JP2009150270A - Fuel injection device and internal combustion engine having the same - Google Patents

Fuel injection device and internal combustion engine having the same Download PDF

Info

Publication number
JP2009150270A
JP2009150270A JP2007327538A JP2007327538A JP2009150270A JP 2009150270 A JP2009150270 A JP 2009150270A JP 2007327538 A JP2007327538 A JP 2007327538A JP 2007327538 A JP2007327538 A JP 2007327538A JP 2009150270 A JP2009150270 A JP 2009150270A
Authority
JP
Japan
Prior art keywords
fuel
spray
swirl
injection device
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007327538A
Other languages
Japanese (ja)
Other versions
JP4789913B2 (en
Inventor
Yoshito Yasukawa
義人 安川
Motoyuki Abe
元幸 安部
Yoshio Okamoto
良雄 岡本
Toru Ishikawa
石川  亨
Takehiko Kowatari
武彦 小渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2007327538A priority Critical patent/JP4789913B2/en
Publication of JP2009150270A publication Critical patent/JP2009150270A/en
Application granted granted Critical
Publication of JP4789913B2 publication Critical patent/JP4789913B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection device for changing between spraying states in which an injection angle is large and an injection rate is low, and an injection angle is small and an injection rate is high, according to the vertical movement of a valve element for making a reduction in fuel consumption compatible with an increase in output. <P>SOLUTION: This fuel injection device comprises: at least a sheet-orifice plate 71 having an injection hole 77 for injecting a fuel and a valve seat 72; the valve element 70 vertically moved by an electromagnetic force; and a variable swing part 80 for injecting the swing flow of the fuel from an injection hole 77. The variable swing part 80 comprises: a swing passage 85 for the fuel which forms a fuel swing flow; and a non-swing passage 86 for damping the swing force of a fuel swing flow by impacting the fuel against the fuel swing flow from the directions perpendicular to each other on a same plane. The fuel flow flowing through a non-swing passage 86 is increased or decreased according to the vertical position of the valve element 70 to vary the spray angle, spray penetration force, and spray amount of the fuel spray jetted from the injection hole 77. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内燃機関に燃料を供給するための燃料噴射装置、特に低燃費化と高出力化の両立を実現する燃料噴射装置、及びこれを搭載した内燃機関に関する。   The present invention relates to a fuel injection device for supplying fuel to an internal combustion engine, and more particularly to a fuel injection device that realizes both low fuel consumption and high output, and an internal combustion engine equipped with the same.

近年、自動車の排ガス規制が強化されてきており、自動車用内燃機関には特に始動時には有害排出ガスHC(炭化水素)を低減することが求められていて、一方で、内燃機関には高出力化が求められている。従来、内燃機関の燃料噴射方式としては、DI(Direction Injection)方式(筒内直接噴射型インジェクタ)と、MPI(Multi Port Injection)方式(吸気管噴射型インジェクタ)が提案されている。ここで、DIとMPIでは、いずれも低燃費化と高出力化の両立が要望されている。   In recent years, exhaust gas regulations for automobiles have been tightened, and internal combustion engines for automobiles are required to reduce harmful exhaust gas HC (hydrocarbon) especially at the start, while internal combustion engines have a higher output. Is required. Conventionally, DI (Direction Injection) system (in-cylinder direct injection type injector) and MPI (Multi Port Injection) system (intake pipe injection type injector) have been proposed as fuel injection systems for internal combustion engines. Here, both DI and MPI are required to achieve both low fuel consumption and high output.

さらに、MPIでは、内燃機関における吸気弁の上流側において吸気管に燃料噴射装置を設けているために、噴射された燃料が吸気管の内壁に付着しないような工夫が求められている。一方、DIでは、燃料噴射装置が筒内に設置されているので、噴射された燃料がピストンや吸気弁に付着しないような工夫が求められている。そして、内燃機関の高出力化を図る上では、筒内において満遍なく均一に燃料を噴射する必要があるので、好ましくはDIの直上噴射が有望視されている。   Furthermore, in MPI, since the fuel injection device is provided in the intake pipe upstream of the intake valve in the internal combustion engine, a device is required to prevent the injected fuel from adhering to the inner wall of the intake pipe. On the other hand, in DI, since the fuel injection device is installed in the cylinder, a contrivance is required so that the injected fuel does not adhere to the piston or the intake valve. In order to increase the output of the internal combustion engine, it is necessary to inject the fuel uniformly and uniformly in the cylinder. Therefore, the direct injection of DI is considered promising.

そこで、DIによる低燃費化を図る内燃機関の構造においては、直上に配置された燃料噴射装置の近傍に点火プラグが設置されていて、特にエンジン始動時の低燃費化を図るためには、燃料噴射装置からの噴射燃料を点火プラグに近づけるようにコンパクトな噴霧を行って(点火プラグの廻りに噴霧を集中させるべく噴霧角を広くして)、空燃比を良くし燃料流量を少なくする必要がある。一方、DIによるエンジンの高出力化を図るためには、始動時とは異なりピストンが離れた位置にあるので燃料噴射の形態は噴霧角を狭くし高貫徹力(強いペネトレーション)の噴霧にして高噴射率すなわち燃料流量を多くする必要がある(広い燃焼室の全体を理論空燃比にして高出力を得るために)。   Therefore, in the structure of an internal combustion engine that achieves low fuel consumption by DI, an ignition plug is installed in the vicinity of the fuel injection device disposed immediately above, and in order to reduce fuel consumption particularly at the time of engine start, It is necessary to perform a compact spray so that the fuel injected from the injector is close to the spark plug (widen the spray angle to concentrate the spray around the spark plug), improve the air-fuel ratio, and reduce the fuel flow rate. is there. On the other hand, in order to increase the output of the engine by DI, the piston is located at a position apart from that at the time of starting. Therefore, the fuel injection mode is reduced to a spray angle with a high penetrating force (strong penetration). It is necessary to increase the injection rate, that is, the fuel flow rate (in order to obtain a high output by making the entire combustion chamber the stoichiometric air-fuel ratio).

ここで、高負荷運転時と低負荷運転時で燃料噴霧の旋回形状を変化させるスワール方式燃料噴射弁は、例えば、特許文献1に開示されている。この特許文献1によると、閉弁時、開弁時及び全開時のそれぞれにおける弁体のリフト量に応じて弁体に設けた軸方向溝の開度が変わり、弁体の全開時に未旋回流を遮断して広噴射角(旋回力が大きい)を得る構成となっている。また、エンジンの運転状態に応じて噴霧の形状特性を変化させてエンジンの高効率運転を行おうとする従来技術は、例えば、特許文献2にも開示されている。   Here, a swirl type fuel injection valve that changes the swirl shape of the fuel spray during high load operation and low load operation is disclosed in, for example, Patent Document 1. According to this patent document 1, the opening degree of the axial groove provided in the valve body changes according to the lift amount of the valve body when the valve is closed, when the valve is opened, and when the valve is fully opened. Is configured to obtain a wide injection angle (large turning force). Further, for example, Patent Document 2 discloses a conventional technique for performing high-efficiency operation of an engine by changing the shape characteristics of the spray according to the operating state of the engine.

さらに、スワール室側におけるスワール孔開口面積を変化させてエンジン負荷状態に応じた燃料噴霧特性を得る従来技術として、例えば、特許文献3には、バルブニードルのリフト量が制御され、小リフト量状態のとき第1スワール孔のみが開口し、大リフト量状態のとき第1スワール孔だけではなくて第2スワール孔も開口してスワール孔の開口面積を大きくすることが開示されている。また、例えば、特許文献4には、ケーシング底面に燃料に旋回力を与える燃料溝13と、この底面を摺動する燃料旋回部材下面に燃料溝17を形成し、これらの燃料溝13と17との相対的角度を変化することで噴霧角を制御することが開示されています。
特開2005−240705号公報 特開平5−126012号公報 特開2001−248526号公報 特開平11−182384号公報
Further, as a conventional technique for obtaining a fuel spray characteristic corresponding to an engine load state by changing a swirl hole opening area on the swirl chamber side, for example, in Patent Document 3, a lift amount of a valve needle is controlled, and a small lift amount state It is disclosed that only the first swirl hole is opened at this time, and not only the first swirl hole but also the second swirl hole is opened when the lift amount is large, thereby increasing the opening area of the swirl hole. Further, for example, in Patent Document 4, a fuel groove 13 for imparting a turning force to the fuel on the bottom surface of the casing, and a fuel groove 17 on the lower surface of the fuel turning member that slides on the bottom surface are formed. It is disclosed that the spray angle is controlled by changing the relative angle.
Japanese Patent Laid-Open No. 2005-240705 Japanese Patent Laid-Open No. 5-126021 JP 2001-248526 A JP-A-11-182384

上記の特許文献1に示される従来技術には、噴霧の旋回形状を変化させる考え方は開示されているが、その旋回形状の変化のための、弁体を上下動させる可変構造の具体的開示が十分でなく、さらに、旋回流通路による噴霧形状に対して未旋回流を制御し噴霧形状を変更させる構造が、実際に製造する上で自在の噴霧角形状を生成するのに困難が伴う。このように、未旋回燃料流を遮断する従来技術では、旋回流を操作、制御しないので、燃料噴霧の旋回力の大きな変化が期待し得ない。また、特許文献1によると、得られる燃料噴霧において、その中心付近に燃料がやや多めになるという傾向が現れる。また、上記の特許文献2についても、特許文献1に対するのと同様な課題が存在する。   Although the concept of changing the swirling shape of the spray is disclosed in the prior art disclosed in Patent Document 1 above, there is a specific disclosure of a variable structure that moves the valve body up and down for the change of the swirling shape. In addition, the structure in which the non-swirl flow is controlled and the spray shape is changed with respect to the spray shape by the swirl flow passage is difficult to generate a spray angle shape that is free for actual manufacture. As described above, in the conventional technique for cutting off the non-swirl fuel flow, the swirl flow is not operated and controlled, so that a large change in the swirl force of the fuel spray cannot be expected. Further, according to Patent Document 1, in the obtained fuel spray, there is a tendency that the amount of fuel slightly increases near the center. In addition, the above-described Patent Document 2 has the same problem as that of Patent Document 1.

