JP6858144B2 - Secondary battery and its manufacturing method - Google Patents

Secondary battery and its manufacturing method Download PDF

Info

Publication number
JP6858144B2
JP6858144B2 JP2018019753A JP2018019753A JP6858144B2 JP 6858144 B2 JP6858144 B2 JP 6858144B2 JP 2018019753 A JP2018019753 A JP 2018019753A JP 2018019753 A JP2018019753 A JP 2018019753A JP 6858144 B2 JP6858144 B2 JP 6858144B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
material particles
based active
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018019753A
Other languages
Japanese (ja)
Other versions
JP2018101633A (en
Inventor
小島 亮
亮 小島
明秀 田中
明秀 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vehicle Energy Japan Inc
Original Assignee
Vehicle Energy Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vehicle Energy Japan Inc filed Critical Vehicle Energy Japan Inc
Priority to JP2018019753A priority Critical patent/JP6858144B2/en
Publication of JP2018101633A publication Critical patent/JP2018101633A/en
Application granted granted Critical
Publication of JP6858144B2 publication Critical patent/JP6858144B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、二次電池およびその製造方法に関する。 The present invention relates to a secondary battery and a method for manufacturing the same.

リチウムイオン二次電池などの非水電解液二次電池では、従来から負極活物質として黒
鉛等の炭素材料が用いられている。このような従来の二次電池では、近年の高容量化の要
求の高まりに対応することが次第に困難になりつつあり、ケイ素等のより高容量の負極活
物質を用いた二次電池の検討が進められている(例えば、下記特許文献1、2を参照)。
In a non-aqueous electrolytic solution secondary battery such as a lithium ion secondary battery, a carbon material such as graphite has been conventionally used as a negative electrode active material. With such conventional secondary batteries, it is becoming increasingly difficult to meet the increasing demand for higher capacity in recent years, and studies on secondary batteries using higher capacity negative electrode active materials such as silicon are being considered. It is being advanced (see, for example, Patent Documents 1 and 2 below).

特許文献1では、ケイ素を負極活物質として用いることにより、炭素材料を用いるより
も高容量の電池とすることができるとされている。また、負極活物質として、特定のシリ
コン複合体のみを用いること、前記シリコン複合体に、SiOx(0.3≦x≦1.6)
で表されるケイ素酸化物からなる粒子、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化
合物焼成体、コークス等の炭素物質の粉状体などの公知の負極活物質を混合して用いるこ
と、などが記載されている。
Patent Document 1 states that by using silicon as a negative electrode active material, a battery having a higher capacity than that using a carbon material can be obtained. Further, only a specific silicon complex is used as the negative electrode active material, and SiOx (0.3 ≦ x ≦ 1.6) is used for the silicon complex.
Use by mixing known negative electrode active materials such as particles made of silicon oxide represented by, natural graphite, artificial graphite, calcined organic compound such as phenol resin, powdered carbon substance such as coke, etc. Is described.

また、特許文献1には、活物質および電極の導電性を高めるために添加される導電助剤
を集電体に結着するためのバインダー樹脂として、ポリフッ化ビニリデン(PVDF)、
ポリテトラフルオロエチレン(PTFE)等のフッ素系ポリマー、スチレンブタジエンゴ
ム(SBR)等のゴム、ポリイミド等のイミド系ポリマーなどが例示されている。
Further, Patent Document 1 describes polyvinylidene fluoride (PVDF) as a binder resin for binding an active material and a conductive auxiliary agent added to enhance the conductivity of an electrode to a current collector.
Examples thereof include fluorine-based polymers such as polytetrafluoroethylene (PTFE), rubbers such as styrene-butadiene rubber (SBR), and imide-based polymers such as polyimide.

特許文献2では、サイクル特性に優れた非水電解質二次電池を得ることを課題とし、負
極活物質として黒鉛材料とケイ素またはケイ素化合物とを含む活物質を用い、負極バイン
ダーとして、ポリイミドおよびポリビニルピロリドンを用いることを特徴とする非水電解
質二次電池が開示されている。
Patent Document 2 aims to obtain a non-aqueous electrolyte secondary battery having excellent cycle characteristics, uses an active material containing a graphite material and silicon or a silicon compound as a negative electrode active material, and polyimide and polyvinylpyrrolidone as a negative electrode binder. A non-aqueous electrolyte secondary battery characterized by using the above is disclosed.

特開2013−234088号公報Japanese Unexamined Patent Publication No. 2013-234088 特開2012−160353号公報Japanese Unexamined Patent Publication No. 2012-160353

負極活物質としてケイ素を用いる場合、充放電に伴う体積の膨張収縮が従来の炭素材料
と比較して大きくなる。そのため、例えば、特許文献1に記載の非水系二次電池において
、負極活物質として前記シリコン複合体または該シリコン複合体と公知の負極活物質との
混合物を用い、バインダー樹脂として比較的結着力の弱いPVDF、PTFE、SBR等
を用いる場合には、前記シリコン複合体が二次電池の充放電に伴って膨張収縮を繰り返し
て割れる虞がある。前記シリコン複合体に割れが生じた場合、二次電池のサイクル特性が
劣化する。
When silicon is used as the negative electrode active material, the expansion and contraction of the volume due to charging and discharging becomes larger than that of the conventional carbon material. Therefore, for example, in the non-aqueous secondary battery described in Patent Document 1, the silicon composite or a mixture of the silicon composite and a known negative electrode active material is used as the negative electrode active material, and the binder resin has a relatively strong binding force. When a weak PVDF, PTFE, SBR, or the like is used, the silicon composite may repeatedly expand and contract with the charging and discharging of the secondary battery and crack. When the silicon complex is cracked, the cycle characteristics of the secondary battery are deteriorated.

これに対し、特許文献2に記載の非水電解質二次電池では、負極バインダーとして比較
的結着力の強いポリイミドおよびポリビニルピロリドンを用いることで、二次電池のサイ
クル特性を向上させている。しかし、特許文献2では、ポリイミド樹脂の前駆体をN−メ
チル−2−ピロリドン(NMP)中に溶解させ、さらにポリビニルピロリドン、黒鉛およ
びケイ素を混合して調製した負極スラリを、負極集電体としての銅箔の両面上に塗布し、
乾燥し、圧延した後、アルゴン雰囲気化で400℃10時間熱処理して、負電極を作成し
ている。このように、負電極の製造過程において負極集電体が長時間に亘って高温に晒さ
れると、負極集電体の強度が低下し、または、集電板等の金属に対する溶接性が低下し、
後の二次電池の製造工程に悪影響を及ぼす虞がある。
On the other hand, in the non-aqueous electrolyte secondary battery described in Patent Document 2, the cycle characteristics of the secondary battery are improved by using polyimide and polyvinylpyrrolidone having a relatively strong binding force as the negative electrode binder. However, in Patent Document 2, a negative electrode slurry prepared by dissolving a precursor of a polyimide resin in N-methyl-2-pyrrolidone (NMP) and further mixing polyvinylpyrrolidone, graphite and silicon is used as a negative electrode current collector. Apply on both sides of the copper foil,
After drying and rolling, it is heat-treated at 400 ° C. for 10 hours in an argon atmosphere to prepare a negative electrode. As described above, when the negative electrode current collector is exposed to a high temperature for a long time in the manufacturing process of the negative electrode, the strength of the negative electrode current collector is lowered or the weldability to a metal such as a current collector plate is lowered. ,
There is a risk of adversely affecting the subsequent manufacturing process of the secondary battery.

本発明は、前記課題に鑑みてなされたものであり、その目的とするところは、二次電池
の製造工程において電極を高温に晒すことなく、二次電池のサイクル特性を向上させるこ
とにある。
The present invention has been made in view of the above problems, and an object of the present invention is to improve the cycle characteristics of a secondary battery without exposing the electrodes to high temperatures in the process of manufacturing the secondary battery.

前記目的を達成すべく、本発明の二次電池は、負極箔と負極合剤層とを有する負電極を
備えた二次電池であって、前記負極合剤層は、SiO系活物質粒子と結着剤とを含み、前
記SiO系活物質粒子は、前記結着剤の耐熱温度よりも高い温度でイミド化させたイミド
結合を含む樹脂材料からなる被覆層によって少なくとも一部が被覆されていることを特徴
とする。
In order to achieve the above object, the secondary battery of the present invention is a secondary battery provided with a negative electrode having a negative electrode foil and a negative electrode mixture layer, and the negative electrode mixture layer is composed of SiO-based active material particles. At least a part of the SiO-based active material particles containing a binder and the SiO-based active material particles is coated with a coating layer made of a resin material containing an imide bond imidized at a temperature higher than the heat resistant temperature of the binder. It is characterized by that.

本発明の二次電池によれば、二次電池の製造工程において電極を高温に晒すことなく、
二次電池のサイクル特性を向上させることができる。
According to the secondary battery of the present invention, the electrodes are not exposed to high temperatures in the manufacturing process of the secondary battery.
The cycle characteristics of the secondary battery can be improved.

実施形態に係る二次電池の斜視図。The perspective view of the secondary battery which concerns on embodiment. 図1に示す二次電池の内部構造を示す分解斜視図。The exploded perspective view which shows the internal structure of the secondary battery shown in FIG. 図2に示す電極群の分解斜視図。The exploded perspective view of the electrode group shown in FIG. 図3に示す負電極の拡大断面図。FIG. 3 is an enlarged cross-sectional view of the negative electrode shown in FIG. 図3に示す負電極の製造工程を示すフロー図。The flow chart which shows the manufacturing process of the negative electrode shown in FIG. 実施例に係る二次電池のサイクル数と容量維持率の関係を示すグラフ。The graph which shows the relationship between the number of cycles of the secondary battery and the capacity retention rate which concerns on Example. 実施例に係る二次電池のケイ素系材料の被覆率と初回充放電効率との関係を示すグラフ。The graph which shows the relationship between the coverage of the silicon-based material of the secondary battery which concerns on Example, and the initial charge / discharge efficiency.

以下、図面を参照して本発明の実施形態に係る二次電池およびその製造方法を説明する
。図1は、本発明の実施形態1に係る二次電池100の外観斜視図である。本実施形態の
二次電池100は、例えば、リチウムイオン二次電池等の非水電解液二次電池である。
Hereinafter, the secondary battery and the method for manufacturing the secondary battery according to the embodiment of the present invention will be described with reference to the drawings. FIG. 1 is an external perspective view of the secondary battery 100 according to the first embodiment of the present invention. The secondary battery 100 of the present embodiment is, for example, a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.

本実施形態の二次電池100は、後述する負電極が備える負極合剤層が負極活物質とし
てSiO系活物質粒子を含み、このSiO系活物質粒子が、結着剤の耐熱温度よりも高い
温度でイミド化させたイミド結合を含む樹脂材料からなる被覆層によって、少なくとも一
部が被覆されていることを最大の特徴としている。以下、本実施形態の二次電池100の
構成を詳細に説明する。
In the secondary battery 100 of the present embodiment, the negative electrode mixture layer provided with the negative electrode described later contains SiO-based active material particles as the negative electrode active material, and the SiO-based active material particles are higher than the heat-resistant temperature of the binder. The greatest feature is that at least a part of the coating layer is covered with a coating layer made of a resin material containing an imide bond that has been imidized at temperature. Hereinafter, the configuration of the secondary battery 100 of the present embodiment will be described in detail.

二次電池100は、例えばアルミニウム合金等の金属材料によって製作された扁平箱形
の電池容器10を備えている。電池容器10は、上端面10a、下端面10b、広側面1
0cおよび狭側面10dを有する扁平な直方体形状の筐体である。電池容器10は、上部
が開放された扁平な矩形箱形の電池缶11と、電池缶11の上部を封止する長方形板状の
電池蓋12とを有している。電池缶11は、例えば、前記金属材料に深絞り加工を施すこ
とによって、上部に矩形の開口部11aを有する有底角筒状に形成されている。
The secondary battery 100 includes a flat box-shaped battery container 10 made of a metal material such as an aluminum alloy. The battery container 10 has an upper end surface 10a, a lower end surface 10b, and a wide side surface 1.
It is a flat rectangular parallelepiped housing having 0c and a narrow side surface 10d. The battery container 10 has a flat rectangular box-shaped battery can 11 having an open upper portion and a rectangular plate-shaped battery lid 12 that seals the upper portion of the battery can 11. The battery can 11 is formed in a bottomed square cylinder shape having a rectangular opening 11a at the top, for example, by deep drawing the metal material.

電池容器10の幅方向すなわち電池蓋12の長手方向の両端には、電池容器10の外側
で電池蓋12の上面に、正極および負極の外部端子20A、20Bが設けられている。外
部端子20A、20Bと電池蓋12との間には、絶縁部材24が配置され、外部端子20
A、20Bが電池蓋12に対して電気的に絶縁されている。正極の外部端子20Aは、例
えばアルミニウムまたはアルミニウム合金によって製作され、負極の外部端子20Bは、
例えば銅または銅合金によって製作されている。
External terminals 20A and 20B of the positive electrode and the negative electrode are provided on the upper surface of the battery lid 12 outside the battery container 10 at both ends in the width direction of the battery container 10, that is, in the longitudinal direction of the battery lid 12. An insulating member 24 is arranged between the external terminals 20A and 20B and the battery lid 12, and the external terminal 20 is provided.
A and 20B are electrically insulated from the battery lid 12. The positive electrode external terminal 20A is made of, for example, aluminum or an aluminum alloy, and the negative electrode external terminal 20B is
For example, it is made of copper or copper alloy.

外部端子20A、20Bは、それぞれ、導電板21と、ボルト22とを備えている。導
電板21は、電池容器10の幅方向外側に設けられた貫通孔にボルト22を下方から上方
へ挿通させている。ボルト22は、頭部が絶縁部材24と導電板21との間に配置され、
導電板21と電気的に接続されている。導電板21は、電池容器10の幅方向内側に設け
られた貫通孔に下方から上方へ接続端子23を挿通させている。接続端子23は、先端部
が導電板21の上面でかしめられ、拡径するように塑性変形して導電板21に密着するこ
とで、導電板21に電気的に接続され、絶縁部材24によって電池蓋12に対して電気的
に絶縁されている。
The external terminals 20A and 20B each include a conductive plate 21 and a bolt 22. The conductive plate 21 has a bolt 22 inserted from below to above through a through hole provided on the outside in the width direction of the battery container 10. The head of the bolt 22 is arranged between the insulating member 24 and the conductive plate 21.
It is electrically connected to the conductive plate 21. The conductive plate 21 has a connection terminal 23 inserted from below to above through a through hole provided inside the battery container 10 in the width direction. The tip of the connection terminal 23 is crimped on the upper surface of the conductive plate 21, plastically deformed so as to expand the diameter, and adheres to the conductive plate 21, so that the connection terminal 23 is electrically connected to the conductive plate 21 and is electrically connected to the conductive plate 21. It is electrically insulated from the lid 12.

電池蓋12の正極および負極の外部端子20A、20Bの間には、ガス排出弁13と注
液口14とが設けられている。ガス排出弁13は、例えば電池蓋12を薄肉化して溝部1
3aを形成することによって設けられ、電池容器10の内部の圧力が所定値を超えて上昇
した時に開裂して内部のガスを放出することで、電池容器10の内部の圧力を低下させる
。注液口14は、電池容器10の内部に電解液を注入するのに用いられ、例えばレーザ溶
接によって注液栓15が溶接されて封止されている。
A gas discharge valve 13 and a liquid injection port 14 are provided between the external terminals 20A and 20B of the positive electrode and the negative electrode of the battery lid 12. In the gas discharge valve 13, for example, the battery lid 12 is thinned to form a groove portion 1.
It is provided by forming 3a, and when the pressure inside the battery container 10 rises above a predetermined value, it cleaves and releases the gas inside, thereby lowering the pressure inside the battery container 10. The liquid injection port 14 is used for injecting an electrolytic solution into the battery container 10, and the liquid injection plug 15 is welded and sealed by laser welding, for example.

図2は、図1に示す二次電池100の内部構造を示す分解斜視図である。なお、図2で
は、電池缶11の図示は省略している。電池蓋12の長手方向の両端で、電池容器10の
内側となる電池蓋12の下面には、不図示の絶縁部材を介して正極および負極の集電板3
0A、30Bが固定されている。正極の集電板30Aは、例えば、アルミニウムまたはア
ルミニウム合金によって製作され、負極の集電板30Bは、例えば、銅または銅合金によ
って製作されている。集電板30A、30Bは、それぞれ、接続端子23の基端部が接続
された基部31と、基部31から電池缶11の底面11bに向けて延びる端子部32と、
を有している。
FIG. 2 is an exploded perspective view showing the internal structure of the secondary battery 100 shown in FIG. In FIG. 2, the battery can 11 is not shown. At both ends of the battery lid 12 in the longitudinal direction, on the lower surface of the battery lid 12 which is the inside of the battery container 10, a positive electrode and a negative electrode current collector plate 3 is provided via an insulating member (not shown).
0A and 30B are fixed. The positive electrode current collector plate 30A is made of, for example, aluminum or an aluminum alloy, and the negative electrode current collector plate 30B is made of, for example, copper or a copper alloy. The current collector plates 30A and 30B have a base portion 31 to which the base end portion of the connection terminal 23 is connected, and a terminal portion 32 extending from the base portion 31 toward the bottom surface 11b of the battery can 11, respectively.
have.

集電板30A、30Bのそれぞれの基部31に接続された接続端子23は、電池容器1
0の外方へ向けて延びて電池蓋12を貫通している。接続端子23は、電池蓋12の下面
に配された不図示の絶縁部材の貫通孔と、電池蓋12の貫通孔と、電池蓋12の上面に配
された絶縁部材24の貫通孔と、導電板21の貫通孔とを貫通し、先端部が導電板21の
上面でかしめられている。これにより、集電板30A、30Bのそれぞれの基部31は、
接続端子23によって導電板21に電気的に接続されると共に、不図示の絶縁部材を介し
て電池蓋12の下面に略平行に固定されている。集電板30A、30Bのそれぞれの基部
31および接続端子23は、電池蓋12の下面に配された不図示の絶縁部材によって電池
蓋12に対して電気的に絶縁されている。
The connection terminal 23 connected to the base 31 of each of the current collector plates 30A and 30B is a battery container 1.
It extends outward from 0 and penetrates the battery lid 12. The connection terminal 23 is conductive with a through hole of an insulating member (not shown) arranged on the lower surface of the battery lid 12, a through hole of the battery lid 12, and a through hole of the insulating member 24 arranged on the upper surface of the battery lid 12. It penetrates through the through hole of the plate 21 and the tip portion is crimped on the upper surface of the conductive plate 21. As a result, the bases 31 of the current collector plates 30A and 30B are separated from each other.
It is electrically connected to the conductive plate 21 by the connection terminal 23, and is fixed substantially parallel to the lower surface of the battery lid 12 via an insulating member (not shown). The bases 31 and connection terminals 23 of the current collector plates 30A and 30B are electrically insulated from the battery lid 12 by an insulating member (not shown) arranged on the lower surface of the battery lid 12.

正極および負極の集電板30A、30Bのそれぞれの端子部32は、電池容器10の厚
さ方向における基部31の両側から、電池缶11の最大面積の広側面11cに沿って電池
缶11の底面11bに向けて延びる板状に形成されている。集電板30A、30Bのそれ
ぞれの端子部32は、後述する電極群40の捲回軸D方向において、基部31の外側の端
部から延びて電極群40の端部の集電板接合部41d、42dにそれぞれ接合されている
。これにより、正極の集電板30Aが、電極群40の捲回軸D方向の一方の端部に配置さ
れて正電極41(図3参照)に電気的に接続され、負極の集電板30Bが、電極群40の
捲回軸D方向の他方の端部に配置されて負電極42(図3参照)に電気的に接続されてい
る。
The terminal portions 32 of the positive electrode and negative electrode current collectors 30A and 30B form the bottom surface of the battery can 11 from both sides of the base 31 in the thickness direction of the battery container 10 along the wide side surface 11c of the maximum area of the battery can 11. It is formed in a plate shape extending toward 11b. The terminal portions 32 of the current collector plates 30A and 30B extend from the outer end of the base 31 in the winding axis D direction of the electrode group 40, which will be described later, and the current collector plate joint 41d at the end of the electrode group 40. , 42d, respectively. As a result, the positive electrode current collector plate 30A is arranged at one end of the electrode group 40 in the winding axis D direction and is electrically connected to the positive electrode 41 (see FIG. 3), and the negative electrode current collector plate 30B Is arranged at the other end of the electrode group 40 in the winding axis D direction and is electrically connected to the negative electrode 42 (see FIG. 3).

電極群40は、端子部32に接合されることで、集電板30A、30Bおよび絶縁部材
(図示略)を介して電池蓋12に固定されている。また、外部端子20A、20B、絶縁
部材24、電池蓋12の下面の絶縁部材(図示略)、集電板30A、30B、および電極
群40が電池蓋12に組み付けられることで、蓋組立体が構成されている。
The electrode group 40 is fixed to the battery lid 12 via the current collector plates 30A and 30B and an insulating member (not shown) by being joined to the terminal portion 32. Further, the external terminals 20A and 20B, the insulating member 24, the insulating member (not shown) on the lower surface of the battery lid 12, the current collector plates 30A and 30B, and the electrode group 40 are assembled to the battery lid 12, so that the lid assembly can be formed. It is configured.

電池缶11と電極群40との間には、電極群40を覆う絶縁ケース50が配置される。
絶縁ケース50は、シート状のシート部51と、ケース状のケース部52とを備えている
。なお、絶縁ケース50は、一体に成形してもよい。絶縁ケース50は、例えば、ポリエ
チレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポ
リテトラフルオロエチレン(PTFE)、テトラフルオロエチレン(PFA)、ポリフェ
ニレンサルファイド(PPS)等によって製作されている。
An insulating case 50 that covers the electrode group 40 is arranged between the battery can 11 and the electrode group 40.
The insulating case 50 includes a sheet-shaped sheet portion 51 and a case-shaped case portion 52. The insulating case 50 may be integrally molded. The insulating case 50 is made of, for example, polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), tetrafluoroethylene (PFA), polyphenylene sulfide (PPS), or the like.

シート部51は、電極群40の捲回軸D方向における幅と同等の幅を有し、電極群40
の正極の集電板30Aの端子部32が接続された集電板接合部41dに対向する位置から
、負極の集電板30Bの端子部が接合された集電板接合部42dに対向する位置まで、電
池容器10の幅方向に延在している。また、シート部51は、図1に示す電池容器10の
正面側の電池蓋12近傍から、電池容器10の広側面10cに沿って下端面10b近傍ま
で延び、電池容器10の底面10a対向する電極群40の湾曲部40bを覆うように折り
返され、電池容器10の背面側の広側面10cに沿って電池蓋12近傍まで延在している
The sheet portion 51 has a width equivalent to the width of the electrode group 40 in the winding axis D direction, and the electrode group 40 has a width equivalent to that of the electrode group 40.
From the position facing the current collector plate joint 41d to which the terminal portion 32 of the positive electrode current collector plate 30A is connected, to the position facing the current collector plate joint 42d to which the terminal portion of the negative electrode current collector plate 30B is joined. Up to, it extends in the width direction of the battery container 10. Further, the sheet portion 51 extends from the vicinity of the battery lid 12 on the front side of the battery container 10 shown in FIG. 1 to the vicinity of the lower end surface 10b along the wide side surface 10c of the battery container 10, and is an electrode facing the bottom surface 10a of the battery container 10. It is folded back so as to cover the curved portion 40b of the group 40, and extends along the wide side surface 10c on the back side of the battery container 10 to the vicinity of the battery lid 12.

ケース部52は、電極群40の捲回軸D方向の両端に配されて、それぞれ集電板30A
、30Bの端子部32が接合された電極群40の集電板接合部41d、42dを覆うよう
に設けられている。ケース部52は、捲回軸D方向の内側の面と、電池蓋12側の面とが
開放された直方体の箱形状を有し、集電板30A、30Bの端子部32が接合された電極
群40の捲回軸D方向の両端を、電池容器10の下端面10bに垂直な高さ方向の全体に
亘って覆っている。
The case portions 52 are arranged at both ends of the electrode group 40 in the winding axis D direction, and are the current collector plates 30A, respectively.
, 30B is provided so as to cover the current collector plate joints 41d and 42d of the electrode group 40 to which the terminal 32 is joined. The case portion 52 has a rectangular parallelepiped box shape in which the inner surface in the winding axis D direction and the surface on the battery lid 12 side are open, and the terminal portions 32 of the current collector plates 30A and 30B are joined to the electrodes. Both ends of the group 40 in the winding axis D direction are covered over the entire height direction perpendicular to the lower end surface 10b of the battery container 10.

二次電池100の製造時に、図2に示す部材からなる前記蓋組立体は、電極群40およ
び集電板30A,30Bと電池缶11との間に絶縁ケース50を配置してこれらの間を電
気的に絶縁した状態で、電極群40の下方側の湾曲部40bから、図1に示す電池缶11
の開口部11aに挿入される。電極群40は、捲回軸D方向の両側に電池缶11の狭側面
11dが位置し、捲回軸D方向が電池缶11の底面11bおよび広側面11cに略平行に
沿うように電池缶11内に収容される。
At the time of manufacturing the secondary battery 100, in the lid assembly composed of the members shown in FIG. 2, an insulating case 50 is arranged between the electrode group 40, the current collector plates 30A and 30B, and the battery can 11, and between them. The battery can 11 shown in FIG. 1 is electrically insulated from the curved portion 40b on the lower side of the electrode group 40.
It is inserted into the opening 11a of. In the electrode group 40, the narrow side surfaces 11d of the battery can 11 are located on both sides in the winding axis D direction, and the battery can 11 is substantially parallel to the bottom surface 11b and the wide side surface 11c of the battery can 11 in the winding axis D direction. It is housed inside.

これにより、電極群40は、一方の湾曲部40bが電池蓋12に対向し、もう一方の湾
曲部40bが電池缶11の底面11bに対向し、平坦部40aが広側面11cに対向した
状態になる。そして、電池蓋12によって電池缶11の開口部11aを閉塞した状態で、
例えば、レーザ溶接によって電池蓋12の全周を電池缶11の開口部11aに接合するこ
とで、電池缶11と電池蓋12からなる電池容器10が形成される。
As a result, in the electrode group 40, one curved portion 40b faces the battery lid 12, the other curved portion 40b faces the bottom surface 11b of the battery can 11, and the flat portion 40a faces the wide side surface 11c. Become. Then, in a state where the opening 11a of the battery can 11 is closed by the battery lid 12.
For example, by joining the entire circumference of the battery lid 12 to the opening 11a of the battery can 11 by laser welding, the battery container 10 composed of the battery can 11 and the battery lid 12 is formed.

その後、電池蓋12の注液口14を介して電池容器10の内部に非水電解液を注入し、
例えば、レーザ溶接によって注液栓15を注液口14に接合して封止することで、電池容
器10が密閉されている。電池容器10の内部に注入する非水電解液としては、例えば、
エチレンカーボネートとジメチルカーボネートとを体積比で1:2の割合で混合した混合
溶液中に、6フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度で溶解した
ものを用いることができる。
After that, the non-aqueous electrolytic solution is injected into the battery container 10 through the liquid injection port 14 of the battery lid 12.
For example, the battery container 10 is sealed by joining and sealing the liquid injection plug 15 to the liquid injection port 14 by laser welding. Examples of the non-aqueous electrolytic solution to be injected into the battery container 10 include, for example.
A solution in which lithium hexafluorophosphate (LiPF 6 ) is dissolved at a concentration of 1 mol / liter can be used in a mixed solution in which ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 2.

図3は、図2に示す電極群40の一部を展開した分解斜視図である。電極群40は、セ
パレータ43、44を介在させて積層させた正負の電極41、42を捲回軸Dに平行な軸
心の周りに捲回して扁平形状に成形した捲回電極群である。
FIG. 3 is an exploded perspective view of a part of the electrode group 40 shown in FIG. 2. The electrode group 40 is a wound electrode group formed by winding positive and negative electrodes 41 and 42 laminated with separators 43 and 44 around an axis parallel to the winding axis D to form a flat shape.

電極群40は、電池容器10の広側面10cに対向する平坦部40aと上下端面10a
、10bに対向する湾曲部40bとを有する扁平形状に成形されている。平坦部40aは
、電極41、42とセパレータ43、44が平坦に積層された部分であり、湾曲部40b
は、電極41、42とセパレータ43、44が半円筒状に湾曲して積層された部分である
。セパレータ43、44は、正電極41と負電極42との間を絶縁すると共に、最外周に
捲回された負電極42の外周にもセパレータ44が捲回されている。
The electrode group 40 has a flat portion 40a and an upper and lower end surfaces 10a facing the wide side surface 10c of the battery container 10.
It is formed into a flat shape having a curved portion 40b facing 10b. The flat portion 40a is a portion in which the electrodes 41 and 42 and the separators 43 and 44 are flatly laminated, and the curved portion 40b
Is a portion in which the electrodes 41 and 42 and the separators 43 and 44 are laminated in a semi-cylindrical shape. The separators 43 and 44 insulate between the positive electrode 41 and the negative electrode 42, and the separator 44 is also wound around the outer periphery of the negative electrode 42 wound around the outermost circumference.

正電極41は、正極集電体である正極箔41aと、正極箔41aの両面に塗布された正
極活物質合剤からなる正極合剤層41bとを有している。正電極41の幅方向の一側は、
正極合剤層41bが形成されず、正極箔41aが露出した箔露出部41cとされている。
正電極41は、箔露出部41cが負電極42の箔露出部42cと捲回軸D方向の反対側に
配置されて、捲回軸Dの周りに捲回されている。
The positive electrode 41 has a positive electrode foil 41a, which is a positive electrode current collector, and a positive electrode mixture layer 41b made of a positive electrode active material mixture coated on both sides of the positive electrode foil 41a. One side of the positive electrode 41 in the width direction is
The positive electrode mixture layer 41b is not formed, and the positive electrode foil 41a is exposed as the foil exposed portion 41c.
In the positive electrode 41, the foil exposed portion 41c is arranged on the opposite side of the foil exposed portion 42c of the negative electrode 42 in the winding axis D direction, and is wound around the winding axis D.

正電極41は、例えば、正極活物質に導電材、結着剤および分散溶媒を添加して混練し
た正極活物質合剤を、幅方向の一側を除いて正極箔41aの両面に塗布し、乾燥、プレス
、裁断することによって製作することができる。正極箔41aとしては、例えば、厚さ約
20μmのアルミニウム箔を用いることができる。正極箔41aの厚みを含まない正極合
剤層41bの厚さは、例えば、約90μmである。
For the positive electrode 41, for example, a positive electrode active material mixture obtained by adding a conductive material, a binder and a dispersion solvent to the positive electrode active material and kneading the positive electrode active material is applied to both sides of the positive electrode foil 41a except for one side in the width direction. It can be manufactured by drying, pressing and cutting. As the positive electrode foil 41a, for example, an aluminum foil having a thickness of about 20 μm can be used. The thickness of the positive electrode mixture layer 41b, which does not include the thickness of the positive electrode foil 41a, is, for example, about 90 μm.

正極活物質合剤の材料としては、例えば、正極活物質として100重量部のマンガン酸
リチウム(化学式LiMn)を、導電材として10重量部の鱗片状黒鉛を、結着剤
として10重量部のポリフッ化ビニリデン(以下、PVDFという。)を、分散溶媒とし
てN−メチルピロリドン(以下、NMPという。)を、それぞれ用いることができる。
As the material of the positive electrode active material mixture, for example, 100 parts by weight of lithium manganate (chemical formula LiMn 2 O 4 ) is used as the positive electrode active material, 10 parts by weight of scaly graphite is used as the conductive material, and 10 parts by weight is used as the binder. Polyvinylidene fluoride (hereinafter referred to as PVDF) and N-methylpyrrolidone (hereinafter referred to as NMP) can be used as the dispersion solvent.

正極活物質は、前記したマンガン酸リチウムに限定されず、例えば、スピネル結晶構造
を有する他のマンガン酸リチウム、一部を金属元素で置換またはドープしたリチウムマン
ガン複合酸化物を用いてもよい。また、正極活物質として、層状結晶構造を有するコバル
ト酸リチウムやチタン酸リチウム、およびこれらの一部を金属元素で置換またはドープし
たリチウム−金属複合酸化物を用いてもよい。
The positive electrode active material is not limited to the above-mentioned lithium manganate, and for example, other lithium manganate having a spinel crystal structure, or a lithium manganese composite oxide partially substituted or doped with a metal element may be used. Further, as the positive electrode active material, lithium cobalt oxide or lithium titanate having a layered crystal structure, and a lithium-metal composite oxide obtained by substituting or doping a part of these with a metal element may be used.

負電極42は、負極集電体である負極箔42aと、負極箔42aの両面に塗布された負
極活物質合剤からなる負極合剤層42bとを有している。負電極42の幅方向の一側は、
負極合剤層42bが形成されず、負極箔42aが露出した箔露出部42cとされている。
負電極42は、その箔露出部42cが正電極41の箔露出部41cと捲回軸D方向の反対
側に配置されて、捲回軸D周りに捲回されている。
The negative electrode 42 has a negative electrode foil 42a, which is a negative electrode current collector, and a negative electrode mixture layer 42b made of a negative electrode active material mixture coated on both sides of the negative electrode foil 42a. One side of the negative electrode 42 in the width direction is
The negative electrode mixture layer 42b is not formed, and the negative electrode foil 42a is exposed as the foil exposed portion 42c.
The negative electrode 42 has its foil exposed portion 42c arranged on the opposite side of the positive electrode 41 from the foil exposed portion 41c in the winding axis D direction, and is wound around the winding axis D.

図4は、図3に示す負電極42の断面の一部を拡大した模式的な拡大断面図である。な
お、負極合剤層42bは、負極箔42aの両面に形成されているが、図4では、負極箔4
2aの一方の面の負極合剤層42bのみを図示し、他方の面の負極合剤層42bの図示を
省略している。
FIG. 4 is a schematic enlarged cross-sectional view in which a part of the cross section of the negative electrode 42 shown in FIG. 3 is enlarged. The negative electrode mixture layer 42b is formed on both sides of the negative electrode foil 42a, but in FIG. 4, the negative electrode foil 4 is formed.
Only the negative electrode mixture layer 42b on one surface of 2a is shown, and the negative electrode mixture layer 42b on the other surface is not shown.

本実施形態の二次電池100は、負極合剤層42bが、負極活物質としてのSiO系活
物質粒子1と結着剤2とを含み、SiO系活物質粒子1は、結着剤2の耐熱温度よりも高
い温度でイミド化させたイミド結合を含む樹脂材料からなる被覆層3によって少なくとも
一部が被覆されていることを最大の特徴としている。また、本実施形態では、負極合剤層
42bは、負極活物質として、例えば、天然黒鉛等の炭素系活物質粒子4を含んでいる。
In the secondary battery 100 of the present embodiment, the negative electrode mixture layer 42b contains the SiO-based active material particles 1 and the binder 2 as the negative electrode active material, and the SiO-based active material particles 1 are the binder 2. The greatest feature is that at least a part of the coating layer 3 is covered with a coating layer 3 made of a resin material containing an imide bond imidized at a temperature higher than the heat resistant temperature. Further, in the present embodiment, the negative electrode mixture layer 42b contains carbon-based active material particles 4 such as natural graphite as the negative electrode active material.

SiO系活物質粒子1は、例えば、化学式SiOx(ただし、0.8<x<1.2)で
表されるケイ素系活物質であり、例えば、篩目開き53μm、270メッシュの篩によって
粗粒が取り除かれた粒子である。SiO系活物質粒子1は、表面の全体または一部が被覆
層3によって覆われている。SiO系活物質粒子1の被覆層3から露出した部分は、充放
電に伴うリチウム(Li)イオンの収受を担うサイトとして機能し、Liイオンを吸蔵放
出する出入り口となる。
The SiO-based active material particles 1 are, for example, silicon-based active materials represented by the chemical formula SiOx (where 0.8 <x <1.2), and are coarse-grained by, for example, a sieve having a sieve mesh size of 53 μm and a 270 mesh sieve. Is the removed particles. The entire or part of the surface of the SiO-based active material particles 1 is covered with the coating layer 3. The portion of the SiO-based active material particles 1 exposed from the coating layer 3 functions as a site responsible for receiving and discharging lithium (Li) ions during charging and discharging, and serves as an entrance / exit for storing and releasing Li ions.

結着剤2は、被覆層3を有するSiO系活物質粒子1と炭素系活物質粒子4との間に充
填され、これらを結着させて負極箔42aの表面に保持している。結着剤2は、例えば、
スチレンブタジエンゴム(SBR)によって構成され、導電材として、例えば炭素や鱗片
状黒鉛を含んでいる。結着剤2がSBRによって構成される場合には、100℃以下の温
度で軟化するため、耐熱温度は100℃以下となる。また、結着剤2がPVDFによって
構成される場合には、融点が、例えば、150℃以上180℃以下であるため、耐熱温度
は150℃以下となる。結着剤2の耐熱温度とは、結着剤2がその機能を維持することが
できる温度の上限である。
The binder 2 is filled between the SiO-based active material particles 1 having the coating layer 3 and the carbon-based active material particles 4, and these are bound and held on the surface of the negative electrode foil 42a. The binder 2 is, for example,
It is composed of styrene-butadiene rubber (SBR) and contains, for example, carbon and scaly graphite as a conductive material. When the binder 2 is composed of SBR, it softens at a temperature of 100 ° C. or lower, so that the heat resistant temperature is 100 ° C. or lower. When the binder 2 is composed of PVDF, the melting point is, for example, 150 ° C. or higher and 180 ° C. or lower, so that the heat resistant temperature is 150 ° C. or lower. The heat-resistant temperature of the binder 2 is the upper limit of the temperature at which the binder 2 can maintain its function.

被覆層3は、SiO系活物質粒子1の表面全体または表面の一部を覆うように、SiO
系活物質粒子1の表面に強固に結着している。被覆層3は、例えば、ポリイミド(PI)
またはポリアミドイミド(PAI)によって構成することができる。被覆層3を形成する
工程におけるイミド化の温度をより低くする観点から、被覆層3は、好ましくはPAIに
よって構成される。
The coating layer 3 covers the entire surface or a part of the surface of the SiO-based active material particles 1.
It is firmly bound to the surface of the system active material particles 1. The coating layer 3 is, for example, polyimide (PI).
Alternatively, it can be composed of polyamide-imide (PAI). From the viewpoint of lowering the imidization temperature in the step of forming the coating layer 3, the coating layer 3 is preferably composed of PAI.

炭素系活物質粒子4の平均粒径は、例えば、SiO系活物質粒子1の平均粒径よりも大
きくされている。炭素系活物質粒子4の総重量と、被覆層3を有するSiO系活物質粒子
1の総重量との比は、例えば、95:5とされている。炭素系活物質粒子4は、被覆層3
を有しておらず、表面に結着剤2が結着している。
The average particle size of the carbon-based active material particles 4 is made larger than the average particle size of the SiO-based active material particles 1, for example. The ratio of the total weight of the carbon-based active material particles 4 to the total weight of the SiO-based active material particles 1 having the coating layer 3 is, for example, 95: 5. The carbon-based active material particles 4 are the coating layer 3
The binder 2 is bound to the surface.

ここで、図5を参照して、本実施形態の二次電池100の製造工程に含まれる負電極4
2の製造工程について説明する。図5(a)は、負電極42の製造工程を示すフロー図で
あり、図5(b)は、図5(a)に示す被覆工程S1の詳細を示すフロー図である。負電
極42は、図5(a)に示す被覆工程S1、調製工程S2および塗布乾燥工程S3を経て
製造される。
Here, with reference to FIG. 5, the negative electrode 4 included in the manufacturing process of the secondary battery 100 of the present embodiment.
The manufacturing process of No. 2 will be described. FIG. 5A is a flow chart showing a manufacturing process of the negative electrode 42, and FIG. 5B is a flow chart showing details of the coating step S1 shown in FIG. 5A. The negative electrode 42 is manufactured through the coating step S1, the preparation step S2, and the coating drying step S3 shown in FIG. 5A.

被覆工程S1は、樹脂材料の前駆体をイミド化させてSiO系活物質粒子1の表面の少
なくとも一部にイミド結合を含む前記樹脂材料からなる被覆層3を形成する工程である。
被覆工程S1は、図5(b)に示す混合工程S11、乾燥工程S12、粉砕工程S13、
重合工程S14、解砕工程S15、および、選別工程S16を有している。
The coating step S1 is a step of imidizing the precursor of the resin material to form a coating layer 3 made of the resin material containing an imide bond on at least a part of the surface of the SiO-based active material particles 1.
The coating step S1 includes a mixing step S11, a drying step S12, and a crushing step S13 shown in FIG. 5 (b).
It has a polymerization step S14, a crushing step S15, and a sorting step S16.

混合工程S11では、まず、平均粒径が約5μmのSiOx(ただし、0.8<x<1
.2)の粒子であるSiO系活物質粒子1の集合体である粉末に対して約5%の炭素を担
持させる。また、例えば、PI、PAI等の樹脂材料を、例えば、NMP等の溶媒に溶解
させ、樹脂材料の前駆体の溶液を用意する。そして、これらをプラネタリミキサに投入し
て、例えば約20分程度、混合および撹拌する。これにより、SiO系活物質粒子1と樹
脂材料の前駆体との混合物を得る。
In the mixing step S11, first, SiOx having an average particle size of about 5 μm (however, 0.8 <x <1).
.. Approximately 5% of carbon is supported on the powder which is an aggregate of SiO-based active material particles 1 which are the particles of 2). Further, for example, a resin material such as PI or PAI is dissolved in a solvent such as NMP to prepare a solution of a precursor of the resin material. Then, these are put into a planetary mixer and mixed and stirred for about 20 minutes, for example. As a result, a mixture of the SiO-based active material particles 1 and the precursor of the resin material is obtained.

なお、本実施形態では、樹脂材料の前駆体をイミド化重合させることによって形成され
る被覆層3の総重量が、SiO系活物質粒子1の総重量の1%以上かつ5%以下となるよ
うに、各材料の重量を調整している。
In the present embodiment, the total weight of the coating layer 3 formed by imidizing and polymerizing the precursor of the resin material is 1% or more and 5% or less of the total weight of the SiO-based active material particles 1. In addition, the weight of each material is adjusted.

乾燥工程S12では、混合工程S11で得られた混合物をプラネタリミキサから取り出
し、例えばアルミニウム等の金属箔上に載置し、例えば空気中で約80℃の温度で約1時
間乾燥させて溶媒を蒸発させる。さらに、乾燥させた混合物を、例えば真空中で約100
℃の温度で約2時間乾燥させ、溶媒を完全に蒸発させる。これによりSiO系活物質粒子
1と樹脂材料の前駆体とを含む塊状物を得る。
In the drying step S12, the mixture obtained in the mixing step S11 is taken out from the planetary mixer, placed on a metal leaf such as aluminum, and dried in air at a temperature of about 80 ° C. for about 1 hour to evaporate the solvent. Let me. In addition, the dried mixture is placed in a vacuum, for example, about 100.
Allow to dry at a temperature of ° C. for about 2 hours to allow the solvent to evaporate completely. As a result, a lump containing the SiO-based active material particles 1 and the precursor of the resin material is obtained.

粉砕工程S13では、乾燥工程S12で得られた塊状物を、例えば、乳鉢で粗く解砕し
た後、ミルで砂粒状になるまで10分以上粉砕して、SiO系活物質粒子1と樹脂材料の
前駆体とを含む粉体を得る。
In the crushing step S13, the mass obtained in the drying step S12 is roughly crushed in, for example, a mortar and then crushed in a mill for 10 minutes or more until it becomes sandy, and the SiO-based active material particles 1 and the resin material are pulverized. Obtain a powder containing a precursor.

重合工程S14では、樹脂材料の前駆体をSiO系活物質粒子1と共に250℃以上か
つ350℃以下の温度に加熱してイミド化させる。本実施形態では、重合工程において、
粉砕工程S13で得られた粉体を、例えばアルミニウム等の金属箔上に載置し、例えば3
00℃の温度で真空乾燥して加熱し、樹脂材料の前駆体を重合させてイミド化させる。こ
れにより、SiO系活物質粒子1の表面に、例えばPIまたはPAI等のイミド結合を含
む樹脂材料を強固に結着させる。
In the polymerization step S14, the precursor of the resin material is heated to a temperature of 250 ° C. or higher and 350 ° C. or lower together with the SiO-based active material particles 1 to be imidized. In the present embodiment, in the polymerization step,
The powder obtained in the pulverization step S13 is placed on a metal foil such as aluminum, for example, 3
The precursor of the resin material is polymerized and imidized by vacuum drying and heating at a temperature of 00 ° C. As a result, a resin material containing an imide bond such as PI or PAI is firmly bound to the surface of the SiO-based active material particles 1.

解砕工程S15では、重合工程S14で得られたSiO系活物質粒子1と例えばPIま
たはPAI等のイミド結合を含む樹脂材料からなる塊状物を室温まで降温させた後、例え
ば、乳鉢およびミルで5分以上解砕する。これにより、少なくとも一部がPIまたはPA
I等のイミド結合を含む樹脂材料からなる被覆層3に被覆されたSiO系活物質粒子1の
粉末を得る。
In the crushing step S15, a mass made of the SiO-based active material particles 1 obtained in the polymerization step S14 and a resin material containing an imide bond such as PI or PAI is cooled to room temperature, and then, for example, in a mortar and a mill. Crush for at least 5 minutes. This will cause at least part of the PI or PA
A powder of SiO-based active material particles 1 coated on a coating layer 3 made of a resin material containing an imide bond such as I is obtained.

選別工程S16では、解砕工程S15で得られた粉末を、例えば、篩目開き53μm、
270メッシュの篩に掛けて粗粒を取り除き、所定の範囲の粒径を有し、表面の少なくと
も一部が被覆層3に被覆されたSiO系活物質粒子1の粉末を得る。以上により、図5(
a)に示す被覆工程S1が終了する。
In the sorting step S16, the powder obtained in the crushing step S15 is mixed with, for example, a mesh opening of 53 μm.
The coarse particles are removed by sieving with a 270 mesh to obtain a powder of SiO-based active material particles 1 having a particle size in a predetermined range and having at least a part of the surface coated on the coating layer 3. Based on the above, FIG. 5 (
The coating step S1 shown in a) is completed.

図5(a)に示す調製工程S2では、被覆工程S1で得られた被覆層3を有するSiO
系活物質粒子1と、結着剤2とを含むスラリを調製する。本実施形態では、調製工程S2
において、負極活物質として、被覆層3を有するSiO系活物質粒子1だけでなく炭素系
活物質粒子4をも含むスラリを調整する。具体的には、炭素系活物質粒子4の総重量と、
被覆層3を有するSiO系活物質粒子1の総重量との比が、例えば、95:5から95:
3までの範囲となるように混合してプラネタリミキサで乾式混合する。
In the preparation step S2 shown in FIG. 5A, the SiO having the coating layer 3 obtained in the coating step S1
A slurry containing the active material particles 1 and the binder 2 is prepared. In this embodiment, the preparation step S2
In, as the negative electrode active material, a slurry containing not only the SiO-based active material particles 1 having the coating layer 3 but also the carbon-based active material particles 4 is prepared. Specifically, the total weight of the carbon-based active material particles 4 and
The ratio to the total weight of the SiO-based active material particles 1 having the coating layer 3 is, for example, 95: 5 to 95 :.
Mix up to 3 and dry mix with a planetary mixer.

その後、この混合物に、増粘剤として例えばカルボキシメチルセルロース(CMC)を
加えて撹拌し、粘度を調整することで適切な粘度のスラリを得る。このスラリに、結着剤
として例えばスチレンブタジエンゴム(SBR)を加えて混練することで、負極活物質お
よび結着剤を含むスラリが得られる。CMCとSBRは、例えば、98重量部の負極活物
質に対して2重量部を加えることができる。増粘剤、結着剤の分散溶媒およびスラリの粘
度調整には、例えばイオン交換水を用いることができる。
Then, for example, carboxymethyl cellulose (CMC) as a thickener is added to this mixture and stirred to adjust the viscosity to obtain a slurry having an appropriate viscosity. By adding, for example, styrene-butadiene rubber (SBR) as a binder to this slurry and kneading it, a slurry containing a negative electrode active material and a binder can be obtained. For CMC and SBR, for example, 2 parts by weight can be added to 98 parts by weight of the negative electrode active material. For example, ion-exchanged water can be used for adjusting the viscosity of the thickener, the dispersion solvent of the binder and the slurry.

図5(a)に示す塗布乾燥工程S3では、調製工程S2で得られたスラリを、負極箔4
2aの両面に幅方向の一側を除いて塗布し、乾燥させて結着剤を溶融または軟化させ、そ
の後、降温させてプレス、裁断する。本実施形態において、塗布乾燥工程S3における乾
燥温度は、被覆工程S1においてSiO系活物質粒子1を被覆する被覆層3の樹脂材料の
前駆体を重合させる温度よりも低く、例えば120℃以下であり、好ましくは100℃以
下とされる。負極箔42aとしては、例えば、厚さ約10μmの銅箔を用いることができ
る。
In the coating / drying step S3 shown in FIG. 5A, the slurry obtained in the preparation step S2 is used as the negative electrode foil 4.
It is applied to both sides of 2a except for one side in the width direction, dried to melt or soften the binder, and then cooled to be pressed and cut. In the present embodiment, the drying temperature in the coating drying step S3 is lower than the temperature at which the precursor of the resin material of the coating layer 3 for coating the SiO-based active material particles 1 is polymerized in the coating step S1, for example, 120 ° C. or lower. , Preferably 100 ° C. or lower. As the negative electrode foil 42a, for example, a copper foil having a thickness of about 10 μm can be used.

これにより、図4に示すように、被覆層3を有するSiO系活物質粒子1間に結着剤2
が形成され、負極箔42aの表面に負極合剤層42bが形成される。本実施形態では、結
着剤2の層は、被覆層3を有するSiO系活物質粒子1と炭素系活物質粒子4との間、お
よび炭素系活物質粒子4間にも形成される。負極箔42aの厚みを含まない負極合剤層4
2bの厚さは、例えば、約70μmである。以上により、負極活物質の粒子間に結着剤2
を含む負極合剤層42bを備えた負電極42を製造することができる。
As a result, as shown in FIG. 4, the binder 2 is sandwiched between the SiO-based active material particles 1 having the coating layer 3.
Is formed, and the negative electrode mixture layer 42b is formed on the surface of the negative electrode foil 42a. In the present embodiment, the layer of the binder 2 is also formed between the SiO-based active material particles 1 having the coating layer 3 and the carbon-based active material particles 4, and between the carbon-based active material particles 4. Negative electrode mixture layer 4 not including the thickness of the negative electrode foil 42a
The thickness of 2b is, for example, about 70 μm. From the above, the binder 2 between the particles of the negative electrode active material
A negative electrode 42 including the negative electrode mixture layer 42b containing the above can be manufactured.

本実施形態において、負極活物質は、SiO系活物質粒子1と炭素系活物質粒子4の双
方を含んでいる。しかし、負極活物質としてSiO系活物質粒子1のみを用いてもよい。
また、炭素系活物質粒子4は、前記したリチウムイオンを挿入、脱離可能な天然黒鉛に限
定されず、非晶質炭素、人造の各種黒鉛材、コークスなどの炭素質材料やSiやSnなど
の化合物(例えば、SiO、TiSi等)、またはそれらの複合材料を用いてもよい。
負極活物質の粒子形状についても特に限定されず、鱗片状、球状、繊維状または塊状等の
粒子形状を適宜選択することができる。
In the present embodiment, the negative electrode active material contains both SiO-based active material particles 1 and carbon-based active material particles 4. However, only SiO-based active material particles 1 may be used as the negative electrode active material.
Further, the carbon-based active material particles 4 are not limited to the above-mentioned natural graphite capable of inserting and removing lithium ions, but are not limited to natural graphite, which is amorphous carbon, various artificial graphite materials, carbonaceous materials such as coke, Si, Sn, and the like. (For example, SiO, TiSi 2, etc.), or a composite material thereof may be used.
The particle shape of the negative electrode active material is also not particularly limited, and a particle shape such as scaly, spherical, fibrous or lumpy can be appropriately selected.

また、前記した正極および負極の合剤層41b、42bに用いる結着材は、PVDF、
SBRに限定されない。前記した結着材として、例えば、ポリテトラフルオロエチレン(
PTFE)、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム
、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、各種ラテックス、アクリロ
ニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、
アクリル系樹脂などの重合体およびこれらの混合体などを用いてもよい。
The binder used for the positive electrode and negative electrode mixture layers 41b and 42b is PVDF.
Not limited to SBR. As the binder described above, for example, polytetrafluoroethylene (
PTFE), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, polysulfide rubber, nitrocellulose, cyanoethyl cellulose, various latexes, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride, chloroprene fluoride,
A polymer such as an acrylic resin and a mixture thereof may be used.

また、図3に示すセパレータ43、44を介在させて正電極41および負電極42を重
ねて捲回する際の軸芯は、例えば、正極箔41a、負極箔42a、セパレータ43、44
のいずれよりも曲げ剛性の高い樹脂シートを捲回したものを用いることができる。
Further, the shaft core when the positive electrode 41 and the negative electrode 42 are overlapped and wound with the separators 43 and 44 shown in FIG. 3 interposed therebetween is, for example, a positive electrode foil 41a, a negative electrode foil 42a, and separators 43 and 44.
A resin sheet having a higher bending rigidity than any of the above can be used.

電極群40の捲回軸D方向において、負電極42の負極合剤層42bの幅は、正電極4
1の正極合剤層41bの幅よりも広くなっている。また、電極群40の最内周と最外周に
は負電極42が捲回されている。これにより、正極合剤層41bは、電極群40の最内周
から最外周まで負極合剤層42bの間に挟まれている。
In the winding axis D direction of the electrode group 40, the width of the negative electrode mixture layer 42b of the negative electrode 42 is the positive electrode 4
It is wider than the width of the positive electrode mixture layer 41b of 1. Further, negative electrodes 42 are wound around the innermost circumference and the outermost circumference of the electrode group 40. As a result, the positive electrode mixture layer 41b is sandwiched between the negative electrode mixture layers 42b from the innermost circumference to the outermost circumference of the electrode group 40.

正電極41および負電極42の箔露出部41c、42cはそれぞれ電極群40の平坦部
40aで束ねられて前記した集電板接合部41d、42d(図2参照)が形成される。正
電極41および負電極42のそれぞれの集電板接合部41d、42dは、例えば超音波溶
接等によって、正極および負極の集電板30A、30Bのそれぞれの端子部32に接合さ
れる。これにより、正極側および負極側において、外部端子20A、20Bが、それぞれ
集電板30A、30Bを介して、電極群40を構成する正負の電極41、42とそれぞれ
電気的に接続される。
The foil exposed portions 41c and 42c of the positive electrode 41 and the negative electrode 42 are bundled by the flat portion 40a of the electrode group 40, respectively, to form the above-mentioned current collector plate joint portions 41d and 42d (see FIG. 2). The current collector plate joints 41d and 42d of the positive electrode 41 and the negative electrode 42 are bonded to the terminal portions 32 of the positive electrode and negative electrode current collector plates 30A and 30B, for example, by ultrasonic welding or the like. As a result, on the positive electrode side and the negative electrode side, the external terminals 20A and 20B are electrically connected to the positive and negative electrodes 41 and 42 constituting the electrode group 40, respectively, via the current collector plates 30A and 30B, respectively.

なお、電極群40の捲回軸D方向において、セパレータ43、44の幅は負極合剤層4
2bの幅よりも広いが、正電極41および負電極42の箔露出部41c、42cは、それ
ぞれセパレータ43、44の幅方向端部よりも幅方向外側に突出している。したがって、
セパレータ43、44は、箔露出部41c、42cを束ねて溶接する際の支障にはならな
い。
In the winding axis D direction of the electrode group 40, the widths of the separators 43 and 44 are the negative electrode mixture layer 4.
Although wider than the width of 2b, the foil exposed portions 41c and 42c of the positive electrode 41 and the negative electrode 42 project outward in the width direction from the widthwise ends of the separators 43 and 44, respectively. Therefore,
The separators 43 and 44 do not hinder the welding of the exposed foil portions 41c and 42c in a bundle.

以下、本実施形態の二次電池100およびその製造方法の作用について説明する。 Hereinafter, the operation of the secondary battery 100 of the present embodiment and the method for manufacturing the secondary battery 100 will be described.

本実施形態の二次電池100は、例えば、図1に示す外部端子20A、20Bのボルト
22に不図示のバスバーを締結して他の二次電池100の外部端子20A、20Bと接続
することにより、組電池として用いられる。二次電池100は、外部端子20A、20B
を介して外部から供給された電力を、図2に示す接続端子23および集電板30A、30
Bを介して電極群40に蓄積する。また、電極群40に蓄積した電力を、集電板30A、
30Bおよび接続端子23を介して外部端子20A、20Bから外部へ供給する。
The secondary battery 100 of the present embodiment is connected to, for example, the external terminals 20A and 20B of another secondary battery 100 by fastening a bus bar (not shown) to the bolts 22 of the external terminals 20A and 20B shown in FIG. , Used as an assembled battery. The secondary battery 100 has external terminals 20A and 20B.
The electric power supplied from the outside through the connection terminals 23 and the current collector plates 30A and 30 shown in FIG.
It accumulates in the electrode group 40 via B. Further, the electric power stored in the electrode group 40 is collected by the current collector plate 30A.
It is supplied to the outside from the external terminals 20A and 20B via the 30B and the connection terminal 23.

二次電池100の充放電に伴って、図4に示す負極合剤層42bに含まれるSiO系活
物質粒子1と炭素系活物質粒子4は膨脹収縮を繰り返すが、SiO系活物質粒子1の体積
の変化は、炭素系活物質粒子4よりも大きくなる。そのため、バインダー樹脂、すなわち
結着剤2として、比較的結着力が弱いPVDF、SBR等を用いた従来の二次電池では、
繰り返しの膨張収縮によってSiO系活物質粒子1に割れを生じ、二次電池のサイクル特
性が低下する虞があった。また、負極バインダー、すなわち結着剤2としてポリイミド(
PI)およびポリビニルピロリドン(PVP)を用いた従来の二次電池では、PIをイミ
ド化させて結着剤2を形成する際に、負極箔42aが高温に晒されて強度および溶接性が
低下し、二次電池100の製造工程に悪影響を及ぼす虞があった。
As the secondary battery 100 is charged and discharged, the SiO-based active material particles 1 and the carbon-based active material particles 4 contained in the negative electrode mixture layer 42b shown in FIG. 4 repeatedly expand and contract, but the SiO-based active material particles 1 The change in volume is larger than that of the carbon-based active material particles 4. Therefore, in the conventional secondary battery using PVDF, SBR, etc., which have a relatively weak binding force, as the binder resin, that is, the binder 2,
The SiO-based active material particles 1 may be cracked due to repeated expansion and contraction, and the cycle characteristics of the secondary battery may be deteriorated. Further, as a negative electrode binder, that is, as a binder 2, polyimide (
In a conventional secondary battery using PI) and polyvinylpyrrolidone (PVP), when the PI is imidized to form the binder 2, the negative electrode foil 42a is exposed to a high temperature and the strength and weldability are lowered. , There is a risk of adversely affecting the manufacturing process of the secondary battery 100.

これに対し、本実施形態の二次電池100では、SiO系活物質粒子1は、結着剤2の
耐熱温度よりも高い温度でイミド化させたイミド結合を含む樹脂材料からなる被覆層3に
よって少なくとも一部が被覆されている。これにより、SiO系活物質粒子1の膨張収縮
時の体積変化を、結着剤2よりも結着力の高い強靭な樹脂材料からなる被覆層3によって
低減させ、または、SiO系活物質粒子1の表面で起こる電解液の還元分解などの副反応
を抑制し、SiO系活物質粒子1の割れを抑制することができる。
On the other hand, in the secondary battery 100 of the present embodiment, the SiO-based active material particles 1 are formed of a coating layer 3 made of a resin material containing an imide bond imidized at a temperature higher than the heat resistant temperature of the binder 2. At least partly covered. As a result, the volume change of the SiO-based active material particles 1 during expansion and contraction can be reduced by the coating layer 3 made of a tough resin material having a higher binding force than the binder 2, or the SiO-based active material particles 1 can be reduced in volume. It is possible to suppress side reactions such as reduction decomposition of the electrolytic solution that occurs on the surface and suppress cracking of the SiO-based active material particles 1.

また、本実施形態の二次電池100は、負電極42の製造時に、負極箔42aに結着剤
2を形成する塗布乾燥工程S3の前に、SiO系活物質粒子1の表面にPIまたはPAI
等のイミド結合を含む樹脂材料からなる被覆層3を形成する被覆工程S1を有している。
また、塗布乾燥工程S3における乾燥温度は、被覆工程S1において被覆層3の樹脂材料
の前駆体をイミド化させて重合させる温度よりも低くなっている。そのため、負極箔42
aを、イミド化重合に必要な高温に晒さらすことを回避できる。
Further, the secondary battery 100 of the present embodiment has PI or PAI on the surface of the SiO-based active material particles 1 before the coating / drying step S3 of forming the binder 2 on the negative electrode foil 42a at the time of manufacturing the negative electrode 42.
It has a coating step S1 for forming a coating layer 3 made of a resin material containing an imide bond such as.
Further, the drying temperature in the coating drying step S3 is lower than the temperature at which the precursor of the resin material of the coating layer 3 is imidized and polymerized in the coating step S1. Therefore, the negative electrode foil 42
It is possible to avoid exposing a to the high temperature required for imidization polymerization.

したがって、本実施形態の二次電池100およびその製造方法によれば、製造工程にお
いて負電極42を高温に晒すことなく、二次電池100のサイクル特性を向上させること
ができる。
Therefore, according to the secondary battery 100 of the present embodiment and the manufacturing method thereof, the cycle characteristics of the secondary battery 100 can be improved without exposing the negative electrode 42 to a high temperature in the manufacturing process.

また、被覆層3の樹脂材料がPAIである場合には、イミド化重合に必要な温度をPI
の場合よりも低下させ、二次電池100の製造工程の簡略化および製造コストの低減に寄
与する。また、結着剤2がSBRを含む場合には、結着剤2の柔軟性を向上させて負極合
剤層42bの耐久性を向上させることができる。また、負極合剤層42bが、炭素系活物
質粒子4を含むことで、負極合剤層42bが負極活物質としてSiO系活物質粒子1のみ
を含む場合と比較して、負極合剤層42bの膨張収縮を抑制することができる。
When the resin material of the coating layer 3 is PAI, the temperature required for imidization polymerization is set to PI.
It contributes to the simplification of the manufacturing process of the secondary battery 100 and the reduction of the manufacturing cost. Further, when the binder 2 contains SBR, the flexibility of the binder 2 can be improved and the durability of the negative electrode mixture layer 42b can be improved. Further, since the negative electrode mixture layer 42b contains the carbon-based active material particles 4, the negative electrode mixture layer 42b contains only the SiO-based active material particles 1 as the negative electrode active material, as compared with the case where the negative electrode mixture layer 42b contains only the SiO-based active material particles 1. Expansion and contraction of

また、被覆工程S1は、被覆層3の樹脂材料の前駆体をSiO系活物質粒子1と共に2
50℃以上かつ350℃以下の温度に加熱してイミド化させる重合工程S14を有してい
る。これにより、SiO系活物質粒子1の表面に強固に結着したPIまたはPAI等のイ
ミド結合を含む樹脂材料からなる強靭な被覆層3を形成することができる。
Further, in the coating step S1, the precursor of the resin material of the coating layer 3 is 2 together with the SiO-based active material particles 1.
It has a polymerization step S14 which is heated to a temperature of 50 ° C. or higher and 350 ° C. or lower to imidize. As a result, a tough coating layer 3 made of a resin material containing an imide bond such as PI or PAI firmly bonded to the surface of the SiO-based active material particles 1 can be formed.

また、被覆工程S1は、重合工程S14の前に、混合工程S11と乾燥工程S12と粉
砕工程S13とを有している。これにより、重合工程S14において、粉体とされた被覆
層3の樹脂材料の前駆体とSiO系活物質粒子1とを加熱することができる。したがって
、重合工程S14において、被覆層3の樹脂材料の前駆体とSiO系活物質粒子1とが塊
状である場合と比較して、SiO系活物質粒子1の表面により均一かつ緻密な被覆層3を
形成することが可能になる。
Further, the coating step S1 includes a mixing step S11, a drying step S12, and a crushing step S13 before the polymerization step S14. As a result, in the polymerization step S14, the precursor of the resin material of the coating layer 3 which has been made into powder and the SiO-based active material particles 1 can be heated. Therefore, in the polymerization step S14, the coating layer 3 is more uniform and denser on the surface of the SiO-based active material particles 1 than in the case where the precursor of the resin material of the coating layer 3 and the SiO-based active material particles 1 are in the form of agglomerates. Can be formed.

以上、図面を用いて本発明の実施の形態を詳述してきたが、具体的な構成はこの実施形
態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっ
ても、それらは本発明に含まれるものである。例えば、前述の実施形態および実施例では
、本発明を角形二次電池に適用する例について説明したが、本発明は、角形二次電池に限
られず、例えば円筒形やラミネート型等、非水電解液二次電池の負極全般に適用すること
が可能である。
Although the embodiments of the present invention have been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and there are design changes and the like within a range that does not deviate from the gist of the present invention. Also, they are included in the present invention. For example, in the above-described embodiments and examples, an example in which the present invention is applied to a square secondary battery has been described, but the present invention is not limited to the square secondary battery, and for example, a cylindrical type, a laminated type, or the like, non-aqueous electrolysis. It can be applied to all negative electrodes of liquid secondary batteries.

[実施例]
以下、本発明の二次電池およびその製造方法の実施例について説明する。
[Example]
Hereinafter, examples of the secondary battery of the present invention and the method for manufacturing the same will be described.

前述の実施形態で説明した製造方法に基づき、実施例1、2および比較例1の負電極を
製作した。実施例1、2の負電極では、それぞれ、SiO系活物質粒子の総重量に対する
被覆層の樹脂材料としてのPAIの総重量を3%、および5%とした。一方、比較例1の
負電極では、SiO系活物質粒子の総重量に対する被覆層の樹脂材料としてのPAIの総
重量を0%(被覆層なし)とした。なお、実施例1、2および比較例1の負電極において
、炭素系活物質粒子の総重量と、被覆層を有するSiO系活物質粒子の総重量との比は、
95:3とした。これらの負電極を、それぞれセパレータを介して正電極と重ね、実施例
1、2および3の小型セルを作製し、初期サイクル特性を測定した。なお、各小型セルの
充放電方法は、以下の通りである。
The negative electrodes of Examples 1 and 2 and Comparative Example 1 were manufactured based on the manufacturing method described in the above-described embodiment. In the negative electrodes of Examples 1 and 2, the total weight of PAI as the resin material of the coating layer was set to 3% and 5%, respectively, with respect to the total weight of the SiO-based active material particles. On the other hand, in the negative electrode of Comparative Example 1, the total weight of PAI as the resin material of the coating layer was set to 0% (without the coating layer) with respect to the total weight of the SiO-based active material particles. In the negative electrodes of Examples 1 and 2 and Comparative Example 1, the ratio of the total weight of the carbon-based active material particles to the total weight of the SiO-based active material particles having the coating layer is
It was 95: 3. These negative electrodes were superposed on the positive electrodes via separators to prepare small cells of Examples 1, 2 and 3, and the initial cycle characteristics were measured. The charging / discharging method of each small cell is as follows.

充電:0.5C定電流定電圧充電、定電圧値4.2V、0.01C終止
放電:0.5C定電流、2.7V終止
Charging: 0.5C constant current constant voltage charging, constant voltage value 4.2V, 0.01C termination Discharge: 0.5C constant current, 2.7V termination

図6は、横軸を充放電のサイクル数(cycle)、縦軸を各セルの容量維持率(%)とし
て実施例1、2および比較例1の小型セルのサイクル数と容量維持率との関係を示すグラ
フである。
In FIG. 6, the horizontal axis represents the number of charge / discharge cycles (cycle), and the vertical axis represents the capacity retention rate (%) of each cell. It is a graph which shows the relationship.

図6中、実施例1(PAI:3%)の小型セルの測定結果を白抜きの三角印および破線
で、実施例2(PAI:5%)の小型セルの測定結果を白抜きの丸印および実線で、比較
例1(PAI:0%)の小型セルの測定結果を黒の四角印および一点鎖線で示している。
以上の結果から、実施例1および2の被覆層を有するSiO系活物質粒子を用いた小型セ
ルでは、比較例1の被覆層を有しないSiO系活物質粒子を用いた小型セルよりもサイク
ル特性が向上することが確認された。
In FIG. 6, the measurement result of the small cell of Example 1 (PAI: 3%) is marked with a white triangle and a broken line, and the measurement result of the small cell of Example 2 (PAI: 5%) is marked with a white circle. And the solid line shows the measurement result of the small cell of Comparative Example 1 (PAI: 0%) by the black square mark and the alternate long and short dash line.
From the above results, the small cell using the SiO-based active material particles having the coating layers of Examples 1 and 2 has more cycle characteristics than the small cell using the SiO-based active material particles having no coating layer of Comparative Example 1. Was confirmed to improve.

次に、前述の実施例1、2および比較例1の負電極を製作すると共に、SiO系活物質
粒子の総重量に対する被覆層の樹脂材料としてのPAIの総重量(PAI被覆量)を1%
とした実施例3の負電極を同様に製作した。なお、各負電極においては、炭素系活物質粒
子の総重量と、被覆層を有するSiO系活物質粒子の総重量と、結着剤および増粘剤から
なるバインダーの総重量との比が95:3:2となるようにスラリを調整して負極箔に塗
布した。これらの負電極を用いて金属リチウムを対極としたハーフセルを作製し、負極の
初回充放電効率を計測した。以下の条件で充電、放電を行ったときの放電容量を充電容量
で除した値を図7に示す。
Next, the negative electrodes of Examples 1 and 2 and Comparative Example 1 described above are manufactured, and the total weight of PAI (PAI coating amount) as the resin material of the coating layer is 1% with respect to the total weight of SiO-based active material particles.
The negative electrode of Example 3 was manufactured in the same manner. At each negative electrode, the ratio of the total weight of the carbon-based active material particles, the total weight of the SiO-based active material particles having the coating layer, and the total weight of the binder composed of the binder and the thickener is 95. The slurry was adjusted to be 3: 3: 2 and applied to the negative electrode foil. Using these negative electrodes, a half cell with metallic lithium as the counter electrode was prepared, and the initial charge / discharge efficiency of the negative electrode was measured. FIG. 7 shows a value obtained by dividing the discharge capacity when charging and discharging are performed under the following conditions by the charging capacity.

充電:0.5C定電流定電圧充電、定電圧値0.01V vs Li金属、0.01C終止
放電:0.5C定電流、1.5V vs Li金属終止
Charging: 0.5C constant current constant voltage charging, constant voltage value 0.01V vs Li metal, 0.01C termination Discharge: 0.5C constant current, 1.5V vs Li metal termination

図7は、縦軸を初回充放電効率(%)、横軸をPAI被覆量(wt%)として、初回充
放電効率とPAI被覆量との関係を示すグラフである。実施例1(PAI被覆量:3wt
%)、実施例2(PAI被覆量:5wt%)および実施例3(PAI被覆量:1wt%)
と、比較例1(PAI被覆量:0wt%)とを比較すると、実施例1から3のいずれの小
型セルも比較例1の小型セルよりも高い初回充放電効率を示すことが確認された。
FIG. 7 is a graph showing the relationship between the initial charge / discharge efficiency and the PAI coating amount, where the vertical axis represents the initial charge / discharge efficiency (%) and the horizontal axis represents the PAI coating amount (wt%). Example 1 (PAI coating amount: 3 wt)
%), Example 2 (PAI coverage: 5 wt%) and Example 3 (PAI coverage: 1 wt%)
And Comparative Example 1 (PAI coating amount: 0 wt%), it was confirmed that all the small cells of Examples 1 to 3 showed higher initial charge / discharge efficiency than the small cells of Comparative Example 1.

また、各実施例の小型セルの初回充放電効率は、実施例3(PAI被覆量:1wt%)
の小型セルが最も高く、実施例2(PAI被覆量:5wt%)の小型セルが最も低かった
。すなわち、被覆層の総重量は、SiO系活物質粒子の総重量の1%以上かつ5%以下で
あれば、被覆層を有しない場合よりも高い初回充放電効率が得られるが、SiO系活物質
粒子の総重量の1%以上かつ3%以下であれば、より高い初回充放電効率が得られること
が確認された。
The initial charge / discharge efficiency of the small cell of each example is that of Example 3 (PAI coverage: 1 wt%).
The small cell of Example 2 (PAI coverage: 5 wt%) was the highest, and the small cell of Example 2 (PAI coverage: 5 wt%) was the lowest. That is, if the total weight of the coating layer is 1% or more and 5% or less of the total weight of the SiO-based active material particles, higher initial charge / discharge efficiency can be obtained as compared with the case without the coating layer, but the SiO-based activity can be obtained. It was confirmed that a higher initial charge / discharge efficiency can be obtained when the total weight of the material particles is 1% or more and 3% or less.

1…SiO系活物質粒子、2…結着剤、3…被覆層、4…炭素系活物質粒子、42…負電
極、42a…負極箔、42b…負極合剤層、100…二次電池
1 ... SiO-based active material particles, 2 ... Binder, 3 ... Coating layer, 4 ... Carbon-based active material particles, 42 ... Negative electrode, 42a ... Negative electrode foil, 42b ... Negative electrode mixture layer, 100 ... Secondary battery

Claims (1)

負極箔と負極合剤層とを有する負電極と、前記負極箔と溶接される集電板とを備えた二次電池の製造方法であって、
前記負極合剤層は、被覆層を有するSiO系活物質粒子と、炭素系活物質粒子と、導電材と、前記被覆層を有するSiO系活物質粒子と前記炭素系活物質粒子との間に充填された結着剤とを含み、
前記結着剤は、前記被覆層とは異なる材料で構成され、
前記炭素系活物質粒子は、前記被覆層を有しておらず、表面に前記結着剤が結着しており、
前記被覆層は、イミド系樹脂材料で構成され、
前記結着剤は、ポリフッ化ビニリデン、スチレンブタジエンゴム、ポリエチレン、ポリスチレン、ポリブタジエン、ブチルゴム、ニトリルゴム、多硫化ゴム、ニトロセルロース、シアノエチルセルロース、ラテックス、アクリロニトリル、フッ化ビニル、フッ化ビニリデン、フッ化プロピレン、フッ化クロロプレン、アクリル系樹脂のうち、少なくとも1つを含み、
前記結着剤の耐熱温度よりも高い温度で樹脂材料の前駆体をイミド化させて、前記イミド系樹脂材料からなる前記被覆層を形成することを特徴とする二次電池の製造方法
A method for manufacturing a secondary battery including a negative electrode having a negative electrode foil and a negative electrode mixture layer, and a current collector plate welded to the negative electrode foil.
The negative electrode mixture layer is formed between the SiO-based active material particles having a coating layer, the carbon-based active material particles, the conductive material, the SiO-based active material particles having the coating layer, and the carbon-based active material particles. Including filled binders
The binder is composed of a material different from that of the coating layer.
The carbon-based active material particles do not have the coating layer, and the binder is bound to the surface thereof.
The coating layer is constituted by Lee bromide-based resin material,
The binder is polyvinylidene fluoride, styrene butadiene rubber, polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, rubber polysulfide, nitrocellulose, cyanoethylcellulose, latex, acrylonitrile, vinyl fluoride, vinylidene fluoride, propylene fluoride. , fluoride chloroprene, among acrylic resins, seen at least Tsuo含,
A method for producing a secondary battery , which comprises imidizing a precursor of a resin material at a temperature higher than the heat resistant temperature of the binder to form the coating layer made of the imide-based resin material .
JP2018019753A 2018-02-07 2018-02-07 Secondary battery and its manufacturing method Active JP6858144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018019753A JP6858144B2 (en) 2018-02-07 2018-02-07 Secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018019753A JP6858144B2 (en) 2018-02-07 2018-02-07 Secondary battery and its manufacturing method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014088257A Division JP6289986B2 (en) 2014-04-22 2014-04-22 Secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2018101633A JP2018101633A (en) 2018-06-28
JP6858144B2 true JP6858144B2 (en) 2021-04-14

Family

ID=62714472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018019753A Active JP6858144B2 (en) 2018-02-07 2018-02-07 Secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6858144B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109449445A (en) * 2018-10-10 2019-03-08 上海其鸿新能源有限公司 A kind of multifunctional lithium battery collector and preparation method thereof
KR20220048854A (en) * 2020-10-13 2022-04-20 주식회사 엘지에너지솔루션 A negative electrode for a lithium secondary battery, a lithium secondary battery comprising the same, and a method for manufacturing the lithium secondary battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224239A (en) * 2008-03-18 2009-10-01 Nissan Motor Co Ltd Electrode for battery
JP6060896B2 (en) * 2011-03-28 2017-01-18 日本電気株式会社 Secondary battery and manufacturing method thereof
JP2013069684A (en) * 2011-09-09 2013-04-18 Hitachi Cable Ltd Copper foil of negative electrode collector for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing copper foil of negative electrode collector for lithium ion secondary battery
KR101323179B1 (en) * 2011-12-27 2013-10-30 가부시키가이샤 히타치세이사쿠쇼 Non-aqueous secondary battery
JP2014026776A (en) * 2012-07-25 2014-02-06 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP6267423B2 (en) * 2012-12-19 2018-01-24 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. Negative electrode active material layer for lithium ion secondary battery, lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery, and method for producing negative electrode active material layer for lithium ion secondary battery

Also Published As

Publication number Publication date
JP2018101633A (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP4623786B2 (en) Non-aqueous secondary battery
JP4177612B2 (en) Lithium ion secondary battery
US8372544B2 (en) Non-aqueous electrolyte secondary battery
WO2000062356A1 (en) Secondary battery
US6667132B2 (en) Non-aqueous electrolyte secondary batteries
US11955594B2 (en) Electrode assembly and comprising connected plurality of unit electrodes
JP2008041504A (en) Nonaqueous electrolyte battery
CN113196518B (en) Lithium ion secondary battery and method for manufacturing same
JP6858144B2 (en) Secondary battery and its manufacturing method
CN106663784B (en) Lithium ion secondary battery
US20230223510A1 (en) Secondary battery and method for manufacturing the same
JP6913766B2 (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using it
JP4403447B2 (en) Non-aqueous secondary battery
JP2024505868A (en) Cylindrical batteries, battery packs containing them, and automobiles
JP2001229970A (en) Cylindrical lithium battery
JP2010033869A (en) Electrode plate for nonaqueous secondary battery and nonaqueous secondary battery using the same
JP6978500B2 (en) Secondary battery
JP6289986B2 (en) Secondary battery and manufacturing method thereof
JP6944998B2 (en) Rechargeable battery
JP2001185220A (en) Cylindrical lithium ion battery
JP5720411B2 (en) Method for producing non-aqueous electrolyte secondary battery
WO2013168585A1 (en) Rectangular cell
JP5165875B2 (en) Non-aqueous electrolyte battery
JP2015076289A (en) Wound secondary battery
JP2005327521A (en) Manufacturing method of nonaqueous electrolyte secondary battery and using method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20190618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190829

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20190829

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20190905

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20190910

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20191018

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20191023

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200220

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20200714

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20200908

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20210119

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20210224

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210323

R150 Certificate of patent or registration of utility model

Ref document number: 6858144

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250