JP6855920B2 - Ice maker - Google Patents

Ice maker Download PDF

Info

Publication number
JP6855920B2
JP6855920B2 JP2017098077A JP2017098077A JP6855920B2 JP 6855920 B2 JP6855920 B2 JP 6855920B2 JP 2017098077 A JP2017098077 A JP 2017098077A JP 2017098077 A JP2017098077 A JP 2017098077A JP 6855920 B2 JP6855920 B2 JP 6855920B2
Authority
JP
Japan
Prior art keywords
ice
refrigerant
ice making
making
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017098077A
Other languages
Japanese (ja)
Other versions
JP2018194232A (en
Inventor
智也 宮越
智也 宮越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2017098077A priority Critical patent/JP6855920B2/en
Priority to US15/905,236 priority patent/US10663203B2/en
Priority to CN201810171095.1A priority patent/CN108534414A/en
Publication of JP2018194232A publication Critical patent/JP2018194232A/en
Application granted granted Critical
Publication of JP6855920B2 publication Critical patent/JP6855920B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

本発明は、製氷装置に関するものである。 The present invention relates to an ice making device.

従来、この種の製氷装置では、圧縮機、凝縮器、膨張機構及び蒸発器から成る製氷用の冷凍回路を備えている。圧縮機は、冷媒を吸引して圧縮するものである。凝縮器は、圧縮機で圧縮された冷媒を放熱させて凝縮させるものである。膨張機構は、凝縮器で凝縮した冷媒を減圧して断熱膨張させるものである。蒸発器は、膨張機構で断熱膨張した冷媒を蒸発させるものであり、製氷部に内蔵されている。 Conventionally, this type of ice making device includes a refrigerating circuit for making ice, which comprises a compressor, a condenser, an expansion mechanism and an evaporator. The compressor sucks and compresses the refrigerant. The condenser dissipates heat and condenses the refrigerant compressed by the compressor. The expansion mechanism decompresses the refrigerant condensed by the condenser to perform adiabatic expansion. The evaporator evaporates the refrigerant that has been adiabatically expanded by the expansion mechanism, and is built in the ice making section.

このような製氷装置では、圧縮機が駆動することにより、圧縮機で圧縮された冷媒が、凝縮器、膨張機構及び蒸発器の順に通過して冷凍回路を循環することにより、製氷部において氷の生成が行われる(例えば、特許文献1参照)。 In such an ice making device, when the compressor is driven, the refrigerant compressed by the compressor passes through the condenser, the expansion mechanism, and the evaporator in this order and circulates in the freezing circuit, so that the ice is formed in the ice making section. The generation is performed (see, for example, Patent Document 1).

特開2010−169304号公報Japanese Unexamined Patent Publication No. 2010-169304

ところが、上述した製氷装置では、蒸発器に供給された冷媒が該蒸発器を通過途中に蒸発してしまい、蒸発器の冷媒出口近傍では氷が生成されにくくなって製氷部における氷の生成時間にバラツキが生じていた。そのため、製氷部にて一定の氷の量を生成するためには、圧縮機の駆動時間を必要以上に要していた。 However, in the above-mentioned ice making device, the refrigerant supplied to the evaporator evaporates while passing through the evaporator, and it becomes difficult for ice to be generated in the vicinity of the refrigerant outlet of the evaporator. There was some variation. Therefore, in order to generate a constant amount of ice in the ice making section, it takes more time than necessary to drive the compressor.

本発明は、上記実情に鑑みて、製氷部にて良好に氷を生成して圧縮機の駆動時間の短縮化を図ることができる製氷装置を提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide an ice making apparatus capable of satisfactorily producing ice in an ice making section and shortening the driving time of a compressor.

上記目的を達成するために、本発明に係る製氷装置は、圧縮機が駆動する場合に、該圧縮機、凝縮器、電子膨張弁及び蒸発器の順に冷媒を循環させることにより、前記蒸発器を内蔵した製氷部において氷の生成を行う製氷用冷凍回路を備えた製氷装置であって、製氷指令が与えられた場合に、前記製氷用冷凍回路における冷媒の循環量を増大させた後に前記製氷部での冷却負荷の低減に応じて前記循環量を減少させ、更に前記蒸発器の入口の冷媒温度と出口の冷媒温度との差である過熱度が2℃以下となる態様で前記循環量を調整する制御手段を備えたことを特徴とする。 In order to achieve the above object, the ice making apparatus according to the present invention circulates the refrigerant in the order of the compressor, the condenser, the electronic expansion valve and the evaporator when the compressor is driven, thereby causing the evaporator to be circulated. An ice making device equipped with an ice making refrigerating circuit that generates ice in the built-in ice making section. When an ice making command is given, the ice making section increases the circulation amount of the refrigerant in the ice making refrigerating circuit. The circulation amount is reduced according to the reduction of the cooling load in the above, and the circulation amount is adjusted in such a manner that the degree of superheat, which is the difference between the refrigerant temperature at the inlet of the evaporator and the refrigerant temperature at the outlet, is 2 ° C. or less. It is characterized by being provided with a control means for the operation.

また本発明は、上記製氷装置において、前記制御手段は、前記製氷指令が与えられた場合に、前記電子膨張弁の開度を全開にさせた後に前記製氷部での冷却負荷の低減に応じて前記電子膨張弁の開度を減少させ、更に前記過熱度が2℃以下となる態様で前記電子膨張弁の開度を調整することを特徴とする。 Further, in the ice making apparatus of the present invention, when the ice making command is given, the control means responds to the reduction of the cooling load in the ice making section after opening the opening of the electronic expansion valve fully. It is characterized in that the opening degree of the electronic expansion valve is reduced, and the opening degree of the electronic expansion valve is adjusted in such a manner that the degree of superheat is 2 ° C. or lower.

また本発明は、上記製氷装置において、前記制御手段は、前記製氷部での冷却負荷の低減に応じて前記電子膨張弁の開度を減少させて前記過熱度が近接した場合に、前記電子膨張弁の開度を更に減少させて前記過熱度を増加させ、その後に前記過熱度が2℃以下となる態様で前記電子膨張弁の開度を調整することを特徴とする。 Further, in the ice making apparatus of the present invention, the control means reduces the opening degree of the electronic expansion valve in accordance with the reduction of the cooling load in the ice making portion, and when the degree of superheat approaches, the electronic expansion It is characterized in that the opening degree of the valve is further reduced to increase the degree of superheat, and then the opening degree of the electronic expansion valve is adjusted in such a manner that the degree of superheat is 2 ° C. or less.

また本発明は、上記製氷装置において、前記製氷部は、複数の筒状体が互いに連続する態様で並設された製氷本体を備え、前記蒸発器は、複数の冷媒通路が並設された扁平状の冷媒管部を有しており、該冷媒管部が前記製氷本体の前面と後面とに内面が熱的に接続する態様で該製氷本体の周囲に湾曲して設けられて前記製氷部に内蔵されたことを特徴とする。 Further, in the ice making apparatus of the present invention, the ice making section includes an ice making body in which a plurality of tubular bodies are arranged side by side in a manner in which a plurality of tubular bodies are continuous with each other, and the evaporator is a flat surface in which a plurality of refrigerant passages are arranged side by side. It has a shape-like refrigerant pipe portion, and the refrigerant pipe portion is provided so as to be curved around the ice making main body in such a manner that the inner surface is thermally connected to the front surface and the rear surface of the ice making main body. It is characterized by being built-in.

また本発明は、上記製氷装置において、前記製氷本体と前記冷媒管部とがアルミニウムにより形成されたことを特徴とする。 Further, the present invention is characterized in that, in the ice making apparatus, the ice making main body and the refrigerant pipe portion are made of aluminum.

本発明によれば、制御手段が、製氷指令が与えられた場合に、製氷用冷凍回路における冷媒の循環量を増大させた後に製氷部での冷却負荷の低減に応じて循環量を減少させ、更に蒸発器の入口の冷媒温度と出口の冷媒温度との差である過熱度が2℃以下となる態様で循環量を調整するので、氷の生成時間にバラツキが生ずることを抑制することができ、製氷部にて良好に氷を生成して圧縮機の駆動時間の短縮化を図ることができるという効果を奏する。 According to the present invention, when an ice making command is given, the control means increases the circulating amount of the refrigerant in the ice making refrigerating circuit and then decreases the circulating amount in accordance with the reduction of the cooling load in the ice making section. Further, since the circulation amount is adjusted in such a manner that the degree of superheat, which is the difference between the refrigerant temperature at the inlet of the evaporator and the refrigerant temperature at the outlet, is 2 ° C. or less, it is possible to suppress the occurrence of variation in the ice formation time. , The ice making section has the effect that ice can be satisfactorily generated and the driving time of the compressor can be shortened.

図1は、本発明の実施の形態である製氷装置を模式的に示す模式図である。FIG. 1 is a schematic view schematically showing an ice making apparatus according to an embodiment of the present invention. 図2は、本発明の実施の形態である製氷装置の特徴的な制御系を模式的に示すブロック図である。FIG. 2 is a block diagram schematically showing a characteristic control system of the ice making apparatus according to the embodiment of the present invention. 図3は、図1に示した製氷装置の要部を拡大して示す斜視図である。FIG. 3 is an enlarged perspective view showing a main part of the ice making apparatus shown in FIG. 図4は、図1及び図3に示した製氷部の縦断面図である。FIG. 4 is a vertical cross-sectional view of the ice making portion shown in FIGS. 1 and 3. 図5は、図2に示した制御部が実施する製氷制御処理の処理内容を示すフローチャートである。FIG. 5 is a flowchart showing the processing content of the ice making control process performed by the control unit shown in FIG.

以下に添付図面を参照して、本発明に係る製氷装置の好適な実施の形態について詳細に説明する。 Hereinafter, preferred embodiments of the ice making apparatus according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の実施の形態である製氷装置を模式的に示す模式図であり、図2は、本発明の実施の形態である製氷装置の特徴的な制御系を模式的に示すブロック図である。ここで例示する製氷装置10は、貯水部20、製氷部30、入口温度センサS1、出口温度センサS2及び制御部40を備えて構成してある。 FIG. 1 is a schematic diagram schematically showing an ice making device according to an embodiment of the present invention, and FIG. 2 is a block schematically showing a characteristic control system of the ice making device according to the embodiment of the present invention. It is a figure. The ice making device 10 illustrated here includes a water storage unit 20, an ice making unit 30, an inlet temperature sensor S1, an outlet temperature sensor S2, and a control unit 40.

貯水部20は、図3にも示すように、基台11の上に載置されており、図には明示しないが上壁部21に複数(8つ)の上壁開口が左右に並ぶよう形成された直方状の形態を成すものである。この貯水部20の右壁部22には導入口22aが形成してあり、かかる導入口22aを通じて給水ライン50に接続してある。 As shown in FIG. 3, the water storage unit 20 is placed on the base 11, and although not specified in the figure, a plurality (8) upper wall openings are arranged side by side on the upper wall portion 21. It has a formed rectangular shape. An introduction port 22a is formed in the right wall portion 22 of the water storage portion 20, and is connected to the water supply line 50 through the introduction port 22a.

給水ライン50は、貯水部20に水を供給する経路であり、その途中に給水ポンプ51が設けてある。給水ポンプ51は、駆動する場合に、給水ライン50を通じて貯水部20に水を供給する水供給手段を構成している。尚、貯水部20には、貯留する水を冷却する図示せぬ冷却手段が設けられており、かかる冷却手段により貯留する水は、例えば4℃程度に冷却されている。 The water supply line 50 is a path for supplying water to the water storage unit 20, and a water supply pump 51 is provided in the middle of the path. The water supply pump 51 constitutes a water supply means for supplying water to the water storage unit 20 through the water supply line 50 when driven. The water storage unit 20 is provided with a cooling means (not shown) for cooling the stored water, and the water stored by the cooling means is cooled to, for example, about 4 ° C.

製氷部30は、製氷本体31と冷媒管部32とを備えて構成してある。製氷本体31は、アルミニウムにより形成してある。この製氷本体31は、上下に延在する中空部311を有する複数(8つ)の筒状体が左右に並ぶよう互いに連続する態様で構成してある。かかる製氷本体31は、各中空部311の下面開口311a(図4参照)が対応する上壁開口に連通する態様で上壁部21に載置して設置してある。ここで、中空部311の前後幅や左右幅の大きさは、上壁開口の前後幅や左右幅の大きさと略同等である。 The ice making section 30 includes an ice making main body 31 and a refrigerant pipe section 32. The ice making body 31 is made of aluminum. The ice-making main body 31 is configured such that a plurality of (eight) tubular bodies having hollow portions 311 extending vertically are continuous with each other so as to be arranged side by side. The ice making main body 31 is placed and installed on the upper wall portion 21 in such a manner that the lower surface opening 311a (see FIG. 4) of each hollow portion 311 communicates with the corresponding upper wall opening. Here, the size of the front-rear width and the left-right width of the hollow portion 311 is substantially the same as the size of the front-rear width and the left-right width of the upper wall opening.

冷媒管部32は、上記製氷本体31と同様に、アルミニウムにより形成してある。この冷媒管部32は、図4に示すように、複数の冷媒通路321が並設された扁平状の多穴管である。このような冷媒管部32は、製氷本体31の前面と後面とに自身の内面が熱的に接続された状態で該製氷本体31の周囲に設けてある。かかる冷媒管部32には、一端部に各冷媒通路321に連通する態様で入口ヘッダ32aが設けられている一方、他端部に各冷媒通路321に連通する態様で出口ヘッダ32bが設けられている。 The refrigerant pipe portion 32 is made of aluminum in the same manner as the ice making main body 31. As shown in FIG. 4, the refrigerant pipe portion 32 is a flat multi-hole pipe in which a plurality of refrigerant passages 321 are arranged side by side. Such a refrigerant pipe portion 32 is provided around the ice making main body 31 in a state where its inner surface is thermally connected to the front surface and the rear surface of the ice making main body 31. The refrigerant pipe portion 32 is provided with an inlet header 32a at one end in a manner communicating with each refrigerant passage 321 while an outlet header 32b is provided at the other end portion in a manner communicating with each refrigerant passage 321. There is.

上記冷媒管部32は、蒸発器として、圧縮機61、凝縮器62、電子膨張弁63とともに製氷用冷凍回路60を構成している。この製氷用冷凍回路60は、圧縮機61、凝縮器62、電子膨張弁63及び冷媒管部(蒸発器)32を冷媒管路64で順次接続して構成されるとともに、内部に冷媒が封入されている。 The refrigerant pipe portion 32 constitutes an ice making refrigeration circuit 60 together with a compressor 61, a condenser 62, and an electronic expansion valve 63 as an evaporator. The ice-making refrigeration circuit 60 is configured by sequentially connecting a compressor 61, a condenser 62, an electronic expansion valve 63, and a refrigerant pipe portion (evaporator) 32 by a refrigerant pipe 64, and a refrigerant is sealed inside. ing.

圧縮機61は、吸引部が冷媒管路64を通じて出口ヘッダ32bに接続されており、制御部40から駆動指令が与えられた場合に駆動するものである。この圧縮機61は、駆動する場合に、冷媒管部32から冷媒を吸引して圧縮し、吐出部を通じて吐出するものである。 The compressor 61 is driven when the suction unit is connected to the outlet header 32b through the refrigerant pipe 64 and a drive command is given from the control unit 40. When the compressor 61 is driven, the refrigerant is sucked from the refrigerant pipe portion 32, compressed, and discharged through the discharge portion.

凝縮器62は、入口が冷媒管路64を通じて圧縮機61の吐出部に接続されている。この凝縮器62は、圧縮機61より吐出された冷媒を周囲空気と熱交換させて凝縮させるものである。この圧縮機61と凝縮器62とを接続する冷媒管路64の途中には第1バルブ65が設けてある。 The inlet of the condenser 62 is connected to the discharge portion of the compressor 61 through the refrigerant pipe 64. The condenser 62 heat-exchanges the refrigerant discharged from the compressor 61 with the ambient air to condense the refrigerant. A first valve 65 is provided in the middle of the refrigerant pipe 64 connecting the compressor 61 and the condenser 62.

第1バルブ65は、制御部40から与えられる指令に応じて開閉する弁体であり、開状態となる場合には、圧縮機61から吐出された冷媒が凝縮器62に向けて通過することを許容する一方、閉状態となる場合には、圧縮機61から吐出された冷媒が凝縮器62に向けて通過することを規制するものである。 The first valve 65 is a valve body that opens and closes in response to a command given from the control unit 40, and when it is in the open state, the refrigerant discharged from the compressor 61 passes toward the condenser 62. On the other hand, when the state is closed, the refrigerant discharged from the compressor 61 is restricted from passing toward the condenser 62.

電子膨張弁63は、入口側が冷媒管路64を通じて凝縮器62の出口に接続されている一方、出口側が冷媒管路64を通じて入口ヘッダ32aに接続されている。この電子膨張弁63は、制御部40から与えられる指令に応じて開度が調整されるものであり、凝縮器62で凝縮した冷媒を減圧して断熱膨張し、冷媒管部32に供給するものである。 The inlet side of the electronic expansion valve 63 is connected to the outlet of the condenser 62 through the refrigerant pipe 64, while the outlet side is connected to the inlet header 32a through the refrigerant pipe 64. The opening degree of the electronic expansion valve 63 is adjusted according to a command given from the control unit 40, and the refrigerant condensed by the condenser 62 is depressurized, adiabatically expanded, and supplied to the refrigerant pipe unit 32. Is.

ところで、上記冷媒回路60においては、圧縮機61と凝縮器62とを接続する冷媒管路64において第1バルブ65の上流側から分岐して、電子膨張弁63と入口ヘッダ32aとを接続する冷媒管路64の途中に合流する態様でバイパス管路66が設けてある。このバイパス管路66の途中には第2バルブ67が設けてある。 By the way, in the refrigerant circuit 60, the refrigerant branching from the upstream side of the first valve 65 in the refrigerant pipe 64 connecting the compressor 61 and the condenser 62 to connect the electronic expansion valve 63 and the inlet header 32a. A bypass pipeline 66 is provided so as to merge in the middle of the conduit 64. A second valve 67 is provided in the middle of the bypass line 66.

第2バルブ67は、制御部40から与えられる指令に応じて開閉する弁体であり、開状態となる場合には、圧縮機61から吐出された冷媒がバイパス管路66を通じて入口ヘッダ32aに向けて通過することを許容する一方、閉状態となる場合には、圧縮機61から吐出された冷媒がバイパス管路66を通過することを規制するものである。 The second valve 67 is a valve body that opens and closes in response to a command given from the control unit 40, and when it is in the open state, the refrigerant discharged from the compressor 61 is directed to the inlet header 32a through the bypass pipe 66. On the other hand, when the compressor is closed, the refrigerant discharged from the compressor 61 is restricted from passing through the bypass pipe line 66.

冷媒管部32は、入口ヘッダ32aを通じて流入した冷媒が冷媒通路321を通過することにより、熱的に接続する製氷本体31を冷却若しくは加熱するものである。つまり、冷媒管部32は、電子膨張弁63で断熱膨張した冷媒が冷媒通路321を通過する場合には、該冷媒が蒸発することにより製氷本体31を氷点下に冷却する一方、圧縮機61で圧縮されて吐出された冷媒がバイパス管路66を通じて流入して冷媒通路321を通過する場合には、製氷本体31を加熱するものである。 The refrigerant pipe portion 32 cools or heats the ice making main body 31 that is thermally connected by passing the refrigerant that has flowed in through the inlet header 32a through the refrigerant passage 321. That is, when the refrigerant adiabatically expanded by the electronic expansion valve 63 passes through the refrigerant passage 321, the refrigerant pipe portion 32 cools the ice making main body 31 below the freezing point by evaporating the refrigerant, while compressing it by the compressor 61. When the discharged refrigerant flows in through the bypass pipeline 66 and passes through the refrigerant passage 321, the ice making main body 31 is heated.

入口温度センサS1は、冷媒管部32の入口ヘッダ32aの近傍に設置してある。この入口温度センサS1は、冷媒管部32に流入する入口の冷媒温度(以下、入口温度ともいう)を検出する検出手段であり、その検出結果である入口温度を入口温度信号として随時制御部40に送出するものである。 The inlet temperature sensor S1 is installed in the vicinity of the inlet header 32a of the refrigerant pipe portion 32. The inlet temperature sensor S1 is a detection means for detecting the refrigerant temperature (hereinafter, also referred to as inlet temperature) at the inlet flowing into the refrigerant pipe portion 32, and the inlet temperature which is the detection result is used as an inlet temperature signal at any time in the control unit 40. It is sent to.

出口温度センサS2は、冷媒管部32の出口ヘッダ32bの近傍に設置してある。この出口温度センサS2は、冷媒管部32から流出する出口の冷媒温度(以下、出口温度ともいう)を検出する検出手段であり、その検出結果である出口温度を出口温度信号として随時制御部40に送出するものである。 The outlet temperature sensor S2 is installed in the vicinity of the outlet header 32b of the refrigerant pipe portion 32. The outlet temperature sensor S2 is a detection means for detecting the refrigerant temperature (hereinafter, also referred to as outlet temperature) at the outlet flowing out from the refrigerant pipe unit 32, and the outlet temperature which is the detection result is used as an outlet temperature signal at any time in the control unit 40. It is sent to.

制御部40は、メモリ49に記憶されたプログラムやデータに従って製氷装置10を構成する製氷用冷凍回路60の各部の動作を統括的に制御する制御手段であり、入力処理部41、判定処理部42、圧縮機駆動処理部43、膨張弁開度処理部44及びバルブ駆動処理部45を備えている。 The control unit 40 is a control means that comprehensively controls the operation of each unit of the ice making refrigeration circuit 60 constituting the ice making device 10 according to the programs and data stored in the memory 49, and is an input processing unit 41 and a determination processing unit 42. A compressor drive processing unit 43, an expansion valve opening degree processing unit 44, and a valve drive processing unit 45 are provided.

尚、制御部40は、例えば、CPU(Central Processing Unit)等の処理装置にプログラムを実行させること、すなわち、ソフトウェアにより実現してもよいし、IC(Integrated Circuit)等のハードウェアにより実現してもよいし、ソフトウェア及びハードウェアを併用して実現してもよい。 The control unit 40 may be realized by, for example, a processing device such as a CPU (Central Processing Unit) executing a program, that is, by software, or by hardware such as an IC (Integrated Circuit). Alternatively, it may be realized by using software and hardware together.

入力処理部41は、入口温度センサS1から入口温度信号として送出された入口温度、出口温度センサS2から出口温度信号として送出された出口温度、並びに製氷装置10の動作を統括的に制御する主制御部100から指令信号として与えられた指令を入力するものである。 The input processing unit 41 is a main control that comprehensively controls the inlet temperature sent as an inlet temperature signal from the inlet temperature sensor S1, the outlet temperature sent as an outlet temperature signal from the outlet temperature sensor S2, and the operation of the ice making device 10. A command given as a command signal from unit 100 is input.

判定処理部42は、後述する製氷制御処理において、入力処理部41を通じて入力された出口温度が0℃以下であるか否か、あるいは入力処理部41を通じて入力された出口温度と入口温度が略等しいか否かの判定を行うものである。 In the ice making control process described later, the determination processing unit 42 indicates whether or not the outlet temperature input through the input processing unit 41 is 0 ° C. or lower, or the outlet temperature input through the input processing unit 41 and the inlet temperature are substantially equal to each other. It determines whether or not it is.

圧縮機駆動処理部43は、圧縮機61に対して駆動指令及び駆動停止指令を送出して、圧縮機61を駆動及び駆動停止にさせるものである。 The compressor drive processing unit 43 sends a drive command and a drive stop command to the compressor 61 to drive and stop the compressor 61.

膨張弁開度処理部44は、電子膨張弁63に対して開度指令を送出して、電子膨張弁63の開度を調整するものである。 The expansion valve opening degree processing unit 44 sends an opening degree command to the electronic expansion valve 63 to adjust the opening degree of the electronic expansion valve 63.

バルブ駆動処理部45は、第1バルブ65及び第2バルブ67に対して、開指令又は閉指令を送出し、第1バルブ65及び第2バルブ67を開状態又は閉状態にさせるものである。 The valve drive processing unit 45 sends an open command or a close command to the first valve 65 and the second valve 67 to bring the first valve 65 and the second valve 67 into the open or closed state.

以上のような構成を有する製氷装置10においては、主制御部100より製氷指令信号が与えられて入力処理部41を通じてその製氷指令を入力した場合、制御部40が製氷制御処理を実施する。 In the ice making device 10 having the above configuration, when an ice making command signal is given from the main control unit 100 and the ice making command is input through the input processing unit 41, the control unit 40 executes the ice making control process.

図5は、図2に示した制御部40が実施する製氷制御処理の処理内容を示すフローチャートである。 FIG. 5 is a flowchart showing the processing content of the ice making control process performed by the control unit 40 shown in FIG.

尚、この製氷制御処理の説明の前提として、第1バルブ65が開状態となるとともに第2バルブ67が閉状態となっており、また貯水部20に貯留された水は4℃程度に冷却され、しかも貯水部20の水は上限水位にまで達していて中空部311に製氷水として進入しているものとする。 As a premise of the explanation of this ice making control process, the first valve 65 is in the open state and the second valve 67 is in the closed state, and the water stored in the water storage unit 20 is cooled to about 4 ° C. Moreover, it is assumed that the water in the water storage unit 20 has reached the upper limit water level and has entered the hollow portion 311 as ice making water.

この製氷制御処理において制御部40は、圧縮機駆動処理部43を通じて圧縮機61に駆動指令を送出するとともに、膨張弁開度処理部44を通じて電子膨張弁63に全開指令を送出し、製氷を開始する(ステップS101)。 In this ice making control process, the control unit 40 sends a drive command to the compressor 61 through the compressor drive processing unit 43, and also sends a full opening command to the electronic expansion valve 63 through the expansion valve opening processing unit 44 to start ice making. (Step S101).

これにより、製氷用冷凍回路60においては、圧縮機61で圧縮された冷媒が凝縮器62で凝縮し、電子膨張弁63で断熱膨張した後に冷媒管部32の各冷媒通路321を通過する。そして、電子膨張弁63の開度を全開にすることで製氷用冷凍回路60を循環する冷媒の循環量を増大し、冷媒管部32を通過する冷媒量を増加させる。 As a result, in the ice-making refrigeration circuit 60, the refrigerant compressed by the compressor 61 is condensed by the condenser 62, adiabatically expanded by the electronic expansion valve 63, and then passes through each refrigerant passage 321 of the refrigerant pipe portion 32. Then, by fully opening the opening degree of the electronic expansion valve 63, the circulation amount of the refrigerant circulating in the ice-making refrigeration circuit 60 is increased, and the amount of the refrigerant passing through the refrigerant pipe portion 32 is increased.

上記ステップS101を開始してから所定時間が経過した場合(ステップS102:Yes)、制御部40は、入力処理部41を通じて随時入力する入口温度に応じて、すなわち製氷部30での冷却負荷の低減に応じて膨張弁開度処理部44を通じて電子膨張弁63に開度低減指令を送出し、入口温度を0℃以下に冷却する(ステップS103)。 When a predetermined time has elapsed since the start of step S101 (step S102: Yes), the control unit 40 reduces the cooling load in the ice making unit 30 according to the inlet temperature input at any time through the input processing unit 41. In response to this, an opening degree reduction command is sent to the electronic expansion valve 63 through the expansion valve opening degree processing unit 44 to cool the inlet temperature to 0 ° C. or lower (step S103).

これにより、冷媒管部32においては、入口温度が低下し、この入口温度に追従するように出口温度が低下していく。 As a result, in the refrigerant pipe portion 32, the inlet temperature is lowered, and the outlet temperature is lowered so as to follow the inlet temperature.

上記ステップS103を実施した後に、制御部40は、入力処理部41を通じて入力した出口温度が0℃以下であると判定処理部42を通じて判定した場合(ステップS104:Yes)、入力処理部41を通じて随時入力する入口温度に応じて、膨張弁開度処理部44を通じて電子膨張弁63に開度低減指令を送出し、冷媒管部32の入口が冷えすぎるのを抑制しながら冷媒管部32の全体を0℃以下に冷却することで、製氷水を0℃以下に冷却する(ステップS105)。 After performing the above step S103, when the control unit 40 determines through the determination processing unit 42 that the outlet temperature input through the input processing unit 41 is 0 ° C. or lower (step S104: Yes), the control unit 40 may use the input processing unit 41 at any time. An opening reduction command is sent to the electronic expansion valve 63 through the expansion valve opening processing unit 44 according to the input inlet temperature, and the entire refrigerant pipe unit 32 is pressed while suppressing the inlet of the refrigerant pipe unit 32 from becoming too cold. By cooling to 0 ° C. or lower, the ice-making water is cooled to 0 ° C. or lower (step S105).

これにより、製氷部30の中空部311の製氷水は冷却され、0℃以下となると吸熱量が減るため、入口温度と出口温度との温度差である過熱度が小さくなる。 As a result, the ice-making water in the hollow portion 311 of the ice-making portion 30 is cooled, and when the temperature becomes 0 ° C. or lower, the amount of heat absorbed is reduced, so that the degree of superheat, which is the temperature difference between the inlet temperature and the outlet temperature, is reduced.

上記ステップS105を実施した後に、制御部40は、入力処理部41を通じて入力した入口温度と出口温度とが近接して略等しいと判定処理部42を通じて判定した場合(ステップS106:Yes)、膨張弁開度処理部44を通じて電子膨張弁63に開度低減指令を送出して過熱度を大きくしつつ、出口温度を0℃以下に維持して種氷を生成する(ステップS107)。 After performing the above step S105, when the control unit 40 determines through the determination processing unit 42 that the inlet temperature and the outlet temperature input through the input processing unit 41 are close to each other and substantially equal (step S106: Yes), the expansion valve An opening degree reduction command is sent to the electronic expansion valve 63 through the opening degree processing unit 44 to increase the degree of superheat, while maintaining the outlet temperature at 0 ° C. or lower to generate seed ice (step S107).

上記ステップS107を開始してから所定時間が経過した場合(ステップS108:Yes)、制御部40は、入力処理部41を通じて随時入力する入口温度及び出口温度に応じて膨張弁開度処理部44を通じて電子膨張弁63に開度増大指令又は開度低減指令を送出することにより、過熱度が2℃以下になるよう電子膨張弁63の開度を調整し(ステップS109)、その後に手順をリターンして今回の処理を終了する。 When a predetermined time has elapsed since the start of step S107 (step S108: Yes), the control unit 40 passes through the expansion valve opening degree processing unit 44 according to the inlet temperature and the outlet temperature that are input at any time through the input processing unit 41. By sending an opening increase command or an opening decrease command to the electronic expansion valve 63, the opening degree of the electronic expansion valve 63 is adjusted so that the degree of superheat becomes 2 ° C. or less (step S109), and then the procedure is returned. And end this process.

これによれば、製氷部30のすべて製氷水から略同時に氷を生成することができ、氷の生成時間にバラツキが生ずることを抑制することができる。 According to this, ice can be generated from all the ice-making water of the ice-making unit 30 at substantially the same time, and it is possible to suppress the occurrence of variation in the ice-making time.

ところで、かかる製氷制御処理にて製氷本体31の中空部311に氷塊が形成されると、制御部40は、バルブ駆動処理部45を通じて第1バルブ65に閉指令を送出するとともに第2バルブ67に開指令を送出する。これにより、圧縮機61で圧縮された冷媒は、バイパス管路66を通過して冷媒管部32の各冷媒通路321をホットガスとして通過する。この結果、製氷本体31は加熱され、氷塊のうち中空部311の内壁面に接している境界部分は融解される。その後に、図示せぬ氷搬出手段を駆動させることで、中空部311の氷塊を該中空部311の上面開口311bを通じて所定の部位に搬出することができる。かかる氷塊が搬出された後、圧縮機61の駆動を停止させる。 By the way, when an ice block is formed in the hollow portion 311 of the ice making main body 31 by the ice making control process, the control unit 40 sends a closing command to the first valve 65 through the valve drive processing unit 45 and sends a closing command to the second valve 67. Send an open command. As a result, the refrigerant compressed by the compressor 61 passes through the bypass pipe line 66 and passes through each refrigerant passage 321 of the refrigerant pipe portion 32 as hot gas. As a result, the ice making body 31 is heated, and the boundary portion of the ice block in contact with the inner wall surface of the hollow portion 311 is melted. After that, by driving the ice carrying-out means (not shown), the ice block of the hollow portion 311 can be carried out to a predetermined portion through the upper surface opening 311b of the hollow portion 311. After the ice block is carried out, the drive of the compressor 61 is stopped.

以上説明したように、本発明の実施の形態である製氷装置10によれば、制御部40が、製氷指令が与えられた場合に、電子膨張弁63の開度を全開にさせた後に製氷部30での冷却負荷の低減に応じて電子膨張弁63の開度を減少させ、更に過熱度が2℃以下となる態様で電子膨張弁63の開度を調整するので、氷の生成時間にバラツキが生ずることを抑制することができ、製氷部30にて良好に氷を生成して圧縮機61の駆動時間の短縮化を図ることができる。 As described above, according to the ice making device 10 according to the embodiment of the present invention, when the ice making command is given, the ice making unit 40 opens the opening degree of the electronic expansion valve 63 fully. Since the opening degree of the electronic expansion valve 63 is reduced according to the reduction of the cooling load at 30 and the opening degree of the electronic expansion valve 63 is adjusted in such a manner that the degree of superheat is 2 ° C. or less, the ice formation time varies. Can be suppressed, and ice can be satisfactorily generated in the ice making section 30 to shorten the driving time of the compressor 61.

上記製氷装置10によれば、制御部40が、製氷部30での冷却負荷の低減に応じて電子膨張弁63の開度を減少させて過熱度が近接した場合に、電子膨張弁63の開度を更に減少させて過熱度を増加させるので、種氷を生成することができ、水が過冷却状態で残存することを防止することができる。 According to the ice making device 10, when the control unit 40 reduces the opening degree of the electronic expansion valve 63 according to the reduction of the cooling load in the ice making unit 30 and the degree of superheat approaches, the electronic expansion valve 63 is opened. Since the degree is further reduced and the degree of superheating is increased, seed ice can be generated and water can be prevented from remaining in the supercooled state.

上記製氷装置10によれば、製氷部30を構成する製氷本体31及び冷媒管部32はアルミニウムにより形成されているので、製造コストの低減化を図ることができるとともに、伝熱性能の向上を図ることができる。しかも、製氷本体31と冷媒管部32とは同種の金属で接合されているので、従来の銅とステンレスとの異種金属の接合で問題となったガルバニック腐食等が生ずる虞れがない。 According to the ice making device 10, since the ice making main body 31 and the refrigerant pipe portion 32 constituting the ice making portion 30 are made of aluminum, the manufacturing cost can be reduced and the heat transfer performance can be improved. be able to. Moreover, since the ice making main body 31 and the refrigerant pipe portion 32 are joined by the same type of metal, there is no possibility that galvanic corrosion or the like, which is a problem in the conventional joining of dissimilar metals between copper and stainless steel, will occur.

上記製氷装置10によれば、製氷本体31が複数の筒状体が互いに連続する態様で形成されてなり、冷媒管部32が複数の冷媒通路321が並設された扁平状を成していることから、製氷本体31と冷媒管部32との熱的な接続は面接触で行うことができ、伝熱面積を増大させて伝熱効率の向上を図ることができる。 According to the ice making device 10, the ice making main body 31 is formed in such a manner that a plurality of tubular bodies are continuous with each other, and the refrigerant pipe portion 32 has a flat shape in which a plurality of refrigerant passages 321 are arranged side by side. Therefore, the ice making main body 31 and the refrigerant pipe portion 32 can be thermally connected by surface contact, and the heat transfer area can be increased to improve the heat transfer efficiency.

以上、本発明の好適な実施の形態について説明したが、本発明はこれに限定されるものではなく、種々の変更を行うことができる。 Although the preferred embodiment of the present invention has been described above, the present invention is not limited to this, and various modifications can be made.

上述した実施の形態では、電子膨張弁63の開度を増減させることにより、製氷用冷凍回路60における冷媒の循環量を調整していたが、本発明においては、圧縮機の回転数を増減させることにより、製氷用冷凍回路における冷媒の循環量を調整してもよい。 In the above-described embodiment, the circulation amount of the refrigerant in the ice-making refrigeration circuit 60 is adjusted by increasing or decreasing the opening degree of the electronic expansion valve 63, but in the present invention, the rotation speed of the compressor is increased or decreased. Thereby, the circulation amount of the refrigerant in the ice making refrigeration circuit may be adjusted.

上述した実施の形態では特に言及していないが、製氷部にて氷を生成する際に、冷媒管路を通過する冷媒の温度を急激に変化させることにより、生成される氷にクラックを生じさせてもよい。これによれば、生成された氷を破砕するのに要する負荷の低減化を図ることができる。 Although not particularly mentioned in the above-described embodiment, when ice is generated in the ice making section, the temperature of the refrigerant passing through the refrigerant pipe is suddenly changed to cause cracks in the generated ice. You may. According to this, it is possible to reduce the load required for crushing the generated ice.

10 製氷装置
20 貯水部
30 製氷部
31 製氷本体
31a 筒状体
311 中空部
32 冷媒管部
321 冷媒通路
32a 入口ヘッダ
32b 出口ヘッダ
40 制御部
41 入力処理部
42 判定処理部
43 圧縮機駆動処理部
44 膨張弁開度処理部
45 バルブ駆動処理部
50 給水ライン
51 給水ポンプ
60 製氷用冷凍回路
61 圧縮機
62 凝縮器
63 電子膨張弁
64 冷媒管路
65 第1バルブ
66 バイパス管路
67 第2バルブ
S1 入口温度センサ
S2 出口温度センサ
10 Ice making device 20 Water storage part 30 Ice making part 31 Ice making body 31a Cylindrical body 311 Hollow part 32 Refrigerant pipe part 321 Refrigerant passage 32a Inlet header 32b Outlet header 40 Control unit 41 Input processing unit 42 Judgment processing unit 43 Compressor drive processing unit 44 Expansion valve opening processing unit 45 Valve drive processing unit 50 Water supply line 51 Water supply pump 60 Ice making refrigeration circuit 61 Compressor 62 Condenser 63 Electronic expansion valve 64 Refrigerant pipeline 65 1st valve 66 Bypass pipeline 67 2nd valve S1 inlet Temperature sensor S2 Outlet temperature sensor

Claims (3)

圧縮機が駆動する場合に、該圧縮機、凝縮器、電子膨張弁及び蒸発器の順に冷媒を循環させることにより、前記蒸発器を内蔵した製氷部において氷の生成を行う製氷用冷凍回路を備えた製氷装置であって、
製氷指令が与えられた場合に、前記電子膨張弁の開度を全開にさせて前記製氷用冷凍回路における冷媒の循環量を増大させた後に前記製氷部での冷却負荷の低減に応じて前記電子膨張弁の開度を減少させて前記循環量を減少させることにより、前記蒸発器の入口の冷媒温度を0℃以下にしてから該蒸発器の出口の冷媒温度を0℃以下にし、前記蒸発器の入口の冷媒温度と出口の冷媒温度との差である過熱度が0℃に近接したときに、前記電子膨張弁の開度を更に減少させて前記過熱度を増加させ、前記過熱度が2℃以下となる態様で前記電子膨張弁の開度を調整して前記循環量を調整する制御手段を備えたことを特徴とする製氷装置。
When the compressor is driven, it is provided with an ice-making refrigeration circuit that generates ice in the ice-making section containing the evaporator by circulating the refrigerant in the order of the compressor, the condenser, the electronic expansion valve, and the evaporator. It is an ice making device
When an ice making command is given, the opening of the electronic expansion valve is fully opened to increase the circulation amount of the refrigerant in the ice making refrigerating circuit, and then the electrons are reduced in response to the reduction of the cooling load in the ice making section. the Rukoto reducing the circulation rate by decreasing the opening degree of the expansion valve, the refrigerant temperature at the outlet of the evaporator inlet evaporator refrigerant temperature after the 0 ℃ below the 0 ℃ below, the evaporating When the degree of superheat, which is the difference between the refrigerant temperature at the inlet of the vessel and the refrigerant temperature at the outlet, approaches 0 ° C., the opening degree of the electronic expansion valve is further reduced to increase the degree of superheat, and the degree of superheat is increased. An ice making apparatus including a control means for adjusting the opening degree of the electronic expansion valve to adjust the circulation amount in a mode of 2 ° C. or lower.
前記製氷部は、複数の筒状体が互いに連続する態様で並設された製氷本体を備え、
前記蒸発器は、複数の冷媒通路が並設された扁平状の冷媒管部を有しており、該冷媒管部が前記製氷本体の前面と後面とに内面が熱的に接続する態様で該製氷本体の周囲に湾曲して設けられて前記製氷部に内蔵されたことを特徴とする請求項1に記載の製氷装置。
The ice-making unit includes an ice-making body in which a plurality of tubular bodies are arranged side by side in a manner in which a plurality of tubular bodies are continuous with each other.
The evaporator has a flat refrigerant pipe portion in which a plurality of refrigerant passages are arranged side by side, and the refrigerant pipe portion is configured such that the inner surface is thermally connected to the front surface and the rear surface of the ice making main body. The ice-making apparatus according to claim 1, wherein the ice-making apparatus is provided so as to be curved around the ice-making main body and is incorporated in the ice-making portion.
前記製氷本体と前記冷媒管部とがアルミニウムにより形成されたことを特徴とする請求項に記載の製氷装置。 The ice making apparatus according to claim 2 , wherein the ice making main body and the refrigerant pipe portion are made of aluminum.
JP2017098077A 2017-03-01 2017-05-17 Ice maker Active JP6855920B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017098077A JP6855920B2 (en) 2017-05-17 2017-05-17 Ice maker
US15/905,236 US10663203B2 (en) 2017-03-01 2018-02-26 Ice making device
CN201810171095.1A CN108534414A (en) 2017-03-01 2018-03-01 Ice maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017098077A JP6855920B2 (en) 2017-05-17 2017-05-17 Ice maker

Publications (2)

Publication Number Publication Date
JP2018194232A JP2018194232A (en) 2018-12-06
JP6855920B2 true JP6855920B2 (en) 2021-04-07

Family

ID=64569862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017098077A Active JP6855920B2 (en) 2017-03-01 2017-05-17 Ice maker

Country Status (1)

Country Link
JP (1) JP6855920B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1669705A1 (en) * 2003-10-03 2006-06-14 Hoshizaki Denki Kabushiki Kaisha Auger-type ice-making machine
JP4798116B2 (en) * 2007-10-30 2011-10-19 富士電機株式会社 Refrigerant flow control device
JP2009121768A (en) * 2007-11-15 2009-06-04 Hoshizaki Electric Co Ltd Automatic ice making machine and control method for it
JP5962054B2 (en) * 2012-02-27 2016-08-03 富士電機株式会社 Auger ice machine and cooling system

Also Published As

Publication number Publication date
JP2018194232A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP4059616B2 (en) Heat pump water heater
US9316423B2 (en) Container refrigeration apparatus
EP2115366B1 (en) Refrigerator and control method for the same
JP6580149B2 (en) Refrigeration cycle equipment
JP5421717B2 (en) Refrigeration cycle apparatus and hot water heater
US10663203B2 (en) Ice making device
JP2005315558A (en) Heat pump water heater
WO2006120922A1 (en) Refrigeration cycle system
JP2002195670A (en) Transcritical vapor compression system, and suction lien heat exchanger regulating pressure of high-pressure component of refrigerant circulating in the system
EP2918921B1 (en) Hot water generator
JP2009052880A (en) Heat pump water heater
JP6855920B2 (en) Ice maker
JP5320382B2 (en) Method and apparatus for defrosting air refrigerant refrigeration system
JP5716207B1 (en) Cooling system
JP2005180751A (en) Refrigeration device, and operation control method of the same
JP2015172452A (en) hot water generator
JP2006010181A (en) Deicing operation method of automatic ice making machine
US20190072312A1 (en) Chilling system using waste heat recovery by chiller discharge gas
JP5544840B2 (en) Container refrigeration equipment
JP2009109069A (en) Heat pump water heater
JP5556170B2 (en) Container refrigeration equipment
JP2006038386A (en) Cooling device
JP2008057862A (en) Ice making machine
JP2002071228A (en) Control device for refrigerating cycle
JP2005351537A (en) Refrigerating cycle system and its control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6855920

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150