 114 ... Connecting rod 115 ... Crankshaft 116 ... Crank angle sensor 117 ... Water temperature sensor 118 ... ECU
119 ... Fuel injection valve 120 ... Spark plug 121 ... Bulkhead 122 ... Tumble control valve 123 ... Bulkhead upper flow 124 ... Bulkhead lower flow 125 ... Bulkhead upper flow (when the tumble control valve is closed)
126 ... Flow at the bottom of the bulkhead (when the tumble control valve is closed)
127 ... Intake valve central axis 128 ... Strong flow region 129 ... Weak flow region 130 ... Spray from the injection hole of the first injection hole group 131 ... Spray from the injection hole of the second injection hole group 132 ... Of the first injection hole group Spraying direction from the injection hole 133 ... Spraying direction from the injection hole of the second injection hole group 134 ... Tumble flow 135 ... Air-fuel mixture 140 ... Injection hole 141 of the first injection hole group ... Injection hole 201 of the second injection hole group ... Valve body 202 ... Seat member 203 ... Guide member 204 ... Nozzle body 205 ... Valve body guide 206 ... Anchor 207 ... Core 208 ... Coil 209 ... Yoke 210 ... Spring 211 ... Connector 212 ... Fuel supply port 301 ... Injection hole 302 ... Sack chamber 303 ... Injection hole central axis 304 ... Valve seat surface 305 ... Valve body central axis 306 ... Velocity vector at injection hole outlet 307 ... Velocity vector at injection hole outlet 311 ... Flow from seat side 312 ... From sack chamber side Flow

Claims (10)

燃焼室に直接、燃料を噴射する燃料噴射弁において、
前記燃料室内におけるバルブの中心軸をピストン上部まで延在させ2分した領域のうち、中心軸が点火プラグの先端部がある側の領域を指向する燃料噴射孔を複数備える第1噴射孔グループと、中心軸が点火プラグの先端部がない側の領域を指向する燃料噴射孔を複数備える第2噴射孔グループを有し、前記第1噴射孔グループにおける各々の前記燃料噴射孔は、前記第2噴射孔グループにおける各々の前記燃料噴射孔から噴射される噴霧の流量よりも大きく、かつペネトレーションが小さくなるように構成される燃料噴射弁。
In a fuel injection valve that injects fuel directly into the combustion chamber
A first injection hole group having a plurality of fuel injection holes in which the central axis of the valve in the fuel chamber extends to the upper part of the piston and is divided into two, and the central axis points to the area on the side where the tip of the spark plug is located. A second injection hole group having a plurality of fuel injection holes whose central axis points to a region on the side where the tip of the spark plug is not provided is provided, and each of the fuel injection holes in the first injection hole group is the second injection hole. A fuel injection valve configured to be larger than the flow rate of the spray injected from each of the fuel injection holes in the injection hole group and the penetration is small.
請求項1に記載の燃料噴射弁において、前記第1噴射孔グループの燃料噴射孔は噴射出口に向かって断面積が増加するテーパを有するように構成された燃料噴射弁。 The fuel injection valve according to claim 1, wherein the fuel injection hole of the first injection hole group has a taper whose cross-sectional area increases toward the injection outlet. 請求項1に記載の燃料噴射弁において、前記第2噴射孔グループの燃料噴射孔の中心軸に垂直な方向の最小断面積が、前記第1噴射孔グループの燃料噴射孔の中心軸に垂直な方向の最小断面積と比べて小さくなるように構成された燃料噴射弁。 In the fuel injection valve according to claim 1, the minimum cross-sectional area in the direction perpendicular to the central axis of the fuel injection hole of the second injection hole group is perpendicular to the central axis of the fuel injection hole of the first injection hole group. A fuel injection valve configured to be smaller than the minimum cross-sectional area in the direction. 請求項1に記載の燃料噴射弁において、前記第1噴射孔グループの燃料噴射孔の中心軸に垂直な方向の断面がオーバル形状であり、オーバル形状の長軸方向が噴射孔軸方向によって変化するねじり噴射孔により構成された燃料噴射弁。 In the fuel injection valve according to claim 1, the cross section of the first injection hole group in the direction perpendicular to the central axis of the fuel injection hole has an oval shape, and the long axis direction of the oval shape changes depending on the injection hole axial direction. A fuel injection valve composed of twisted injection holes. 請求項1に記載の燃料噴射弁において、前記第1噴射孔グループの燃料噴射孔の入口の断面が真円で構成され、出口の断面が楕円で構成された燃料噴射弁。 The fuel injection valve according to claim 1, wherein the cross section of the inlet of the fuel injection hole of the first injection hole group is formed of a perfect circle, and the cross section of the outlet is formed of an ellipse. 請求項1に記載の燃料噴射弁において、前記第1噴射孔グループの全ての燃料噴射孔の最小断面積と比べて前記第2噴射孔グループの全ての燃料噴射孔の最小断面積が小さくなるように構成された燃料噴射弁。 In the fuel injection valve according to claim 1, the minimum cross-sectional area of all fuel injection holes in the second injection hole group is smaller than the minimum cross-sectional area of all fuel injection holes in the first injection hole group. Fuel injection valve configured in. 請求項1に記載の燃料噴射弁が気筒に取り付けられ、
前記気筒の空気入口側の吸気ポートに空気流路を前記気筒の軸方向上下に分ける隔壁が設けられたエンジンシステム。
The fuel injection valve according to claim 1 is attached to the cylinder, and the fuel injection valve is attached to the cylinder.
An engine system in which an intake port on the air inlet side of the cylinder is provided with a partition wall that divides an air flow path into upper and lower axial directions of the cylinder.
請求項7に記載のエンジンシステムにおいて、
前記隔壁の下側流路を開閉する絞り弁が設けられたエンジンシステム。
In the engine system according to claim 7,
An engine system provided with a throttle valve that opens and closes the lower flow path of the partition wall.
請求項8に記載のエンジンシステムにおいて、
低負荷、又は中負荷の状態で前記絞り弁が閉じられるように制御する制御部を備えたエンジンシステム。
In the engine system according to claim 8,
An engine system including a control unit that controls the throttle valve to be closed under a low load or a medium load.
請求項8に記載のエンジンシステムにおいて、絞り弁の開度を大きくするに従って、前記燃料噴射弁に供給する燃料圧力を高めるように制御する制御部を備えたエンジンシステム。 The engine system according to claim 8, further comprising a control unit that controls to increase the fuel pressure supplied to the fuel injection valve as the opening degree of the throttle valve is increased.
JP2017107319A 2017-05-31 2017-05-31 Fuel injection valve and engine system Active JP6862284B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017107319A JP6862284B2 (en) 2017-05-31 2017-05-31 Fuel injection valve and engine system
PCT/JP2018/016524 WO2018221076A1 (en) 2017-05-31 2018-04-24 Fuel injection valve and engine system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017107319A JP6862284B2 (en) 2017-05-31 2017-05-31 Fuel injection valve and engine system

Publications (2)

Publication Number Publication Date
JP2018204445A JP2018204445A (en) 2018-12-27
JP6862284B2 true JP6862284B2 (en) 2021-04-21

Family

ID=64455385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017107319A Active JP6862284B2 (en) 2017-05-31 2017-05-31 Fuel injection valve and engine system

Country Status (2)

Country Link
JP (1) JP6862284B2 (en)
WO (1) WO2018221076A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7298484B2 (en) * 2020-01-10 2023-06-27 トヨタ自動車株式会社 Intake structure of internal combustion engine

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820681B2 (en) * 1997-06-11 2006-09-13 日産自動車株式会社 In-cylinder direct injection spark ignition engine
EP1191199A1 (en) * 1999-06-11 2002-03-27 Hitachi, Ltd. Cylinder injection engine and method of combusting the engine
JP3926989B2 (en) * 2001-02-01 2007-06-06 株式会社日立製作所 In-cylinder injection spark ignition engine control device
JP2005248857A (en) * 2004-03-04 2005-09-15 Mitsubishi Electric Corp Combustion control device for internal combustion engine
JP2007092635A (en) * 2005-09-28 2007-04-12 Mazda Motor Corp Spark ignition type direct injection engine
JP4542018B2 (en) * 2005-10-12 2010-09-08 日立オートモティブシステムズ株式会社 Engine fuel injection control method and engine having an injector used therefor
JP2007138746A (en) * 2005-11-15 2007-06-07 Hitachi Ltd Fuel supply device
JP2007138779A (en) * 2005-11-16 2007-06-07 Nissan Motor Co Ltd Cylinder injection internal combustion engine
JP2007315276A (en) * 2006-05-25 2007-12-06 Nissan Motor Co Ltd Multi-hole type injector
JP2008075471A (en) * 2006-09-19 2008-04-03 Nissan Motor Co Ltd Fuel injection control device for internal combustion engine
JP2008151020A (en) * 2006-12-18 2008-07-03 Hitachi Ltd Cylinder injection engine having piston with level difference and control device
JP2009024683A (en) * 2007-07-24 2009-02-05 Hitachi Ltd Injector with plurality of injection holes, cylinder gasoline injection type internal combustion engine with injector, and control method thereof
JP2009085041A (en) * 2007-09-28 2009-04-23 Hitachi Ltd Fuel injection device
JP2010101290A (en) * 2008-10-27 2010-05-06 Denso Corp Fuel injection valve
JP2010249125A (en) * 2009-03-23 2010-11-04 Denso Corp Fuel injection valve
US9435308B2 (en) * 2011-07-11 2016-09-06 Bosch Corporation Fuel injection valve, internal combustion engine and fuel injection method
JP6138502B2 (en) * 2013-02-04 2017-05-31 日立オートモティブシステムズ株式会社 Fuel injection valve
JP5812050B2 (en) * 2013-07-25 2015-11-11 トヨタ自動車株式会社 Fuel injection valve
JP2016098702A (en) * 2014-11-20 2016-05-30 株式会社日本自動車部品総合研究所 Fuel injection valve
JP2017044174A (en) * 2015-08-28 2017-03-02 日立オートモティブシステムズ株式会社 Fuel injection valve
JP2017057797A (en) * 2015-09-17 2017-03-23 日立オートモティブシステムズ株式会社 Fuel injection control device
JP2017031980A (en) * 2016-10-05 2017-02-09 株式会社デンソー Fuel injection valve

Also Published As

Publication number Publication date
WO2018221076A1 (en) 2018-12-06
JP2018204445A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
US20100237174A1 (en) Fuel injector
WO2007119520A1 (en) Installation structure for fuel injection valve and fuel injection system
JP4508142B2 (en) Fuel injection valve for internal combustion engine
US20010022170A1 (en) Fuel injection method of internal combustion engine and fuel injection apparatus of internal combustion engine
JP5537049B2 (en) In-cylinder injection spark ignition engine
US11136954B2 (en) Fuel injection valve
JP6862284B2 (en) Fuel injection valve and engine system
JP5274701B1 (en) In-cylinder injection internal combustion engine control device
JPH11159424A (en) Fuel injection device for internal combustion engine
JP2018053760A (en) Controller
JP4224666B2 (en) Fuel injection nozzle and processing method thereof
JP6568808B2 (en) Control device for fuel injection valve
WO2017199574A1 (en) Internal combustion engine control device
JP7013133B2 (en) Vehicle control device
JP2011007046A (en) Fuel injection device for direct injection gasoline engine
JP2013181454A (en) Fuel injection system for internal combustion engine
JP2009085041A (en) Fuel injection device
JP7032256B2 (en) Fuel injection valve
JP6695476B2 (en) Fuel injector
JP4276955B2 (en) Fuel injection system
WO2016170999A1 (en) Fuel injection device
JP2010031684A (en) Spark ignition internal combustion engine
JP2004270450A (en) Fuel injection apparatus and fuel injection method for internal combustion engine
JP2009150270A (en) Fuel injection device and internal combustion engine having the same
JP2009013962A (en) Internal combustion engine

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170602

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210331

R150 Certificate of patent or registration of utility model

Ref document number: 6862284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250