さらに、上記の特許文献3に示される従来技術では、噴射弁の軸方向に設けたスワール孔の総面積を弁体の上下動位置によって変えているので、ミリオーダー単位の弁体ストロークが必要となるため、噴射弁が大型化するという課題が生じる(弁体ストロークは実用上では100μmを超えない数10μm程度である)。また、旋回溝の相対的な角度を変える上記特許文献4に示される従来技術では、通路面積が変化することはないので、噴射燃料の旋回力の大きな変化を望むことができない。   Furthermore, in the prior art shown in the above-mentioned Patent Document 3, the total area of the swirl hole provided in the axial direction of the injection valve is changed depending on the vertical movement position of the valve body. Therefore, the subject that an injection valve enlarges arises (valve body stroke is about several 10 micrometers which does not exceed 100 micrometers in practical use). Further, in the prior art disclosed in Patent Document 4 that changes the relative angle of the swirling grooves, the passage area does not change, so that a large change in the swirling force of the injected fuel cannot be expected.

本発明の目的は、低燃費化と高出力化の両立を図るために、広噴射角で低噴射率と、狭噴射角で高噴射率という異なる噴霧状態を弁体の上下動に連動して可変できる燃料噴射装置を提供することにある。   In order to achieve both low fuel consumption and high output, the object of the present invention is to link different spray states, ie, a low injection rate at a wide injection angle and a high injection rate at a narrow injection angle, in conjunction with the vertical movement of the valve body. The object is to provide a variable fuel injection device.

前記課題を解決するために、本発明は主として次のような構成を採用する。
燃料を噴射する噴射孔と弁座を有するシート・オリフィスプレートと、電磁力により上下動する弁体と、前記噴射孔から燃料旋回流を噴射させる可変旋回部と、を少なくとも備えた燃料噴射装置であって、前記可変旋回部は、前記燃料旋回流を形成させる燃料の旋回通路と、前記燃料旋回流に対して燃料を衝突させて前記燃料旋回流の旋回力を減衰させる燃料の非旋回通路と、を設け、前記弁体の上下動位置に対応して前記非旋回通路を流れる燃料流量を増減し、前記噴射孔から噴射される燃料噴霧の噴霧形態と燃料噴霧量とを可変する構成とする。
In order to solve the above problems, the present invention mainly adopts the following configuration.
A fuel injection device comprising at least an injection hole for injecting fuel and a seat / orifice plate having a valve seat, a valve body that moves up and down by electromagnetic force, and a variable swirl portion that injects a fuel swirl flow from the injection hole. The variable swirl portion includes a fuel swirl passage that forms the fuel swirl flow, and a fuel non-swirl passage that causes fuel to collide with the fuel swirl flow to attenuate the swirl force of the fuel swirl flow. The flow rate of the fuel flowing through the non-swirl passage is increased or decreased corresponding to the vertical movement position of the valve body, and the spray form of the fuel spray injected from the injection hole and the fuel spray amount are variable. .

また、前記燃料噴射装置において、前記旋回通路と前記非旋回通路は略同一平面上に形成され、前記非旋回通路からの燃料を、前記旋回通路からの燃料旋回流に対して側面から衝突させて前記燃料旋回流の旋回力を減衰させ、前記燃料噴霧の噴霧形態である噴霧角と噴霧貫徹力を可変する構成とする。さらに、前記燃料噴射装置において、前記弁体は、前記弁体と前記弁座の閉状態に対して、低リフト状態と高リフト状態の2段階の変位をとるように上下動駆動され、前記高リフト状態のとき、前記低リフト状態に比べて、前記非旋回通路の前流側に連通する軸方向非旋回導入路を通過する燃料量が多くなり、前記噴霧角を狭くし且つ燃料噴霧量を多くする構成とする。   In the fuel injection device, the turning passage and the non-turning passage are formed on substantially the same plane, and the fuel from the non-turning passage is caused to collide from the side with the fuel turning flow from the turning passage. A structure is provided in which the swirl force of the fuel swirl flow is attenuated to vary the spray angle and the spray penetration force, which are the spray forms of the fuel spray. Further, in the fuel injection device, the valve body is driven to move up and down so as to take two stages of displacement, a low lift state and a high lift state, with respect to the closed state of the valve body and the valve seat. When in the lift state, compared to the low lift state, the amount of fuel passing through the axial non-swirl introduction path communicating with the upstream side of the non-swirl passage is increased, the spray angle is narrowed, and the fuel spray amount is reduced. Increase the configuration.

また、前記燃料噴射装置において、前記弁体の2段階変位は、前記弁体と一体の段付きプランジャを低リフトで保持する低リフト用可動コアと、前記低リフト用可動コアを励磁して駆動する低リフト用励磁コイルと、前記段付きプランジャを高リフトで保持する高リフト用可動コアと、前記高リフト用可動コアを励磁して駆動する高リフト用励磁コイルと、によって行う構成とする。さらに、前記燃料噴射装置において、前記弁体はその外周部にカラー部を取り付ける構造とし、前記カラー部の下端縁は前記非旋回通路の前流側に連通する軸方向非旋回導入路の入口開口部に対向配置される構成とする。さらに、燃料噴射装置において、前記カラー部の下端縁と前記軸方向非旋回導入路の入口開口部とで絞り機構を形成し、前記弁体の上下動に対応して前記絞り機構の絞りを可変して前記軸方向非旋回導入路へ流入する燃料流量を可変する構成とする。   In the fuel injection device, the two-stage displacement of the valve body is driven by exciting the low lift movable core that holds the stepped plunger integral with the valve body with a low lift, and the low lift movable core. And a high lift exciting coil for exciting and driving the high lift movable core. Furthermore, in the fuel injection device, the valve body has a structure in which a collar portion is attached to an outer peripheral portion thereof, and a lower end edge of the collar portion is an inlet opening of an axial non-swirl introduction path communicating with the upstream side of the non-swirl passage It is set as the structure arrange | positioned facing a part. Further, in the fuel injection device, a throttle mechanism is formed by a lower end edge of the collar portion and an inlet opening portion of the axial non-rotating introduction path, and the throttle of the throttle mechanism is variable in accordance with the vertical movement of the valve body. Thus, the flow rate of the fuel flowing into the axial non-turning introduction path is variable.

本発明によると、燃料の弁体軸方向流れを開閉して非旋回流れを形成し、この非旋回流れ成分と旋回流れ成分の比率を非旋回流れの開閉で変化させて噴霧形態と噴霧流量を可変にすることで、低燃費化と高出力化の両立を実現することができる。   According to the present invention, the flow of the fuel in the axial direction of the valve body is opened and closed to form a non-swirl flow, and the ratio of the non-swirl flow component to the swirl flow component is changed by opening and closing the non-swirl flow to change the spray form and spray flow rate. By making it variable, it is possible to achieve both low fuel consumption and high output.

本発明の実施形態に係る燃料噴射装置について、図1〜図11を参照しながら以下詳細に説明する。図1は本発明の実施形態に係る燃料噴射装置における噴霧形状を可変する可変旋回部とその周辺の関連構造を示す図である。図2は本実施形態に関する可変旋回部の上方部(図1に示すA−A線)と下方部(図1に示すB−B線)における断面図である。図3は本実施形態に関する可変旋回部を下側から見た斜視図である。図4は本実施形態に関する可変旋回部における旋回流と非旋回流の生成を示す説明図である。図5は本実施形態に関する噴霧形状を生成するための弁体及び可変旋回部の動作を表す説明図である。   A fuel injection device according to an embodiment of the present invention will be described below in detail with reference to FIGS. FIG. 1 is a view showing a variable swivel portion that varies the spray shape and a related structure in the vicinity thereof in a fuel injection device according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of an upper part (A-A line shown in FIG. 1) and a lower part (BB line shown in FIG. 1) of the variable turning part according to the present embodiment. FIG. 3 is a perspective view of the variable turning portion according to the present embodiment as viewed from below. FIG. 4 is an explanatory diagram illustrating generation of a swirling flow and a non-swirling flow in the variable swirl unit according to the present embodiment. FIG. 5 is an explanatory diagram showing the operation of the valve body and the variable swivel unit for generating the spray shape according to this embodiment.

また、図6は本実施形態に係る燃料噴射装置の全体構成を示す断面図である。図7は本実施形態に係る燃料噴射装置における閉弁時、弁低リフト時、及び弁高リフト時の駆動系の動作を示す説明図である。図8は本発明の実施形態に係る多孔式燃料噴射装置におけるマルチホールの構成を示す図である。   FIG. 6 is a cross-sectional view showing the overall configuration of the fuel injection device according to the present embodiment. FIG. 7 is an explanatory diagram showing the operation of the drive system when the valve is closed, when the valve is lifted low, and when the valve is lifted, in the fuel injection device according to the present embodiment. FIG. 8 is a diagram showing a multi-hole configuration in the porous fuel injection device according to the embodiment of the present invention.

また、図9は本実施形態に係る燃料噴射装置を筒内直接噴射型インジェクタ(DI)の内燃機関に適用した構成例を示す図である。図10は本実施形態に係る多孔式燃料噴射装置を吸気管噴射型インジェクタ(MPI)の内燃機関に適用した構成例を示す図である。図11は本実施形態に係る単孔式燃料噴射装置を吸気管噴射型インジェクタ(MPI)の内燃機関に適用した構成例を示す図である。   FIG. 9 is a view showing a configuration example in which the fuel injection device according to this embodiment is applied to an internal combustion engine of a direct injection type injector (DI). FIG. 10 is a view showing a configuration example in which the porous fuel injection device according to the present embodiment is applied to an internal combustion engine of an intake pipe injection type injector (MPI). FIG. 11 is a view showing a configuration example in which the single-hole fuel injection device according to the present embodiment is applied to an internal combustion engine of an intake pipe injection type injector (MPI).

まず、本発明の実施形態に係る燃料噴射装置の全体構成について、図6を参照しながら説明する。図6において、燃料噴射装置1は、荷重設定用スプリング60で下向きに付勢されたプランジャ65と、プランジャ65の下端部の弁体70と、弁体70に対向して配置される弁座72をもつシート・オリフィスプレート71と、弁体70を低リフトする(弁体70と弁座72との間に小の隙間を形成する)低リフト用励磁コイル58と、弁体70を高リフトする(弁体70と弁座72との間に大の隙間を形成する)高リフト用励磁コイル57と、低リフト時に段付きプランジャ65を低リフトに保持する低リフト用可動コア56(可動コアはアンカーとも称される)と、高リフト時に段付きプランジャ65を高リフトに保持する高リフト用可動コア55と、不図示のバッテリ電源から電力を供給するプラグが接続され、通電と非通電が制御されるコネクタ51と、を備える。   First, the overall configuration of the fuel injection device according to the embodiment of the present invention will be described with reference to FIG. In FIG. 6, the fuel injection device 1 includes a plunger 65 urged downward by a load setting spring 60, a valve body 70 at a lower end portion of the plunger 65, and a valve seat 72 disposed to face the valve body 70. The sheet / orifice plate 71 having a low pressure, the valve body 70 is lifted low (a small gap is formed between the valve body 70 and the valve seat 72), and the valve body 70 is lifted high. A high lift exciting coil 57 (which forms a large gap between the valve body 70 and the valve seat 72), and a low lift movable core 56 that holds the stepped plunger 65 at a low lift during low lift (the movable core is (Also called an anchor), a high-lift movable core 55 that holds the stepped plunger 65 at a high lift during a high lift, and a plug that supplies power from a battery power supply (not shown) are connected to control energization and non-energization It comprises a connector 51, a.

図6によると、さらに、本実施形態に係る燃焼噴射装置1には、燃料導入部50が形成され、プランジャ65の中央部周辺の燃料通路62を通って、後述する図1に示す燃料通路76を経て、噴射孔77からエンジンの燃焼室に旋回流が放出される。また、荷重設定用スプリング60をガイドする第1固定コア52は、高リフト用可動コア55との間で隙間を形成し、高リフト用励磁コイル57の励磁によって高リフト用可動コア55とで磁気回路を形成しこれを吸引する。また、第2固定コア53も同様に、低リフト用可動コア56との間で磁気回路を形成し、低リフト用励磁コイル58の励磁、非励磁によって、第2固定コア53は低リフト用可動コア56を接離可能とする。ここで、リフト用可動コア55,56はその上動によってプランジャ65を低リフトと高リフトに保持するものである。   According to FIG. 6, the combustion injection device 1 according to the present embodiment further includes a fuel introduction portion 50, which passes through the fuel passage 62 around the central portion of the plunger 65 and passes through a fuel passage 76 shown in FIG. 1 described later. Then, a swirling flow is discharged from the injection hole 77 to the combustion chamber of the engine. The first fixed core 52 that guides the load setting spring 60 forms a gap with the high lift movable core 55 and is magnetized with the high lift movable core 55 by excitation of the high lift excitation coil 57. A circuit is formed and sucked. Similarly, the second fixed core 53 forms a magnetic circuit with the low lift movable core 56, and the second fixed core 53 is movable with a low lift by excitation or non-excitation of the low lift excitation coil 58. The core 56 can be contacted and separated. Here, the lift movable cores 55 and 56 hold the plunger 65 in a low lift and a high lift by its upward movement.

図7には、本実施形態に係る燃焼噴射装置の閉弁時、低リフト時及び高リフト時における駆動系の概略動作を図示している。図7(a)に示す閉弁時には、いずれの励磁コイル57,58にも電流が流れておらず、いずれの固定コア52,53にも磁場が形成されていないのでいずれのリフト用可動コア55,56に対しても吸引する力は働いておらず、プランジャ65は下動していて、プランジャ65の最下端の弁体とこれに対向する弁座は閉じている。   FIG. 7 illustrates a schematic operation of the drive system when the combustion injection device according to the present embodiment is closed, during low lift, and during high lift. When the valve shown in FIG. 7 (a) is closed, no current flows through any of the exciting coils 57, 58, and no magnetic field is formed in any of the fixed cores 52, 53. , 56 is not attracting force, the plunger 65 is moving downward, and the lowermost valve body of the plunger 65 and the valve seat facing it are closed.

ここで、図7(b)に図示するように、低リフト用励磁コイル58に通電すると、第2固定コア53と低リフト用可動コア56を通した磁気回路が形成されて、低リフト用可動コア56は第2固定コア53に吸引され、低リフト用可動コア56の凹部に保持されているプランジャ65は若干上動し、図示するように弁体と弁座の間に小の間隙を形成し、燃料が噴射することとなる。燃料の噴射形状についての詳細は後述する。   Here, as shown in FIG. 7B, when the low-lift exciting coil 58 is energized, a magnetic circuit is formed through the second fixed core 53 and the low-lift movable core 56, and the low-lift movable is formed. The core 56 is sucked by the second fixed core 53, and the plunger 65 held in the concave portion of the low lift movable core 56 moves slightly upward to form a small gap between the valve body and the valve seat as shown in the figure. As a result, fuel is injected. Details of the fuel injection shape will be described later.

さらに、図7(c)に図示するように、高リフト用励磁コイル57に通電すると、第1固定コア52と高リフト用可動コア55を通した磁気回路が形成されて、高リフト用可動コア55は第1固定コア52に吸引され、高リフト用可動コア55の凹部に保持されているプランジャ65は上動し、図示するように弁体と弁座の間に大の間隙を形成し、燃料が噴射することとなる。燃料の噴射形状についての詳細は後述する。ここで、図7(a)に示す閉弁時において、各リフト用可動コア55,56と各固定コア52,53との各隙間を小、大と設定しておくと、図7の(b)と(c)に示すような弁体と弁座の間隙を小、大とすることができる。   Further, as shown in FIG. 7C, when the high lift exciting coil 57 is energized, a magnetic circuit is formed through the first fixed core 52 and the high lift movable core 55, and the high lift movable core is formed. 55 is sucked by the first fixed core 52, and the plunger 65 held in the concave portion of the high lift movable core 55 moves upward to form a large gap between the valve body and the valve seat as shown in the figure, Fuel will be injected. Details of the fuel injection shape will be described later. Here, at the time of closing the valve shown in FIG. 7A, if the gaps between the movable cores 55 and 56 for lifting and the fixed cores 52 and 53 are set to be small and large, FIG. ) And (c), the gap between the valve body and the valve seat can be made small and large.

図1は燃料噴射装置1から噴射する燃料の噴霧角(狭角と広角)と噴射率(流量の大と小)を変更するための具体的構成として、可変旋回部を設置した構成を示すものであるが、ここで、本発明の技術思想について図5を参照しながら説明する。   FIG. 1 shows a configuration in which a variable swivel unit is installed as a specific configuration for changing the spray angle (narrow angle and wide angle) and injection rate (large and small flow rate) of fuel injected from the fuel injection device 1. However, the technical idea of the present invention will be described with reference to FIG.

図5は本実施形態に関する弁体の閉弁時、低リフト時、及び高リフト時における燃料噴霧の形状を示している。内燃機関において特に始動時に求められる低燃費を達成するには、直上に設けられた燃料噴射装置から噴射される燃料が、燃料噴射装置の近傍にある点火プラグに集中するように噴霧し、且つ燃料流量を小(低噴射率)とすることが求められる。すなわち、始動時(低燃費時)には広噴射角で弱貫徹力(弱ペネトレーション)であるとともに低噴射率にする。ここで、広噴射角で弱貫徹力のときには、噴射孔77から噴射される液膜は薄くなって分裂が促進される、すなわち噴射燃料の微粒化が現出することとなる。   FIG. 5 shows the shape of the fuel spray when the valve body is closed, when the lift is low, and when the lift is high. In order to achieve the low fuel consumption particularly required at the time of starting in an internal combustion engine, the fuel injected from the fuel injection device provided immediately above is sprayed so as to concentrate on a spark plug in the vicinity of the fuel injection device, and the fuel The flow rate is required to be small (low injection rate). That is, at the start (low fuel consumption), a wide injection angle, a weak penetration force (weak penetration), and a low injection rate are set. Here, in the case of a weak injection force at a wide injection angle, the liquid film injected from the injection hole 77 becomes thin and the division is promoted, that is, atomization of the injected fuel appears.

一方、内燃機関において特に高出力時に求められる均質燃焼を達成するには、直上に設けられた燃料噴射装置から噴射される燃料が、始動時に比べてピストンの位置が離れていて燃焼室が大きくなっているので、狭い噴霧角度で強い貫徹力の噴霧であることが求められ(燃焼室全体で燃焼が実行されて高出力を得るために)、且つ燃料流量を大(高噴射率)とすることが求められる。すなわち、高出力時には狭噴射角で強貫徹力(強ペネトレーション)であるとともに高噴射率にする。   On the other hand, in order to achieve the homogeneous combustion required at the time of high output in an internal combustion engine, the fuel injected from the fuel injection device provided immediately above is far away from the piston at the time of starting and the combustion chamber becomes larger. Therefore, it is required to have a strong penetrating spray with a narrow spray angle (in order to obtain high output by performing combustion in the entire combustion chamber) and to increase the fuel flow rate (high injection rate). Is required. That is, at the time of high output, a narrow injection angle and a strong penetration force (strong penetration) and a high injection rate are achieved.

上述した始動時と高出力時に求められるそれぞれの燃料噴霧条件を両立させる構造を備えた燃焼噴射装置が本発明の特徴の1つである。そして、図5の(a)の閉弁時は内燃機関の停止時の状態であり、燃焼は噴射されないこととなる。図5の(b)に示す低リフト時は、始動時の低燃費における燃料噴射状態を表している。噴霧を形成するための具体的構成は後述するが、結果として低リフト時(低燃費時)は広噴射角(θ1)で弱貫徹力(弱ペネトレーション)(L1)であるとともに燃料流量小(Q1)である。図5の(c)に示す高リフト時は、高出力時における燃料噴射状態を表している。噴霧を形成するための具体的構成は後述するが、結果として高リフト時(高出力時)は狭噴射角(θ2)で強貫徹力(強ペネトレーション)(L2)であるとともに燃料流量大(Q2)である。ここで、θ1>θ2、L1<L2、Q1<Q2、という関係である。   One feature of the present invention is a combustion injection device having a structure that satisfies both the fuel spray conditions required at the time of starting and at the time of high output. 5 (a) is a state when the internal combustion engine is stopped, and combustion is not injected. The low lift shown in FIG. 5B represents the fuel injection state at low fuel consumption at the start. A specific configuration for forming the spray will be described later. As a result, at the time of low lift (low fuel consumption), a wide injection angle (θ1), a weak penetration force (weak penetration) (L1), and a low fuel flow rate (Q1) ). The high lift shown in (c) of FIG. 5 represents the fuel injection state at the time of high output. A specific configuration for forming the spray will be described later. As a result, at the time of high lift (at the time of high output), the narrow injection angle (θ2), the strong penetration force (strong penetration) (L2) and the fuel flow rate are large (Q2). ). Here, the relationship is θ1> θ2, L1 <L2, and Q1 <Q2.

図1において、燃料流路76は、図6に示す燃料導入部50と連通していて燃料噴射装置1に供給される燃料がすべて流れる通路である。燃料流路76に流れ込んできた燃料は2通りの流路に分かれ、1つは軸方向旋回導入路入口83へ、他は軸方向非旋回導入路入口84へと繋がる。軸方向非旋回導入路入口84は弁体70と一体的構造のカラー部73(カラー部73は弁体と一体構造でもよい)の上下の3つの位置に対応して、閉と小開と大開の3つの状態を構成する。軸方向旋回導入路入口83は、弁体70の上下動位置に無関係に開となっていて、燃料噴射装置1の外形を形成する筐体である筒状部74の外周寄りに設けられた軸方向旋回導入路81、その後流の旋回通路85に通じている。カラー部73を弁体70に取り付ける構造(一体的構造)とすることによって、弁体70と弁座の72の閉時に、カラー部73の下端部と可変旋回部80の上端部が同様に閉状態とする調整が取りやすくなる。   In FIG. 1, a fuel flow path 76 is a passage that communicates with the fuel introduction unit 50 shown in FIG. 6 and through which all the fuel supplied to the fuel injection device 1 flows. The fuel that has flowed into the fuel flow path 76 is divided into two flow paths, one connected to the axial direction turning introduction path inlet 83 and the other connected to the axial direction non-turning introduction path inlet 84. The axial non-swirl introduction path inlet 84 is closed, small open, and wide open corresponding to the three positions above and below the collar portion 73 that is integral with the valve body 70 (the collar portion 73 may be integral with the valve body). The three states are configured. The axial turning introduction passage inlet 83 is open regardless of the vertical movement position of the valve body 70, and is a shaft provided near the outer periphery of the cylindrical portion 74, which is a casing that forms the outer shape of the fuel injection device 1. It leads to the direction turning introduction path 81 and the downstream turning path 85. By adopting a structure (integral structure) for attaching the collar portion 73 to the valve body 70, when the valve body 70 and the valve seat 72 are closed, the lower end portion of the collar portion 73 and the upper end portion of the variable swivel portion 80 are similarly closed. It will be easier to adjust the state.

軸方向旋回導入路81の内側には可変旋回部80が設けられ、その上端部には軸方向非旋回導入路入口84が設けられ、その上下中央部には軸方向非旋回導入路82が設けられ、その下端部には非旋回通路86(図2を参照)が設けられている。   A variable turning portion 80 is provided inside the axial turning introduction path 81, an axial non-turning introduction path entrance 84 is provided at the upper end portion thereof, and an axial non-turning introduction path 82 is provided at the upper and lower central portions thereof. A non-swivel passage 86 (see FIG. 2) is provided at the lower end portion.

弁体70と一体的に移動するカラー部73の上下の3つの位置、すなわち閉、小開、大開に対応して、軸方向非旋回導入路82には閉時には燃料が流れず、小開時には殆ど流れず(軸方向非旋回導入路入口84の開口面積は軸方向旋回導入路入口83の開口面積に比べて格段に小さいので(図2を参照)、燃料通路76の燃料の殆ど大部分は軸方向旋回導入路81に流れて軸方向非旋回導入路82には殆ど流れない)、大開時には軸方向旋回導入路81を通って噴射孔77から噴射する旋回噴射の旋回力を弱めるように(噴射角度を狭くするように)、軸方向非旋回導入路82、非旋回通路86に燃料が流れる。   Corresponding to the three upper and lower positions of the collar portion 73 that moves integrally with the valve body 70, that is, close, small open, and wide open, fuel does not flow in the axial non-rotation introduction path 82 when closed, and when it is small open Almost no flow (the opening area of the axial non-swirl introduction path entrance 84 is much smaller than the opening area of the axial turn introduction path entrance 83 (see FIG. 2), so most of the fuel in the fuel passage 76 It flows in the axial turning introduction path 81 and hardly flows in the axial non-turning introduction path 82), and when it is wide open, the turning force of the turning injection injected from the injection hole 77 through the axial turning introduction path 81 is weakened ( The fuel flows in the axial non-swirl introduction path 82 and the non-swirl passage 86 so as to narrow the injection angle.

このように、弁体70と一体的又は一体のカラー部73の下端縁と、軸方向非旋回導入路入口84とで、軸方向非旋回導入路82に流入する燃料流量の絞り機構を形成している。すなわち、この絞り機構におけるカラー部73の上下動する3つの位置(閉、小開、大開)に対応して、旋回通路85から流出する旋回流の旋回力が可変されるのである。   As described above, the lower end edge of the collar portion 73 that is integral with or integral with the valve body 70 and the axial non-swirl introduction path inlet 84 form a throttle mechanism for the flow rate of fuel flowing into the axial non-swirl introduction path 82. ing. That is, the swirl force of the swirling flow flowing out of the swirl passage 85 is varied corresponding to the three positions (closed, small open, and wide open) of the collar portion 73 in this throttling mechanism.

図2には図1に示す可変旋回部80の詳細構造を示しており、図2の(a)は図1のA−A線の断面図であり、図2の(b)は図1のB−B線の断面図である。図2の(a)によると、軸方向非旋回導入路入口84は、4つの小孔が穿たれていて、軸方向旋回導入路入口83の矩形形状の孔と対比すると、その入口断面積が小さいことが分かる。図2の(b)によると、軸方向旋回導入路81を通ってきた旋回通路85からの燃料は、図示の弁体ガイドの内周側に沿って旋回流を形成する。旋回通路85が弁体ガイドの円周接線方向に配置されているためである。図示例では4箇所から旋回流が形成されている。   2 shows a detailed structure of the variable turning portion 80 shown in FIG. 1. FIG. 2 (a) is a cross-sectional view taken along the line AA in FIG. 1, and FIG. It is sectional drawing of a BB line. According to FIG. 2A, the axial non-swirl introduction path inlet 84 has four small holes, and when compared with the rectangular hole of the axial turn introduction path entrance 83, the cross-sectional area of the inlet is as follows. I understand that it is small. According to FIG. 2B, the fuel from the turning passage 85 that has passed through the axial turning introduction path 81 forms a swirling flow along the inner peripheral side of the illustrated valve body guide. This is because the turning passage 85 is arranged in the circumferential tangent direction of the valve body guide. In the illustrated example, swirl flows are formed from four locations.

一方、軸方向非旋回導入路82の後流側に形成された非旋回通路86は弁体ガイド88の円周方向に直交する方向に配置されている。非旋回通路86からの燃料流れは、旋回通路85からの旋回流に対して側面から衝突するように形成される。したがって、非旋回通路86からの流量が多いと(弁体が高リフトして軸方向非旋回導入路入口84が大開となったときに)、旋回流は制限を受けて、全体として旋回流の噴射角は狭くなるのである。これに対しては、非旋回通路86からの流量が少ないと(弁体が低リフトして軸方向非旋回導入路入口84が小開となったときに)、旋回流は制限を受けることがないので、全体として旋回流の噴射角は広くなるのである。   On the other hand, the non-swirl passage 86 formed on the downstream side of the axial non-swirl introduction path 82 is disposed in a direction orthogonal to the circumferential direction of the valve body guide 88. The fuel flow from the non-swirl passage 86 is formed so as to collide with the swirl flow from the swirl passage 85 from the side. Therefore, when the flow rate from the non-swirl passage 86 is large (when the valve body is lifted high and the axial non-swirl introduction path inlet 84 is fully opened), the swirl flow is restricted and the swirl flow as a whole is reduced. The injection angle is narrowed. On the other hand, when the flow rate from the non-swirl passage 86 is small (when the valve body is lifted low and the axial non-swirl introduction path inlet 84 is slightly opened), the swirl flow is limited. As a result, the swirl flow injection angle becomes wider as a whole.

図3には可変旋回部80を下側から見た斜視図を示し、図4には旋回通路85からの旋回流と非旋回通路86からの側面流れを説明しており、旋回通路85からの旋回流の側面から非旋回通路86からの流れが衝突する様子が図示されている。旋回通路85から流出した流れはシート・オリフィスプレート71の内壁面に沿って旋回流となるが、旋回通路85と同一平面の非旋回通路86からの流れを、旋回通路85からの流れに対して同一平面上で直交する方向(側面)から衝突させることによって、旋回流の旋回力を可変することができる。図4の図示例では、非旋回通路86からの燃料によって旋回流の噴射角は狭くなることが示されている。なお、本実施形態では、非旋回通路86からの流れが旋回通路85からの流れに対して同一平面上で側面から衝突させる構造を例示したが、これに限らず、非旋回通路86からの流れを旋回通路85からの流れに対して上から垂直に衝突させて旋回力を可変するようにしてもよい。   3 shows a perspective view of the variable swivel unit 80 as viewed from below, and FIG. 4 illustrates a swirl flow from the swirl passage 85 and a side flow from the non-swirl passage 86. A state in which the flow from the non-swirl passage 86 collides with the side surface of the swirl flow is illustrated. The flow that flows out of the swirl passage 85 turns into a swirl flow along the inner wall surface of the seat / orifice plate 71, but the flow from the non-swirl passage 86 that is flush with the swirl passage 85 corresponds to the flow from the swirl passage 85. The swirl force of the swirl flow can be varied by causing collision from the direction (side surface) orthogonal to each other on the same plane. In the illustrated example of FIG. 4, it is shown that the injection angle of the swirling flow is narrowed by the fuel from the non-swirling passage 86. In the present embodiment, the structure in which the flow from the non-swirl passage 86 collides with the flow from the swirl passage 85 from the side surface on the same plane is exemplified, but the present invention is not limited to this, and the flow from the non-swirl passage 86 May be made to collide perpendicularly from above with respect to the flow from the turning passage 85 to vary the turning force.

このように、高リフト時には非旋回通路86からの燃料流れが多くなり、旋回流の拡がりが制限を受けて噴射孔77からの噴射角が狭くなる。さらに、この高リフト時には噴射角が狭くなる他に、非旋回通路86からの燃料流れが多い分だけ、噴射孔77から噴射される燃料流量は、多くなる。したがって、高リフト時には、噴射角が狭くて強い貫徹力の噴霧が形成されるとともに、燃料流量も多くなる(高噴射率)。このように、非旋回通路86を設けて、この非旋回通路86からの燃料流れを、旋回通路85からの旋回流の側面に衝突させることによって旋回流の噴射角及び貫徹力を変更させ(すなわち噴射形態を変更させ)、さらに燃料流量を変更させることも本実施形態の特徴の1つである。   Thus, at the time of high lift, the fuel flow from the non-swirl passage 86 increases, the spread of the swirl flow is restricted, and the injection angle from the injection hole 77 becomes narrow. Further, at the time of this high lift, in addition to the injection angle becoming narrower, the fuel flow rate injected from the injection hole 77 is increased by the amount of fuel flow from the non-swirl passage 86. Therefore, at the time of high lift, a spray with a narrow injection angle and a strong penetrating force is formed, and the fuel flow rate increases (high injection rate). In this way, the non-swirl passage 86 is provided, and the fuel flow from the non-swirl passage 86 is caused to collide with the side surface of the swirl flow from the swirl passage 85 to change the injection angle and penetration force of the swirl flow (that is, Changing the injection mode) and changing the fuel flow rate are also one of the features of this embodiment.

これに対して、低リフト時には、非旋回通路86からの燃料流れがほとんど無くなり、旋回通路85からの旋回流の拡がりが制限を受けること無いので噴射孔77からの噴射角が広くなる。さらに、非旋回通路86からの燃料流れがほとんど無い分だけ、燃料流量も少なくなる。   On the other hand, at the time of low lift, there is almost no fuel flow from the non-swirl passage 86, and the expansion of the swirl flow from the swirl passage 85 is not restricted, so the injection angle from the injection hole 77 becomes wide. Furthermore, the fuel flow rate is reduced by the amount of fuel flow from the non-swirl passage 86.

以上の説明では、本発明の実施形態に係る燃料噴射装置が単孔式燃料噴射装置の実施例を取り上げて記述したが、他の実施例として、多孔式燃料噴射装置の実施例について以下説明する。図8は本発明の実施形態に係る多孔式燃料噴射装置におけるマルチホールの構成を示す図である。   In the above description, the fuel injection device according to the embodiment of the present invention has been described by taking an example of a single-hole fuel injection device. As another example, an example of a porous fuel injection device will be described below. . FIG. 8 is a diagram showing a multi-hole configuration in the porous fuel injection device according to the embodiment of the present invention.

図8に示す多孔式燃料噴射装置が、図1に示す単孔式燃料噴射装置と異なる点は、シート・オリフィスプレート71に設けた孔(ホール)の数であり、噴射孔89を複数個設ける構成である。例示的に云えば、孔を2〜8個、特に6〜8個を中心軸に対称的に設けてもよい。可変旋回部80の構成は図1に示す構成と同様である。   The porous fuel injection device shown in FIG. 8 differs from the single-hole fuel injection device shown in FIG. 1 in the number of holes (holes) provided in the seat / orifice plate 71, and a plurality of injection holes 89 are provided. It is a configuration. Illustratively, 2 to 8 holes, particularly 6 to 8 holes may be provided symmetrically about the central axis. The configuration of the variable turning unit 80 is the same as the configuration shown in FIG.

図8に示す本実施形態の実施例における噴霧は、基本的には、単孔の場合の図5に示す噴霧形態と同様であり、孔の数が異なるだけであり、各孔からの噴霧形態は図5と同様である。さらに詳しく説明すると、弁体70のリフト量が大きいと、軸方向非旋回導入路入口84の開口面積が大となり、軸方向非旋回導入路82、非旋回通路86からの燃料が大となって、全体の噴射孔89から噴射される燃料が増えてペネトレーションが長くなる。すなわち、図5(c)に示す高リフト時の噴霧形態を表すこととなる。   The spray in the example of this embodiment shown in FIG. 8 is basically the same as the spray form shown in FIG. 5 in the case of a single hole, only the number of holes is different, and the spray form from each hole Is the same as FIG. More specifically, if the lift amount of the valve body 70 is large, the opening area of the axial non-swirl introduction path inlet 84 becomes large, and the fuel from the axial non-swirl introduction path 82 and the non-swirl passage 86 becomes large. The fuel injected from the entire injection holes 89 increases and the penetration becomes longer. That is, the spray form at the time of high lift shown in FIG.

一方、弁体70のリフト量が小さいと、非旋回燃料分が小さくなり、各孔からの噴射される噴霧は図5(b)に示すように、ペネトレーションは短くなり、且つ噴霧角は広くなる傾向を示す。但し、多孔式噴射装置からの全体の噴霧角は噴射孔の数によっても支配される。径小の噴射孔を多数配置すれば、この孔の数によって噴射角が概ね決まることとなる(多孔式燃料噴射装置において噴射孔を2個配置する場合との対比において)。いずれにしても、本実施形態における多孔式噴射装置の実施例においては、弁体のリフト量の大・小に関連して、非旋回燃料流量が大・小となってペネトレーションの長・短が顕著に表れる。原理的には、始動時に図5(b)に示すような噴霧傾向を示し、高出力時に図5(c)に示すような噴霧傾向を示す。したがって、本発明の実施形態に係る単孔式燃料噴射装置または多孔式燃料噴射装置の実施例を下記の図9に示す筒内直接噴射型インジェクタ(DI)に等価的に適用可能である。   On the other hand, when the lift amount of the valve body 70 is small, the amount of non-swirl fuel becomes small, and the spray injected from each hole has a short penetration and a wide spray angle, as shown in FIG. Show the trend. However, the overall spray angle from the porous injection device is also governed by the number of injection holes. If a large number of small-diameter injection holes are arranged, the injection angle is generally determined by the number of these holes (in contrast to the case where two injection holes are arranged in the porous fuel injection device). In any case, in the example of the porous injection device in the present embodiment, the non-swirl fuel flow rate is large / small in relation to the lift amount of the valve body, and the penetration length is short / long. Appears prominently. In principle, the spraying tendency as shown in FIG. 5B is shown at the start, and the spraying tendency as shown in FIG. 5C is shown at the time of high output. Therefore, the example of the single-hole fuel injection device or the porous fuel injection device according to the embodiment of the present invention can be applied equivalently to the in-cylinder direct injection injector (DI) shown in FIG. 9 below.

図9には本実施形態に係る燃料噴射装置1をDI内燃機関2(筒内直接噴射型インジェクタを備えた内燃機関)に実装した構成例を示しており、燃料噴射装置1は、吸気弁91と排気弁92の間で上方部に設置され、点火プラグ90が燃料噴射装置1の近傍に設置されていて、低燃費が求められる、特に始動時には点火プラグ9廻りに燃料噴霧が集中するように広い噴霧角が形成(微粒子化された噴霧形成)される様子が図示されている。また、高出力時には、燃焼室93の全体に燃料が満たされるように、狭い噴射角で強い貫徹力の噴霧形状が図示されている。   FIG. 9 shows a configuration example in which the fuel injection device 1 according to the present embodiment is mounted on a DI internal combustion engine 2 (an internal combustion engine having a direct injection type in-cylinder injector). The fuel injection device 1 includes an intake valve 91. And an exhaust valve 92, and an ignition plug 90 is installed in the vicinity of the fuel injection device 1, so that low fuel consumption is required. In particular, fuel spray is concentrated around the ignition plug 9 at the time of starting. A state in which a wide spray angle is formed (spray formation with fine particles) is illustrated. Also, a spray shape with a strong penetrating force with a narrow injection angle is shown so that the fuel fills the entire combustion chamber 93 at high output.

図9において、始動時に、広噴霧角で弱ペネトレーションの噴霧形態96と、高出力時に(ピストンの位置は始動時に比べて下動している)、狭噴霧角と強ペネトレーションの噴霧形態97を表している。上述したように、図9に示す燃料噴射装置1は、図1に示す単孔式燃料噴射装置を適用可能であり、同様に、図8に示す多孔式燃料噴射装置を適用可能であって、適用例が単孔式でも多孔式であっても、始動時と高出力時のそれぞれにおいて、略同等の機能を奏するものである。   FIG. 9 shows a spray form 96 with a wide spray angle and a weak penetration at the start, and a spray form 97 with a narrow spray angle and a strong penetration at a high output (piston position is lower than that at the start). ing. As described above, the single-hole fuel injection device shown in FIG. 1 can be applied to the fuel injection device 1 shown in FIG. 9, and similarly, the porous fuel injection device shown in FIG. Regardless of whether the application example is a single-hole type or a multi-hole type, substantially the same function is exhibited at each time of start-up and high output.

すなわち、多孔式燃料噴射装置を適用した場合、弁体のリフト量が大きいとき、燃料流量が増えペネトレーションが長くなり、弁体のリフト量が小さいとき、ペネトレーションが短くなり燃料流量が減ることとなり(但し、噴霧角度は、各孔の寸法と数に影響を受けることとなり、弁体のリフト量の大・小によって大きく変化することにはならない(単孔式との対比で))、流量の違いにより可変噴霧にすることができる。これによって、始動時は短い噴霧を形成し壁面付着が抑制されて排気を低減することができ、高負荷時は多量の燃料を噴射することになるので高出力とすることができる。   That is, when the porous fuel injection device is applied, when the lift amount of the valve body is large, the fuel flow rate increases and the penetration becomes long, and when the lift amount of the valve body is small, the penetration becomes short and the fuel flow rate decreases ( However, the spray angle will be affected by the size and number of each hole, and will not change greatly depending on the lift amount of the valve body (in contrast to the single hole type). Can be changed to a variable spray. As a result, a short spray is formed at the time of start-up, wall surface adhesion is suppressed, exhaust gas can be reduced, and a large amount of fuel is injected at a high load, so that high output can be achieved.

図10は本実施形態に係る多孔式燃料噴射装置を吸気管噴射型インジェクタ(MPI)の内燃機関に適用した構成例を示す図である。図10に示す構成例においては、吸気管98に本実施形態に係る多孔式燃料噴射装置を設置し、大ペネトレーションの噴霧と小ペネトレーションの噴霧を弁体のリフト量の大と小とによって形成する。図10(b)に示すように、それぞれ2つの吸気弁91と排気弁92を有する内燃機関を例示しており、多孔式燃料噴射装置の左右の多孔群からそれぞれ一の吸気弁と他の吸気弁に向けて噴霧(図面では上下に形成された噴霧)を形成している。   FIG. 10 is a view showing a configuration example in which the porous fuel injection device according to the present embodiment is applied to an internal combustion engine of an intake pipe injection type injector (MPI). In the configuration example shown in FIG. 10, the porous fuel injection device according to the present embodiment is installed in the intake pipe 98, and the large penetration spray and the small penetration spray are formed by the large and small lift amounts of the valve body. . As shown in FIG. 10B, an internal combustion engine having two intake valves 91 and exhaust valves 92 is illustrated as an example, and one intake valve and another intake valve are respectively selected from the left and right porous groups of the porous fuel injection device. A spray (spray formed up and down in the drawing) is formed toward the valve.

図10の構成例では、始動時(低負荷又はアイドル状態)に弁体のリフト量を小に制御し、噴霧を微粒化(小ペネトレーションと広噴射角に随伴する現象)して吸気工程の吸気にのせて燃料を筒内に導く。燃料流量が少なくてもよいので噴霧は図示するように微粒化した広角噴霧になる。また、高負荷(高出力)時には弁体のリフト量を大に制御し、大きい燃料噴射量が必要となるので大ペネトレーションを形成し、当該ペネトレーション噴霧は吸気弁91に対して隔壁99寄りに噴霧する。高負荷時における噴霧形状によって吸気管98の壁面に付着する燃料を低減することができる。   In the configuration example of FIG. 10, the lift amount of the valve body is controlled to be small during start-up (low load or idle state), and the spray is atomized (a phenomenon associated with small penetration and a wide injection angle), and intake air in the intake process Put the fuel in the cylinder. Since the fuel flow rate may be small, the spray becomes a wide-angle spray atomized as shown in the figure. Further, when the load is high (high output), the lift amount of the valve body is controlled to be large and a large fuel injection amount is required, so that a large penetration is formed, and the penetration spray is sprayed closer to the partition wall 99 with respect to the intake valve 91. To do. The fuel adhering to the wall surface of the intake pipe 98 can be reduced by the spray shape at the time of high load.

図11は本実施形態に係る単孔式燃料噴射装置を吸気管噴射型インジェクタ(MPI)の内燃機関に適用した構成例を示す図である。図11に示す構成例では、吸気管98に2本の単孔式燃料噴射装置を設置し、2つの吸気弁のそれぞれの吸気弁に対して、それぞれの単孔式燃料噴射装置を吸気管98に取り付けたものである。図11に示す燃料噴射装置の始動時と高出力時とにおける基本的な動作と噴霧形態については、図10で説明した内容と略同様であるが、異なる点は2本の単孔式燃料噴射装置を取り付けた点であり、次のような作用効果の差異をもたらす。   FIG. 11 is a view showing a configuration example in which the single-hole fuel injection device according to the present embodiment is applied to an internal combustion engine of an intake pipe injection type injector (MPI). In the configuration example shown in FIG. 11, two single-hole fuel injection devices are installed in the intake pipe 98, and each single-hole fuel injection device is connected to each intake valve of the two intake valves. It is attached to. The basic operation and spray form at the start and high output of the fuel injection device shown in FIG. 11 are substantially the same as those described in FIG. 10 except that two single-hole fuel injections are performed. This is the point where the device is attached, and brings about the following differences in operational effects.

図11に示す構成例は、1本の燃料噴射装置から2つの吸気弁にそれぞれ燃料を噴霧する図10に示す構成に比べて、2つの吸気弁に対してそれぞれ噴霧する2つの単孔式燃料噴射装置を設けるので、吸気弁91の近傍(吸気弁91寄り)に各単孔式燃料噴射装置を設置して燃料を噴射することができる。したがって、微粒化していて空気に舞い易い小ペネトレーション噴霧が、効率良く燃焼室に入り込むので、吸気管への付着を抑制することができ、排気を低減することができる。また、大ペネトレーション噴霧が、効率良く燃焼室に入り込むために効率の良い燃焼をすることができ、高出力化を達成することができる。   The configuration example shown in FIG. 11 has two single-hole fuels sprayed on two intake valves, respectively, as compared to the configuration shown in FIG. 10 in which fuel is sprayed on two intake valves from one fuel injection device. Since the injection device is provided, each single-hole fuel injection device can be installed near the intake valve 91 (near the intake valve 91) to inject fuel. Therefore, since the small penetration spray that is atomized and easily flows into the air efficiently enters the combustion chamber, adhesion to the intake pipe can be suppressed, and exhaust gas can be reduced. Further, since the large penetration spray efficiently enters the combustion chamber, it is possible to perform efficient combustion and achieve high output.

本発明の実施形態に係る燃料噴射装置における噴霧形状を可変する可変旋回部とその周辺の関連構造を示す図である。It is a figure which shows the variable turning part which varies the spray shape in the fuel-injection apparatus which concerns on embodiment of this invention, and the surrounding related structure. 本実施形態に関する可変旋回部の上方部(図1に示すA−A線)と下方部(図1に示すB−B線)における断面図である。It is sectional drawing in the upper part (AA line shown in FIG. 1) and the lower part (BB line shown in FIG. 1) of the variable turning part regarding this embodiment. 本実施形態に関する可変旋回部を下側から見た斜視図である。It is the perspective view which looked at the variable turning part regarding this embodiment from the lower side. 本実施形態に関する可変旋回部における旋回流と非旋回流の生成を示す説明図である。It is explanatory drawing which shows the production | generation of the turning flow and the non-turning flow in the variable turning part regarding this embodiment. 本実施形態に関する噴霧形状を生成するための弁体及び可変旋回部の動作を表す説明図である。It is explanatory drawing showing operation | movement of the valve body for producing | generating the spray shape regarding this embodiment, and a variable turning part. 本実施形態に係る燃料噴射装置の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the fuel-injection apparatus which concerns on this embodiment. 本実施形態に係る燃料噴射装置における閉弁時、弁低リフト時、及び弁高リフト時の駆動系の動作を示す説明図である。It is explanatory drawing which shows operation | movement of the drive system at the time of valve closing at the time of valve closing, valve low lift, and valve high lift in the fuel injection device which concerns on this embodiment. 本発明の実施形態に係る多孔式燃料噴射装置におけるマルチホールの構成を示す図である。It is a figure which shows the structure of the multihole in the porous fuel-injection apparatus which concerns on embodiment of this invention. 本実施形態に係る燃料噴射装置を筒内直接噴射型インジェクタ(DI)の内燃機関に適用した構成例を示す図である。It is a figure which shows the structural example which applied the fuel-injection apparatus which concerns on this embodiment to the internal combustion engine of a direct injection type | mold injector (DI). 本実施形態に係る多孔式燃料噴射装置を吸気管噴射型インジェクタ(MPI)の内燃機関に適用した構成例を示す図である。It is a figure showing an example of composition which applied a porous fuel injection device concerning this embodiment to an internal-combustion engine of an intake pipe injection type injector (MPI). 本実施形態に係る単孔式燃料噴射装置を吸気管噴射型インジェクタ(MPI)の内燃機関に適用した構成例を示す図である。It is a figure showing an example of composition which applied a single hole type fuel injection device concerning this embodiment to an internal-combustion engine of an intake pipe injection type injector (MPI).

符号の説明Explanation of symbols

1 燃料噴射装置
2 内燃機関
50 燃料導入部
51 コネクタ
52 第1固定コア
53 第2固定コア
55 高リフト用可動コア
56 低リフト用可動コア
57 高リフト用励磁コイル
58 低リフト用励磁コイル
60 荷重設定用スプリング
62 燃料通路
65 プランジャ
70 弁体
71 シート・オリフィスプレート
72 弁座
73 弁体カラー部
74 筒状部
76 燃料通路
77 噴射孔
80 可変旋回部
81 軸方向旋回導入路
82 軸方向非旋回導入路
83 軸方向旋回導入路入口
84 軸方向非旋回導入路入口
85 旋回通路
86 非旋回通路
88 弁体ガイド
89 複数噴射孔
90 点火プラグ
91 吸気弁
92 排気弁
93 燃焼室
94 ピストン
95 噴霧
96 始動時噴霧形態
97 高出力時噴霧形態
98 吸気管
99 隔壁
DESCRIPTION OF SYMBOLS 1 Fuel injection apparatus 2 Internal combustion engine 50 Fuel introduction part 51 Connector 52 1st fixed core 53 2nd fixed core 55 High lift movable core 56 Low lift movable core 57 High lift excitation coil 58 Low lift excitation coil 60 Load setting Spring 62 Fuel passage 65 Plunger 70 Valve body 71 Seat / orifice plate 72 Valve seat 73 Valve body collar portion 74 Tubular portion 76 Fuel passage 77 Injection hole 80 Variable turning portion 81 Axial turning introduction passage 82 Axial non-turning introduction passage 83 Axial turning introduction path inlet 84 Axial non-turning introduction path inlet 85 Swirling path 86 Non-turning path 88 Valve element guide 89 Multiple injection holes 90 Spark plug 91 Intake valve 92 Exhaust valve 93 Combustion chamber 94 Piston 95 Spray 96 Spray at start-up Form 97 High power spray form 98 Intake pipe 99 Bulkhead

Claims (9)

燃料を噴射する噴射孔と弁座を有するシート・オリフィスプレートと、電磁力により上下動する弁体と、前記噴射孔から燃料旋回流を噴射させる可変旋回部と、を少なくとも備えた燃料噴射装置であって、
前記可変旋回部は、前記燃料旋回流を形成させる燃料の旋回通路と、前記燃料旋回流に対して燃料を衝突させて前記燃料旋回流の旋回力を減衰させる燃料の非旋回通路と、を設け、
前記弁体の上下動位置に対応して前記非旋回通路を流れる燃料流量を増減し、前記噴射孔から噴射される燃料噴霧の噴霧形態と燃料噴霧量とを可変する
ことを特徴とする燃料噴射装置。
A fuel injection device comprising at least an injection hole for injecting fuel and a seat / orifice plate having a valve seat, a valve body that moves up and down by electromagnetic force, and a variable swirl portion that injects a fuel swirl flow from the injection hole. There,
The variable swirl section includes a fuel swirl passage that forms the fuel swirl flow, and a fuel non-swirl passage that causes fuel to collide with the fuel swirl flow to attenuate the swirl force of the fuel swirl flow. ,
The fuel injection is characterized in that the flow rate of the fuel flowing through the non-swirl passage is increased or decreased corresponding to the vertical movement position of the valve body, and the spray form of the fuel spray injected from the injection hole and the fuel spray amount are varied. apparatus.
請求項1において、
前記旋回通路と前記非旋回通路は略同一平面上に形成され、
前記非旋回通路からの燃料を、前記旋回通路からの燃料旋回流に対して側面から衝突させて前記燃料旋回流の旋回力を減衰させ、
前記燃料噴霧の噴霧形態である噴霧角と噴霧貫徹力を可変する
ことを特徴とする燃料噴射装置。
In claim 1,
The turning passage and the non-turning passage are formed on substantially the same plane,
The fuel from the non-swirl passage collides from the side with the fuel swirl flow from the swirl passage to attenuate the swirl force of the fuel swirl flow,
A fuel injection device characterized by varying a spray angle and a spray penetration force which are spray forms of the fuel spray.
請求項2において、
前記弁体は、前記弁体と前記弁座の閉状態に対して、低リフト状態と高リフト状態の2段階の変位をとるように上下動駆動され、
前記高リフト状態のとき、前記低リフト状態に比べて、前記非旋回通路の前流側に連通する軸方向非旋回導入路を通過する燃料量が多くなり、前記噴霧角を狭くし且つ燃料噴霧量を多くする
ことを特徴とする燃料噴射装置。
In claim 2,
The valve body is driven to move up and down to take two stages of displacement, a low lift state and a high lift state, with respect to the closed state of the valve body and the valve seat,
In the high lift state, the amount of fuel passing through the axial non-swirl introduction path communicating with the upstream side of the non-swirl passage is increased, the spray angle is narrowed, and the fuel spray is compared with the low lift state. A fuel injection device characterized by increasing the amount.
請求項3において、
前記弁体の2段階変位は、前記弁体と一体の段付きプランジャを低リフトで保持する低リフト用可動コアと、前記低リフト用可動コアを励磁して駆動する低リフト用励磁コイルと、前記段付きプランジャを高リフトで保持する高リフト用可動コアと、前記高リフト用可動コアを励磁して駆動する高リフト用励磁コイルと、によって行う
ことを特徴とする燃料噴射装置。
In claim 3,
The two-stage displacement of the valve body includes a low lift movable core that holds a stepped plunger integral with the valve body with a low lift, a low lift excitation coil that excites and drives the low lift movable core, A fuel injection apparatus comprising: a high lift movable core that holds the stepped plunger with a high lift; and a high lift excitation coil that excites and drives the high lift movable core.
請求項1、2、3または4において、
前記弁体はその外周部にカラー部を取り付ける構造とし、前記カラー部の下端縁は前記非旋回通路の前流側に連通する軸方向非旋回導入路の入口開口部に対向配置される
ことを特徴とする燃料噴射装置。
In claim 1, 2, 3 or 4,
The valve body has a structure in which a collar portion is attached to an outer peripheral portion thereof, and a lower end edge of the collar portion is disposed to face an inlet opening portion of an axial non-turning introduction path communicating with the upstream side of the non-turning passage. A fuel injection device.
請求項5において、
前記カラー部の下端縁と前記軸方向非旋回導入路の入口開口部とで絞り機構を形成し、前記弁体の上下動に対応して前記絞り機構の絞りを可変して前記軸方向非旋回導入路へ流入する燃料流量を可変する
ことを特徴とする燃料噴射装置。
In claim 5,
The lower end edge of the collar portion and the inlet opening portion of the axial non-swirl introduction path form a throttle mechanism, and the throttle of the throttle mechanism is varied in response to the vertical movement of the valve body to prevent the axial non-rotation. A fuel injection device characterized in that the flow rate of fuel flowing into the introduction path is variable.
請求項1ないし6のいずれか1つの請求項において、
前記噴射孔が1つからなる単孔式燃料噴射装置または前記噴射孔が複数個からなる多孔式燃料噴射装置である
ことを特徴とする燃料噴射装置。
In any one of claims 1 to 6,
A fuel injection device, wherein the fuel injection device is a single-hole fuel injection device having one injection hole or a multi-hole fuel injection device having a plurality of injection holes.
請求項1ないし7のいずれか1つの請求項に記載された燃料噴射装置と、前記燃焼噴射装置の近傍に設置された点火プラグと、ピストンとシリンダに囲まれた燃焼室と、を備えた内燃機関であって、
前記燃料噴射装置は、前記燃焼室の上方部に設置され燃料を直接燃焼室に噴射し、
前記内燃機関の始動時又は低燃費時に、前記噴霧角を広くし且つ前記噴霧貫徹力を弱くするとともに、前記燃料噴霧量を少なくし、
前記内燃機関の高出力時に、前記噴霧角を狭くし且つ前記噴霧貫徹力を強くするとともに、前記燃料噴霧量を多くする
ことを特徴とする内燃機関。
An internal combustion engine comprising: the fuel injection device according to any one of claims 1 to 7; a spark plug installed in the vicinity of the combustion injection device; and a combustion chamber surrounded by a piston and a cylinder. An institution,
The fuel injection device is installed above the combustion chamber and directly injects fuel into the combustion chamber.
At the start of the internal combustion engine or at the time of low fuel consumption, the spray angle is widened and the spray penetration force is weakened, and the fuel spray amount is reduced,
An internal combustion engine characterized by narrowing the spray angle and strengthening the spray penetration force and increasing the fuel spray amount at the time of high output of the internal combustion engine.
請求項1ないし7のいずれか1つの請求項に記載された燃料噴射装置と、ピストンとシリンダに囲まれた燃焼室と、前記燃焼室の上方部に設置された点火プラグと、を備えた内燃機関であって、
前記燃料噴射装置は、吸気管に設置され燃料を吸気弁に向けて噴射し、
前記内燃機関の始動時又は低燃費時に、前記噴霧角を広くし且つ前記噴霧貫徹力を弱くして噴霧を微粒化するとともに、前記燃料噴霧量を少なくし、
前記内燃機関の高出力時に、前記噴霧角を狭くし且つ前記噴霧貫徹力を強くするとともに、前記燃料噴霧量を多くする
ことを特徴とする内燃機関。
An internal combustion engine comprising: the fuel injection device according to any one of claims 1 to 7; a combustion chamber surrounded by a piston and a cylinder; and a spark plug installed above the combustion chamber. An institution,
The fuel injection device is installed in an intake pipe and injects fuel toward an intake valve;
When starting the internal combustion engine or at low fuel consumption, the spray angle is widened and the spray penetration force is weakened to atomize the spray, and the fuel spray amount is reduced.
An internal combustion engine characterized by narrowing the spray angle and strengthening the spray penetration force and increasing the fuel spray amount at the time of high output of the internal combustion engine.
JP2007327538A 2007-12-19 2007-12-19 Fuel injection apparatus and internal combustion engine equipped with the same Expired - Fee Related JP4789913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007327538A JP4789913B2 (en) 2007-12-19 2007-12-19 Fuel injection apparatus and internal combustion engine equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007327538A JP4789913B2 (en) 2007-12-19 2007-12-19 Fuel injection apparatus and internal combustion engine equipped with the same

Publications (2)

Publication Number Publication Date
JP2009150270A true JP2009150270A (en) 2009-07-09
JP4789913B2 JP4789913B2 (en) 2011-10-12

Family

ID=40919666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007327538A Expired - Fee Related JP4789913B2 (en) 2007-12-19 2007-12-19 Fuel injection apparatus and internal combustion engine equipped with the same

Country Status (1)

Country Link
JP (1) JP4789913B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122231A1 (en) * 2014-02-12 2015-08-20 株式会社エンプラス Nozzle plate for fuel injection device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095186A (en) * 1983-10-31 1985-05-28 Toyota Central Res & Dev Lab Inc Intermittent type volute injection valve
JPH11182384A (en) * 1997-12-15 1999-07-06 Nissan Motor Co Ltd Fuel injection valve of internal combustion engine and electronic control fuel injection device
JP2002004982A (en) * 2000-06-22 2002-01-09 Toyota Motor Corp Fuel injection valve
JP2005240705A (en) * 2004-02-27 2005-09-08 Hitachi Ltd Electromagnetic fuel injection valve
JP2005307758A (en) * 2004-04-16 2005-11-04 Toyota Motor Corp Fuel injection device for internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6095186A (en) * 1983-10-31 1985-05-28 Toyota Central Res & Dev Lab Inc Intermittent type volute injection valve
JPH11182384A (en) * 1997-12-15 1999-07-06 Nissan Motor Co Ltd Fuel injection valve of internal combustion engine and electronic control fuel injection device
JP2002004982A (en) * 2000-06-22 2002-01-09 Toyota Motor Corp Fuel injection valve
JP2005240705A (en) * 2004-02-27 2005-09-08 Hitachi Ltd Electromagnetic fuel injection valve
JP2005307758A (en) * 2004-04-16 2005-11-04 Toyota Motor Corp Fuel injection device for internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122231A1 (en) * 2014-02-12 2015-08-20 株式会社エンプラス Nozzle plate for fuel injection device
US10519915B2 (en) 2014-02-12 2019-12-31 Enplas Corporation Fuel injection device nozzle plate

Also Published As

Publication number Publication date
JP4789913B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
KR930004967B1 (en) Electronic fuel injector
JP5295316B2 (en) Spray generation method using fluid injection valve, fluid injection valve, and spray generation device
US20080105767A1 (en) Fuel injection apparatus
US10989105B2 (en) Fuel injection device
JP5933720B2 (en) Fuel injection valve
US20010022170A1 (en) Fuel injection method of internal combustion engine and fuel injection apparatus of internal combustion engine
JP2008280981A (en) Fuel injection device and internal combustion engine mounting the same
US10280885B2 (en) Fluid injection valve and spray generator
JP2013087697A (en) Mist forming method using fluid injection valve, fluid injection valve, and mist forming apparatus
JP2004100500A (en) Fuel injection valve and internal combustion engine mounting the same
JP4097056B2 (en) Fuel injection valve
WO2019111643A1 (en) Fuel injection valve
WO2018101118A1 (en) Fuel injection device
JP2007182767A (en) Fuel injection valve
JP4789913B2 (en) Fuel injection apparatus and internal combustion engine equipped with the same
JP2009162239A (en) Fuel injection valve and internal combustion engine
JP2005155547A (en) Fuel injection valve
JPWO2006025114A1 (en) Fuel injection valve
JP6029706B1 (en) Fluid injection valve, spray generating apparatus including the same, and engine
JP6780087B2 (en) Fuel injection device
WO2018221076A1 (en) Fuel injection valve and engine system
JP3044876B2 (en) Electronically controlled fuel injection device for internal combustion engines
JP6655724B2 (en) Fuel injection device
JP4310402B2 (en) Fuel injection valve
US20040046064A1 (en) Fuel injection valve and cylinder injection type internal combustion engine installing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4789913

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees