JP4798116B2 - Refrigerant flow control device - Google Patents

Refrigerant flow control device Download PDF

Info

Publication number
JP4798116B2
JP4798116B2 JP2007282360A JP2007282360A JP4798116B2 JP 4798116 B2 JP4798116 B2 JP 4798116B2 JP 2007282360 A JP2007282360 A JP 2007282360A JP 2007282360 A JP2007282360 A JP 2007282360A JP 4798116 B2 JP4798116 B2 JP 4798116B2
Authority
JP
Japan
Prior art keywords
temperature
temperature difference
temperature sensor
opening degree
electronic expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007282360A
Other languages
Japanese (ja)
Other versions
JP2009109082A (en
Inventor
祐司 鈴木
浅田  規
晴彦 須藤
賢二 平田
健 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2007282360A priority Critical patent/JP4798116B2/en
Publication of JP2009109082A publication Critical patent/JP2009109082A/en
Application granted granted Critical
Publication of JP4798116B2 publication Critical patent/JP4798116B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、開度に応じて蒸発器に流入する冷媒量を制御する電子膨張弁と、蒸発器における冷媒流通路の入口部から出口部までの間に、入口部からの距離が互いに異なる態様で設置した3つの温度センサと、それらの温度センサの検出結果に応じて電子膨張弁の開度を調節する弁開度調節手段とを備える冷媒流量制御装置に関するものである。   The present invention is an aspect in which the distance from the inlet portion is different between the electronic expansion valve that controls the amount of refrigerant flowing into the evaporator according to the opening degree and the inlet portion to the outlet portion of the refrigerant flow passage in the evaporator. The present invention relates to a refrigerant flow rate control device including three temperature sensors installed in the above and valve opening degree adjusting means for adjusting the opening degree of an electronic expansion valve according to the detection results of those temperature sensors.

例えば、商品を冷却した状態で陳列販売するオープンショーケースにおいては、収容庫の内部に蒸発器が設けられ、かつ収容庫の外部に圧縮機、凝縮器、および電子膨張弁が設けられており、これら蒸発器、圧縮機、凝縮器および電子膨張弁に冷媒を供給循環することによって冷凍サイクルを構成し、この冷凍サイクルで収容庫の内部を所定の温度状態に維持するようにしている。   For example, in an open showcase that displays and sells products in a cooled state, an evaporator is provided inside the container, and a compressor, a condenser, and an electronic expansion valve are provided outside the container, A refrigerant is supplied and circulated to the evaporator, the compressor, the condenser, and the electronic expansion valve to constitute a refrigeration cycle, and the inside of the container is maintained at a predetermined temperature state by the refrigeration cycle.

この種のオープンショーケースの中には、開度に応じて蒸発器に流入する冷媒量を制御する電子膨張弁と、蒸発器における冷媒流通路(蒸発管)の入口部から出口部までの間に、入口部からの距離が互いに異なる態様で設置した3つの温度センサと、それらの温度センサの検出結果に応じて電子膨張弁の開度を調節する弁開度調節手段とを備えるものがある。各温度センサは、例えば蒸発管の周面にそれぞれ取り付けてあり、設置位置の蒸発管表面の温度を検出することで、当該位置を通過する冷媒温度を近似的に検出するものである。これら3つの温度センサのうち、第1の温度センサ(入口側温度センサ)は例えば蒸発管の入口部に設置してあり、第2の温度センサ(出口側温度センサ)は蒸発管の出口部に設置してあり、第3の温度センサ(中間温度センサ)は蒸発管の入口部と出口部との間の中間位置に設置してある。   In this type of open showcase, there is an electronic expansion valve that controls the amount of refrigerant flowing into the evaporator according to the opening, and between the inlet part and outlet part of the refrigerant flow passage (evaporator pipe) in the evaporator. In addition, there are some equipped with three temperature sensors installed in a manner in which the distances from the inlet portions are different from each other, and a valve opening degree adjusting means for adjusting the opening degree of the electronic expansion valve according to the detection result of those temperature sensors. . Each temperature sensor is attached to, for example, the circumferential surface of the evaporator tube, and detects the temperature of the refrigerant tube passing through the position by detecting the temperature of the surface of the evaporator tube at the installation position. Of these three temperature sensors, the first temperature sensor (inlet side temperature sensor) is installed, for example, at the inlet of the evaporation pipe, and the second temperature sensor (outlet side temperature sensor) is located at the outlet of the evaporator pipe. The third temperature sensor (intermediate temperature sensor) is installed at an intermediate position between the inlet and outlet of the evaporation pipe.

このオープンショーケースは、3つの温度センサの検出結果に応じて電子膨張弁で蒸発器に流入する冷媒量を制御することによって、冷却効率が低下することを防止するとともに、蒸発器の出口部から液体の冷媒と気体の冷媒とが混合したものが吐出されて圧縮機に入る、いわゆる液バックと呼ばれる現象が発生するのを防止するようにしている。   This open showcase prevents the cooling efficiency from decreasing by controlling the amount of refrigerant flowing into the evaporator with an electronic expansion valve according to the detection results of the three temperature sensors, and from the outlet of the evaporator. A phenomenon called a so-called liquid back, in which a mixture of a liquid refrigerant and a gaseous refrigerant is discharged and enters the compressor, is prevented.

具体的には、出口側温度センサによって検出した出口側温度から、中間温度センサによって検出した中間温度を差し引いた温度差(いわゆる過熱度)に応じて以下に記載するよう電子膨張弁の開度を変更する。   Specifically, the opening degree of the electronic expansion valve is set as described below according to a temperature difference (so-called superheat degree) obtained by subtracting the intermediate temperature detected by the intermediate temperature sensor from the outlet side temperature detected by the outlet side temperature sensor. change.

予め設定した下限閾値である1[K]より上記温度差が小さい場合には、電子膨張弁の開度を縮小することで上記温度差を大きくし、液バックが発生することを防止している。この液バックの発生を防止すれば、液バックの発生に起因した圧縮機の破損を防止することができる。   When the temperature difference is smaller than 1 [K] which is a preset lower limit threshold, the temperature difference is increased by reducing the opening of the electronic expansion valve, thereby preventing the occurrence of liquid back. . By preventing the occurrence of this liquid back, it is possible to prevent the compressor from being damaged due to the occurrence of the liquid back.

一方、予め設定した上限閾値である5[K]より上記温度差が大きい場合には、電子膨張弁の開度を拡大することで上記温度差を小さくし、冷却効率を向上させる。   On the other hand, when the temperature difference is larger than 5 [K] which is a preset upper threshold, the temperature difference is reduced by increasing the opening of the electronic expansion valve, and the cooling efficiency is improved.

また、上記温度差が、下限閾値以上であって上限閾値以下である場合には電子膨張弁の開度を維持している。   Further, when the temperature difference is not less than the lower limit threshold and not more than the upper limit threshold, the opening degree of the electronic expansion valve is maintained.

また、上記冷媒流量制御装置は、入口側温度が中間温度より低い場合には、電子膨張弁の開度を拡大することで、蒸発管で発生する圧力損失をも考慮した上で冷却効率が低下することを防止できる(例えば、特願2006−179966参照)。   In addition, when the inlet side temperature is lower than the intermediate temperature, the above refrigerant flow rate control device reduces the cooling efficiency in consideration of the pressure loss generated in the evaporation pipe by increasing the opening of the electronic expansion valve. (For example, see Japanese Patent Application No. 2006-179966).

ところで、上記冷媒流量制御装置において、蒸発管から上記温度センサが外れた場合には、正規の温度を温度センサで検出することができない虞れがある。具体的に説明すると、蒸発管から温度センサが外れると、当該温度センサは、蒸発管の周囲の空気温度を検出することとなる。蒸発管の周囲の空気温度が、蒸発管の表面温度より高いため、温度センサは、正規の温度より高い温度を検出することとなる。このように、正規の温度を検出できない温度センサが一つでもある場合には、冷却効率の低下を防止し、かつ液バックの発生を防止した電子膨張弁の開度制御を行うことができない。   By the way, in the said refrigerant | coolant flow control apparatus, when the said temperature sensor remove | deviates from an evaporation pipe, there exists a possibility that regular temperature cannot be detected with a temperature sensor. More specifically, when the temperature sensor is removed from the evaporator tube, the temperature sensor detects the temperature of the air around the evaporator tube. Since the temperature of the air around the evaporator tube is higher than the surface temperature of the evaporator tube, the temperature sensor detects a temperature higher than the normal temperature. Thus, when there is even one temperature sensor that cannot detect the normal temperature, it is impossible to control the opening degree of the electronic expansion valve that prevents the cooling efficiency from decreasing and prevents the occurrence of liquid back.

この問題を解決するには、上記蒸発管から温度センサが外れたことを検出する脱落検出センサを各温度センサ毎に設ける必要がある。しかしながら、各温度センサにそのような脱落検出センサを設けた場合には、部品点数が増加することとなる。   In order to solve this problem, it is necessary to provide a drop-off detection sensor for each temperature sensor for detecting that the temperature sensor has been detached from the evaporation pipe. However, when such a drop detection sensor is provided in each temperature sensor, the number of parts increases.

本発明は、上記実情に鑑み、冷却効率の低下を防止し、かつ液バックの発生を防止するとともに、部品点数の増加を可及的に防止することができる冷媒流量制御装置を提供することにある。   In view of the above circumstances, the present invention provides a refrigerant flow rate control device capable of preventing a decrease in cooling efficiency, preventing the occurrence of liquid back, and preventing the increase in the number of components as much as possible. is there.

上記の目的を達成するために、請求項1に係る発明は、開度に応じて蒸発器に流入する冷媒量を制御する電子膨張弁と、前記蒸発器における冷媒流通路の入口部から出口部までの間に、前記入口部からの距離が互いに異なる態様で設置した3つの温度センサと、最も上流側に設置した入口側温度センサで検出した入口側温度が、前記入口側温度センサの下流側に設置した中間温度センサで検出した中間温度より低い場合には前記電子膨張弁の開度を拡大し、かつ中間温度センサの下流側に設置した出口側温度センサで検出した出口側温度から前記中間温度を差し引いた温度差が予め設定した下限閾値よりも小さい場合には前記電子膨張弁の開度を縮小する一方、前記温度差が予め設定した上限閾値よりも大きい場合には前記電子膨張弁の開度を拡大する弁開度調節手段と、前記中間温度から前記入口側温度を差し引いた上流側温度差を算出し、かつ前記中間温度から前記出口側温度を差し引いた下流側温度差を算出し、前記上流側温度差と予め設定した第1閾値とを比較し、かつ前記下流側温度差と予め設定した第2閾値とを比較し、前記上流側温度差が前記第1閾値よりも大きく、かつ前記下流側温度差が第2閾値よりも大きいことを条件としてエラー出力を行うエラー出力手段とを備えることを特徴とする。   In order to achieve the above object, the invention according to claim 1 includes an electronic expansion valve that controls the amount of refrigerant flowing into the evaporator according to the opening, and an inlet portion to an outlet portion of the refrigerant flow passage in the evaporator. Until the inlet side temperature detected by the three temperature sensors installed at different distances from the inlet part and the inlet side temperature sensor installed at the most upstream side is the downstream side of the inlet side temperature sensor. If the temperature is lower than the intermediate temperature detected by the intermediate temperature sensor installed at the intermediate temperature sensor, the opening of the electronic expansion valve is expanded and the intermediate temperature is detected from the outlet side temperature detected by the outlet side temperature sensor installed downstream of the intermediate temperature sensor. When the temperature difference obtained by subtracting the temperature is smaller than a preset lower limit threshold, the opening degree of the electronic expansion valve is reduced. On the other hand, when the temperature difference is greater than a preset upper limit threshold, the electronic expansion valve Opening A valve opening degree adjusting means that expands, calculates an upstream temperature difference obtained by subtracting the inlet side temperature from the intermediate temperature, and calculates a downstream temperature difference obtained by subtracting the outlet side temperature from the intermediate temperature; A side temperature difference is compared with a preset first threshold value, and the downstream temperature difference is compared with a preset second threshold value, and the upstream temperature difference is greater than the first threshold value and the downstream side. Error output means for outputting an error on condition that the side temperature difference is larger than a second threshold value.

