JP6862122B2 - DC ground fault detector - Google Patents

DC ground fault detector Download PDF

Info

Publication number
JP6862122B2
JP6862122B2 JP2016150343A JP2016150343A JP6862122B2 JP 6862122 B2 JP6862122 B2 JP 6862122B2 JP 2016150343 A JP2016150343 A JP 2016150343A JP 2016150343 A JP2016150343 A JP 2016150343A JP 6862122 B2 JP6862122 B2 JP 6862122B2
Authority
JP
Japan
Prior art keywords
constant voltage
ground fault
voltage element
resistor
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016150343A
Other languages
Japanese (ja)
Other versions
JP2018017690A (en
Inventor
彰訓 加藤
彰訓 加藤
Original Assignee
河村電器産業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河村電器産業株式会社 filed Critical 河村電器産業株式会社
Priority to JP2016150343A priority Critical patent/JP6862122B2/en
Publication of JP2018017690A publication Critical patent/JP2018017690A/en
Application granted granted Critical
Publication of JP6862122B2 publication Critical patent/JP6862122B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

本発明は、直流回路の地絡を検出する直流地絡検出器に関する。 The present invention relates to a DC ground fault detector that detects a ground fault in a DC circuit.

従来、直流回路を保護するため、その直流回路に発生する地絡事故の監視に使用される直流地絡検出器が知られている。例えば、特許文献1に記載の給電システムに設けられた漏電検出器は、給電システムの正側の母線と負側の母線とに接続された直列回路を2つ備えている。夫々の直列回路は、直列に接続された2つの抵抗を備えている。一方の直列回路が有する2つの抵抗の間には、検出装置が接続されている。他方の直列回路が有する2つの抵抗の間は、他の抵抗を介してグランドに接続されている。給電システムにおいて漏電事故が発生すると、漏電検出器は、直列回路の2つの抵抗の接続点の電圧を、漏電事故発生を表す検出信号として、検出装置に出力する。検出装置は、漏電検出器から検出信号を受け取ると、例えば警報の出力や直流高電圧の遮断等を行う。 Conventionally, in order to protect a DC circuit, a DC ground fault detector used for monitoring a ground fault accident occurring in the DC circuit is known. For example, the earth leakage detector provided in the power feeding system described in Patent Document 1 includes two series circuits connected to a bus on the positive side and a bus on the negative side of the power feeding system. Each series circuit has two resistors connected in series. A detection device is connected between the two resistors of one series circuit. The two resistors of the other series circuit are connected to the ground via the other resistor. When an earth leakage accident occurs in the power supply system, the earth leakage detector outputs the voltage at the connection point of the two resistors of the series circuit to the detection device as a detection signal indicating the occurrence of the earth leakage accident. When the detection device receives the detection signal from the earth leakage detector, it outputs an alarm, shuts off the DC high voltage, or the like.

特開2014−158364号公報Japanese Unexamined Patent Publication No. 2014-158364

しかしながら、上記従来の漏電検出器においては、地絡が発生していない正常時においても、直列回路の抵抗を介して、正側の母線から負側の母線に向けて、電流が流れる。このため、消費電力が大きくなるという問題点があった。 However, in the above-mentioned conventional earth leakage detector, even in a normal state where a ground fault does not occur, a current flows from the positive bus to the negative bus through the resistance of the series circuit. Therefore, there is a problem that the power consumption becomes large.

そこで、本発明の目的は、消費電力を低減する直流地絡検出器を提供することにある。 Therefore, an object of the present invention is to provide a DC ground fault detector that reduces power consumption.

上記課題を解決する為に、請求項1の発明は、直流電源が接続された直流回路の地絡を検出する直流地絡検出器であって、直流回路の陽極側と陰極側との間に、第一抵抗、第一定電圧素子、第二定電圧素子、及び第二抵抗を直列に接続した直列回路と、直流回路が地絡した際に流れる電流を検出する変流器とを備え、第一定電圧素子のカソードは、第一抵抗を介して陽極側に接続され、第二定電圧素子のカソードは、第一定電圧素子のアノードに接続され、第二定電圧素子のアノードは、第二抵抗を介して陰極側に接続されていると共に、第一定電圧素子及び第二定電圧素子は、同一特性のツェナーダイオードであり、直流電源電圧の略2分の1の降伏電圧を有し、更に第一定電圧素子のアノードと第二定電圧素子のカソードとの間に接地線を設け、当該接地線に流れる電流を変流器が検出することを特徴とする。
この構成によれば、地絡が発生していない正常時において、定電圧素子が設けられていない場合に比べて、直流回路の陽極側から直流地絡検出器側に電流が流れ難くできる。よって、消費電力の低減が可能となる。
In order to solve the above problem, the invention of claim 1 is a DC ground fault detector that detects a ground fault of a DC circuit to which a DC power supply is connected, and is located between the anode side and the cathode side of the DC circuit. , A series circuit in which the first resistor, the first constant voltage element, the second constant voltage element, and the second resistor are connected in series, and a current converter that detects the current flowing when the DC circuit has a ground fault. The cathode of the first constant voltage element is connected to the anode side via the first resistor, the cathode of the second constant voltage element is connected to the anode of the first constant voltage element, and the anode of the second constant voltage element is Along with being connected to the cathode side via a second resistor , the first constant voltage element and the second constant voltage element are Zener diodes with the same characteristics, and have a breakdown voltage that is approximately half the DC power supply voltage. and further the ground line is provided between the cathode of the anode and the second constant voltage element of the constant voltage element, current transformer current flowing through the ground line and detecting.
According to this configuration, it is possible to make it difficult for current to flow from the anode side of the DC circuit to the DC ground fault detector side in the normal state where no ground fault has occurred, as compared with the case where the constant voltage element is not provided. Therefore, the power consumption can be reduced.

また、直列接続された定電圧素子の降伏電圧の合計値が直流電源の電圧に略等しいため、直流地絡検出器に流れる正常時の電流を僅かにできる。一方、地絡発生時には一方の定電圧素子が降伏動作して接地線に確実に電流を流すことができ、地絡を検出できる。
但し、「略2分の1」とは正確な2分の1の値を含み、2分の1より僅かに大きい値(例えば10%大きい値)を含むものである。
Further, since the total value of the yield voltage of the constant voltage elements connected in series is substantially equal to the voltage of the DC power supply, the normal current flowing through the DC ground fault detector can be made small. On the other hand, when a ground fault occurs, one of the constant voltage elements yields and a current can surely flow through the ground wire, so that the ground fault can be detected.
However, "approximately half" includes an accurate half value and includes a value slightly larger than half (for example, a value 10% larger).

この発明によれば、地絡が発生していない正常時において、第一定電圧素子が設けられていない場合に比べて、直流回路の陽極側から直流地絡検出器側に電流が流れ難い。よって、消費電力が低減される。 According to the present invention, it is difficult for a current to flow from the anode side of the DC circuit to the DC ground fault detector side in the normal state where no ground fault has occurred, as compared with the case where the first constant voltage element is not provided. Therefore, the power consumption is reduced.

直流回路の回路図である。It is a circuit diagram of a DC circuit. 直流回路の陽極側が地絡した状態を示す図である。It is a figure which shows the state which the anode side of a DC circuit has a ground fault.

以下、本発明を具現化した実施の形態を、図面を参照して詳細に説明する。図1は、本発明に係る直流地絡検出器2を有する直流回路1の回路図である。図1に示すように、直流回路1は、直流地絡検出器2、直流電源3、負荷4を備えている。本実施形態における直流電源3は、例えば、太陽電池システムである。以下の説明においては、直流電源3の陽極側及び陰極側を、夫々、直流回路1の陽極側及び陰極側という。負荷4には、直流回路1の陽極側と陰極側とが接続され、直流電源3の電力が供給される。 Hereinafter, embodiments embodying the present invention will be described in detail with reference to the drawings. FIG. 1 is a circuit diagram of a DC circuit 1 having a DC ground fault detector 2 according to the present invention. As shown in FIG. 1, the DC circuit 1 includes a DC ground fault detector 2, a DC power supply 3, and a load 4. The DC power supply 3 in this embodiment is, for example, a solar cell system. In the following description, the anode side and the cathode side of the DC power supply 3 are referred to as the anode side and the cathode side of the DC circuit 1, respectively. The anode side and the cathode side of the DC circuit 1 are connected to the load 4, and the power of the DC power supply 3 is supplied.

直流地絡検出器2は、直列回路21と検出部29とを備えている。直列回路21は直流回路1の陽極側と陰極側との間に設けられている。直列回路21は、第一抵抗22、第一定電圧素子23、第二定電圧素子24、及び第二抵抗25を備えている。なお、第一定電圧素子23と第二定電圧素子24は、ツェナーダイオードである。 The DC ground fault detector 2 includes a series circuit 21 and a detection unit 29. The series circuit 21 is provided between the anode side and the cathode side of the DC circuit 1. The series circuit 21 includes a first resistor 22, a first constant voltage element 23, a second constant voltage element 24, and a second resistor 25. The first constant voltage element 23 and the second constant voltage element 24 are Zener diodes.

第一抵抗22の一方の端子221は、直流回路1の陽極側に接続されている。第一定電圧素子23のカソード231は、第一抵抗22の他方の端子222に接続されている。第二定電圧素子24のカソード241は、第一定電圧素子23のアノード232に接続されている。第二定電圧素子24のアノード242は、第二抵抗25の一方の端子251に接続されている。第二抵抗25の他方の端子252は、直列回路21の陰極側に接続されている。 One terminal 221 of the first resistor 22 is connected to the anode side of the DC circuit 1. The cathode 231 of the first constant voltage element 23 is connected to the other terminal 222 of the first resistor 22. The cathode 241 of the second constant voltage element 24 is connected to the anode 232 of the first constant voltage element 23. The anode 242 of the second constant voltage element 24 is connected to one terminal 251 of the second resistor 25. The other terminal 252 of the second resistor 25 is connected to the cathode side of the series circuit 21.

第一定電圧素子23のアノード232と、第二定電圧素子24のカソード241との間には、一端が接地された配線である接地線28が設けられている。接地線28には、検出部29が配置されている。検出部29は、直流回路1が地絡した場合に流れる電流である地絡電流Isを検出する。本実施形態では、一例として、検出部29を変流器としている。 A ground wire 28, which is a wiring whose one end is grounded, is provided between the anode 232 of the first constant voltage element 23 and the cathode 241 of the second constant voltage element 24. A detection unit 29 is arranged on the ground wire 28. The detection unit 29 detects the ground fault current Is, which is the current that flows when the DC circuit 1 has a ground fault. In this embodiment, as an example, the detection unit 29 is a current transformer.

直流回路1の動作について説明する。一例として、直流電源3の電圧は400Vであり、第一抵抗22と第二抵抗25の抵抗値は20kΩ、第一定電圧素子23と第二定電圧素子24の降伏電圧は直流電源3の電圧の2分の1である200Vとする。この場合、地絡が発生していない正常時において、直流電源3によって出力される電力は、直流回路に印加されて負荷4に供給される。このとき、第一定電圧素子23が設けられていない場合に比べて、直流回路1の陽極側から、直流地絡検出器2側に電流が流れ難い(例えば、図1のIa=0A)。よって、直流回路1の陽極側から、直流地絡検出器2側に電流が流れる場合に比べて、消費電力が低減される。 The operation of the DC circuit 1 will be described. As an example, the voltage of the DC power supply 3 is 400 V, the resistance values of the first resistor 22 and the second resistor 25 are 20 kΩ, and the breakdown voltage of the first constant voltage element 23 and the second constant voltage element 24 is the voltage of the DC power supply 3. It is set to 200V, which is half of that. In this case, in the normal state where no ground fault has occurred, the power output by the DC power supply 3 is applied to the DC circuit and supplied to the load 4. At this time, it is difficult for a current to flow from the anode side of the DC circuit 1 to the DC ground fault detector 2 side as compared with the case where the first constant voltage element 23 is not provided (for example, Ia = 0A in FIG. 1). Therefore, the power consumption is reduced as compared with the case where a current flows from the anode side of the DC circuit 1 to the DC ground fault detector 2 side.

次に、図2を参照して、地絡事故が直流回路1の陽極側で発生した場合について説明する。この場合、地絡により、第二定電圧素子24に印加される電圧が、第二定電圧素子24の降伏電圧である200Vを越えて略400Vとなる。このため、直流電源3−接地点(大地)−検出部29−第二定電圧素子24−第二抵抗25―直流電源3からなる閉ループ回路50に地絡電流Isが流れる。検出部29は、地絡電流Isを検出することで、直流回路1が地絡したことを検出する。 Next, a case where a ground fault occurs on the anode side of the DC circuit 1 will be described with reference to FIG. In this case, due to the ground fault, the voltage applied to the second constant voltage element 24 exceeds 200 V, which is the yield voltage of the second constant voltage element 24, and becomes approximately 400 V. Therefore, the ground fault current Is flows in the closed loop circuit 50 including the DC power supply 3-grounding point (ground) -detection unit 29-second constant voltage element 24-second resistor 25-DC power supply 3. The detection unit 29 detects that the DC circuit 1 has a ground fault by detecting the ground fault current Is.

第一抵抗22と第二抵抗25の抵抗値は20kΩであるとすると、直流電源3の電圧は400V、第一定電圧素子23と第二定電圧素子24の降伏電圧は200Vであることで、地絡電流Isは、主に、第二抵抗25の抵抗値と、第二抵抗25に印加される電圧によって規定され、地絡電流Is=400V/20kΩ=20mAとなる。 Assuming that the resistance values of the first resistance 22 and the second resistance 25 are 20 kΩ, the voltage of the DC power supply 3 is 400 V, and the breakdown voltage of the first constant voltage element 23 and the second constant voltage element 24 is 200 V. The ground fault current Is is mainly defined by the resistance value of the second resistance 25 and the voltage applied to the second resistance 25, and the ground fault current Is = 400V / 20kΩ = 20mA.

この結果、第一定電圧素子23が設けられていない場合に比べて、直流回路1の陽極側から、直流地絡検出器2を備えた接地線28に電流が流れ難い。このため、第一抵抗22と第二抵抗25との抵抗値を小さくしても、消費電力が増加し難い。よって、例えば、第一抵抗22と第二抵抗25との抵抗値を小さくすることも可能であり、第一抵抗22と第二抵抗25のサイズを小型化することができる。 As a result, it is difficult for a current to flow from the anode side of the DC circuit 1 to the ground wire 28 provided with the DC ground fault detector 2 as compared with the case where the first constant voltage element 23 is not provided. Therefore, even if the resistance values of the first resistor 22 and the second resistor 25 are reduced, the power consumption is unlikely to increase. Therefore, for example, the resistance values of the first resistor 22 and the second resistor 25 can be reduced, and the sizes of the first resistor 22 and the second resistor 25 can be reduced.

また、第一抵抗22と第二抵抗25との抵抗値を小さくすることで、地絡電流Isを大きい値にすることもでき、検出精度を上げることも可能となる。一方、第一抵抗22と第二抵抗25との抵抗値を大きくしてもよく、地絡電流Isの電流範囲を広くすることができる。 Further, by reducing the resistance values of the first resistor 22 and the second resistor 25, the ground fault current Is can be increased to a large value, and the detection accuracy can be improved. On the other hand, the resistance values of the first resistor 22 and the second resistor 25 may be increased, and the current range of the ground fault current Is can be widened.

なお、第一定電圧素子23及び第2定電圧素子24の降伏電圧を200Vとして、直流電源3の電圧400Vの2分の1としているが、降伏電圧は電源電圧の2分の1より僅かに大きくても良く、例えば10%程度大きくても良い。この場合でも地絡発生時に一方が降伏動作して地絡電流Isの閉ループを生成できる。また、陰極側で地絡が発生した場合は、第一定電圧素子23が降伏動作して地絡電流Isが第一定電圧素子23を含む閉ループ回路(図示せず)に流れる。 The breakdown voltage of the first constant voltage element 23 and the second constant voltage element 24 is set to 200V, which is half of the voltage of the DC power supply 3 of 400V, but the breakdown voltage is slightly less than half of the power supply voltage. It may be large, for example, it may be about 10% larger. Even in this case, when a ground fault occurs, one of them yields and a closed loop of the ground fault current Is can be generated. When a ground fault occurs on the cathode side, the constant voltage element 23 yields and the ground fault current Is flows into a closed loop circuit (not shown) including the constant voltage element 23.

このように、地絡が発生していない正常時において、定電圧素子23,24が設けられていない場合に比べて、直流回路1の陽極側から直流地絡検出器2側に電流が流れ難くできる。よって、消費電力の低減が可能となる。
特に、直列接続された定電圧素子23,24の降伏電圧の合計値が直流電源3の印加電圧に略等しいため、直流地絡検出器2に流れる正常時の電流を僅かにできる。一方、地絡発生時には2つの定電圧素子23,24のうちの一方が降伏動作して接地線28に確実に電流を流すことができ、地絡を検出できる。
As described above, in the normal state where no ground fault has occurred, it is difficult for the current to flow from the anode side of the DC circuit 1 to the DC ground fault detector 2 side as compared with the case where the constant voltage elements 23 and 24 are not provided. it can. Therefore, the power consumption can be reduced.
In particular, since the total value of the yield voltages of the constant voltage elements 23 and 24 connected in series is substantially equal to the applied voltage of the DC power supply 3, the normal current flowing through the DC ground fault detector 2 can be made small. On the other hand, when a ground fault occurs, one of the two constant voltage elements 23 and 24 yields to allow current to flow reliably through the ground wire 28, and the ground fault can be detected.

なお、本発明は上記の実施形態に限定されるものではなく、種々の変更が可能である。例えば、直流電源3には、太陽電池システムが用いられていたが、これに限定されない。例えば、電気自動車のバッテリなど、他の直流電源であってもよい。 The present invention is not limited to the above embodiment, and various modifications can be made. For example, a solar cell system has been used for the DC power supply 3, but the present invention is not limited to this. For example, it may be another DC power source such as a battery of an electric vehicle.

また、第一抵抗22と第二抵抗25の抵抗値は、互いに異なる値であってもよい。また、第一抵抗22及び第二抵抗25は、夫々、1つの抵抗であった。しかし、第一抵抗22及び第二抵抗25は、夫々、複数の抵抗によって構成されてもよい。また、第一定電圧素子23と第二定電圧素子24とは、互いに異なる特性を有していてもよく、例えば、降伏電圧が互いに異なる値であってもよい。 Further, the resistance values of the first resistor 22 and the second resistor 25 may be different from each other. Further, the first resistor 22 and the second resistor 25 were each one resistor. However, the first resistor 22 and the second resistor 25 may each be composed of a plurality of resistors. Further, the first constant voltage element 23 and the second constant voltage element 24 may have different characteristics from each other, and for example, the yield voltage may have different values from each other.

また、検出部29は、変流器であったが、これに限定されない。検出部29は、流れる電流を検出可能な種々の回路によって形成されてもよい。例えば、検出部29は、接地線28に設けられた抵抗と、該抵抗に流れる地絡電流Isによって降下する電圧を検出することで地絡を検出する検出回路とによって形成されてもよい。 Further, the detection unit 29 was a current transformer, but the present invention is not limited to this. The detection unit 29 may be formed by various circuits capable of detecting the flowing current. For example, the detection unit 29 may be formed by a resistor provided on the ground wire 28 and a detection circuit that detects a ground fault by detecting a voltage dropped by the ground fault current Is flowing through the resistor.

1・・直流回路
2・・直流地絡検出器
3・・直流電源
21・・直列回路
22・・第一抵抗
23・・第一定電圧素子
24・・第二定電圧素子
25・・第二抵抗
28・・接地線
29・・検出部
1 ... DC circuit 2 ... DC ground fault detector 3 ... DC power supply 21 ... Series circuit 22 ... First resistor 23 ... First constant voltage element 24 ... Second constant voltage element 25 ... Second Resistance 28 ... Ground wire 29 ... Detector

Claims (1)

直流電源が接続された直流回路の地絡を検出する直流地絡検出器であって、
前記直流回路の陽極側と陰極側との間に、第一抵抗、第一定電圧素子、第二定電圧素子、及び第二抵抗を直列に接続した直列回路と、
前記直流回路が地絡した際に流れる電流を検出する変流器
を備え、
前記第一定電圧素子のカソードは、前記第一抵抗を介して前記陽極側に接続され、
前記第二定電圧素子のカソードは、前記第一定電圧素子のアノードに接続され、
前記第二定電圧素子のアノードは、前記第二抵抗を介して前記陰極側に接続されていると共に、
前記第一定電圧素子及び前記第二定電圧素子は、同一特性のツェナーダイオードであり、直流電源電圧の略2分の1の降伏電圧を有し、
更に前記第一定電圧素子のアノードと前記第二定電圧素子のカソードとの間に接地線を設け、当該接地線に流れる電流を前記変流器が検出することを特徴とする直流地絡検出器。
A DC ground fault detector that detects ground faults in a DC circuit to which a DC power supply is connected.
A series circuit in which a first resistor, a first constant voltage element, a second constant voltage element, and a second resistor are connected in series between the anode side and the cathode side of the DC circuit.
It is equipped with a current transformer that detects the current that flows when the DC circuit has a ground fault.
The cathode of the first constant voltage element is connected to the anode side via the first resistor.
The cathode of the second constant voltage element is connected to the anode of the first constant voltage element.
The anode of the second constant voltage element is connected to the cathode side via the second resistor and is connected to the cathode side .
The first constant voltage element and the second constant voltage element are Zener diodes having the same characteristics, and have a yield voltage of about half of the DC power supply voltage.
Further, a DC ground fault detection is characterized in that a ground wire is provided between the anode of the first constant voltage element and the cathode of the second constant voltage element, and the current transformer detects the current flowing through the ground wire. vessel.
JP2016150343A 2016-07-29 2016-07-29 DC ground fault detector Active JP6862122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016150343A JP6862122B2 (en) 2016-07-29 2016-07-29 DC ground fault detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016150343A JP6862122B2 (en) 2016-07-29 2016-07-29 DC ground fault detector

Publications (2)

Publication Number Publication Date
JP2018017690A JP2018017690A (en) 2018-02-01
JP6862122B2 true JP6862122B2 (en) 2021-04-21

Family

ID=61081389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016150343A Active JP6862122B2 (en) 2016-07-29 2016-07-29 DC ground fault detector

Country Status (1)

Country Link
JP (1) JP6862122B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2022013575A (en) * 2020-04-28 2023-02-01 Ite Co Ltd Device, method, and power distribution system for preventing electric shock and fire in case of short circuit and ground fault.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50127630U (en) * 1974-04-02 1975-10-20
JP3307173B2 (en) * 1995-03-20 2002-07-24 松下電器産業株式会社 Earth leakage detection device
EP2547545B1 (en) * 2010-01-21 2018-12-05 Epower Engine Systems LLC Hydrocarbon fueled-electric series hybrid propulsion systems
EP2715379B1 (en) * 2011-06-01 2018-09-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Detection of an insulation defect
JP5414777B2 (en) * 2011-12-22 2014-02-12 株式会社正興電機製作所 DC circuit ground fault detection apparatus and method
JP6248325B2 (en) * 2013-02-15 2017-12-20 日本無線株式会社 DC power supply system

Also Published As

Publication number Publication date
JP2018017690A (en) 2018-02-01

Similar Documents

Publication Publication Date Title
CN109411836B (en) Battery management system, battery pack, and failure detection method
US8559142B2 (en) DC power supply insulation fault detection circuit
JP4849094B2 (en) Ground fault detection circuit
US6101073A (en) Ground fault protecting apparatus and method for solar power generation and solar power generation apparatus using the apparatus and method
JP5369833B2 (en) Electric vehicle charger and ground fault detection method
US10579085B2 (en) Power distribution unit and fault detecting method
CN107703414B (en) Detection circuit and detection method
JP2007218688A (en) Device for monitoring battery voltage
JP2005312287A (en) Power supply
JP2002296316A (en) Leakage detecting circuit for power-supply device
CN116540008A (en) System and method for detecting ground faults in DC systems
CN110789351B (en) Circuit for identifying power failure source in dual-power electrical system
CN109782160A (en) High-voltage interlocking circuit and detection method thereof
JP6642384B2 (en) Battery monitoring device for in-vehicle batteries
JP6245516B2 (en) Voltage detector
US11079439B2 (en) Protection circuit for battery monitoring device, and battery monitoring device
CN114123779B (en) Load driving circuit, MCU and self-adaptive compensation circuit
JP6862122B2 (en) DC ground fault detector
US20130257443A1 (en) Semiconductor device and battery monitoring system
US10746808B2 (en) Electric leakage detection device
TWI738686B (en) Charging/discharging control circuit and battery apparatus
US9797939B2 (en) Neutral grounding resistor monitor
CN110676804B (en) Detection circuit and switch module using same
US11068008B2 (en) Supply circuit
CN214412262U (en) Protection circuit, circuit board and protection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210331

R150 Certificate of patent or registration of utility model

Ref document number: 6862122

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250