JP6861496B2 - 速度測定プローブの防氷用の装置及び方法 - Google Patents

速度測定プローブの防氷用の装置及び方法 Download PDF

Info

Publication number
JP6861496B2
JP6861496B2 JP2016204956A JP2016204956A JP6861496B2 JP 6861496 B2 JP6861496 B2 JP 6861496B2 JP 2016204956 A JP2016204956 A JP 2016204956A JP 2016204956 A JP2016204956 A JP 2016204956A JP 6861496 B2 JP6861496 B2 JP 6861496B2
Authority
JP
Japan
Prior art keywords
icing
coil
pitot
pitot tube
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016204956A
Other languages
English (en)
Other versions
JP2017143054A (ja
Inventor
ダニエル・ジョナサン・ガナー・ディチェック
ヴィヤチェスラフ・コジコフ
ジョナサン・モロー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boeing Co filed Critical Boeing Co
Publication of JP2017143054A publication Critical patent/JP2017143054A/ja
Application granted granted Critical
Publication of JP6861496B2 publication Critical patent/JP6861496B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/12De-icing or preventing icing on exterior surfaces of aircraft by electric heating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/14Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid
    • G01P5/16Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring differences of pressure in the fluid using Pitot tubes, e.g. Machmeter
    • G01P5/165Arrangements or constructions of Pitot tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D43/00Arrangements or adaptations of instruments
    • B64D43/02Arrangements or adaptations of instruments for indicating aircraft speed or stalling conditions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P1/00Details of instruments

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Induction Heating (AREA)

Description

本開示の実施形態は、一般的に除氷システムに係り、例えば、航空機の速度を測定するのに用いられるピトー管の一つ以上の部分の除氷システムに関する。
ピトー管を用いて、航空機の速度を測定することができる。しかしながら、氷がピトー管の一つ以上の部分に蓄積して、速度決定の精度に影響し得る。また、蓄積した氷が、航空機の抵抗を増大させ得る。
従って、ピトー管の性能の改善及び/又は抵抗の低下が本願で開示される多様な実施形態において与えられる。
本開示の特定の実施形態は除氷システムを提供する。本除氷システムは、部材と、コイルと、電源とを含む。部材(例えば、スマートサセプタ合金及び/又は強磁性体で全部又は一部が作製された部材)は防氷部を含む。コイルは部材の防氷部に誘導結合される。電源はコイルに結合され、コイルに電圧を与えるように構成される。電源によって供給された電力に応答して、コイルが電磁エネルギーを放出する。電磁エネルギーに応答して、防氷部に渦電流が発生して、防氷部を加熱する。
本開示の特定の実施形態は方法を提供する。本方法は、防氷部を含む部材を提供することを含む。本方法は、部材の防氷部にコイルを誘導結合させることも含む。更に、本方法は、電源にコイルを結合させることを含む。電源は、コイルに電圧を与えるように構成される。電源によって供給された電力に応答してコイルが電磁エネルギーを放出して、電磁エネルギーに応答して防氷部に渦電流が発生して、防氷部を加熱する。
本開示の特定の実施形態は方法を提供する。本方法は、電源からコイルに電圧を与えることを含む。本方法は、電圧に応答して、コイルに誘導結合された部材の防氷部に渦電流を発生させることも含む。更に、本方法は、渦電流を介して航空機の表面を除氷するように加熱することを含む。
多様な実施形態に係る除氷システムの概略図を与える。 多様な実施形態に係るピトー管を含む除氷システムの概略図を与える。 多様な実施形態に従って形成された除氷システムを示す。 図3Aのシステムの支持体を示す。 多様な実施形態に係る支持体の空気力学的表面を加熱するためのシステムの平面図を示す。 多様な実施形態に従って形成された除氷システムの概略図を示す。 多様な実施形態に従って形成された除氷システムの概略図を示す。 多様な実施形態に従って形成された除氷システムの概略図を示す。 本開示の一実施形態に係る方法のフローチャートを与える。 本開示の一実施形態に係る方法のフローチャートを与える。 航空機の製造及び保守の方法のブロック図である。 航空機の概略図である。
上記概要及び以下の特定の実施形態の詳細な説明は、添付図面と共に読むことでより良く理解されるものである。本願において、単数形で記載されている要素やステップは、複数の要素やステップを必ずしも排除するものではないことを理解されたい。更に、「一実施形態」への言及は、そこに記載されている特徴を同じく含む追加実施形態の存在を排除するものとして解釈されるものではない。また、特に断らない限り、特定の性質を有する一又は複数の要素を「備える」又は「有する」実施形態は、その性質を有さない追加要素を含み得る。
本開示の実施形態は、例えばピトー管を除氷するためのシステム及び方法を提供する。航空機の速度測定プローブは、特定の環境条件下での内面及び外面への氷形成に影響を受け易いものであり得る。抵抗加熱を用いる現状の方法は、望ましい制御性及び信頼性を与えるのに達していないものであり得る。本開示の多様な実施形態は、飛行エンベロープ全体にわたる除氷のために、効果的で確実にエネルギーを表面に伝達する。誘導加熱技術を用いて、氷形成を防止することができる。例えば、電源によって電力供給された誘導コイルが高周波電磁場を発生させて、その高周電磁場がスマートサセプタ合金の層によって吸収される。電磁場は、スマートサセプタ合金を含む表面上の渦電流に変換され、電流が、オーム損失を介して除氷のための熱を発生させる。許容可能な効率において、多様な実施形態は、誘導コイルと加熱表面との間の直接接触は要しない。
多様な実施形態は、環境温度よりも僅かに高い温度において動作するコイルを用いることによって、電線の加熱及び冷却のサイクルを無くし、減らし、又は最小にする。このようなサイクルは、電気絶縁及び電線自体の性質を劣化させ得る。多様な実施形態において、コイル及び加熱される表面は、接触せずに結合され、例えば、空気、水、他の非磁性体によって離隔され得る。コイルと加熱される表面との間の離隔は、コイル及び表面のシーリング(例えば、気密シーリング)も可能にして、環境への露出を防止又は低減することによって腐食を防止又は低減する。従って、本開示の多様な実施形態において利用される加熱表面は、ワイヤのように一点での欠陥に影響され易いものではないので、加熱ワイヤ(電熱線)よりも信頼性が高い。加熱表面(例えば、本願で開示されるスマートサセプタ合金を含む加熱表面)は、表面の一部が損傷したとしても依然として熱を提供するので、加熱ワイヤよりも頑丈である。対照的に、加熱ワイヤは、その一点が損傷すると、熱を提供し続けることができなくなり得る。
図1は、多様な実施形態に係る除氷システム100の概略図を与える。図示されている実施形態では、除氷システム100は、部材110と、コイル120と、電源130とを含む。一般的に、電源130は、コイル120に電気エネルギー、例えば電圧を与える。電源130から供給された電力に応答して、コイル120が電磁エネルギーを放出する。コイル120から放出された電磁エネルギーに応答して、渦電流が部材110(例えば、部材110の防氷部112)に発生し、渦電流が、部材110の少なくとも一部を除氷するのに使用可能な防氷部112を加熱する。
図示されている実施形態では、部材110は、防氷部112を含む。図示を簡単にするため、一つの防氷部112のみが図1に示されているが、多様な実施形態において、複数の防氷部112が使用可能である。防氷部112は、航空機の一つ以上の外面を含むか、又はそれに近接して配置され得る。例えば、防氷部112は、ピトー管の支持体、ピトー管の空気圧、静圧又は吸気圧部のうち一つ以上、ピトー室の表面を特に含み得る。多様な実施形態において、防氷部112は、防氷加熱表面114を含む。一般的に、防氷加熱表面114は、コイル120によって与えられる電磁エネルギーに応答して加熱される物質を含む。防氷加熱表面114は、例えば、コイル120が発生させる電磁場の影響下で渦電流を発生させるのに十分な磁気感受率を有し得る。図示されている実施形態では、防氷加熱表面114はスマートサセプタ合金115を含む。本願において、スマートサセプタ合金とは、10から10000までの間の磁気感受率を有し、温度が特定のキュリー温度に近づくと磁気感受率を失うことによって、スマートサセプタ合金115(及び防氷加熱表面114)を加熱可能な最大温度を制限するのに役立つ合金を含むものとして理解される。スマートサセプタ合金115は、例えばニッケル合金であり得る。多様な実施形態において使用可能なスマートサセプタ合金の例として、インコネル102やインコネル104が挙げられる。
図示されている実施形態では、部材110は、第一面116及び第二面118を含む。第一面116は第二面118の対向する反対側に位置する。防氷部112(及び防氷加熱表面114)は、第一面118に近接して配置される。部材110は、第二面118が第一面116よりもコイル120に近くなるように向けられる。図1に見て取れるように、コイル120及び防氷部112は部材の対向する両側に配置される。多様な実施形態において、スマートサセプタ合金115が、防氷部112の内部に配置され得て、また、防氷加熱表面114との関係においては、その防氷加熱表面114に直接接触し得て、又は、防氷加熱表面114からの防氷部112の対向表面の中又は近くに配置され得る。一部実施形態では、防氷加熱表面114とスマートサセプタ合金115との間のギャップが、熱安定性導電接着剤によって充填され得て、また、他の例では、スマートサセプタ合金115から防氷加熱表面114に向かって十分に熱を伝達する他の結合物質によって充填され得る。
コイル120は、部材110、例えば部材110の防氷部112に誘導結合される(図1において破線で示される)。例えば、コイル120は、部材110に近接して配置されるが、接触しないようにされ得る。本願において近接とは、コイル120からの電磁エネルギーが、防氷部に渦電流を発生させて、防氷部112を所望又は所定の量で加熱するのに十分近いことを意味し得る。コイル120についての具体的な性質(例えば、サイズ、位置、構成、配置、使用される物質)は、スマートサセプタ合金115と協働して、一箇所以上の所望の箇所(例えば、防氷部112)の除氷に十分な又は所望の量の加熱を部材110に与えるのに十分な量の電磁エネルギーを与えるように選択され得る。一部実施形態では、コイル120は、平面の加熱用に略平坦であり得る(例えば、パンケーキ構成等の略2次元構成でコイル巻きされる)。一部実施形態では、コイル120は、螺旋状又はシリンダー状にコイル巻きされ得る(例えば、管の一部を取り囲むようにするか、管の穴又は開口内に挿入され得る)。
電源130は、コイル120に結合される(例えば、ワイヤやケーブルを介してコイルと電気的にやり取りするように配置される)。電源130は、コイル120にエネルギー又は電圧を与える。電圧は交流(AC,alternating current)電圧であり得る。図示されている実施形態では、電源130は、コイル120に伝えられる電圧の量を制御するように構成されたコントローラ132を含む。一部実施形態では、電圧の量は、除氷される一つ以上の表面又は部分において検知された温度に基づいて制御され得る。一部実施形態では、スマートサセプタ合金のキュリー温度を利用して、加熱される表面又は部分の最大温度を制限し得る。防氷部112に誘導結合されるコイル120に電源130によって供給される電力が、防氷部112に渦電流を発生させる磁場を発生させ、その渦電流を用いて、防氷部112を加熱及び除氷する。
上述のように、一部実施形態では、部材110は航空機のピトー管として構成され得る。ピトー管は、支持体と、静圧空洞と、ピトー空洞とを有し得る。一部実施形態では、防氷部112は、ピトー空洞の境界に近接して配置された防氷加熱表面114を含む。代替的に又は追加的に、防氷部112は、支持体の前縁に近接して配置された防氷加熱表面114を含み得る。一部実施形態では、部材110とコントローラ132との間のフィードバックリンク133(図1に破線で示される)を利用して、電源130からコイル120に供給されるエネルギーを制御し得る。例えば、フィードバックリンク133は、熱電対を含むか又はそれと関連しているものであり得て、熱電対を用いて検知及び/又は決定された温度に基づいて、コントローラ132が、コイル120に送られる電圧、電流、又は出力を調整し得る。
図2は、ピトー管210を含む除氷システム200の概略図を与え、多様な実施形態に従って、ピトー管210の境界に近接して防氷部が配置されている。ピトー管210は、航空機の機体の一部、例えば、翼に取り付けられ得て、又は他の例として、大型航空機の機体の前方部に取り付けられ得る。ピトー管210は、静圧開口240を有する静圧室230と、ピトー開口242を有するピトー室220とを含む。ピトー開口242は、(例えば、航空機が飛行している際の大気からの)ラムエアの流れ201を受ける。静圧開口240は、ピトー管210の前方部250の後ろに配置される。一部実施形態では、静圧室230及びピトー室220は差圧計(図示せず)に動作可能に結合されて、静圧室230とピトー室220との間の圧力差を用いて、航空機の速度を決定する。図示されているピトー管210は、航空機に結合するように構成された支持部212と、気流に向けられる吸気部214とを含む。図示されている実施形態では、支持部212及び吸気部214は互いに略垂直である。
図示されている実施形態では、静圧室230は、静圧開口240の両側に第一除氷部232及び第二除氷部236を含む壁222を含む。例えば、第一除氷部232及び第二除氷部236(並びに本願で開示される他の除氷部)は、スマートサセプタ合金を、固体、連続形態、又は基板上の堆積層として含み得る。他の例では、除氷部は、セラミック物質内に埋め込まれたスマートサセプタ合金を含み得る。
ピトー管210は、ピトー管210の境界239を画定する壁238を含む。ピトー管210は、第三除氷部234も含む。図示されている実施形態では、第三除氷部234は、壁238の半径方向内側に配置された略シリンダー状の構造として示されている。他の実施形態では、第三除氷部234は、壁238の半径方向外側に配置され、及び/又は、第三除氷部の両側の対向する壁の間に挟まれ得る。
システム200はコイル260も含み、そのコイル260の一部は、ピトー空洞220の周りに螺旋状に巻かれ、又は、略シリンダー状にピトー空洞220の周りに配置される。多様な実施形態において、コイル260は、ピトー空洞220及び第三除氷部234の半径方向外側に配置される。図示されている実施形態では、図示を簡単にするため、コイル260が静圧空洞230の中心に配置されているが、実際には、コイル260は、静圧空洞220及び/又はピトー空洞230を画定する壁に近接し、隣接し、又は埋め込まれ得る。コイル260は、電源270に動作可能に結合され、例えば、38〜40AWG(American Wire Gauge)のリッツ線を介して結合される。また、コイル260も、38〜40AWGのリッツ線から形成され得る。他の実施形態においては、特定の応用に基づいて、具体的なゲージがAWG38〜40よりも小さくも大きくもなり得ることには留意されたい。コイル260は、第一除氷部232、第二除氷部236、及び第三除氷部234に誘導結合される。電源270からの電気エネルギーがコイル260に与えられると、コイル260は電磁エネルギーを発生させて、その電磁エネルギーが、コイル260に誘導結合された第一除氷部232、第二除氷部236、及び第三除氷部234に渦電流を発生させて、第一除氷部232、第二除氷部236、及び第三除氷部234を加熱する。
コイル260及び/又は多様な除氷部は、特定の箇所(例えば、着氷による影響をより受け易い箇所)において高い除氷性を与えるように構成され得る。例えば、一つ以上の除氷部(又はその一部)が、着氷の影響をより受け易い箇所に近接して配置され得る。他の例では、コイル260が、着氷の影響をより受け易い箇所に対応する一つ以上の除氷部の一部により大量の電磁エネルギーを提供するように構成され得る。例えば、図示されている例では、コイル260は変化しているピッチを有し、部分262及び部分266においては部分264よりも小さなピッチ(又はより密に巻かれたコイル)を有する。部分262及び部分266は、着氷の影響をより受け易い一つ以上の箇所に近接して配置され得て、小さなピッチよって与えられるより大きな電磁エネルギーが、着氷の影響をより受け易い箇所により効率的に電磁エネルギーを分布させる。
システム200は多様な利点を提供し得る。例えば、システム200は、加熱素子(例えば、スマートサセプタ合金)の信頼性の増大、及び/又は配線構造の寿命の増大を提供し得る。除氷部が誘導結合されて、各除氷部の全長にわたって連続的な電流を流す必要がないので、除氷部は、除氷部の一つ以上の部分が損傷した場合に、抵抗加熱方式と比較して性能及び信頼性を改善し得る。図示されている実施形態のコイル260が、(例えば、抵抗加熱方式と比較して)あまり温度上昇を受けないことによって、コイル260の熱サイクルを無くすか又は低減する。システム200のほとんど又は全ての構成要素に非腐食性物質を使用し得る。更に、ピトー管内における温度が比較的固定され得る。また、これまでの除氷方法よりも必要な電力が少なくなり得る。システム200は、例えば10kHzから400kHzの間の電磁干渉(EMI,electromagnetic interference)の影響を受けないように構成され得る点に留意されたい。また、電源270が航空機の追加的な重量(例えば、1〜2ポンド)を与え得る点に留意されたい。
氷は、ピトー管の空気力学的表面上にも形成される傾向を有し得る点に留意されたい。一般的に、こうした表面の着氷は、ピトー管による速度測定に顕著な影響を与えないが、航空機の抵抗を増大させ得る。従って、ピトー管の空気力学的表面の除氷によって、抵抗を減少させ得る。航空機の全体的なサイズと比較してピトー管の表面積は一般的には僅かなものであるので、ピトー管の空気力学的表面は、一般的に、揚力を発生させるというよりもむしろ、気流抵抗を最少にするように構成される。従って、比較的薄い形状が、ピトー管用の空気力学的表面の設計における目標となり得る。このような表面の除氷に役立つように、スマートサセプタ合金(例えば、本願に記載されているニッケル系合金)が、ピトー管の外側の空気力学的表面に堆積されるか、又はそれと関連し得る。
図3Aは、多様な実施形態に従って形成された除氷システム300を示し、図3Bは、図3Aのシステムの支持体304を示す。図3Aに見て取れるように、システム300は、ラムエア301に晒されるピトー管302及び支持体304を含む。ピトー管302は、一般的には、多様な点においてピトー管210と同様であり得る。図示されている実施形態において、支持体304は、航空機の機体305にピトー管を固定するように構成される。
図3Bに見て取れるように、支持体304は、前縁308(例えば、ラムエアの流れ301に対して前縁)を有する本体306を含む。除氷部312(例えば、スマートサセプタ合金を含む本体306の外面の一部)は、本体306の外側部分に配置される。例えば、除氷部312は、前縁308の両側に1インチ延在し得る。支持体304は、本体306の内側に配置されたコイル310も含む。コイル310からの電磁エネルギーを除氷部312に向け得る。コイル310は、例えばリッツ線から形成され得る。コイル310は、電源(図3Bに示さず)から電気エネルギーを受け得る。
多様な実施形態において、一般的に、高周波電流がコイル310のリッツ線を流れて、電磁場を発生させて、その電磁場が除氷部312のスマートサセプタ合金によって吸収されて、高周波渦電流に変換される。電流は、比較的短時間で、スマートサセプタ合金のキュリー点(例えば、華氏800度)に除氷部312を加熱する。コイル310と除氷部312との間の結合性は比較的高く、90%以上のシステム効率を提供し得る。
コイル310は平坦な又はパンケーキ状の構造となり得る。例えば、支持体304の空気力学的表面を加熱するため、略37アンペア/インチで15W/平方インチを生じさせるコイル電流密度が提供され得る。コイルは、例えば、直径38ミルで重量0.3ポンド/フィートの125/42リッツ線で作製され得る。一例として、10個のリッツ線並列回路が、コイル310によって画定されるパッド又はパンケーキ形状の内側部分で30巻き/インチ、中間部分で10巻き/インチ、残りの部分で7巻き/インチで設けられ得る。
図4は、多様な実施形態に係る支持体402の空気力学的表面403を加熱するためのシステム400の平面図を示す。システム400は、コイル410と、パネル420と、離隔層430と、防氷部440と、外面450とを含む。パネル420は、離隔層430と防氷部440との間に挿入されて、また、コイル410を取り付け/及び/又は支持するのに用いられ得る。図示されている実施形態においてパネル及び離隔層430は、実質的に非磁性の物質製である。防氷部440は、スマートサセプタ合金製であり得て、離隔層430と外面450との間に挿入される。外面450は、熱伝導性物質(例えば、アルミニウム)製であり得て、外気から防氷部440を保護するのに用いられる一方で、防氷部440からの十分な量の熱が、支持体402の外側部分を除氷するようにする。
図5〜図7は、本願で説明される除氷システム用の電源の配置の多様な実施形態を示す。図5は、多様な実施形態に従って形成された除氷システム500の概略図を示す。システム500において、航空機の加圧領域内に電力コンバータが提供される。図5に見て取れるように、航空機502は加圧領域504を含む。交流(AC)航空機電力が、例えば略100〜1000ワットの範囲内で入力され得る。電力が、電力コンバータ510によって受け取られ、その後、ピトー管520(例えば、本願で説明されるようなピトー管520の一つ以上の防氷部に誘導結合されるコイル)に与えられる。電力コンバータ510は、例えば、400kHz/DC/400Hzコンバータであり得る。例えば、電力コンバータ510は、航空機502の内側に配置された配線を介して電力コンバータに結合された複数のピトー管と共に使用され得る。
図6は、多様な実施形態に従って形成された除氷システム600の概略図を示す。システム600において、ピトー管610が取り付けられる外面652に対向して位置する航空機602の内面650に、電力コンバータ610が配置される。交流(AC)航空機電力が入力される。電力が、電力コンバータ610によって受け取られ、その後、ピトー管620(例えば、本願で説明されるようなピトー管620の一つ以上の防氷部に誘導結合されたコイル)に与えられる。電力コンバータ610は、例えば、400kHz/DC/400Hzコンバータであり得る。
図7は、多様な実施形態に従って形成された除氷システム700の概略図を示す。図示されているシステム700において、略100〜1000ワットの範囲内のDC航空機入力電力が、航空機702から、ピトー管720内に配置されたDC/ACインバータ710に与えられる。
図8は、多様な実施形態に係る方法800(例えば、除氷システムを提供するためのもの)のフローチャートを与える。方法800は、例えば、本願で説明される多様な実施形態(例えば、システム及び/又は方法及び/又はプロセスフロー)の構造又は態様を用いるか、又はそれによって行われ得る。多様な実施形態において、特定のステップが省略又は追加され得て、特定の複数ステップが組み合わせられ得て、特定の複数ステップが同時に行われ得て、特定のステップが複数のステップに分割され得て、特定の複数ステップが異なる順序で行われ得て、特定のステップ又は一組のステップが反復的に再び行われ得る。
802では、防氷部(例えば、防氷部112)を含む部材(例えば、部材110)を提供する。防氷部は、例えば、本願で説明されるスマートサセプタ合金製の又はこれを含む防氷加熱表面を含み得る。一部実施形態では、部材を提供することは、804において、防氷部の上にスマートサセプタ合金を蒸着すること、スマートサセプタ合金を電気めっきすること、及び/又は、防氷部内にスマートサセプタ合金を埋め込むことを含む。
806では、コイル(例えば、コイル120)を部材の防氷部に誘導結合させる。コイルは、例えば、部材に近接するが接触しないように配置され得る。コイルは、例えば、ピトー空洞の周りに螺旋状に巻かれ、又は、略シリンダー状にピトー空洞の周りに配置され得る。他の例として、コイルは、パッド又はパンケーキ状に形成され、ピトー管支持体の空気力学的表面に近接して配置され得る。
一部実施形態では、コイルを防氷部に誘導結合させることは、808において、ピトー空洞の境界に近接して防氷部の防氷加熱表面を配置することを含む。例えば、810において、コイルは、ピトー空洞の半径方向外側に配置され得る。代替的に又は追加的に、812において、コイルに可変ピッチが与えられ得る。一部実施形態では、コイルを防氷部に誘導結合させることは、814において、ピトー管の支持体の前縁に近接して防氷部の防氷加熱表面を配置することを含む。
816では、コイルを電源(例えば、電源130)に誘導結合させる。電源は、コイルに電圧を与えるように構成され、電源から供給された電力に応答してコイルが電磁エネルギーを放出する。電磁エネルギーに応答して、防氷部に渦電流が発生して、防氷部を加熱する。
図9は、多様な実施形態に係る方法900(例えば、一つ以上の表面を除氷するためのもの)のフローチャートを与える。方法900は、例えば、本願で説明される多様な実施形態(例えば、システム及び/又は方法及び/又はプロセスフロー)の構造又は態様を用いるか又はそれによって行われ得る。多様な実施形態において、特定のステップが省略又は追加され得て、特定の複数ステップが組み合わせられ得て、特定の複数ステップが同時に行われ得て、特定のステップが複数のステップに分割され得て、特定の複数ステップが異なる順序で行われ得て、特定のステップ又は一組のステップが反復的に再び行われ得る。方法900は、例えば、航空機の運航中に行われ得る。
902では、電源(例えば、電源130)からコイル(例えば、コイル120)に電圧が与えられる。904では、コイルに誘導結合された部材(例えば、部材110)の防氷部におけるサイクル電圧に応答して、渦電流が発生する。例えば、防氷部は、本願で説明されるスマートサセプタ合金を含むか又はそれから形成され得る。906では、渦電流を介した加熱が行われて、航空機の表面を除氷する。例えば、ピトー管のピトー空洞若しくはチャネル、及び/又は、ピトー管の支持体の空気力学的表面に近接した表面が加熱され得る。
本開示の例を、図10に示されるような航空機の製造及び保守方法1900と、図11に示されるような航空機1902に関して説明する。製造開始前に、例示的な方法1900は、航空機1902の仕様及び設計(ブロック1904)と、材料調達(ブロック1906)とを含み得る。製造中に、航空機1902の部品及びサブアセンブリの製造(ブロック1908)及びシステムの統合(ブロック1910)が行われ得る。その後、航空機1902は、認証及び配送(ブロック1912)を経て、就航(ブロック1914)する。就航中には、航空機1902の定期的な保守(ブロック1916)の予定が決められている。定期的な保守は、航空機1902の一つ以上のシステムの修理、再構成、改修等も含み得る。例えば、多様な実施形態において、本開示の例は、ブロック1908、1910、1916のうち一つ以上に関連して用いられ得る。
例示的な方法1900の各プロセスは、システムインテグレーター、サードパーティー、及び/又はオペレーター(例えば、顧客)によって行われ得る。説明のため、システムインテグレーターとして、多数の航空機製造業者、主要なシステム下請け業者が挙げられるがこれらに限定されるものではなく、また、サードパーティーとして、多数のベンダー、下請け業者、サプライヤーが挙げられるがこれらの限定されるものではなく、また、オペレーターは、航空会社、リース業者、軍隊、サービス組織等であり得る。
図11に示されるように、例示的な方法1900によって製造される航空機1902は、多数の高レベルシステム1920及び内装1922を有する機体1918を含み得る。高レベルシステム1920の例は、推進システム1924、電力システム1926、油圧システム1928、環境システム1930のうち一つ以上を含む。複数の他のシステムも含まれ得る。航空宇宙産業の例を示しているが、本開示の原理は、自動車産業等の他の産業にも適用可能である。従って、航空機1902に加えて、本開示の原理は他のビークル、例えばランドビークル、マリンビークル、スペースビークル等に適用可能である。多様な実施形態において、本開示の例は、機体1918に関して用いられ得る。
更に、本開示は以下の項に係る実施形態を含む。
項1
防氷部を含む部材と、部材の防氷部に誘導結合されるコイルと、コイルに結合された電源とを備える除氷システムであって、電源がコイルに電圧を与えるように構成されていて、電源に供給された電力に応答してコイルが電磁エネルギーを放出し、電磁エネルギーに応答して防氷部に渦電流が発生し、防氷部を加熱する、システム。
項2
防氷部が、スマートサセプタ合金を備える防氷加熱表面を含む、項1に記載のシステム。
項3
コイル及び防氷部が部材の対向する両側に配置されている、項1に記載のシステム。
項4
部材が、支持体と、静圧空洞と、ピトー空洞とを有するピトー管であり、防氷部が、ピトー空洞の境界に近接して位置する防氷加熱表面を含む、項1に記載のシステム。
項5
コイルがピトー空洞の半径方向外側に位置する、項4に記載のシステム。
項6
コイルがピトー空洞の軸に沿って変化しているピッチを有する、項5に記載のシステム。
項7
部材が、支持体と、静圧空洞と、ピトー空洞とを有するピトー管であり、防氷部が、支持体の前縁に近接して位置する防氷加熱表面を含む、項1に記載のシステム。
項8
部材が、支持体と、静圧空洞と、ピトー空洞とを有するピトー管であり、ピトー管が、航空機の外側に配置されるように構成されていて、電源が航空機の内側の加圧領域内に配置されるように構成されている、項1に記載のシステム。
項9
部材が、支持体と、静圧空洞と、ピトー空洞とを有するピトー管であり、ピトー管が、航空機の外面に配置されるように構成されていて、電源が航空機の対向する内面に配置される、項1に記載のシステム。
項10
部材が、支持体と、静圧空洞と、ピトー空洞とを有するピトー管であり、ピトー管が、航空機の外側に配置され、システムが、ピトー管内にインバータを更に備え、インバータが直流(DC,direct current)入力部と電気的にやり取りする、項1に記載のシステム。
項11
防氷部を含む部材を提供することと、部材の防氷部にコイルを誘導結合させることと、電源にコイルを結合させることとを備える方法であって、電源がコイルに電圧を与えるように構成されていて、電源によって供給された電力に応答してコイルが電磁エネルギーを放出し、電磁エネルギーに応答して防氷部に渦電流が発生して、防氷部を加熱する、方法。
項12
防氷部が、スマートサセプタ合金を備える防氷加熱表面を含む、項11に記載の方法。
項13
部材を提供することが、防氷部にスマートサセプタ合金を蒸着させることと、スマートサセプタ合金を電気めっきすることと、防氷部内にスマートサセプタ合金を埋め込むこととのうち少なくとも一つを含む、項12に記載の方法。
項14
部材が、支持体と、静圧空洞と、ピトー空洞とを有するピトー管であり、防氷部が防氷加熱表面を備え、本方法が、ピトー空洞の境界に近接して防氷加熱表面を配置することを備える、項11に記載の方法。
項15
ピトー空洞の半径方向外側にコイルを配置することを更に備える項15に記載の方法。
項16
コイルに可変ピッチを与えることを更に備える項15に記載の方法。
項17
部材が、支持体と、静圧空洞と、ピトー空洞とを有するピトー管であり、防氷部が防氷加熱表面を備え、本方法が、支持体の前縁に近接して防氷加熱表面を配置することを備える、項11に記載の方法。
項18
電源からコイルに電圧を与えることと、電圧に応答してコイルに誘導結合された部材の防氷部に渦電流を発生させることと、渦電流を介して航空機の表面を除氷するように加熱することとを備える方法。
項19
防氷部が、スマートサセプタ合金を備える防氷加熱表面を含む、項18に記載の方法。
項20
部材が、支持体と、静圧空洞と、ピトー空洞とを有するピトー管であり、防氷部が、ピトー空洞の境界に近接して配置された防氷加熱表面を含む、項18に記載の方法。
項21
部材が、支持体と、静圧空洞と、ピトー空洞とを有するピトー管であり、防氷部が、支持体の前縁に近接した配置された防氷加熱表面を含む、項18に記載の方法。
本願で示され説明される装置及び方法は、製造及び保守方法1900の一つ以上の段階中に使用可能である。例えば、部品及びサブアセンブリ製造1908に対応している部品及びサブアセンブリを、就航中の航空機1902の部品やサブアセンブリと同様の方法で製造することができる。また、装置、方法の一以上の例又はそれらの組み合わせを、製造段階1908及び1910中に使用することができて、例えば、航空機1902のアセンブリを実質的に迅速にし、又は航空機1902のコストを削減する。同様に、装置又は方法の実施形態の一つ以上の例又はそれらの組み合わせを、航空機1902の就航中、例えば、保守段階(ブロック1916)中に用いることができるが、これらに限定されない。
本願で開示される装置及び方法の多様な例は多様な部品、特徴及び機能性を含む。本願で開示される装置及び方法の多様な例は、本願で開示される装置及び方法の他の例の部品、特徴及び機能性をあらゆる組み合わせで有し得るものであり、そうした全ての可能性が本開示の要旨及び範囲の中にあるものであることを理解されたい。
頂部、底部、下、中間、横、水平、垂直、前方等の多様な空間及び方向に関する用語が本開示の実施形態を説明するのに使用され得るが、このような用語は、単に図面に示されている向きに関して使用されていることを理解されたい。これらの向きは、上部が下部になり、下部が上部になり、水平が垂直になる等のように反転、回転、又は変更され得る。
本願において、或る役割や動作を行うように「構成されている」構造、限定、又は要素は、その役割や動作に応じて具体的に構造的に形成され、構築され、又は適合される。その役割や動作を行うように単に修正可能であるという対象については、明確性のため、また疑念を生じさせないため、本願において、その役割や動作を行うように「構成されている」ものとはしない。
上記説明は例示的なものであり、限定的なものではないことを理解されたい。例えば、上記実施形態(及び/又はその態様)は互いに組み合わせて使用可能である。また、本開示の多様な実施形態の教示に対して、その範囲から逸脱することなく、具体的な状況や物質に適合するように、多様な修正を行い得る。本願に記載されている物質の寸法及び種類は、本開示の多様な実施形態のパラメータを定めるものである一方、それら実施形態は限定的なものではなく、例示的な実施形態である。上記説明を読むことによって、他の多様な実施形態が当業者には明らかとなるものである。従って、本開示の多様な実施形態の範囲は、添付の特許請求の範囲を、その特許請求の範囲に含まれる等価物の完全な範囲と共に参照することで決定されるものである。添付の特許請求の範囲において、「含む」や「であって」との用語は、それぞれ「備える」、「において」との用語の分かり易い等価物である。更に、「第一」、「第二」、「第三」等の用語は、目印であり、それらの対象に数字に関する制限を課すものではない。更に、添付の特許請求の範囲の限定は、そのような特許請求の範囲の限定が、更なる構造について具体性に欠ける記載が続く「するための手段」との記載で明確に用いられていない限り、ミーンズプラスファンクション形式で記載されているものではなく、米国特許法第112条(f)に基づいて解釈されるものではない。
ここに記載されている説明は、最良の形態を含む本開示の多様な実施形態を開示して、当業者が本開示の多様な実施形態を実施すること(あらゆるデバイスやシステムを作製及び使用すること、あらゆる方法を行うことを含む)を可能にするために例を用いている。本開示の多様な実施形態の特許範囲は、特許請求の範囲によって定められるものであり、当業者が想起する他の例を含み得る。そのような他の例は、その例が請求項の文字通りの記載から異ならない構造要素を有する場合や、その例が請求項の文字通りの記載から僅かに異なる等価な構造要素を含む場合において、特許請求の範囲内にあるものである。
100 除氷システム
110 部材
112 防氷部
114 防氷加熱表面
115 スマートサセプタ合金
120 コイル
130 電源

Claims (10)

  1. 防氷部(112、440)を含む部材(110)と、
    前記部材の防氷部に誘導結合されるコイル(120、260、310、410)と、
    前記コイルに結合された電源(130、270)と、を備える除氷システム(100、200、300、400、500、600、700)であって、
    前記部材が、静圧空洞とピトー空洞とを有するピトー管を備え、前記静圧空洞及び前記ピトー空洞が差圧計に結合され、前記静圧空洞が前記ピトー空洞を取り囲み、前記防氷部がシリンダー状部を含み、
    前記コイルが前記防氷部のシリンダー状部を誘導加熱し、前記コイルが前記静圧空洞の壁の内側にあり、前記ピトー空洞の壁が前記コイルの内側にあり、前記防氷部のシリンダー状部が前記ピトー空洞の壁の内側にあり、
    前記電源が前記コイルに電圧を与えるように構成されていて、前記電源によって供給された電力に応答して前記コイルが電磁エネルギーを放出し、前記電磁エネルギーに応答して前記防氷部に渦電流が発生して、前記防氷部を加熱する、システム。
  2. 前記防氷部が、スマートサセプタ合金(115)を備える防氷加熱表面(114)を含む、請求項1に記載のシステム。
  3. 前記コイル及び前記防氷部が前記部材の両側(116、118)に対向して位置している、請求項1又は2に記載のシステム。
  4. 前記ピトー管が支持体を更に有し、前記防氷部が、前記ピトー空洞の境界(239)に近接して位置する防氷加熱表面(114)を含む、請求項1から3のいずれか一項に記載のシステム。
  5. 前記ピトー管が支持体を更に有し、前記防氷部が、前記支持体の前縁(308)に近接して位置する防氷加熱表面(114)を含む、請求項1から4のいずれか一項に記載のシステム。
  6. 前記ピトー管が支持体を更に有し、前記ピトー管が航空機(502、602、702、1902)の外側に配置されるように構成されていて、前記電源が前記航空機の内側の加圧領域に配置されるように構成されている、請求項1から5のいずれか一項に記載のシステム。
  7. 防氷部(112、440)を含む部材(110)を提供することと、
    前記部材の防氷部にコイル(120、260、310、410)を誘導結合させることと、
    電源(130、270)にコイル(120、260、310、410)を結合させることと、を備える方法であって、
    前記部材が、静圧空洞とピトー空洞とを有するピトー管を備え、前記静圧空洞及び前記ピトー空洞が差圧計に結合され、前記静圧空洞が前記ピトー空洞を取り囲み、前記防氷部がシリンダー状部を含み、
    前記コイルが前記防氷部のシリンダー状部を誘導加熱し、前記コイルが前記静圧空洞の壁の内側にあり、前記ピトー空洞の壁が前記コイルの内側にあり、前記防氷部のシリンダー状部が前記ピトー空洞の壁の内側にあり、
    前記電源がコイルに電圧を与えるように構成され、前記電源によって供給された電力に応答して前記コイルが電磁エネルギーを放出して、前記電磁エネルギーに応答して前記防氷部に渦電流が発生して、前記防氷部を加熱する、方法。
  8. 前記防氷部が、スマートサセプタ合金(115)を備える防氷加熱表面(114)を含む、請求項7に記載の方法。
  9. 前記部材を提供することが、前記防氷部にスマートサセプタ合金を蒸着することと、スマートサセプタ合金を電気めっきすることと、前記防氷部内にスマートサセプタ合金を埋め込むこととのうち少なくとも一つを含む、請求項8に記載の方法。
  10. 前記ピトー管が支持体を更に有し、前記防氷部が防氷加熱表面(114)を備え、前記方法が、前記ピトー空洞の境界(239)に近接して前記防氷加熱表面を配置することを備える、請求項7又は8に記載の方法。
JP2016204956A 2016-01-04 2016-10-19 速度測定プローブの防氷用の装置及び方法 Active JP6861496B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/987,318 2016-01-04
US14/987,318 US10160548B2 (en) 2016-01-04 2016-01-04 Apparatuses and methods for anti-icing of speed measurement probes

Publications (2)

Publication Number Publication Date
JP2017143054A JP2017143054A (ja) 2017-08-17
JP6861496B2 true JP6861496B2 (ja) 2021-04-21

Family

ID=57137942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016204956A Active JP6861496B2 (ja) 2016-01-04 2016-10-19 速度測定プローブの防氷用の装置及び方法

Country Status (5)

Country Link
US (1) US10160548B2 (ja)
EP (1) EP3187882B1 (ja)
JP (1) JP6861496B2 (ja)
CN (1) CN107037233B (ja)
CA (1) CA2947172C (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10252808B2 (en) 2016-09-22 2019-04-09 The Boeing Company Fluid ice protection system flow conductivity sensor
US10214299B2 (en) 2016-09-22 2019-02-26 The Boeing Company Light detection and ranging (LIDAR) ice detection
US10737792B2 (en) 2016-09-22 2020-08-11 The Boeing Company Turbofan engine fluid ice protection delivery system
US10429511B2 (en) 2017-05-04 2019-10-01 The Boeing Company Light detection and ranging (LIDAR) ice detection system
US10870491B2 (en) 2017-07-20 2020-12-22 The Boeing Company Eductor driven anti-ice system
US10468180B2 (en) * 2017-08-18 2019-11-05 Rosemount Aerospace Inc. Electromagnetic energy harvester for aircraft applications
US11125157B2 (en) 2017-09-22 2021-09-21 The Boeing Company Advanced inlet design
US10696412B2 (en) 2017-09-29 2020-06-30 The Boeing Company Combined fluid ice protection and electronic cooling system
WO2019229805A1 (ja) * 2018-05-28 2019-12-05 日産自動車株式会社 送電装置の解凍方法、非接触給電システム、及び送電装置
US20210197686A1 (en) * 2018-05-28 2021-07-01 Nissan Motor Co., Ltd. Defrosting method for power transmission device, wireless power supply system, and power transmission device
US11293815B2 (en) * 2018-07-20 2022-04-05 Rosemount Aerospace Inc. Air temperature correction
US11524790B2 (en) * 2018-08-21 2022-12-13 Honeywell International Inc. Enhanced pitot tube power management system and method
WO2020155175A1 (en) * 2019-02-03 2020-08-06 Originex Engineering (Shanghai) Co., Ltd. Induction heating for pitot tubes and other aircraft air data probes
CN109683642A (zh) * 2019-02-03 2019-04-26 元能机械科技(上海)有限公司 具有感应加热的空气数据探头及其温度控制方法
US11193951B2 (en) 2019-11-08 2021-12-07 Rosemount Aerospace Inc. Inductive heating of air data probes
BR102023005645A2 (pt) * 2022-04-05 2023-10-17 Goodrich Corporation Asa de aeronave, sistema eletrotérmico de proteção contra gelo, e, método para operar um sistema eletrotérmico de proteção contra gelo
CN116280213A (zh) * 2023-05-18 2023-06-23 中国空气动力研究与发展中心低速空气动力研究所 一种机翼热力耦合除冰装置和方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB526269A (en) * 1939-03-11 1940-09-13 William Helmore Improvements in air speed indicators
GB541684A (en) 1940-05-03 1941-12-08 Smith & Sons Ltd S Improvements in pneumatic pressure heads
GB758709A (en) * 1954-12-10 1956-10-10 Holley Carburetor Co De-icing device for gas turbine plants
JPS6489276A (en) * 1987-09-30 1989-04-03 Matsushita Electric Ind Co Ltd Cooking utensil for heating for electromagnetic induction heating cooking utensil
US5062869A (en) * 1989-03-08 1991-11-05 Rosemount Inc. Water separator for air data sensor
US5043558A (en) * 1990-09-26 1991-08-27 Weed Instrument Company, Inc. Deicing apparatus and method utilizing heat distributing means contained within surface channels
RU2157980C2 (ru) * 1997-01-28 2000-10-20 Центральный аэродинамический институт им. проф. Н.Е. Жуковского Фюзеляжный приемник воздушного давления со стойкой
US5765628A (en) * 1997-04-08 1998-06-16 Sundstrand Corporation Freeze tolerant rotating fluid management device
JP3762551B2 (ja) 1998-08-28 2006-04-05 高周波熱錬株式会社 筒体の内周面加熱用誘導加熱コイル
JP3558279B2 (ja) 2000-03-29 2004-08-25 川崎重工業株式会社 航空機用除氷装置
JP2003091182A (ja) * 2001-09-17 2003-03-28 Ntn Corp 定着装置用シームレスパイプ
FR2833347B1 (fr) * 2001-12-11 2004-02-27 Thales Sa Sonde multifonction pour aeronef
US6725645B1 (en) * 2002-10-03 2004-04-27 General Electric Company Turbofan engine internal anti-ice device
US7175136B2 (en) 2003-04-16 2007-02-13 The Boeing Company Method and apparatus for detecting conditions conducive to ice formation
DE102004058430B4 (de) * 2004-12-03 2010-07-29 Airbus Deutschland Gmbh Versorgungssystem zur Energieversorgung in einem Luftfahrzeug, Luftfahrzeug und Verfahren zum Versorgen eines Luftfahrzeugs mit Energie
CN101710030A (zh) * 2009-04-29 2010-05-19 长沙学院 贯流风机性能测试系统及方法
US8777163B2 (en) 2009-09-03 2014-07-15 The Boeing Company Ice protection system and method
KR101200803B1 (ko) * 2010-12-14 2012-11-13 국방과학연구소 비돌출형 전압관
CN102298071A (zh) * 2011-05-20 2011-12-28 南京信息工程大学 一种用于测量风速、风向的装置及方法
EP2728364B1 (en) * 2012-10-31 2019-04-17 Rosemount Aerospace Inc. Ice resistant pitot tube
CN103016278B (zh) * 2013-01-15 2015-07-22 天津工业大学 一种防凝冻抗积冰型风力发电机叶片
FR3002320B1 (fr) * 2013-02-20 2016-05-20 Airbus Operations Sas Sonde de mesure angulaire a bord d'un aeronef et aeronef mettant en oeuvre au moins une telle sonde
US9457909B2 (en) * 2013-04-25 2016-10-04 Hamilton Sundstrand Corporation Resistive-inductive de-icing of aircraft flight control surfaces
US9581146B2 (en) * 2013-10-03 2017-02-28 The Boeing Company Smart susceptor for a shape memory alloy (SMA) actuator inductive heating system
US9463879B2 (en) 2014-03-03 2016-10-11 The Boeing Company Systems and methods for predicting and controlling ice formation
US9638044B2 (en) 2014-03-11 2017-05-02 Hamilton Sundstrand Corporation Resistive-inductive propeller blade de-icing system including contactless power supply

Also Published As

Publication number Publication date
US10160548B2 (en) 2018-12-25
BR102016031023A2 (pt) 2017-07-11
CN107037233A (zh) 2017-08-11
CA2947172C (en) 2022-03-22
CN107037233B (zh) 2021-04-13
JP2017143054A (ja) 2017-08-17
US20170190431A1 (en) 2017-07-06
CA2947172A1 (en) 2017-07-04
EP3187882B1 (en) 2020-01-29
EP3187882A1 (en) 2017-07-05

Similar Documents

Publication Publication Date Title
JP6861496B2 (ja) 速度測定プローブの防氷用の装置及び方法
US9174398B2 (en) Smart heating blanket
US8330086B2 (en) Magnetic heating blanket
JP6466198B2 (ja) 着氷を予測及び制御するためのシステム及び方法
EP3478028B1 (en) Hybrid acoustic and induction-heating systems and methods for impeding formation of ice
WO2014130183A1 (en) Induction heating augmentation for thermal curing
US10137994B2 (en) Hybrid acoustic and induction-heating systems and methods for impeding formation of ice
US10124902B2 (en) Hybrid acoustic and induction-heating systems and methods for impeding formation of ice
US10118706B2 (en) Hybrid acoustic and induction-heating systems and methods for impeding formation of ice
Park Aircraft De-Icing System Using Thermal Conductive Fibers
EP3421210B1 (en) Induction curing of cell-based structural arrays
BR102016031023B1 (pt) Sistema de descongelamento e método antigelo de sondas de medição de velocidade
BR102017011283B1 (pt) Aerofólio e método para impedir a formação de gelo

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201019

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210330

R150 Certificate of patent or registration of utility model

Ref document number: 6861496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250