また、上記の目的を達成するために、請求項2に係る発明は、開度に応じて蒸発器に流入する冷媒量を制御する電子膨張弁と、前記蒸発器における冷媒流通路の入口部から出口部までの間に、前記入口部からの距離が互いに異なる態様で設置した3つの温度センサと、最も上流側に設置した入口側温度センサで検出した入口側温度が、前記入口側温度センサの下流側に設置した中間温度センサで検出した中間温度より低い場合には前記電子膨張弁の開度を拡大し、かつ中間温度センサの下流側に設置した出口側温度センサで検出した出口側温度から前記中間温度を差し引いた温度差が予め設定した下限閾値よりも小さい場合には前記電子膨張弁の開度を縮小する一方、前記温度差が予め設定した上限閾値よりも大きい場合には前記電子膨張弁の開度を拡大する弁開度調節手段と、前記中間温度から前記入口側温度を差し引いた上流側温度差を算出し、かつ前記中間温度から前記出口側温度を差し引いた下流側温度差を算出し、前記上流側温度差と予め設定した第1閾値とを比較し、かつ前記下流側温度差と予め設定した第2閾値とを比較し、前記上流側温度差が前記第1閾値よりも大きく、かつ前記下流側温度差が第2閾値よりも大きい場合にエラー出力を行うエラー出力手段とを備えることを特徴とする。   In order to achieve the above object, the invention according to claim 2 includes an electronic expansion valve that controls the amount of refrigerant flowing into the evaporator according to the opening, and an inlet portion of the refrigerant flow passage in the evaporator. The temperature on the inlet side detected by the three temperature sensors installed at different distances from the inlet part to the outlet part and the inlet side temperature sensor installed on the most upstream side is the temperature of the inlet side temperature sensor. When the temperature is lower than the intermediate temperature detected by the intermediate temperature sensor installed on the downstream side, the opening of the electronic expansion valve is enlarged, and from the outlet side temperature detected by the outlet side temperature sensor installed on the downstream side of the intermediate temperature sensor. When the temperature difference obtained by subtracting the intermediate temperature is smaller than a preset lower limit threshold, the opening degree of the electronic expansion valve is reduced. On the other hand, when the temperature difference is greater than a preset upper limit threshold, the electronic expansion is reduced. valve A valve opening degree adjusting means for enlarging the opening degree, calculating an upstream temperature difference obtained by subtracting the inlet side temperature from the intermediate temperature, and calculating a downstream temperature difference obtained by subtracting the outlet side temperature from the intermediate temperature. Comparing the upstream temperature difference with a preset first threshold value and comparing the downstream temperature difference with a preset second threshold value, wherein the upstream temperature difference is greater than the first threshold value, And an error output means for outputting an error when the downstream temperature difference is larger than a second threshold value.

請求項1に係る冷媒流量制御装置によれば、出口側温度から中間温度を差し引いた温度差が、予め設定した下限閾値よりも小さい場合には弁開度調節手段が電子膨張弁の開度を縮小するため、液バックの発生を防止することができる。しかも、上記温度差が、予め設定した上限閾値よりも大きい場合には弁開度調節手段が電子膨張弁の開度を拡大するため、冷却効率の低下を防止することができる。   According to the refrigerant flow control device of the first aspect, when the temperature difference obtained by subtracting the intermediate temperature from the outlet side temperature is smaller than the preset lower limit threshold, the valve opening degree adjusting means adjusts the opening degree of the electronic expansion valve. Since the size is reduced, the occurrence of liquid back can be prevented. In addition, when the temperature difference is larger than the preset upper limit threshold, the valve opening degree adjusting means enlarges the opening degree of the electronic expansion valve, so that it is possible to prevent the cooling efficiency from being lowered.

加えて、本発明に係る冷媒流量制御装置によれば、入口側温度が中間温度より低い場合には弁開度調節手段が電子膨張弁の開度を拡大するため、蒸発器の冷媒流通路で発生する圧力損失をも考慮した上で冷却効率が低下することを防止できる。   In addition, according to the refrigerant flow control device of the present invention, when the inlet side temperature is lower than the intermediate temperature, the valve opening degree adjusting means increases the opening degree of the electronic expansion valve. It is possible to prevent the cooling efficiency from being lowered in consideration of the generated pressure loss.

また、冷却装置を稼働している状態において、中間温度が、入口側温度より高く、かつ出口側温度より高くなる事態がない上、冷媒流通路から中間温度センサが外れた場合にのみ上述した事態が発生することに基づき、本発明に係る冷媒流量制御装置は、中間温度から入口側温度を差し引いた上流側温度差を算出し、かつ中間温度から出口側温度を差し引いた下流側温度差を算出し、上流側温度差と予め設定した第1閾値とを比較し、かつ下流側温度差と予め設定した第2閾値とを比較し、上流側温度差が第1閾値よりも大きく、かつ下流側温度差が第2閾値よりも大きいことを条件としてエラー出力を行うエラー出力手段を備えている。このような冷媒流量制御装置によれば、中間温度が、入口側温度よりも高く、かつ出口側温度よりも高いことを検出することができるため、冷媒流通路から中間温度センサが外れたことを検出することが可能である。従って、3つの温度センサのうち中間温度センサには、当該中間温度センサが冷媒流通路から外れたことを検出する脱落検出センサを設ける必要がないため、部品点数の増加を可及的に防止することができる。   In addition, in the state where the cooling device is operating, there is no situation where the intermediate temperature is higher than the inlet side temperature and higher than the outlet side temperature, and the situation described above only when the intermediate temperature sensor is removed from the refrigerant flow path. The refrigerant flow rate control device according to the present invention calculates the upstream temperature difference obtained by subtracting the inlet side temperature from the intermediate temperature, and calculates the downstream temperature difference obtained by subtracting the outlet temperature from the intermediate temperature. The upstream temperature difference is compared with a preset first threshold value, the downstream temperature difference is compared with a preset second threshold value, the upstream temperature difference is greater than the first threshold value, and the downstream side Error output means for outputting an error on condition that the temperature difference is larger than the second threshold value is provided. According to such a refrigerant flow control device, it is possible to detect that the intermediate temperature is higher than the inlet side temperature and higher than the outlet side temperature, so that the intermediate temperature sensor is removed from the refrigerant flow passage. It is possible to detect. Accordingly, the intermediate temperature sensor of the three temperature sensors does not need to be provided with a drop-off detection sensor that detects that the intermediate temperature sensor has been removed from the refrigerant flow path, and thus prevents an increase in the number of parts as much as possible. be able to.

請求項2に係る冷媒流量制御装置によれば、出口側温度から中間温度を差し引いた温度差が、予め設定した下限閾値よりも小さい場合には弁開度調節手段が電子膨張弁の開度を縮小するため、液バックの発生を防止することができる。しかも、上記温度差が、予め設定した上限閾値よりも大きい場合には弁開度調節手段が電子膨張弁の開度を拡大するため、冷却効率の低下を防止することができる。   According to the refrigerant flow control device of the second aspect, when the temperature difference obtained by subtracting the intermediate temperature from the outlet side temperature is smaller than the preset lower limit threshold, the valve opening degree adjusting means adjusts the opening degree of the electronic expansion valve. Since the size is reduced, the occurrence of liquid back can be prevented. In addition, when the temperature difference is larger than the preset upper limit threshold, the valve opening degree adjusting means enlarges the opening degree of the electronic expansion valve, so that it is possible to prevent the cooling efficiency from being lowered.

加えて、本発明に係る冷媒流量制御装置によれば、入口側温度が中間温度より低い場合には弁開度調節手段が電子膨張弁の開度を拡大するため、蒸発器の冷媒流通路で発生する圧力損失をも考慮した上で冷却効率が低下することを防止できる。   In addition, according to the refrigerant flow control device of the present invention, when the inlet side temperature is lower than the intermediate temperature, the valve opening degree adjusting means increases the opening degree of the electronic expansion valve. It is possible to prevent the cooling efficiency from being lowered in consideration of the generated pressure loss.

また、冷却装置を稼働している状態において、中間温度が、入口側温度より高く、かつ出口側温度より高くなる事態がない上、冷媒流通路から中間温度センサが外れた場合にのみ上述した事態が発生することに基づき、本発明に係る冷媒流量制御装置は、中間温度から入口側温度を差し引いた上流側温度差を算出し、かつ中間温度から出口側温度を差し引いた下流側温度差を算出し、上流側温度差と予め設定した第1閾値とを比較し、かつ下流側温度差と予め設定した第2閾値とを比較し、上流側温度差が第1閾値よりも大きく、かつ下流側温度差が第2閾値よりも大きい場合にエラー出力を行うエラー出力手段を備えている。このような冷媒流量制御装置によれば、中間温度が、入口側温度よりも高く、かつ出口側温度よりも高いことを検出することができるため、冷媒流通路から中間温度センサが外れたことを検出することが可能である。従って、3つの温度センサのうち中間温度センサには、当該中間温度センサが冷媒流通路から外れたことを検出する脱落検出センサを設ける必要がないため、部品点数の増加を可及的に防止することができる。   In addition, in the state where the cooling device is operating, there is no situation where the intermediate temperature is higher than the inlet side temperature and higher than the outlet side temperature, and the situation described above only when the intermediate temperature sensor is removed from the refrigerant flow path. The refrigerant flow rate control device according to the present invention calculates the upstream temperature difference obtained by subtracting the inlet side temperature from the intermediate temperature, and calculates the downstream temperature difference obtained by subtracting the outlet temperature from the intermediate temperature. The upstream temperature difference is compared with a preset first threshold value, the downstream temperature difference is compared with a preset second threshold value, the upstream temperature difference is greater than the first threshold value, and the downstream side Error output means for outputting an error when the temperature difference is larger than the second threshold value is provided. According to such a refrigerant flow control device, it is possible to detect that the intermediate temperature is higher than the inlet side temperature and higher than the outlet side temperature, so that the intermediate temperature sensor is removed from the refrigerant flow passage. It is possible to detect. Accordingly, the intermediate temperature sensor of the three temperature sensors does not need to be provided with a drop-off detection sensor that detects that the intermediate temperature sensor has been removed from the refrigerant flow path, and thus prevents an increase in the number of parts as much as possible. be able to.

以下、添付図面を適宜参照しながら、本発明に係る冷媒流量制御装置の好適な実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of a refrigerant flow control device according to the present invention will be described in detail with reference to the accompanying drawings as appropriate.

図1は、本発明の実施の形態に係る冷媒流量制御装置を適用した冷却装置の構成を示す説明図である。ここで例示する冷却装置は、収容庫10の内部に収容した商品を冷却した状態で陳列販売するオープンショーケース11に適用するもので、例えば収容庫10の内部に蒸発器12を備える一方、収容庫10の外部であって、オープンショーケース11の筐体の内部に電子膨張弁13を備え、かつオープンショーケース11の筐体の外部に圧縮機15、および凝縮器14を備えている。   FIG. 1 is an explanatory diagram showing a configuration of a cooling device to which a refrigerant flow rate control device according to an embodiment of the present invention is applied. The cooling device illustrated here is applied to the open showcase 11 that displays and sells products stored in the storage 10 in a cooled state. For example, the cooling device includes an evaporator 12 in the storage 10 while storing the product. An electronic expansion valve 13 is provided outside the cabinet 10 inside the casing of the open showcase 11, and a compressor 15 and a condenser 14 are provided outside the casing of the open showcase 11.

これら蒸発器12、圧縮機15、凝縮器14、および電子膨張弁13は、それぞれの間が冷媒供給管16によって接続してあり、冷媒が循環供給される冷凍サイクルを構成している。すなわち、この冷却装置では、圧縮機15から吐出された高温高圧のガス冷媒が凝縮器14において冷却されて高温高圧の液冷媒となる。この高温高圧の液冷媒は、電子膨張弁13により断熱膨張されて低温低圧の気液2相冷媒となり、収容庫10の蒸発器12に供給される。蒸発器12に供給された低温低圧の気液2相冷媒は、送風ファン17によって供給された収容庫10の空気と熱交換し、空気から吸熱することで低温低圧のガス冷媒となることにより収容庫10の冷却を行う。蒸発器12から吐出された低温低圧のガス冷媒は、圧縮機15に吸入され、かつ圧縮機15で圧縮されることにより再び高温高圧のガス冷媒となって凝縮器14に供給される。本実施形態では、電子膨張弁13として開度指令が与えられた場合にその開度指令に応じて開度を変更し、開度に応じて蒸発器12に流入する冷媒量を調節することができるものを適用している。また、蒸発器12の内部には、蒸発管12aを配設してある。この蒸発管12aは、蒸発器12の内部において、冷媒が通過する流路を構成するものである。   The evaporator 12, the compressor 15, the condenser 14, and the electronic expansion valve 13 are connected to each other by a refrigerant supply pipe 16 to constitute a refrigeration cycle in which refrigerant is circulated and supplied. That is, in this cooling device, the high-temperature and high-pressure gas refrigerant discharged from the compressor 15 is cooled in the condenser 14 to become a high-temperature and high-pressure liquid refrigerant. This high-temperature and high-pressure liquid refrigerant is adiabatically expanded by the electronic expansion valve 13 to become a low-temperature and low-pressure gas-liquid two-phase refrigerant, and is supplied to the evaporator 12 of the container 10. The low-temperature and low-pressure gas-liquid two-phase refrigerant supplied to the evaporator 12 exchanges heat with the air in the storage 10 supplied by the blower fan 17 and absorbs heat from the air to be stored as low-temperature and low-pressure gas refrigerant. The storage 10 is cooled. The low-temperature and low-pressure gas refrigerant discharged from the evaporator 12 is sucked into the compressor 15 and compressed by the compressor 15, so that it becomes high-temperature and high-pressure gas refrigerant and is supplied to the condenser 14 again. In this embodiment, when an opening degree command is given as the electronic expansion valve 13, the opening degree is changed according to the opening degree command, and the amount of refrigerant flowing into the evaporator 12 is adjusted according to the opening degree. Apply what you can. In addition, an evaporation pipe 12 a is disposed inside the evaporator 12. The evaporation pipe 12 a constitutes a flow path through which the refrigerant passes inside the evaporator 12.

蒸発器12における蒸発管12aの入口部から出口部までの間には、入口部からの距離が互いに異なる態様で3つの温度センサ21,22,23が設置してある。各温度センサ21,22,23は、例えば蒸発管12aの周面にそれぞれ取り付けてあり、取付位置の蒸発管12aの表面温度を検出することで、当該位置を通過する冷媒温度を近似的に検出するものである。   Three temperature sensors 21, 22 and 23 are installed between the inlet portion and the outlet portion of the evaporation pipe 12 a in the evaporator 12 in such a manner that the distances from the inlet portion are different from each other. Each temperature sensor 21, 22, 23 is attached to, for example, the peripheral surface of the evaporation pipe 12 a, and approximately detects the refrigerant temperature passing through the position by detecting the surface temperature of the evaporation pipe 12 a at the attachment position. To do.

温度センサ21,22,23のうち、第1温度センサ(入口側温度センサ)21は、蒸発管12aの入口部の周面に取り付けてある。この第1温度センサ21は、蒸発管12aの入口部を通過する冷媒温度を近似的に検出するものである(以下、この第1温度センサ21で検出される冷媒温度を、単に「入口側温度(入口部冷媒温度)T1」という)。   Of the temperature sensors 21, 22, and 23, the first temperature sensor (inlet side temperature sensor) 21 is attached to the peripheral surface of the inlet portion of the evaporation pipe 12a. The first temperature sensor 21 approximately detects the refrigerant temperature passing through the inlet portion of the evaporation pipe 12a (hereinafter, the refrigerant temperature detected by the first temperature sensor 21 is simply referred to as “inlet side temperature”. (Inlet portion refrigerant temperature) T1 ”).

温度センサ21,22,23のうち、第2温度センサ(中間温度センサ)22は、蒸発管12aの入口部と出口部との間の中間位置の周面に取り付けてある。この第2温度センサ22は、蒸発管12aの中間部を通過する冷媒温度を近似的に検出するものである(以下、この第2温度センサ22で検出される冷媒温度を、単に「中間温度(中間部冷媒温度)T2」という)。本実施の形態では、第2温度センサ22は、蒸発管12aの出口部近傍に取り付けてある。   Of the temperature sensors 21, 22, and 23, the second temperature sensor (intermediate temperature sensor) 22 is attached to a circumferential surface at an intermediate position between the inlet portion and the outlet portion of the evaporation pipe 12 a. The second temperature sensor 22 approximately detects the refrigerant temperature passing through the intermediate portion of the evaporation pipe 12a (hereinafter, the refrigerant temperature detected by the second temperature sensor 22 is simply referred to as “intermediate temperature ( Intermediate refrigerant temperature) T2 ”). In the present embodiment, the second temperature sensor 22 is attached in the vicinity of the outlet portion of the evaporation pipe 12a.

温度センサ21,22,23のうち、第3温度センサ(出口部温度センサ)23は、蒸発管12aの出口部の周面に取り付けてある。この第3温度センサ23は、蒸発管12aの出口部を通過する冷媒温度を近似的に検出するものである(以下、この第3温度センサ23で検出される冷媒温度を、単に「出口側温度(出口部冷媒温度)T3」という)。   Of the temperature sensors 21, 22, and 23, the third temperature sensor (outlet temperature sensor) 23 is attached to the peripheral surface of the outlet portion of the evaporation pipe 12a. The third temperature sensor 23 approximately detects the temperature of the refrigerant passing through the outlet portion of the evaporation pipe 12a (hereinafter, the refrigerant temperature detected by the third temperature sensor 23 is simply referred to as “exit side temperature”). (Exit portion refrigerant temperature) T3 ").

すなわち、上述した冷媒流量制御装置では、3つの温度センサ21,22,23のうち第1温度センサ21を最も上流側に設置してあり、第1温度センサ21の下流側に第2温度センサ22を設置してあり、第2温度センサ22の下流側に第3温度センサ23を設置してある。なお、第1温度センサ21および第3温度センサ23には、当該温度センサ21,23が蒸発管12aから外れたことを検出する不図示の脱落検出センサを設けてある。   That is, in the refrigerant flow control device described above, the first temperature sensor 21 is installed on the most upstream side among the three temperature sensors 21, 22 and 23, and the second temperature sensor 22 is arranged on the downstream side of the first temperature sensor 21. The third temperature sensor 23 is installed on the downstream side of the second temperature sensor 22. The first temperature sensor 21 and the third temperature sensor 23 are provided with a drop-off detection sensor (not shown) that detects that the temperature sensors 21 and 23 are detached from the evaporation pipe 12a.

この冷媒流量制御装置には、制御手段19を設けてある。制御手段19は、冷媒流量制御装置を統括的に制御する電子計算機(ハードウェア)であり、記憶部25と、弁開度調節手段(エラー出力手段)30とを備えている。   The refrigerant flow control device is provided with a control means 19. The control means 19 is an electronic computer (hardware) that comprehensively controls the refrigerant flow rate control device, and includes a storage unit 25 and a valve opening degree adjustment means (error output means) 30.

記憶部25には、冷媒流量制御装置を運転するためのプログラムやデータが格納してある。また、この記憶部25には、下限閾値L[K]、および上限閾値U[K]が格納してある。この実施形態では、例えば下限閾値Lとして1[K]が格納してあり、上限閾値Uとして5[K]が格納してある。また、この記憶部25には、第1サイクルタイム、および第2サイクルタイムを格納してある。第1サイクルタイムは、後述する電子膨張弁13の開度調節処理、およびエラー検出処理を行う間隔に基づき、例えば15秒に設定してある。第2サイクルタイムは、例えば5分に設定してある。さらに、この記憶部25には、第1閾値α1、および第2閾値α2を格納してある。本実施の形態では、第1閾値α1として0を格納してあり、かつ第2閾値α2として0を格納してある。第1閾値α1は、中間温度T2が入口側温度T1より高いか否かを算出するためのものであり、第2閾値α2は、中間温度T2が出口側温度T3より高いか否かを算出するためのものである。   The storage unit 25 stores a program and data for operating the refrigerant flow control device. The storage unit 25 stores a lower limit threshold L [K] and an upper limit threshold U [K]. In this embodiment, for example, 1 [K] is stored as the lower limit threshold L, and 5 [K] is stored as the upper limit threshold U. The storage unit 25 stores a first cycle time and a second cycle time. The first cycle time is set to 15 seconds, for example, based on an interval for performing an opening adjustment process for the electronic expansion valve 13 and an error detection process, which will be described later. The second cycle time is set to 5 minutes, for example. Further, the storage unit 25 stores a first threshold value α1 and a second threshold value α2. In the present embodiment, 0 is stored as the first threshold value α1, and 0 is stored as the second threshold value α2. The first threshold value α1 is used to calculate whether or not the intermediate temperature T2 is higher than the inlet side temperature T1, and the second threshold value α2 is used to calculate whether or not the intermediate temperature T2 is higher than the outlet side temperature T3. Is for.

弁開度調節手段30は、後述するように、上記3つの温度センサ21,22,23の検出結果に応じて電子膨張弁13に開度指令を与え、それにより電子膨張弁13の開度を調節するもの(ソフトウェア)で、温度差算出部31と、比較部32と、弁開度設定部34と、上流側温度差算出部36と、下流側温度差算出部37とを備えている。   As will be described later, the valve opening adjusting means 30 gives an opening command to the electronic expansion valve 13 according to the detection results of the three temperature sensors 21, 22, and 23, thereby controlling the opening of the electronic expansion valve 13. This is an adjustment (software), and includes a temperature difference calculation unit 31, a comparison unit 32, a valve opening setting unit 34, an upstream temperature difference calculation unit 36, and a downstream temperature difference calculation unit 37.

温度差算出部31は、第3温度センサ23で検出した出口側温度T3から、第2温度センサ22で検出した中間温度T2を差し引いた温度差(過熱度)Δt1(T3−T2=Δt1)を算出するものである。   The temperature difference calculation unit 31 calculates a temperature difference (superheat degree) Δt1 (T3−T2 = Δt1) obtained by subtracting the intermediate temperature T2 detected by the second temperature sensor 22 from the outlet side temperature T3 detected by the third temperature sensor 23. Is to be calculated.

比較部32は、第1温度センサ21で検出した入口側温度T1と、第2温度センサ22で検出した中間温度T2との高低を比較するものである。   The comparison unit 32 compares the level of the inlet temperature T1 detected by the first temperature sensor 21 with the intermediate temperature T2 detected by the second temperature sensor 22.

上流側温度差算出部36は、第2温度センサ22で検出した中間温度T2から、第1温度センサ21で検出した入口側温度T1を差し引いた上流側温度差X(T2−T1=X)を算出するものである。   The upstream temperature difference calculation unit 36 calculates an upstream temperature difference X (T2−T1 = X) obtained by subtracting the inlet temperature T1 detected by the first temperature sensor 21 from the intermediate temperature T2 detected by the second temperature sensor 22. Is to be calculated.

下流側温度差算出部37は、第2温度センサ22で検出した中間温度T2から、第3温度センサ23で検出した出口側温度T3を差し引いた下流側温度差Y(T2−T3=Y)を算出するものである。   The downstream temperature difference calculator 37 calculates a downstream temperature difference Y (T2−T3 = Y) obtained by subtracting the outlet temperature T3 detected by the third temperature sensor 23 from the intermediate temperature T2 detected by the second temperature sensor 22. Is to be calculated.

弁開度設定部34は、温度差算出部31で算出した温度差Δt1と、記憶部25に格納してある下限閾値Lおよび上限閾値Uとを比較し、その比較結果から蒸発器12の状態を判断し、蒸発器12の状態に応じて、電子膨張弁13に開度指令を非送信するもの、もしくは電子膨張弁13に開度指令を送信するものである。具体的には、弁開度設定部34は、温度差Δt1が下限閾値L以上であって上限閾値U以下である場合には、温度差Δt1が適正であると判断して電子膨張弁13の開度を維持するため開度指令を送信せず、温度差Δt1が下限閾値Lよりも小さい場合には、液バックが発生していると判断して電子膨張弁13に開度を縮小する旨の開度縮小指令を送信し、かつ温度差Δt1が上限閾値Uよりも大きい場合には、温度差Δt1が過大であると判断して電子膨張弁13に開度を拡大する旨の開度拡大指令を送信するものである。   The valve opening degree setting unit 34 compares the temperature difference Δt1 calculated by the temperature difference calculating unit 31 with the lower limit threshold L and the upper limit threshold U stored in the storage unit 25, and the state of the evaporator 12 is determined from the comparison result. The opening degree command is not transmitted to the electronic expansion valve 13 or the opening degree command is transmitted to the electronic expansion valve 13 according to the state of the evaporator 12. Specifically, the valve opening setting unit 34 determines that the temperature difference Δt1 is appropriate when the temperature difference Δt1 is equal to or greater than the lower limit threshold L and equal to or less than the upper limit threshold U. When the opening degree command is not transmitted to maintain the opening degree and the temperature difference Δt1 is smaller than the lower limit threshold L, it is determined that the liquid back has occurred and the opening degree is reduced to the electronic expansion valve 13 If the temperature difference Δt1 is larger than the upper limit threshold value U, an opening degree increase indicating that the temperature difference Δt1 is excessive and the opening degree is expanded to the electronic expansion valve 13 is transmitted. The command is transmitted.

しかも、この弁開度設定部34は、冷却装置を運転している状態において、比較部32による比較結果に基づき、後述する蒸発完了点が第2温度センサ22の設置位置の上流側にあるか否かを判断し、蒸発完了点が第2温度センサ22の設置位置の上流側にあると判断した場合には、電子膨張弁13に開度拡大指令を与えるものである。具体的には、この弁開度設定部34は、比較部32を通じて入口側温度T1と中間温度T2とを比較した場合に、入口側温度T1が中間温度T2より高い場合(T1>T2)には、蒸発完了点が第2温度センサ22の設置位置の下流側にあると判断して、電子膨張弁13に開度指令を送信しない一方、入口側温度T1が中間温度T2より高くない場合、すなわち入口側温度T1が中間温度T2以下である場合(T1≦T2)には、蒸発完了点が第2温度センサ22の設置位置の上流側にあると判断して、電子膨張弁13に開度拡大指令を与えるものである。   In addition, when the cooling device is in operation, the valve opening degree setting unit 34 is based on the comparison result by the comparison unit 32 and is an evaporation completion point, which will be described later, located upstream of the installation position of the second temperature sensor 22. If it is determined that the evaporation completion point is on the upstream side of the installation position of the second temperature sensor 22, an opening degree expansion command is given to the electronic expansion valve 13. Specifically, when the inlet side temperature T1 is higher than the intermediate temperature T2 when the inlet side temperature T1 is compared with the intermediate temperature T2 through the comparison unit 32 (T1> T2), Is determined that the evaporation completion point is downstream of the installation position of the second temperature sensor 22 and does not transmit the opening degree command to the electronic expansion valve 13, while the inlet side temperature T1 is not higher than the intermediate temperature T2, That is, when the inlet side temperature T1 is equal to or lower than the intermediate temperature T2 (T1 ≦ T2), it is determined that the evaporation completion point is on the upstream side of the installation position of the second temperature sensor 22, and the electronic expansion valve 13 is opened. Gives an enlargement command.

また、この弁開度設定部34は、冷却装置を運転している状態において、上流側温度差算出部36で算出した上流側温度差Xと第1閾値α1との大小を比較し、かつ下流側温度差算出部37で算出した下流側温度差Yと第2閾値α2との大小を比較し、それら比較結果に基づいて蒸発管12aから第2温度センサ22が外れているか否かを判断するものである。弁開度設定部34は、比較結果に基づき蒸発管12aから第2温度センサ22が外れていると判断した場合には、例えば表示器40にエラー表示指令を送信する(エラー出力する)。なお、表示器(表示手段)40は、例えば液晶パネルで構成してある。   Further, the valve opening setting unit 34 compares the upstream temperature difference X calculated by the upstream temperature difference calculation unit 36 with the first threshold value α1 in the state where the cooling device is operating, and the downstream side. The downstream temperature difference Y calculated by the side temperature difference calculation unit 37 is compared with the second threshold value α2, and based on the comparison result, it is determined whether or not the second temperature sensor 22 is detached from the evaporation pipe 12a. Is. When the valve opening degree setting unit 34 determines that the second temperature sensor 22 is detached from the evaporation pipe 12a based on the comparison result, the valve opening setting unit 34 transmits an error display command to the display device 40 (outputs an error), for example. The display device (display means) 40 is constituted by a liquid crystal panel, for example.

このような冷却装置は、第2温度センサ22の設置位置の下流側に蒸発完了点を位置させ、かつ上記温度差Δt1を可及的に小さくすることで蒸発器12を有効利用することができる。しかしながら、温度差Δt1が小さい状態が維持されると以下に説明する液バックが発生する虞れがある。   Such a cooling device can effectively use the evaporator 12 by positioning the evaporation completion point downstream of the installation position of the second temperature sensor 22 and making the temperature difference Δt1 as small as possible. . However, when the temperature difference Δt1 is kept small, there is a possibility that the liquid back described below occurs.

蒸発器12の蒸発管12aにおける冷媒の温度分布の概要を示したグラフを図2に示す。図2に示すように、蒸発器12における冷媒の温度分布は、過熱蒸気部分及び気液2相部分において温度変化がそれぞれ小さく、過熱蒸気部分と気液2相部分との境界部(蒸発完了点の下流側近傍部)において急激に変化する特徴を有する。具体的には、蒸発完了点の下流側近傍で、冷媒温度が急激に上昇する特徴を有する。この蒸発完了点は、図2(b)〜(d)に示すように、第2温度センサ22の設置位置の下流側に位置する場合、上記温度差Δt1が大きい場合には蒸発管12aの入口部に近接する一方、上記温度差Δt1が小さい場合には蒸発管12aの出口部に近接することとなる。   A graph showing an outline of the temperature distribution of the refrigerant in the evaporation pipe 12a of the evaporator 12 is shown in FIG. As shown in FIG. 2, the temperature distribution of the refrigerant in the evaporator 12 has a small temperature change in the superheated steam portion and the gas-liquid two-phase portion, and the boundary portion between the superheated steam portion and the gas-liquid two-phase portion (evaporation completion point). In the vicinity of the downstream side). Specifically, it has a feature that the refrigerant temperature rapidly increases in the vicinity of the downstream side of the evaporation completion point. As shown in FIGS. 2B to 2D, when the evaporation completion point is located downstream of the installation position of the second temperature sensor 22, when the temperature difference Δt1 is large, the inlet of the evaporation pipe 12a. On the other hand, when the temperature difference Δt1 is small, it is close to the outlet of the evaporation pipe 12a.

よって、第2温度センサ22の設置位置の下流側に蒸発完了点を位置させた状態において、電子膨張弁13の開度を徐々に拡大することで温度差Δt1を徐々に小さくした場合には、図2(b)〜図2(d)に示すように、蒸発完了点が蒸発管12aの出口部に徐々に近接する。さらに、図示省略するが、蒸発完了点が第3温度センサ23の設置位置の下流側に位置し、温度差Δt1がほぼ0[K]となった状態が維持されると、蒸発管12aの出口部から気体の冷媒と液体の冷媒とが混合したものが吐出されて圧縮機15に入る、いわゆる液バックとよばれる現象が発生する。この液バックという現象が発生すると圧縮機15を破損させる虞れある。一方、温度差Δt1が0[K]より大きい場合、液バックは発生しない。しかしながら、温度差Δt1が大きい値となった状態、例えば図2(b)に示すような状態、もしくは図2(a)に示すように、第2温度センサ22の設置位置の上流側に蒸発完了点が位置する状態が維持されると、冷却装置の冷却効率が低下する。   Therefore, in a state where the evaporation completion point is located downstream of the installation position of the second temperature sensor 22, when the temperature difference Δt1 is gradually reduced by gradually increasing the opening of the electronic expansion valve 13, As shown in FIGS. 2B to 2D, the evaporation completion point gradually approaches the outlet of the evaporation pipe 12a. Further, although not illustrated, when the evaporation completion point is located downstream of the installation position of the third temperature sensor 23 and the temperature difference Δt1 is maintained at approximately 0 [K], the outlet of the evaporation pipe 12a is maintained. A so-called liquid back phenomenon occurs in which a mixture of a gaseous refrigerant and a liquid refrigerant is discharged from the section and enters the compressor 15. If this phenomenon of liquid back occurs, the compressor 15 may be damaged. On the other hand, when the temperature difference Δt1 is larger than 0 [K], liquid back does not occur. However, when the temperature difference Δt1 becomes a large value, for example, as shown in FIG. 2B, or as shown in FIG. 2A, the evaporation is completed upstream of the installation position of the second temperature sensor 22. When the state where the point is located is maintained, the cooling efficiency of the cooling device is lowered.

従って、冷却装置では、蒸発完了点を第2温度センサ22の設置位置の下流側に位置させるように運転するとともに、液バックが発生することに起因して圧縮機を破損させないよう可及的に温度差Δt1が小さい状態で運転することで、省エネルギー運転を実現することができる。そこで、上記運転を実現するため、この発明に係る冷却装置では、弁開度調節手段30によって、後述する電子膨張弁13の開度調節処理を行っている。   Therefore, the cooling device is operated so that the evaporation completion point is located downstream of the installation position of the second temperature sensor 22, and as much as possible so as not to damage the compressor due to the occurrence of liquid back. By operating in a state where the temperature difference Δt1 is small, energy saving operation can be realized. Therefore, in order to realize the above operation, in the cooling device according to the present invention, the opening degree adjusting process of the electronic expansion valve 13 described later is performed by the valve opening degree adjusting means 30.

また、上記蒸発管12aにおいて、図3に示すように、冷媒が気液2相状態では、蒸発管12aで発生する圧力損失ΔTにより、下流側に向かうに従って蒸発管12aの管表面温度が低下する。また、蒸発管12aの管表面温度と同様に、冷媒の温度も低下することとなる。この冷媒の温度低下は、冷媒流量制御装置に影響を及ぼすものであるが、この冷媒流量制御装置では、上記圧力損失ΔTを考慮した上で、以下に示すように電子膨張弁13の開度を制御している。   Further, in the evaporation pipe 12a, as shown in FIG. 3, when the refrigerant is in a gas-liquid two-phase state, the pipe surface temperature of the evaporation pipe 12a decreases toward the downstream side due to the pressure loss ΔT generated in the evaporation pipe 12a. . Further, similarly to the tube surface temperature of the evaporation tube 12a, the temperature of the refrigerant also decreases. This temperature drop of the refrigerant affects the refrigerant flow control device. In this refrigerant flow control device, the pressure loss ΔT is taken into consideration, and the opening degree of the electronic expansion valve 13 is set as described below. I have control.

この冷媒流量制御装置が備える弁開度調節手段30は、上記温度差Δt1、入口側温度T1、および中間温度T2に基づいて電子膨張弁13の開度を変更するものであり、その弁開度調節手段30が実施する電子膨張弁13の開度調節処理の内容を図4に示す。以下、図4を用いて冷媒流量制御装置の動作について説明する。   The opening degree adjusting means 30 provided in the refrigerant flow control device changes the opening degree of the electronic expansion valve 13 based on the temperature difference Δt1, the inlet side temperature T1, and the intermediate temperature T2, and the opening degree of the valve is adjusted. The contents of the opening adjustment process of the electronic expansion valve 13 performed by the adjusting means 30 are shown in FIG. Hereinafter, operation | movement of a refrigerant | coolant flow control apparatus is demonstrated using FIG.

弁開度調節手段30は、冷却装置の運転状態下で、記憶部25に予め格納してある第1サイクルタイムが経過した場合には(ステップS101:Yes)、第1温度センサ21、第2温度センサ22,および第3温度センサ23を通じてそれぞれの冷媒温度T1,T2,T3を検出(ステップS102)した後、比較部32を通じて、入口側温度T1が中間温度T2より低いか(T1<T2)否かを判断する(ステップS103)。   When the first cycle time stored in advance in the storage unit 25 has elapsed under the operating state of the cooling device (step S101: Yes), the valve opening degree adjusting means 30 is set to the first temperature sensor 21 and the second temperature sensor 21. After each refrigerant temperature T1, T2, T3 is detected through the temperature sensor 22 and the third temperature sensor 23 (step S102), is the inlet side temperature T1 lower than the intermediate temperature T2 through the comparison unit 32 (T1 <T2)? It is determined whether or not (step S103).

この動作の理由を詳細に説明すると、入口側温度T1が中間温度T2より低い(T1<T2)状態(ステップS103:Yes)とは、図2を用いて上述で説明したように、気液2相状態において、蒸発管12aの圧力損失で冷媒温度が下流側に行くに従い徐々に低下すること、および蒸発完了点の下流側近傍で、冷媒温度が急激に上昇することを考えると、例えば図2(b)〜(d)に示す蒸発完了点が、第2温度センサ22の設置位置より下流側に位置している状態では成立せず、例えば図2(a)に示すように、蒸発完了点が、第2温度センサ22の設置位置よりも上流側に位置している状態である。蒸発完了点が、第2温度センサ22の設置位置よりも上流側に位置している状態では、冷却装置の冷却効率が低下する。これに基づき、弁開度調節手段30は、蒸発完了点が第2温度センサ22の設置位置よりも下流側に位置するように弁開度設定部34を通じて電子膨張弁13に開度拡大指令を送信する(ステップS104)。開度拡大指令が電子膨張弁13に与えられると、電子膨張弁13は開度の拡大動作を行う。そして、電子膨張弁13が開度を拡大すると、蒸発完了点が徐々に下流側に向けて移動し、蒸発完了点が、第2温度センサ22の設置位置の下流側まで移動した場合には、入口側温度T1が中間温度T2よりも高くなる(T1>T2)(例えば図2(b)〜(d)に示す状態)。   The reason for this operation will be described in detail. The state where the inlet side temperature T1 is lower than the intermediate temperature T2 (T1 <T2) (step S103: Yes) is the gas-liquid 2 as described above with reference to FIG. Considering that in the phase state, the refrigerant temperature gradually decreases as it goes downstream due to the pressure loss of the evaporation pipe 12a, and that the refrigerant temperature rapidly increases near the downstream side of the evaporation completion point, for example, FIG. The evaporation completion point shown in (b) to (d) is not established in a state where the evaporation completion point is located downstream of the installation position of the second temperature sensor 22. For example, as shown in FIG. However, it is the state located in the upstream rather than the installation position of the 2nd temperature sensor 22. FIG. In a state where the evaporation completion point is located upstream of the installation position of the second temperature sensor 22, the cooling efficiency of the cooling device is reduced. Based on this, the valve opening degree adjusting means 30 issues an opening degree enlargement command to the electronic expansion valve 13 through the valve opening degree setting unit 34 so that the evaporation completion point is located downstream of the installation position of the second temperature sensor 22. Transmit (step S104). When the opening degree expansion command is given to the electronic expansion valve 13, the electronic expansion valve 13 performs an opening degree expanding operation. When the electronic expansion valve 13 expands the opening, the evaporation completion point gradually moves toward the downstream side, and when the evaporation completion point moves to the downstream side of the installation position of the second temperature sensor 22, The inlet side temperature T1 becomes higher than the intermediate temperature T2 (T1> T2) (for example, the state shown in FIGS. 2B to 2D).

一方、弁開度調節手段30は、入口側温度T1が中間温度T2より低くない場合(ステップS103:No)、すなわち入口側温度T1が中間温度T2以上の場合(T1≧T2)、には、弁開度設定部34を通じて蒸発完了点が第2温度センサ22の設置位置の下流側にあると判断して電子膨張弁13に開度指令を送信することなく、そのまま手順をステップS105に移行させる。   On the other hand, when the inlet side temperature T1 is not lower than the intermediate temperature T2 (step S103: No), that is, when the inlet side temperature T1 is equal to or higher than the intermediate temperature T2 (T1 ≧ T2), the valve opening degree adjusting means 30 It is determined that the evaporation completion point is downstream of the installation position of the second temperature sensor 22 through the valve opening setting unit 34, and the procedure is directly transferred to step S105 without transmitting the opening command to the electronic expansion valve 13. .

この動作の理由を詳細に説明すると、先ず、入口側温度T1が中間温度T2以上(T1≧T2)の状態とは、図2を用いて上述で説明したすように、気液2相状態において、蒸発管12aの圧力損失で冷媒の温度が下流側に行くに従い徐々に低下すること、および蒸発完了点の下流側近傍で、冷媒温度が急激に上昇することを考えると、例えば図2(a)に示すように、蒸発完了点が、第2温度センサ22の設置位置よりも上流側に位置している状態では成立せず、例えば図2(b)〜(d)に示す蒸発完了点が、第2温度センサ22の設置位置より下流側に位置している状態である。この状態であれば、冷却効率が低下することを防止しながら冷却装置を運転することができるため、電子膨張弁13に開度指令を送信することなく、そのまま次の手順に移行する。   The reason for this operation will be described in detail. First, the state where the inlet side temperature T1 is equal to or higher than the intermediate temperature T2 (T1 ≧ T2) is the gas-liquid two-phase state as described above with reference to FIG. Considering that the refrigerant temperature gradually decreases as it goes downstream due to the pressure loss of the evaporation pipe 12a, and that the refrigerant temperature rapidly rises near the downstream side of the evaporation completion point, for example, FIG. 2), the evaporation completion point is not established in a state where it is located upstream of the installation position of the second temperature sensor 22. For example, the evaporation completion points shown in FIGS. In this state, the second temperature sensor 22 is located downstream from the installation position. In this state, since the cooling device can be operated while preventing the cooling efficiency from being lowered, the process proceeds to the next procedure without transmitting the opening degree command to the electronic expansion valve 13.

従って、この冷媒流量制御装置は、常時、蒸発完了点が、第2温度センサ22の設置位置よりも下流側に位置するように電子膨張弁13の開度調節処理を実施している。この処理を実施することで、蒸発管12aの圧力損失ΔTの影響を受けずに、蒸発器12を有効に利用することが可能となる。   Therefore, this refrigerant flow control device always performs the opening degree adjustment process of the electronic expansion valve 13 so that the evaporation completion point is located downstream of the installation position of the second temperature sensor 22. By performing this process, the evaporator 12 can be used effectively without being affected by the pressure loss ΔT of the evaporation pipe 12a.

次に、弁開度調節手段30は、弁開度設定部34を通じて、温度差算出部31の算出結果である温度差Δt1が、予め設定した下限閾値L[K]以上(L≦Δt1=T3−T2)であるか否かを判断する(ステップS105)。   Next, the valve opening degree adjusting means 30 causes the temperature difference Δt1 as the calculation result of the temperature difference calculating unit 31 to be greater than or equal to a preset lower threshold L [K] (L ≦ Δt1 = T3) through the valve opening setting unit 34. -T2) is determined (step S105).

弁開度調節手段30は、温度差Δt1が下限閾値L[K]以上でない場合、すなわち温度差Δt1が下限閾値L[K]より小さい((L>Δt1)場合(ステップS105:No)、弁開度設定部34を通じて液バックが発生していると判断し、電子膨張弁13に開度縮小指令を送信してから(ステップS106)、手順をリターンさせる。電子膨張弁13に開度縮小指令が与えられた場合、電子膨張弁13は、開度の縮小動作を行う。そして、電子膨張弁13が開度を縮小すると、温度差Δt1が徐々に大きくなり、やがて、温度差Δt1は、下限閾値L[K]を上回るよう推移することとなる。   When the temperature difference Δt1 is not greater than or equal to the lower limit threshold L [K], that is, when the temperature difference Δt1 is smaller than the lower limit threshold L [K] ((L> Δt1) (step S105: No), It is determined that a liquid back is generated through the opening setting unit 34, and an opening reduction command is transmitted to the electronic expansion valve 13 (step S106), and the procedure is returned to the electronic expansion valve 13. The opening reduction command is sent to the electronic expansion valve 13. When the electronic expansion valve 13 reduces the opening degree, the temperature difference Δt1 gradually increases and eventually the temperature difference Δt1 becomes the lower limit. It will change so that it may exceed threshold value L [K].

一方、弁開度調節手段30は、弁開度設定部34を通じて、温度差Δt1が下限閾値L[K]以上(L≦Δt1)であると判断した場合(ステップS105:Yes)、手順をステップS107に移行する。   On the other hand, when the valve opening degree adjusting means 30 determines that the temperature difference Δt1 is greater than or equal to the lower threshold L [K] (L ≦ Δt1) through the valve opening degree setting unit 34 (step S105: Yes), the procedure is stepped. The process proceeds to S107.

次に、弁開度調節手段30は、弁開度設定部34を通じて、温度差算出部31の算出結果である温度差Δt1が、予め設定した上限閾値U[K]以下(Δt1=T3−T2≦U)であるか否かを判断する(ステップS107)。   Next, the valve opening degree adjusting means 30 causes the temperature difference Δt1 as the calculation result of the temperature difference calculating unit 31 to be equal to or less than a preset upper limit threshold U [K] (Δt1 = T3-T2) through the valve opening degree setting unit 34. It is determined whether or not ≦ U) (step S107).

弁開度調節手段30は、温度差Δt1が上限閾値U[K]以下でない場合、すなわち温度差Δt1が上限閾値U[K]より大きい(Δt1>U)場合(ステップS107:No)、弁開度設定部34を通じて温度差Δt1が過大であると判断して電子膨張弁13に開度拡大指令を送信してから(ステップS108)、手順をリターンさせる。電子膨張弁13に開度拡大指令が与えられた場合、電子膨張弁13は、開度の拡大動作を行う。そして、電子膨張弁13が開度を拡大すると、温度差Δt1が徐々に小さくなり、やがて、温度差Δt1は、上限閾値U[K]を下回るよう推移することとなる。   When the temperature difference Δt1 is not less than or equal to the upper limit threshold U [K], that is, when the temperature difference Δt1 is greater than the upper limit threshold U [K] (Δt1> U) (step S107: No), the valve opening degree adjusting means 30 opens the valve. After determining that the temperature difference Δt1 is excessive through the degree setting unit 34 and transmitting an opening degree expansion command to the electronic expansion valve 13 (step S108), the procedure is returned. When an opening degree expansion command is given to the electronic expansion valve 13, the electronic expansion valve 13 performs an opening degree expansion operation. And if the electronic expansion valve 13 enlarges an opening degree, the temperature difference (DELTA) t1 will become small gradually, and the temperature difference (DELTA) t1 will change so that it may fall below upper limit threshold value U [K] before long.

一方、弁開度調節手段30は、温度差Δt1が上限閾値U[K]以下(Δt1≦U)であると判断した場合(ステップS107:Yes)、温度差Δt1が適正であると判断して電子膨張弁13の開度を維持するため、開度拡大指令および開度縮小指令を送信せず、手順をそのままリターンさせる。   On the other hand, when it is determined that the temperature difference Δt1 is equal to or lower than the upper limit threshold U [K] (Δt1 ≦ U) (step S107: Yes), the valve opening degree adjusting means 30 determines that the temperature difference Δt1 is appropriate. In order to maintain the opening degree of the electronic expansion valve 13, the opening degree enlargement command and the opening degree reduction instruction are not transmitted, and the procedure is returned as it is.

この弁開度調節手段30が行う判断と、電子膨張弁13の開度調節処理とをまとめると、図5に示すようになる。すなわち、弁開度調節手段30は、弁開度設定部34を通じ、温度差Δt1が、下限閾値L[K]より小さい場合には、液バックと判断して電子膨張弁13の開度を縮小し、温度差Δt1が、上限閾値U[K]より大きい場合には、温度差Δt1が過大であると判断して電子膨張弁13の開度を拡大し、かつ温度差Δt1が、下限閾値L[K]以上であり、かつ上限閾値U[K]以下の場合には、温度差Δt1が適正であると判断して電子膨張弁13の開度を維持する。よって、この冷媒流量制御装置によれば、弁開度調節手段30によって、温度差Δt1が下限閾値L[K]よりも小さい状態が維持されることを防止できるので、液バックが発生することに起因して圧縮機15が破損することを防止することができる。しかも、温度差Δt1が上限閾値U[K]よりも大きい状態が維持されることを防止できるので、冷却効率が低下することを防止することができる。   FIG. 5 shows a summary of the determination performed by the valve opening adjustment means 30 and the opening adjustment processing of the electronic expansion valve 13. That is, when the temperature difference Δt1 is smaller than the lower threshold L [K], the valve opening adjusting means 30 determines that the liquid is back and reduces the opening of the electronic expansion valve 13 through the valve opening setting unit 34. When the temperature difference Δt1 is larger than the upper limit threshold U [K], it is determined that the temperature difference Δt1 is excessive, the opening degree of the electronic expansion valve 13 is increased, and the temperature difference Δt1 is less than the lower limit threshold L. If it is equal to or greater than [K] and equal to or smaller than the upper threshold U [K], it is determined that the temperature difference Δt1 is appropriate, and the opening degree of the electronic expansion valve 13 is maintained. Therefore, according to this refrigerant flow rate control device, the valve opening degree adjusting means 30 can prevent the temperature difference Δt1 from being maintained smaller than the lower limit threshold L [K], so that liquid back occurs. This can prevent the compressor 15 from being damaged. Moreover, since it is possible to prevent the temperature difference Δt1 from being maintained larger than the upper limit threshold value U [K], it is possible to prevent the cooling efficiency from being lowered.

また、この冷媒流量制御装置が備える弁開度調節手段30は、第1温度センサ21、第2温度センサ22,および第3温度センサ23の検出した冷媒温度に基づいてエラー検出をも行うものである。以下、図6を用いて、この弁開度調節手段30が行うエラー検出処理を説明する。   The valve opening degree adjusting means 30 provided in the refrigerant flow control device also performs error detection based on the refrigerant temperatures detected by the first temperature sensor 21, the second temperature sensor 22, and the third temperature sensor 23. is there. Hereinafter, the error detection process performed by the valve opening degree adjusting means 30 will be described with reference to FIG.

弁開度調節手段30は、冷却装置の運転状態下で、記憶部25に予め格納してある第1サイクルタイムが経過した場合には(ステップS201:Yes)、第1温度センサ21、第2温度センサ22、第3温度センサ23を通じてそれぞれの冷媒温度を検出し(ステップS202)、その後、弁開度設定部34によって上流側温度差算出部36で算出した上流側温度差Xと第1閾値α1との大小を比較し、かつ下流側温度差算出部37で算出した下流側温度差Yと第2閾値α2との大小を比較し、上流側温度差Xが第1閾値α1より大きく、かつ下流側温度差Yが第2閾値α2より大きい状態(X>α1、かつY>α2)であるか否かを判断する(ステップS203)。   When the first cycle time stored in advance in the storage unit 25 has elapsed under the operating state of the cooling device (step S201: Yes), the valve opening degree adjusting means 30 is set to the first temperature sensor 21 and the second temperature sensor 21. Respective refrigerant temperatures are detected through the temperature sensor 22 and the third temperature sensor 23 (step S202), and then the upstream temperature difference X calculated by the upstream temperature difference calculation unit 36 by the valve opening setting unit 34 and the first threshold value. Compare the magnitude with α1, compare the magnitude of the downstream temperature difference Y calculated by the downstream temperature difference calculator 37 with the second threshold value α2, determine that the upstream temperature difference X is greater than the first threshold value α1, and It is determined whether or not the downstream temperature difference Y is greater than the second threshold value α2 (X> α1 and Y> α2) (step S203).

弁開度調節手段30は、上記条件を満たさない場合、すなわち、上流側温度差Xが第1閾値α1以下(X≦α1)である場合、もしくは下流側温度差Yが第2閾値α2以下(Y≦α2)である場合(ステップS203:No)には、弁開度設定部34を通じて、蒸発管12aから第2温度センサ22が外れていないと判断して、そのまま手順をリターンさせて今回の処理を終了する。   When the valve opening degree adjusting means 30 does not satisfy the above condition, that is, when the upstream temperature difference X is not more than the first threshold value α1 (X ≦ α1), or the downstream temperature difference Y is not more than the second threshold value α2 ( If Y ≦ α2) (step S203: No), it is determined that the second temperature sensor 22 is not detached from the evaporation pipe 12a through the valve opening setting unit 34, and the procedure is returned as it is. End the process.

一方、弁開度調節手段30は、上記条件を満たす場合、すなわち上流側温度差Xが第1閾値α1より大きく、かつ下流側温度差Yが第2閾値α2より大きい(X>α1、かつY>α2)場合(ステップS203:Yes)には、弁開度設定部34を通じて、蒸発管12aから第2温度センサ22が外れたことによって、電子膨張弁13の開度調節処理が機能していない虞れがあると判断してステップS204に移行する。   On the other hand, when the valve opening degree adjusting means 30 satisfies the above condition, that is, the upstream temperature difference X is larger than the first threshold value α1, and the downstream temperature difference Y is larger than the second threshold value α2 (X> α1, and Y > Α2) (step S203: Yes), the opening degree adjusting process of the electronic expansion valve 13 is not functioning because the second temperature sensor 22 is removed from the evaporation pipe 12a through the valve opening degree setting unit 34. It is determined that there is a possibility, and the process proceeds to step S204.

以下、この動作の理由を詳細に説明する。上記冷却装置において、上流側温度差Xと第1閾値α1との大小関係、および下流側温度差Yと第2閾値α2との大小関係は、蒸発完了点の位置に応じて、以下の3態様が存在する。   Hereinafter, the reason for this operation will be described in detail. In the cooling device, the magnitude relationship between the upstream temperature difference X and the first threshold value α1 and the magnitude relationship between the downstream temperature difference Y and the second threshold value α2 are as follows according to the position of the evaporation completion point. Exists.

先ず、図2(a)に示すように、蒸発完了点が、第2温度センサ22の設置位置よりも上流側に位置している状態では、中間温度T2が入口側温度T1より高く(T2>T1)、かつ中間温度T2が出口側温度T3より低い(T2<T3)。すなわち、上流側温度差Xが第1閾値α1より大きく(T2−T1=X>α1=0)、かつ下流側温度差Yが第2閾値α2より小さい(T2−T3=Y<α2=0)。   First, as shown in FIG. 2A, in a state where the evaporation completion point is located upstream from the installation position of the second temperature sensor 22, the intermediate temperature T2 is higher than the inlet side temperature T1 (T2>). T1) and the intermediate temperature T2 is lower than the outlet side temperature T3 (T2 <T3). That is, the upstream temperature difference X is larger than the first threshold value α1 (T2−T1 = X> α1 = 0), and the downstream temperature difference Y is smaller than the second threshold value α2 (T2−T3 = Y <α2 = 0). .

次に、図2(b)〜(d)に示すように、蒸発完了点が、第2温度センサ22の設置位置の下流側であって、第3温度センサ23の設置位置の上流側に位置している状態では、中間温度T2が入口側温度T1より低く(T2<T1)、かつ中間温度T2が出口側温度T3より低い(T2<T3)。すなわち、上流側温度差Xが第1閾値α1より小さく(T2−T1=X<α1=0)、かつ下流側温度差Yが第2閾値α2より小さい(T2−T3=Y<α2=0)。   Next, as shown in FIGS. 2B to 2D, the evaporation completion point is located downstream of the installation position of the second temperature sensor 22 and upstream of the installation position of the third temperature sensor 23. In this state, the intermediate temperature T2 is lower than the inlet side temperature T1 (T2 <T1), and the intermediate temperature T2 is lower than the outlet side temperature T3 (T2 <T3). That is, the upstream temperature difference X is smaller than the first threshold value α1 (T2−T1 = X <α1 = 0), and the downstream temperature difference Y is smaller than the second threshold value α2 (T2−T3 = Y <α2 = 0). .

次いで、図示省略するが、蒸発完了点が、第3温度センサ23の設置位置の下流側に位置している状態では、蒸発管12aで発生する圧力損失で冷媒の温度が下流側に行くに従い徐々に低下するため、中間温度T2が入口側温度T1より低く(T2<T1)、かつ中間温度T2が出口側温度T3より高い(T2>T3)。すなわち、上流側温度差Xが第1閾値α1より小さく(T2−T1=X<α1=0)、かつ下流側温度差Yが第2閾値α2より大きい(T2−T3=Y>α2=0)。   Next, although not shown in the drawing, in a state where the evaporation completion point is located downstream of the installation position of the third temperature sensor 23, the refrigerant gradually goes down as the refrigerant temperature goes downstream due to the pressure loss generated in the evaporation pipe 12a. Therefore, the intermediate temperature T2 is lower than the inlet side temperature T1 (T2 <T1), and the intermediate temperature T2 is higher than the outlet side temperature T3 (T2> T3). That is, the upstream temperature difference X is smaller than the first threshold value α1 (T2−T1 = X <α1 = 0), and the downstream temperature difference Y is larger than the second threshold value α2 (T2−T3 = Y> α2 = 0). .

以上説明したように、冷却装置を稼働している状態において、中間温度T2が入口側温度T1より高く(T2>T1)、かつ中間温度T2が出口側温度T3より高い状態(T2>T3)、すなわち、上流側温度差Xが第1閾値α1より大きく(T2−T1=X>α1=0)、かつ下流側温度差Yが第2閾値α2より大きい(T2−T3=Y>α2=0)場合はない。また、蒸発管12aから第2温度センサ22が外れた場合には、当該第2温度センサ22は、蒸発管12aの周囲の空気温度を検出することとなり、正規の温度よりも高い温度を検出することとなるため、中間温度T2が入口側温度T1より高く(T2>T1)、かつ中間温度T2が出口側温度T3より高い状態(T2>T3)、すなわち、上流側温度差Xが第1閾値α1より大きく(T2−T1=X>α1=0)、かつ下流側温度差Yが第2閾値α2より大きい(T2−T3=Y>α2=0)状態が生じる。上記原理に基づき、弁開度調節手段30は、3つの温度センサ21,22,23の検出結果から、上述した関係を検出した場合、弁開度設定部34を通じて、蒸発管12aから第2温度センサ22が外れた虞れがあると判断する。   As described above, in a state where the cooling device is operating, the intermediate temperature T2 is higher than the inlet side temperature T1 (T2> T1) and the intermediate temperature T2 is higher than the outlet side temperature T3 (T2> T3). That is, the upstream temperature difference X is larger than the first threshold value α1 (T2−T1 = X> α1 = 0), and the downstream temperature difference Y is larger than the second threshold value α2 (T2−T3 = Y> α2 = 0). There is no case. When the second temperature sensor 22 is detached from the evaporation pipe 12a, the second temperature sensor 22 detects the air temperature around the evaporation pipe 12a, and detects a temperature higher than the normal temperature. Therefore, the intermediate temperature T2 is higher than the inlet side temperature T1 (T2> T1) and the intermediate temperature T2 is higher than the outlet side temperature T3 (T2> T3), that is, the upstream temperature difference X is the first threshold value. A state occurs where the value is larger than α1 (T2−T1 = X> α1 = 0) and the downstream temperature difference Y is larger than the second threshold value α2 (T2−T3 = Y> α2 = 0). Based on the above principle, when the valve opening degree adjusting means 30 detects the above-described relationship from the detection results of the three temperature sensors 21, 22, and 23, the second opening temperature is set from the evaporation pipe 12 a through the valve opening degree setting unit 34. It is determined that the sensor 22 may have come off.

次に、弁開度調節手段30は、蒸発管12aから第2温度センサ22が外れていないにも係わらず、一時的に、中間温度T2が入口側温度T1より高く(T2>T1)、かつ中間温度T2が出口側温度T3より高い(T2>T3)場合に、誤ってエラー出力することを防止するため、第2サイクルタイムが経過するまで待機(ステップS204)した後、ステップS205に移行する。   Next, the valve opening degree adjusting means 30 temporarily has the intermediate temperature T2 higher than the inlet side temperature T1 (T2> T1), although the second temperature sensor 22 is not detached from the evaporation pipe 12a. When the intermediate temperature T2 is higher than the outlet side temperature T3 (T2> T3), in order to prevent erroneous output of error, the process waits until the second cycle time elapses (step S204), and then proceeds to step S205. .

次に、弁開度調節手段30は、再度、弁開度設定部34を通じて、上流側温度差算出部36で算出した上流側温度差Xと第1閾値α1との大小を比較し、かつ下流側温度差算出部37で算出した下流側温度差Yと第2閾値α2との大小を比較し、上流側温度差Xが第1閾値α1より大きく、かつ下流側温度差Yが第2閾値α2より大きい状態(X>α1、かつY>α2)であるか否かを判断する(ステップS205)。   Next, the valve opening degree adjusting means 30 again compares the magnitude of the upstream temperature difference X calculated by the upstream temperature difference calculating unit 36 with the first threshold value α1 through the valve opening setting unit 34 and the downstream side. The downstream temperature difference Y calculated by the side temperature difference calculation unit 37 is compared with the second threshold value α2, the upstream temperature difference X is larger than the first threshold value α1, and the downstream temperature difference Y is the second threshold value α2. It is determined whether or not the state is larger (X> α1 and Y> α2) (step S205).

弁開度調節手段30は、上記条件を満たさない場合、すなわち、上流側温度差Xが第1閾値α1以下(X≦α1)である場合、もしくは下流側温度差Yが第2閾値α2以下(Y≦α2)である場合(ステップS205:No)には、弁開度設定部34を通じて、蒸発管12aから第2温度センサ22が外れていないと判断して、そのまま手順をリターンさせて今回の処理を終了する。   When the valve opening degree adjusting means 30 does not satisfy the above condition, that is, when the upstream temperature difference X is not more than the first threshold value α1 (X ≦ α1), or the downstream temperature difference Y is not more than the second threshold value α2 ( If Y ≦ α2) (step S205: No), it is determined that the second temperature sensor 22 is not detached from the evaporation pipe 12a through the valve opening setting unit 34, and the procedure is returned as it is. End the process.

一方、弁開度調節手段30は、上記条件を満たす場合、すなわち上流側温度差Xが第1閾値α1より大きく、かつ下流側温度差Yが第2閾値α2より大きい(X>α1、かつY>α2)場合(ステップS205:Yes)には、弁開度設定部34を通じて、蒸発管12aから第2温度センサ22が外れたと判断してステップS206に移行する。   On the other hand, when the valve opening degree adjusting means 30 satisfies the above condition, that is, the upstream temperature difference X is larger than the first threshold value α1, and the downstream temperature difference Y is larger than the second threshold value α2 (X> α1, and Y > Α2) (step S205: Yes), it is determined that the second temperature sensor 22 has been removed from the evaporation pipe 12a through the valve opening setting unit 34, and the process proceeds to step S206.

弁開度調節手段30は、その判断に基づき、弁開度設定部34を通じてエラー表示指令を表示器40に送信(ステップS206)した後、そのまま手順をリターンさせて今回の処理を終了する。表示器40は、エラー表示指令が与えられた場合には、第2温度センサ22が蒸発管12aから外れた旨を表示する。   Based on the determination, the valve opening degree adjusting means 30 transmits an error display command to the display device 40 through the valve opening degree setting unit 34 (step S206), and then returns the procedure and ends the current process. When the error display command is given, the display 40 displays that the second temperature sensor 22 has been removed from the evaporation pipe 12a.

この実施の形態に係る冷媒流量制御装置によれば、出口側温度T3から中間温度T2を差し引いた温度差Δt1が、予め設定した下限閾値Lよりも小さい場合には弁開度調節手段30が電子膨張弁13の開度を縮小するため、液バックの発生を防止することができる。しかも、上記温度差Δt1が、予め設定した上限閾値Uよりも大きい場合には弁開度調節手段30が電子膨張弁の開度を拡大するため、冷却効率の低下を防止することができる。   According to the refrigerant flow control device according to this embodiment, when the temperature difference Δt1 obtained by subtracting the intermediate temperature T2 from the outlet side temperature T3 is smaller than the preset lower threshold L, the valve opening degree adjusting means 30 is electronic. Since the opening degree of the expansion valve 13 is reduced, the occurrence of liquid back can be prevented. Moreover, when the temperature difference Δt1 is larger than the preset upper limit threshold U, the valve opening degree adjusting means 30 increases the opening degree of the electronic expansion valve, so that it is possible to prevent the cooling efficiency from being lowered.

加えて、この冷媒流量制御装置によれば、入口側温度T1が中間温度T2より低い場合には、弁開度調節手段30が電子膨張弁13の開度を拡大するため、蒸発管12aで発生する圧力損失をも考慮した上で冷却効率が低下することを防止できる。   In addition, according to this refrigerant flow rate control device, when the inlet side temperature T1 is lower than the intermediate temperature T2, the valve opening degree adjusting means 30 expands the opening degree of the electronic expansion valve 13, so that it occurs in the evaporation pipe 12a. It is possible to prevent the cooling efficiency from being lowered in consideration of the pressure loss.

さらに、冷却装置を稼働している状態において、中間温度T2が入口側温度T1より高く、かつ中間温度T2が出口側温度T3より高くなる事態がない上、蒸発管12aから第2温度センサ22が外れた場合にのみ上述した事態が発生することに基づき、冷媒流量制御装置は、上流側温度差Xが第1閾値α1より大きく、かつ下流側温度差Yが第2閾値α2より大きいことを条件としてエラー出力を行う弁開度調節手段30を備えている。このような冷媒流量制御装置によれば、中間温度T2が入口側温度T1より高く、かつ中間温度T2が出口側温度T3より高いことを検出することができるため、蒸発管12aから第2温度センサ22が外れたことを検出することができる。従って、3つの温度センサ21,22,23のうち第2温度センサ22には、当該第2温度センサ22が蒸発管12aから外れたことを検出する脱落検出センサを設ける必要がないため、部品点数の増加を可及的に防止することができる。   Further, in a state where the cooling device is operating, there is no situation where the intermediate temperature T2 is higher than the inlet side temperature T1 and the intermediate temperature T2 is higher than the outlet side temperature T3, and the second temperature sensor 22 is connected from the evaporation pipe 12a. The refrigerant flow rate control device is based on the fact that the upstream temperature difference X is larger than the first threshold value α1 and the downstream temperature difference Y is larger than the second threshold value α2 based on the fact that the above-mentioned situation occurs only when the deviation occurs. Is provided with a valve opening degree adjusting means 30 for performing error output. According to such a refrigerant flow control device, since it can be detected that the intermediate temperature T2 is higher than the inlet side temperature T1 and the intermediate temperature T2 is higher than the outlet side temperature T3, the second temperature sensor is connected from the evaporation pipe 12a. It can be detected that 22 is disconnected. Therefore, the second temperature sensor 22 among the three temperature sensors 21, 22, and 23 does not need to be provided with a drop-off detection sensor that detects that the second temperature sensor 22 is detached from the evaporation pipe 12 a. Can be prevented as much as possible.

なお、上述した実施の形態には、第1閾値α1として0を設定し、中間温度T2から入口側温度T1を差し引いた上流側温度差Xが第1閾値α1より高い(T2−T1=X>α1=0)ことを条件に、弁開度調節手段30が、蒸発管12aから第2温度センサ22が外れた虞れがあると判断するもので説明した。しかし、この発明はそれに限られず、第1温度センサ21および第2温度センサ22の誤差を考慮して、0よりも大きい数を第1閾値α1′(α1′=α1+ΔTX1:ただし、ΔTX1は、0より大きい数)として設定し、その第1閾値α1′より上流側温度差Xが大きい(T2−T1=X<α1′)ことを条件に、弁開度調節手段30が、蒸発管12aから第2温度センサ22が外れた虞れがあると判断しても良い。このように第1閾値α1′を設定すれば、蒸発管12aから第2温度センサ22が外れていないにも係わらず、一時的に、中間温度T2が入口側温度T1より高い場合に(T2>T1)誤ってエラー出力することを防止することができる。ただし、第1閾値α1′を0より大きい正の数に設定する場合には、エラー出力が行われなくなる事態を防止するため、可及的に小さい方が好ましい。例えば、第1閾値α1′として、1を設定する。   In the above-described embodiment, 0 is set as the first threshold value α1, and the upstream temperature difference X obtained by subtracting the inlet side temperature T1 from the intermediate temperature T2 is higher than the first threshold value α1 (T2−T1 = X>). It has been described that the valve opening degree adjusting means 30 determines that the second temperature sensor 22 may be detached from the evaporation pipe 12a on the condition that α1 = 0). However, the present invention is not limited to this. Considering the error of the first temperature sensor 21 and the second temperature sensor 22, a number greater than 0 is set to the first threshold value α1 ′ (α1 ′ = α1 + ΔTX1: where ΔTX1 is 0 The valve opening degree adjusting means 30 is set from the evaporating pipe 12a to the first temperature on the condition that the upstream temperature difference X is larger than the first threshold value α1 ′ (T2−T1 = X <α1 ′). You may judge that there exists a possibility that 2 temperature sensor 22 may remove | deviate. If the first threshold value α1 ′ is set in this way, the intermediate temperature T2 is temporarily higher than the inlet side temperature T1 even though the second temperature sensor 22 is not detached from the evaporation pipe 12a (T2>). T1) It is possible to prevent erroneous output of errors. However, when the first threshold value α1 ′ is set to a positive number larger than 0, it is preferable that the first threshold value α1 ′ is as small as possible in order to prevent a situation where error output is not performed. For example, 1 is set as the first threshold value α1 ′.

また、上述した実施の形態には、第2閾値α2として0を設定し、中間温度T2から出口側温度T3を差し引いた下流側温度差Yが第2閾値α2より高い(T2−T3=Y>α2=0)ことを条件に、弁開度調節手段30が、蒸発管12aから第2温度センサ22が外れた虞れがあると判断するもので説明した。しかし、この発明はそれに限られず、第2温度センサ22および第3温度センサ23の誤差を考慮して、0よりも大きい数を第2閾値α2′(α2′=α2+ΔTX2:ただし、ΔTX2は、0より大きい数)として設定し、その第2閾値α2′より下流側温度差Yが大きい(T2−T3=Y<α2′)ことを条件に、弁開度調節手段30が、蒸発管12aから第2温度センサ22が外れた虞れがあると判断しても良い。このように第2閾値α2′を設定すれば、蒸発管12aから第2温度センサ22が外れていないにも係わらず、一時的に、中間温度T2が出口側温度T3より高い場合に(T2>T3)誤ってエラー出力することを防止することができる。ただし、第2閾値α2′を0より大きい正の数に設定する場合には、エラー出力が行われなくなる事態を防止するため、可及的に小さい方が好ましい。例えば、第2閾値α2′として、1を設定する。   In the above-described embodiment, 0 is set as the second threshold value α2, and the downstream temperature difference Y obtained by subtracting the outlet side temperature T3 from the intermediate temperature T2 is higher than the second threshold value α2 (T2−T3 = Y>). It has been described that the valve opening degree adjusting means 30 determines that the second temperature sensor 22 may be detached from the evaporation pipe 12a on the condition that α2 = 0). However, the present invention is not limited to this, and in consideration of errors of the second temperature sensor 22 and the third temperature sensor 23, a number larger than 0 is set to a second threshold value α2 ′ (α2 ′ = α2 + ΔTX2: where ΔTX2 is 0 The valve opening degree adjusting means 30 is set from the evaporating pipe 12a to the second temperature on the condition that the downstream temperature difference Y is larger than the second threshold value α2 ′ (T2−T3 = Y <α2 ′). You may judge that there exists a possibility that 2 temperature sensor 22 may remove | deviate. If the second threshold value α2 ′ is set in this manner, the intermediate temperature T2 is temporarily higher than the outlet side temperature T3 (T2>) even though the second temperature sensor 22 is not detached from the evaporation pipe 12a. T3) It is possible to prevent erroneous output of errors. However, when the second threshold value α2 ′ is set to a positive number larger than 0, it is preferable that the second threshold value α2 ′ is as small as possible in order to prevent a situation where error output is not performed. For example, 1 is set as the second threshold value α2 ′.

さらに、上述した実施の形態には、温度差Δt1の下限閾値Lを1[K]と設定するもので説明した。しかし、この発明はそれに限られず、温度差Δt1の下限閾値Lは、任意に設定しても良い。ただし、上述したように、温度差Δt1が0[K]となった状態が維持されると、液バックが発生する虞れが生じることから、下限閾値Lは、0[K]より大きい値で、可及的に小さいものが好ましい。   Further, in the above-described embodiment, the lower limit threshold L of the temperature difference Δt1 is set to 1 [K]. However, the present invention is not limited to this, and the lower limit threshold L of the temperature difference Δt1 may be set arbitrarily. However, as described above, if the state in which the temperature difference Δt1 is 0 [K] is maintained, there is a possibility that a liquid back may occur. Therefore, the lower limit threshold L is a value greater than 0 [K]. A thing as small as possible is preferable.

また、上述した実施の形態には、温度差Δt1の上限閾値Uの初期値を5[K]と設定するもので説明した。しかし、この発明はそれに限られず、温度差Δt1の上限閾値Uの初期値は、下限閾値Lよりも大きい値であれば任意に設定しても良い。ただし、上述したように、温度差Δt1が大きい場合には、冷却効率が低下するため、下限閾値Lよりも大きい値で可及的に小さいものが好ましい。   In the above-described embodiment, the initial value of the upper limit threshold U of the temperature difference Δt1 is set to 5 [K]. However, the present invention is not limited to this, and the initial value of the upper limit threshold U of the temperature difference Δt1 may be arbitrarily set as long as it is larger than the lower limit threshold L. However, as described above, when the temperature difference Δt1 is large, the cooling efficiency is lowered. Therefore, a value larger than the lower limit threshold L is preferably as small as possible.

さらに、上述した実施の形態には、蒸発管12aの入口部に第1温度センサ21を取り付け、蒸発管12aの入口部と出口部との間の中間位置に第2温度センサ22を取り付け、蒸発管12aの出口部に第3温度センサ23を取り付けるもので説明した。しかし、温度センサ21,22,23の取り付け位置は、上記位置に限られない。例えば、蒸発管12aの入口部の下流側に第1温度センサ21を取り付けても良いし、蒸発管12aの出口部の上流側に第3温度センサ23を取り付けても良い。ただし、第1温度センサ21の下流側に第2温度センサ22を取り付け、かつ第2温度センサ22の下流側に第3温度センサ23を取り付ける必要がある。また、第2温度センサ22は、蒸発管12aの出口部の近傍に取り付けることが好ましい。   Further, in the above-described embodiment, the first temperature sensor 21 is attached to the inlet portion of the evaporation pipe 12a, and the second temperature sensor 22 is attached to an intermediate position between the inlet portion and the outlet portion of the evaporation pipe 12a to evaporate. In the above description, the third temperature sensor 23 is attached to the outlet of the tube 12a. However, the attachment positions of the temperature sensors 21, 22, and 23 are not limited to the above positions. For example, the first temperature sensor 21 may be attached to the downstream side of the inlet part of the evaporation pipe 12a, or the third temperature sensor 23 may be attached to the upstream side of the outlet part of the evaporation pipe 12a. However, it is necessary to attach the second temperature sensor 22 on the downstream side of the first temperature sensor 21 and attach the third temperature sensor 23 on the downstream side of the second temperature sensor 22. Moreover, it is preferable that the 2nd temperature sensor 22 is attached to the vicinity of the exit part of the evaporation pipe | tube 12a.

また、上述した実施の形態には、温度センサ21,22,23の検出結果に応じて電子膨張弁13の開度を調節する弁開度調節手段30が、温度センサ21,22,23の検出結果に応じて蒸発管12aから第2温度センサ22が外れたことを検出し、エラー出力を行うもので説明した。しかしこの発明はそれに限られず、温度センサ21,22,23の検出結果に応じて電子膨張弁13の開度を調節する弁開度調節手段30と、温度センサ21,22,23の検出結果に応じて蒸発管12aから第2温度センサ22が外れたことを検出し、エラー出力を行うエラー出力手段とを別個、制御手段19の内部に設けても良い。   In the embodiment described above, the valve opening degree adjusting means 30 that adjusts the opening degree of the electronic expansion valve 13 according to the detection results of the temperature sensors 21, 22, 23 is detected by the temperature sensors 21, 22, 23. As described above, the second temperature sensor 22 is detected to be disconnected from the evaporation pipe 12a according to the result, and an error is output. However, the present invention is not limited thereto, and the valve opening degree adjusting means 30 for adjusting the opening degree of the electronic expansion valve 13 in accordance with the detection results of the temperature sensors 21, 22, 23, and the detection results of the temperature sensors 21, 22, 23. Accordingly, an error output means for detecting that the second temperature sensor 22 is detached from the evaporation pipe 12a and outputting an error may be provided inside the control means 19 separately.

さらに、上述した実施の形態には、弁開度設定部34が蒸発管12aから第2温度センサ22が外れていると判断した場合に、弁開度設定部34が表示器40にエラー表示指令を送信し、第2温度センサ22が蒸発管12aから外れている旨を表示器40に表示することで、使用者に報知するもので説明した。しかし、第2温度センサ22が蒸発管12aから外れている旨を使用者に報知する手段は、視覚を通じたものに限られない。例えば、弁開度設定部34が蒸発管12aから第2温度センサ22が外れていると判断した場合に、弁開度設定部34がブザーにエラー表示指令を送信し、第2温度センサ22が蒸発管12aから外れている旨を警告音を発生することで、使用者に報知しても良い。   Further, in the above-described embodiment, when the valve opening degree setting unit 34 determines that the second temperature sensor 22 is disconnected from the evaporation pipe 12a, the valve opening degree setting unit 34 instructs the display unit 40 to display an error. Is transmitted and the fact that the second temperature sensor 22 is disengaged from the evaporation pipe 12a is displayed on the display device 40 to notify the user. However, the means for notifying the user that the second temperature sensor 22 is detached from the evaporation pipe 12a is not limited to that through vision. For example, when the valve opening setting unit 34 determines that the second temperature sensor 22 is disconnected from the evaporation pipe 12a, the valve opening setting unit 34 transmits an error display command to the buzzer, and the second temperature sensor 22 The user may be notified by generating a warning sound that the evaporator 12a is detached.

また、上述した実施の形態には、上流側温度差Xが第1閾値より高く、かつ下流側温度差Yが第2閾値より高いことを第1条件とし、その状態が一定時間継続することを第2条件とし、第1条件および第2条件を充足した場合に、エラー出力を行うもので説明した。これは、蒸発管12aから第2温度センサ22が外れていないにも係わらず、一時的に、中間温度T2が入口側温度T1より高く(T2>T1)、かつ中間温度T2が出口側温度T3より高い場合に誤ってエラー出力することを防止することを目的とするためである。よって、本発明は、それら2つの条件を満たす場合にエラー出力を行うものに限られず、上記第1条件のみを充足する場合にエラー出力を行っても良い。   In the above-described embodiment, the first condition is that the upstream temperature difference X is higher than the first threshold and the downstream temperature difference Y is higher than the second threshold, and the state continues for a certain period of time. In the above description, the second condition is set to perform error output when the first condition and the second condition are satisfied. This is because the intermediate temperature T2 is temporarily higher than the inlet side temperature T1 (T2> T1) and the intermediate temperature T2 is equal to the outlet side temperature T3 although the second temperature sensor 22 is not detached from the evaporation pipe 12a. This is for the purpose of preventing an erroneous error output when the value is higher. Therefore, the present invention is not limited to the one that performs error output when these two conditions are satisfied, and may perform error output when only the first condition is satisfied.

本発明の実施の形態である冷媒流量制御装置を適用した冷却装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the cooling device to which the refrigerant | coolant flow control apparatus which is embodiment of this invention is applied. 図1に示した冷却装置の蒸発器における冷媒の温度分布を示すグラフである。It is a graph which shows the temperature distribution of the refrigerant | coolant in the evaporator of the cooling device shown in FIG. 図2に示した冷媒の温度分布を詳細に説明するグラフである。It is a graph explaining the temperature distribution of the refrigerant | coolant shown in FIG. 2 in detail. 図1に示した冷媒流量制御装置が備える弁開度調節手段が実施する開度調節処理の内容を示すフローチャートである。It is a flowchart which shows the content of the opening degree adjustment process which the valve opening degree adjustment means with which the refrigerant | coolant flow control apparatus shown in FIG. 図1に示した冷媒流量制御装置で電子膨張弁の開度を調節した場合において、弁開度調節手段が行う温度差Δt1の判断と、その判断により行う制御との関係を示す図表である。6 is a chart showing a relationship between determination of a temperature difference Δt1 performed by the valve opening degree adjusting means and control performed by the determination when the opening degree of the electronic expansion valve is adjusted by the refrigerant flow control device shown in FIG. 図1に示した冷媒流量制御装置が備える弁開度調節手段が実施するエラー検出処理の内容を示すフローチャートである。It is a flowchart which shows the content of the error detection process which the valve opening degree adjustment means with which the refrigerant | coolant flow control apparatus shown in FIG.

符号の説明Explanation of symbols

10 収容庫
11 オープンショーケース
12 蒸発器
12a 蒸発管(冷媒流通路)
13 電子膨張弁
14 凝縮器
15 圧縮機
16 冷媒供給管
17 送風ファン
19 制御手段
21 第1温度センサ(入口側温度センサ)
22 第2温度センサ(中間温度センサ)
23 第3温度センサ(出口側温度センサ)
25 記憶部
30 弁開度調節手段
31 温度差算出部
32 比較部
34 弁開度設定部(エラー出力手段)
36 上流側温度差算出部
37 下流側温度差算出部
40 表示器
L 下限閾値
T1 入口側温度
T2 中間温度
T3 出口側温度
U 上限閾値
X 上流側温度差
Y 下流側温度差
ΔT 圧力損失
Δt1 温度差(過熱度)
α1 第1閾値
α2 第2閾値
DESCRIPTION OF SYMBOLS 10 Container 11 Open showcase 12 Evaporator 12a Evaporating pipe (refrigerant flow path)
DESCRIPTION OF SYMBOLS 13 Electronic expansion valve 14 Condenser 15 Compressor 16 Refrigerant supply pipe 17 Blower fan 19 Control means 21 1st temperature sensor (inlet side temperature sensor)
22 Second temperature sensor (intermediate temperature sensor)
23 Third temperature sensor (outlet temperature sensor)
25 Storage Unit 30 Valve Opening Adjustment Unit 31 Temperature Difference Calculation Unit 32 Comparison Unit 34 Valve Opening Setting Unit (Error Output Unit)
36 upstream temperature difference calculation unit 37 downstream temperature difference calculation unit 40 indicator L lower limit threshold T1 inlet side temperature T2 intermediate temperature T3 outlet side temperature U upper limit threshold X upstream temperature difference Y downstream temperature difference ΔT pressure loss Δt1 temperature difference (Superheat)
α1 First threshold α2 Second threshold

Claims (2)

開度に応じて蒸発器に流入する冷媒量を制御する電子膨張弁と、
前記蒸発器における冷媒流通路の入口部から出口部までの間に、前記入口部からの距離が互いに異なる態様で設置した3つの温度センサと、
最も上流側に設置した入口側温度センサで検出した入口側温度が、前記入口側温度センサの下流側に設置した中間温度センサで検出した中間温度より低い場合には前記電子膨張弁の開度を拡大し、かつ中間温度センサの下流側に設置した出口側温度センサで検出した出口側温度から前記中間温度を差し引いた温度差が予め設定した下限閾値よりも小さい場合には前記電子膨張弁の開度を縮小する一方、前記温度差が予め設定した上限閾値よりも大きい場合には前記電子膨張弁の開度を拡大する弁開度調節手段と、
前記中間温度から前記入口側温度を差し引いた上流側温度差を算出し、かつ前記中間温度から前記出口側温度を差し引いた下流側温度差を算出し、前記上流側温度差と予め設定した第1閾値とを比較し、かつ前記下流側温度差と予め設定した第2閾値とを比較し、前記上流側温度差が前記第1閾値よりも大きく、かつ前記下流側温度差が第2閾値よりも大きいことを条件としてエラー出力を行うエラー出力手段と
を備えることを特徴とする冷媒流量制御装置。
An electronic expansion valve that controls the amount of refrigerant flowing into the evaporator according to the opening;
Three temperature sensors installed at different distances from the inlet portion between the inlet portion and the outlet portion of the refrigerant flow passage in the evaporator;
When the inlet side temperature detected by the inlet side temperature sensor installed on the most upstream side is lower than the intermediate temperature detected by the intermediate temperature sensor installed on the downstream side of the inlet side temperature sensor, the opening degree of the electronic expansion valve is set. When the temperature difference obtained by subtracting the intermediate temperature from the outlet temperature detected by the outlet temperature sensor installed on the downstream side of the intermediate temperature sensor is smaller than a preset lower threshold, the electronic expansion valve is opened. A valve opening degree adjusting means for expanding the opening degree of the electronic expansion valve when the temperature difference is larger than a preset upper limit threshold,
An upstream temperature difference obtained by subtracting the inlet side temperature from the intermediate temperature is calculated, and a downstream temperature difference obtained by subtracting the outlet side temperature from the intermediate temperature is calculated, and the upstream temperature difference and a preset first temperature difference are calculated. And comparing the downstream temperature difference with a preset second threshold, the upstream temperature difference is greater than the first threshold, and the downstream temperature difference is greater than the second threshold. And an error output means for outputting an error on condition that it is large.
開度に応じて蒸発器に流入する冷媒量を制御する電子膨張弁と、
前記蒸発器における冷媒流通路の入口部から出口部までの間に、前記入口部からの距離が互いに異なる態様で設置した3つの温度センサと、
最も上流側に設置した入口側温度センサで検出した入口側温度が、前記入口側温度センサの下流側に設置した中間温度センサで検出した中間温度より低い場合には前記電子膨張弁の開度を拡大し、かつ中間温度センサの下流側に設置した出口側温度センサで検出した出口側温度から前記中間温度を差し引いた温度差が予め設定した下限閾値よりも小さい場合には前記電子膨張弁の開度を縮小する一方、前記温度差が予め設定した上限閾値よりも大きい場合には前記電子膨張弁の開度を拡大する弁開度調節手段と、
前記中間温度から前記入口側温度を差し引いた上流側温度差を算出し、かつ前記中間温度から前記出口側温度を差し引いた下流側温度差を算出し、前記上流側温度差と予め設定した第1閾値とを比較し、かつ前記下流側温度差と予め設定した第2閾値とを比較し、前記上流側温度差が前記第1閾値よりも大きく、かつ前記下流側温度差が第2閾値よりも大きい場合にエラー出力を行うエラー出力手段と
を備えることを特徴とする冷媒流量制御装置。
An electronic expansion valve that controls the amount of refrigerant flowing into the evaporator according to the opening;
Three temperature sensors installed at different distances from the inlet portion between the inlet portion and the outlet portion of the refrigerant flow passage in the evaporator;
When the inlet side temperature detected by the inlet side temperature sensor installed on the most upstream side is lower than the intermediate temperature detected by the intermediate temperature sensor installed on the downstream side of the inlet side temperature sensor, the opening degree of the electronic expansion valve is set. When the temperature difference obtained by subtracting the intermediate temperature from the outlet temperature detected by the outlet temperature sensor installed on the downstream side of the intermediate temperature sensor is smaller than a preset lower threshold, the electronic expansion valve is opened. A valve opening degree adjusting means for expanding the opening degree of the electronic expansion valve when the temperature difference is larger than a preset upper limit threshold,
An upstream temperature difference obtained by subtracting the inlet side temperature from the intermediate temperature is calculated, and a downstream temperature difference obtained by subtracting the outlet side temperature from the intermediate temperature is calculated, and the upstream temperature difference and a preset first temperature difference are calculated. And comparing the downstream temperature difference with a preset second threshold, the upstream temperature difference is greater than the first threshold, and the downstream temperature difference is greater than the second threshold. A refrigerant flow rate control device comprising: error output means for outputting an error when large.
JP2007282360A 2007-10-30 2007-10-30 Refrigerant flow control device Expired - Fee Related JP4798116B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007282360A JP4798116B2 (en) 2007-10-30 2007-10-30 Refrigerant flow control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007282360A JP4798116B2 (en) 2007-10-30 2007-10-30 Refrigerant flow control device

Publications (2)

Publication Number Publication Date
JP2009109082A JP2009109082A (en) 2009-05-21
JP4798116B2 true JP4798116B2 (en) 2011-10-19

Family

ID=40777751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007282360A Expired - Fee Related JP4798116B2 (en) 2007-10-30 2007-10-30 Refrigerant flow control device

Country Status (1)

Country Link
JP (1) JP4798116B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103424244B (en) * 2012-05-22 2016-03-09 珠海格力电器股份有限公司 The off-premises station valve detection method of multi-evaporator inverter air conditioner and multi-evaporator inverter air conditioner
JP6855920B2 (en) * 2017-05-17 2021-04-07 富士電機株式会社 Ice maker
JP7211913B2 (en) * 2019-08-23 2023-01-24 株式会社コロナ heat pump equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS611954A (en) * 1984-06-14 1986-01-07 三菱電機株式会社 Capacity control type refrigeration cycle device
JP2664421B2 (en) * 1988-07-19 1997-10-15 三洋電機株式会社 Air conditioner
JPH10220881A (en) * 1997-02-05 1998-08-21 Toshiba Corp Method of controlling air conditioner
JP2002122364A (en) * 2000-10-13 2002-04-26 Sanyo Electric Co Ltd Refrigerating apparatus and air conditioner using the apparatus
JP2005214444A (en) * 2004-01-27 2005-08-11 Sanyo Electric Co Ltd Refrigerator
JP2005351575A (en) * 2004-06-11 2005-12-22 Mitsubishi Heavy Ind Ltd Air conditioning system
JP4017014B2 (en) * 2006-12-20 2007-12-05 三菱電機株式会社 Air conditioner

Also Published As

Publication number Publication date
JP2009109082A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP6341808B2 (en) Refrigeration air conditioner
EP1856458B1 (en) Control of a refrigeration circuit with an internal heat exchanger
US9273898B2 (en) Device for detecting abnormality in refrigeration cycle of refrigerator and method therefor
US9689730B2 (en) Estimation apparatus of heat transfer medium flow rate, heat source machine, and estimation method of heat transfer medium flow rate
JP5999499B2 (en) Refrigeration equipment
EP2729743B1 (en) A method for controlling operation of a vapour compression system in a subcritical and a supercritical mode
JP2007255818A (en) Diagnosing device for refrigerating cycle device, heat source-side unit and use-side unit having diagnosing device, and refrigerating cycle device
JP2008249239A (en) Control method of cooling device, cooling device and refrigerating storage
JP2007255845A (en) Refrigerating cycle device
JP4798116B2 (en) Refrigerant flow control device
JP5718629B2 (en) Refrigerant amount detection device
JP2010054094A (en) Air conditioning device
JP4930353B2 (en) Cooling system
JP4997012B2 (en) Refrigeration equipment
JP4952535B2 (en) Cooling system
WO2020035993A1 (en) Control device, refrigerator, control method, and abnormality detection method
JP4935403B2 (en) Refrigerant flow control device
WO2010110982A2 (en) A system and method for controlling a refrigeration system
JP5458656B2 (en) Cooling system
JP2008008555A (en) Refrigerant flow controller
JP6621275B2 (en) Refrigeration equipment
JP6111692B2 (en) Refrigeration equipment
WO2021048905A1 (en) Outdoor unit and refrigeration cycle device
JP2017161195A (en) Refrigeration cycle device
WO2015128899A1 (en) Air conditioner device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100216

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100819

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100819

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110718

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140812

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4798116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees