JP5458656B2 - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP5458656B2
JP5458656B2 JP2009111979A JP2009111979A JP5458656B2 JP 5458656 B2 JP5458656 B2 JP 5458656B2 JP 2009111979 A JP2009111979 A JP 2009111979A JP 2009111979 A JP2009111979 A JP 2009111979A JP 5458656 B2 JP5458656 B2 JP 5458656B2
Authority
JP
Japan
Prior art keywords
expansion valve
superheat
degree
electronic expansion
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009111979A
Other languages
Japanese (ja)
Other versions
JP2010261637A (en
Inventor
崇 松崎
晴彦 須藤
勝彦 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2009111979A priority Critical patent/JP5458656B2/en
Publication of JP2010261637A publication Critical patent/JP2010261637A/en
Application granted granted Critical
Publication of JP5458656B2 publication Critical patent/JP5458656B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、冷却装置に関し、より詳細には、電子膨張弁の開度を調節して、収容装置に配設した蒸発器に対する冷媒の供給制御を行うことにより該収容装置の収容庫を所望の温度状態とする冷却装置に関するものである。   The present invention relates to a cooling device, and more specifically, by adjusting the opening of an electronic expansion valve and controlling the supply of refrigerant to an evaporator disposed in the storage device, the storage device of the storage device is desired. The present invention relates to a cooling device in a temperature state.

例えば、商品を冷却した状態で陳列販売するショーケースでは、その内部に蒸発器及び電子膨張弁が設けられ、またその外部に圧縮機及び凝縮器が設けられており、これら蒸発器、圧縮機、凝縮器及び電子膨張弁を順次接続することにより構成される冷凍サイクルに冷媒を循環させることによってショーケースの収容庫を所望の温度状態に維持するようにしている。   For example, in a showcase that displays and sells products in a cooled state, an evaporator and an electronic expansion valve are provided inside, and a compressor and a condenser are provided outside thereof, and these evaporator, compressor, The storage of the showcase is maintained at a desired temperature state by circulating the refrigerant in a refrigeration cycle constituted by sequentially connecting a condenser and an electronic expansion valve.

具体的には、蒸発器の出口部における冷媒の出口温度と、蒸発器の入口部における冷媒の入口温度とを検出し、出口温度から入口温度を減算して該蒸発器における過熱度を算出し、算出した過熱度と予め決められた設定過熱度との偏差に基づいて電子膨張弁の開度を調節して蒸発器に対して冷媒の供給制御を行っている。また、かかる冷媒の供給制御の他に、収容庫の内部温度を検出し、検出した内部温度と、予め設定された設定温度との偏差に基づいて電子膨張弁の開度を調節している。   Specifically, the refrigerant outlet temperature at the outlet of the evaporator and the refrigerant inlet temperature at the inlet of the evaporator are detected, and the superheat degree in the evaporator is calculated by subtracting the inlet temperature from the outlet temperature. The refrigerant supply control is performed on the evaporator by adjusting the opening of the electronic expansion valve based on the deviation between the calculated degree of superheat and a predetermined set degree of superheat. In addition to the refrigerant supply control, the internal temperature of the storage is detected, and the opening degree of the electronic expansion valve is adjusted based on the deviation between the detected internal temperature and a preset temperature.

そして、圧縮機の駆動開始時において該圧縮機が液冷媒を吸引してしまうことを防止するために、圧縮機の駆動開始情報が与えられたときには電子膨張弁の開度を、下限値からこの下限値と上限値との間隔の約70%の大きさに調節して冷媒の供給制御を行っている(例えば、特許文献1参照)。   In order to prevent the compressor from sucking the liquid refrigerant at the start of driving of the compressor, when the drive start information of the compressor is given, the opening of the electronic expansion valve is reduced from the lower limit value. Refrigerant supply control is performed by adjusting the distance between the lower limit value and the upper limit value to approximately 70% (see, for example, Patent Document 1).

特開2006−71263号公報JP 2006-71263 A

上述したような冷却装置が圧縮機の駆動開始時における電子膨張弁の開度を所定の大きさに調節することは、収容庫の内部温度等のショーケースの要因による圧縮機の運転や、圧縮機が同一のショーケースに個別に設置されていて圧縮機の運転情報が入手可能な場合には有効であることが知られている。   The above-described cooling device adjusts the opening of the electronic expansion valve to a predetermined size at the start of driving of the compressor because the operation of the compressor or the compression due to showcase factors such as the internal temperature of the container It is known to be effective when the machines are individually installed in the same showcase and operating information of the compressor is available.

ところが、冷凍機油戻し制御のような圧縮機の要因による圧縮機の駆動停止時には、圧縮機の駆動停止を検出することができず次のような問題があった。   However, when the compressor is stopped due to compressor factors such as refrigerating machine oil return control, the stop of the compressor cannot be detected, causing the following problems.

すなわち、圧縮機の駆動停止により、収容庫の内部温度と設定温度との偏差が大きくなり、電子膨張弁の開度を拡大させる。これにより冷凍サイクルにおける高圧部から低圧部に液冷媒が流入してしまうため、圧縮機の駆動開始時に該圧縮機が液冷媒を吸引してしまう、いわゆる液バックを発生させてしまう。   That is, when the compressor is stopped, the deviation between the internal temperature of the storage and the set temperature increases, and the opening of the electronic expansion valve is increased. As a result, the liquid refrigerant flows from the high-pressure portion to the low-pressure portion in the refrigeration cycle, so that a so-called liquid back is generated in which the compressor sucks the liquid refrigerant at the start of driving of the compressor.

また、圧縮機の駆動停止により、蒸発器における過熱度が設定過熱度に比べて小さくなり、電子膨張弁の開度を縮小させる。しかしながら電子膨張弁を全閉させてしまうと、蒸発器での過熱度を算出することができないので、全閉が継続することを回避し、電子膨張弁の開度を予め設定された最小開度の大きさに調節する結果、冷凍サイクルの高圧部から低圧部に液冷媒が流入してしまい、圧縮機の駆動開始時に液バックを発生させてしまう。   In addition, when the compressor is stopped, the superheat degree in the evaporator becomes smaller than the set superheat degree, and the opening degree of the electronic expansion valve is reduced. However, if the electronic expansion valve is fully closed, the degree of superheat in the evaporator cannot be calculated, so that the full expansion is avoided and the opening of the electronic expansion valve is set to a preset minimum opening. As a result, the liquid refrigerant flows from the high-pressure portion of the refrigeration cycle into the low-pressure portion, and a liquid back is generated when the compressor starts to be driven.

本発明は、上記実情に鑑みて、冷凍機油戻し制御のように圧縮機の要因により駆動停止した圧縮機が再び駆動開始する場合に、液冷媒を吸引してしまうことを防止することができる冷却装置を提供することを目的とする。   In view of the above circumstances, the present invention provides cooling that can prevent liquid refrigerant from being sucked when a compressor that has stopped driving due to a compressor factor, such as refrigeration oil return control, starts to drive again. An object is to provide an apparatus.

上記目的を達成するため、本発明に係る冷却装置は、電子膨張弁の開度を調節して、収容装置に配設した蒸発器に対する冷媒の供給制御を行うことにより該収容装置の収容庫を所望の温度状態とする冷却装置において、前記蒸発器の出口部における冷媒の出口温度から前記蒸発器の入口部における冷媒の入口温度を減算して、該蒸発器における過熱度を算出する過熱度算出手段と、前記過熱度算出手段により算出された過熱度が予め決められた閾値未満で、かつ前記出口温度が予め決められた基準温度以上である場合には、前記蒸発器から吐出された冷媒を圧縮する圧縮機が停止しているものと判断して前記電子膨張弁を全閉状態にさせる一方、前記過熱度算出手段により算出された過熱度が前記閾値未満で、かつ前記出口温度が前記基準温度未満である場合には、前記圧縮機が液冷媒を吸引してしまうと判断して前記電子膨張弁の開度を縮小させる制御を行う制御手段とを備え、前記制御手段は、前記電子膨張弁を全閉状態にさせた後、前記過熱度算出手段により算出された過熱度が前記閾値以上、あるいは前記出口温度が前記基準温度未満となる場合に、前記電子膨張弁の開度を、前記圧縮機が停止しているものと判断した時点での電子膨張弁の開度の55〜75%の大きさに拡大させる制御を行うことを特徴とする。 To achieve the above object, the cooling device according to the present invention, by adjusting the opening degree of the electronic expansion valve, by controlling the supply of refrigerant for the evaporator which is arranged in the housing unit accommodating chamber of the housing unit In the cooling device in a desired temperature state, the superheat degree calculation for calculating the superheat degree in the evaporator by subtracting the refrigerant inlet temperature in the inlet part of the evaporator from the refrigerant outlet temperature in the outlet part of the evaporator And the superheat degree calculated by the superheat degree calculation means is less than a predetermined threshold value and the outlet temperature is equal to or higher than a predetermined reference temperature, the refrigerant discharged from the evaporator is While determining that the compressor to be compressed is stopped, the electronic expansion valve is fully closed, while the superheat degree calculated by the superheat degree calculation means is less than the threshold value and the outlet temperature is the reference Warm Less than a when it is, and control means for the compressor performs control to reduce the opening of it is determined that results in sucking the liquid refrigerant the electronic expansion valve, said control means, said electronic expansion valve When the superheat degree calculated by the superheat degree calculating means is equal to or higher than the threshold value or the outlet temperature is lower than the reference temperature, the opening degree of the electronic expansion valve is reduced to the compression degree. Control is performed to expand the size of the electronic expansion valve to 55 to 75% of the opening when it is determined that the machine is stopped .

本発明によれば、制御手段が、過熱度算出手段により算出された過熱度が予め決められた閾値未満で、かつ出口温度が予め決められた基準温度以上である場合には、蒸発器から吐出された冷媒を圧縮する圧縮機が停止しているものと判断して電子膨張弁を全閉状態にさせる一方、過熱度算出手段により算出された過熱度が閾値未満で、かつ出口温度が基準温度未満である場合には、圧縮機が液冷媒を吸引してしまうと判断して電子膨張弁の開度を縮小させる制御を行うので、冷凍機油戻し制御のように圧縮機自体の要因により圧縮機が駆動停止したことを良好に検出することができる。そして、電子膨張弁を全閉状態にさせるため、その後に圧縮機が再び駆動開始した場合に、該圧縮機が液冷媒を吸引してしまう虞れがない。従って、冷凍機油戻し制御のように圧縮機の要因により駆動停止した圧縮機が再び駆動開始する場合に、液冷媒を吸引してしまうことを防止することができるという効果を奏する。   According to the present invention, when the superheat degree calculated by the superheat degree calculation means is less than a predetermined threshold value and the outlet temperature is equal to or higher than the predetermined reference temperature, the control means discharges from the evaporator. The electronic expansion valve is fully closed by determining that the compressor for compressing the generated refrigerant is stopped, while the superheat degree calculated by the superheat degree calculating means is less than the threshold value and the outlet temperature is the reference temperature. If it is less than that, it is determined that the compressor sucks the liquid refrigerant and control is performed to reduce the opening of the electronic expansion valve. Therefore, the compressor is caused by factors of the compressor itself, such as refrigeration oil return control. Can be detected well. Then, since the electronic expansion valve is fully closed, there is no possibility that the compressor sucks the liquid refrigerant when the compressor starts to drive again thereafter. Therefore, there is an effect that it is possible to prevent the liquid refrigerant from being sucked when the compressor whose driving is stopped due to the compressor causes the driving to start again like the refrigerating machine oil return control.

図1は、本発明の実施の形態である冷却装置の構成を概念的に示す概念図である。FIG. 1 is a conceptual diagram conceptually showing the configuration of a cooling device according to an embodiment of the present invention. 図2は、蒸発器における過熱度と、出口温度と、状態判断部が判断する運転状態と、弁開度設定部が設定する電子膨張弁の開度との関係の一例を示す図表である。FIG. 2 is a chart showing an example of the relationship between the degree of superheat in the evaporator, the outlet temperature, the operating state determined by the state determining unit, and the opening of the electronic expansion valve set by the valve opening setting unit. 図3は、図1に示した弁開度調節手段が実施する膨張弁開度制御処理の内容を示すフローチャートである。FIG. 3 is a flowchart showing the contents of the expansion valve opening degree control process performed by the valve opening degree adjusting means shown in FIG. 図4は、図3に示す弁開度調節手段の膨張弁開度制御処理の感触試験結果を示す図表であり、(a)は入口温度、出口温度、過熱度の時間変化を示し、(b)は(a)と同一の時間変化における弁開度の変化、並びに圧縮機の運転状況を示している。FIG. 4 is a chart showing the results of a feel test of the expansion valve opening degree control process of the valve opening degree adjusting means shown in FIG. 3, wherein (a) shows the time variation of the inlet temperature, outlet temperature, and superheat degree. ) Shows the change in the valve opening in the same time change as in (a), and the operating state of the compressor.

以下、添付図面を適宜参照しながら本発明に係る冷却装置の好適な実施の形態について詳細に説明する。   Hereinafter, preferred embodiments of a cooling device according to the present invention will be described in detail with reference to the accompanying drawings as appropriate.

図1は、本発明の実施の形態である冷却装置の構成を概念的に示す概念図である。ここで例示する冷却装置は、収容庫10の内部に収納した商品を冷却した状態で陳列販売するオープンショーケース(収容装置)11に適用するもので、複数のオープンショーケース11にそれぞれ蒸発器12及び電子膨張弁13を個別に備える一方オープンショーケース11の外部に冷凍機を構成する凝縮器14及び圧縮機15をそれぞれ1つずつ備えている。   FIG. 1 is a conceptual diagram conceptually showing the configuration of a cooling device according to an embodiment of the present invention. The cooling device exemplified here is applied to an open showcase (accommodating device) 11 that displays and sells products stored in the storage 10 in a cooled state, and each of the open showcases 11 has an evaporator 12. In addition, the electronic expansion valve 13 is individually provided, while the open showcase 11 is provided with one condenser 14 and one compressor 15 constituting a refrigerator.

電子膨張弁13は、凝縮器14から吐出された液冷媒を断熱膨張して蒸発器12に供給するためのものである。本実施の形態では、蒸発器12の出口部における冷媒温度(以下、出口温度ともいう)と、蒸発器12の入口部における冷媒温度(以下、入口温度ともいう)との差として定義される過熱度に基づき開度を変更し、通過する冷媒の流量を調節することのできるものを適用している。より具体的には、電子膨張弁13は、過熱度が大きい場合には開度を拡大させる一方、過熱度が小さい場合には開度を縮小させるものである。   The electronic expansion valve 13 is for adiabatically expanding the liquid refrigerant discharged from the condenser 14 and supplying it to the evaporator 12. In the present embodiment, overheating defined as the difference between the refrigerant temperature at the outlet of the evaporator 12 (hereinafter also referred to as outlet temperature) and the refrigerant temperature at the inlet of the evaporator 12 (hereinafter also referred to as inlet temperature). Based on the degree, the opening degree is changed, and the one that can adjust the flow rate of the refrigerant passing therethrough is applied. More specifically, the electronic expansion valve 13 expands the opening when the degree of superheat is large, and reduces the opening when the degree of superheat is small.

圧縮機15は、蒸発器12から吐出された低温低圧のガス冷媒を圧縮して高温高圧のガス冷媒として凝縮器14に与えるものである。本実施の形態では、圧力値設定指令が与えられた場合にこの圧力値設定指令に応じて吸入圧力を変更することのできるインバータ圧縮機を適用している。   The compressor 15 compresses the low-temperature and low-pressure gas refrigerant discharged from the evaporator 12 and supplies it to the condenser 14 as a high-temperature and high-pressure gas refrigerant. In the present embodiment, when a pressure value setting command is given, an inverter compressor that can change the suction pressure according to the pressure value setting command is applied.

この冷却装置では、凝縮器14及び圧縮機15に対してそれぞれのオープンショーケース11に設けた蒸発器12及び電子膨張弁13を並列に接続して冷凍サイクルが構成してある。すなわち、圧縮機15から吐出された高温高圧のガス冷媒が凝縮器14において放熱して高温高圧の液冷媒となる。この高温高圧の液冷媒は、各オープンショーケース11の電子膨張弁13に分岐供給され、断熱膨張されて低温低圧の気液2相冷媒となって蒸発器12に供給される。蒸発器12に供給された低温低圧の気液2相冷媒は、送風ファン16によって供給された収容庫10の内部雰囲気を熱交換し、吸熱して低温低圧のガス冷媒となることにより収容庫10の冷却を行う。蒸発器12を経た低温低圧のガス冷媒は、オープンショーケース11の外部において合流し、圧縮機15に吸入される。   In this cooling device, an evaporator 12 and an electronic expansion valve 13 provided in each open showcase 11 are connected in parallel to the condenser 14 and the compressor 15 to constitute a refrigeration cycle. That is, the high-temperature and high-pressure gas refrigerant discharged from the compressor 15 dissipates heat in the condenser 14 and becomes a high-temperature and high-pressure liquid refrigerant. This high-temperature and high-pressure liquid refrigerant is branched and supplied to the electronic expansion valve 13 of each open showcase 11 and is adiabatically expanded to be supplied to the evaporator 12 as a low-temperature and low-pressure gas-liquid two-phase refrigerant. The low-temperature low-pressure gas-liquid two-phase refrigerant supplied to the evaporator 12 exchanges heat with the internal atmosphere of the storage 10 supplied by the blower fan 16 and absorbs heat to become a low-temperature low-pressure gas refrigerant. Cool down. The low-temperature and low-pressure gas refrigerant that has passed through the evaporator 12 joins outside the open showcase 11 and is sucked into the compressor 15.

個々のオープンショーケース11において蒸発器12の入口部及び出口部に接続した冷媒供給管路17にはそれぞれ入口部冷媒温度センサ20及び出口部冷媒温度センサ21が設けてある。また、図には明示しないが、収容庫10の内部には内部温度センサが設けてある。入口部冷媒温度センサ20及び出口部冷媒温度センサ21は、それぞれの冷媒供給管路17を通過する冷媒の温度を検出するものである。内部温度センサは、収容庫10の内部温度を検出するものである。本実施の形態では、内部温度センサとして、収容庫10の内部においてそれぞれの蒸発器12を通過した後の空気の温度を収容庫10の内部温度として検出するものを適用している。   In each open showcase 11, an inlet refrigerant temperature sensor 20 and an outlet refrigerant temperature sensor 21 are provided in the refrigerant supply pipe 17 connected to the inlet and outlet of the evaporator 12, respectively. Further, although not shown in the figure, an internal temperature sensor is provided inside the storage 10. The inlet refrigerant temperature sensor 20 and the outlet refrigerant temperature sensor 21 detect the temperature of the refrigerant passing through the respective refrigerant supply pipes 17. The internal temperature sensor detects the internal temperature of the container 10. In this Embodiment, what detects the temperature of the air after passing each evaporator 12 in the inside of the storage 10 as an internal temperature of the storage 10 is applied as an internal temperature sensor.

また、上記冷却装置は、その制御系として弁開度調節手段30を備えている。図1からも明らかなように、本実施の形態では、それぞれのオープンショーケース11に個別の弁開度調節手段30が設けてある。   Further, the cooling device includes a valve opening degree adjusting means 30 as its control system. As is clear from FIG. 1, in the present embodiment, each open showcase 11 is provided with individual valve opening degree adjusting means 30.

弁開度調節手段30は、入口部冷媒温度センサ20及び出口部冷媒温度センサ21の検出した冷媒温度に基づいて電子膨張弁13の開度調節を行うもので、設定記憶部31、過熱度算出部(過熱度算出手段)32、状態判断部33及び弁開度設定部(制御手段)34を備えている。   The valve opening degree adjusting means 30 adjusts the opening degree of the electronic expansion valve 13 based on the refrigerant temperatures detected by the inlet portion refrigerant temperature sensor 20 and the outlet portion refrigerant temperature sensor 21, and includes a setting storage unit 31 and a superheat degree calculation. A part (superheat degree calculation means) 32, a state determination part 33, and a valve opening degree setting part (control means) 34.

設定記憶部31は、蒸発器12における冷媒の過熱度目標値及び出口部冷媒温度センサ21の検出した冷媒温度(以下、出口温度ともいう)の判定値を予め設定し、かつこれらを記憶するものである。本実施の形態では、過熱度目標値として、その上限値(例えば5℃)と下限値(閾値:例えば2℃)とがそれぞれ設定してあるとともに、判定値として、基準温度(例えば0℃)が設定してある。   The setting storage unit 31 presets and stores a determination value of the refrigerant superheat degree target value in the evaporator 12 and the refrigerant temperature detected by the outlet refrigerant temperature sensor 21 (hereinafter also referred to as outlet temperature). It is. In the present embodiment, an upper limit value (for example, 5 ° C.) and a lower limit value (threshold value: for example, 2 ° C.) are set as the superheat degree target value, and a reference temperature (for example, 0 ° C.) is set as the determination value. Is set.

過熱度算出部32は、出口部冷媒温度センサ21の検出した出口温度から入口部冷媒温度センサ20の検出した冷媒温度(以下、入口温度ともいう)を減算して、蒸発器12における過熱度を算出するものである。   The superheat degree calculation unit 32 subtracts the refrigerant temperature detected by the inlet refrigerant temperature sensor 20 (hereinafter also referred to as inlet temperature) from the outlet temperature detected by the outlet refrigerant temperature sensor 21 to obtain the degree of superheat in the evaporator 12. Is to be calculated.

状態判断部33は、過熱度算出部32で算出された過熱度と、出口部冷媒温度センサ21で検出された出口温度とに基づいて、オープンショーケース11の運転状態を判断するものである。   The state determination unit 33 determines the operating state of the open showcase 11 based on the degree of superheat calculated by the degree of superheat calculation unit 32 and the outlet temperature detected by the outlet refrigerant temperature sensor 21.

弁開度設定部34は、状態判断部33の判断結果に応じて電子膨張弁13の開度を設定するものである。より詳細には、弁開度設定部34は、電子膨張弁13の開度を拡大させる場合には予め決められた大きさ(例えば10パルス程度)だけ拡大させ、電子膨張弁13の開度を縮小させる場合には予め決められた大きさ(例えば10パルス程度)だけ縮小させるものである。また、弁開度設定部34は、電子膨張弁13の開度を全閉状態にした場合には、予め設定された設定時間(例えば60秒間)の経過後、電子膨張弁13の開度を、状態判断部33により圧縮機15が停止しているものと判断された時点における電子膨張弁13の開度の約70%の大きさに設定するものである。図2は、蒸発器12における過熱度と、出口温度と、状態判断部33が判断する運転状態と、弁開度設定部34が設定する電子膨張弁13の開度との関係の一例を示したものである。   The valve opening setting unit 34 sets the opening of the electronic expansion valve 13 according to the determination result of the state determination unit 33. More specifically, the valve opening setting unit 34 increases the opening of the electronic expansion valve 13 by a predetermined size (for example, about 10 pulses) when the opening of the electronic expansion valve 13 is increased. In the case of reduction, it is reduced by a predetermined size (for example, about 10 pulses). Further, when the opening degree of the electronic expansion valve 13 is fully closed, the valve opening degree setting unit 34 sets the opening degree of the electronic expansion valve 13 after a preset time (for example, 60 seconds) has elapsed. Then, the size is set to about 70% of the opening degree of the electronic expansion valve 13 when the state determination unit 33 determines that the compressor 15 is stopped. FIG. 2 shows an example of the relationship between the degree of superheat in the evaporator 12, the outlet temperature, the operating state determined by the state determining unit 33, and the opening of the electronic expansion valve 13 set by the valve opening setting unit 34. It is a thing.

図3は、図1に示した弁開度調節手段30が実施する膨張弁開度制御処理の内容を示すフローチャートである。以下、この図3を参照しながら、冷却装置の動作について説明する。   FIG. 3 is a flowchart showing the contents of the expansion valve opening degree control process performed by the valve opening degree adjusting means 30 shown in FIG. Hereinafter, the operation of the cooling device will be described with reference to FIG.

図3に示す膨張弁開度制御処理において弁開度調節手段30は、入口部冷媒温度センサ20及び出口部冷媒温度センサ21を通じて冷媒の温度を検出し(ステップS101)、過熱度算出部32を通じて、検出した出口温度から入口温度を減算して蒸発器12における過熱度を算出する(ステップS102)。   In the expansion valve opening control process shown in FIG. 3, the valve opening adjusting means 30 detects the refrigerant temperature through the inlet refrigerant temperature sensor 20 and the outlet refrigerant temperature sensor 21 (step S101), and through the superheat calculator 32. Then, the degree of superheat in the evaporator 12 is calculated by subtracting the inlet temperature from the detected outlet temperature (step S102).

蒸発器12における過熱度を算出した弁開度調節手段30は、該過熱度が設定記憶部31に記憶された過熱度目標値の上限値(例えば5℃)を超えているか否かを判断する(ステップS103)。   The valve opening degree adjusting means 30 that has calculated the degree of superheat in the evaporator 12 determines whether or not the degree of superheat exceeds the upper limit value (for example, 5 ° C.) of the superheat degree target value stored in the setting storage unit 31. (Step S103).

算出した過熱度が過熱度目標値の上限値を超えている場合(ステップS103:Yes)、弁開度調節手段30は、状態判断部33を通じて過熱度が過大である判断し、弁開度設定部34を通じて電子膨張弁13の開度を拡大、すなわち予め決められた大きさだけ加えた開度に設定し(ステップS104)、その後に手順をリターンさせる。この結果、蒸発器12に対する冷媒の供給が増大され、蒸発器12における過熱度が低下するように推移することになる。   When the calculated superheat degree exceeds the upper limit value of the superheat degree target value (step S103: Yes), the valve opening degree adjusting means 30 determines that the superheat degree is excessive through the state determination unit 33, and sets the valve opening degree. The opening of the electronic expansion valve 13 is enlarged through the unit 34, that is, set to an opening obtained by adding a predetermined size (step S104), and then the procedure is returned. As a result, the supply of refrigerant to the evaporator 12 is increased, and the degree of superheat in the evaporator 12 is lowered.

算出した過熱度が過熱度目標値の上限値以下であった場合(ステップS103:No)、弁開度調節手段30は、該過熱度が過熱度目標値の下限値(例えば2℃)を下回っているか否かを判断する(ステップS105)。   When the calculated degree of superheat is less than or equal to the upper limit value of the superheat degree target value (step S103: No), the valve opening degree adjusting means 30 is less than the lower limit value (for example, 2 ° C.) of the superheat degree target value. It is determined whether or not (step S105).

算出した過熱度が過熱度目標値の下限値を下回っている場合(ステップS105:Yes)、弁開度調節手段30は、ステップS101で検出した出口温度が設定記憶部31に記憶された判定値の基準温度(例えば0℃)を下回っているか否かを判断する(ステップS106)。   When the calculated superheat degree is below the lower limit value of the superheat degree target value (step S105: Yes), the valve opening degree adjusting means 30 determines the outlet temperature detected in step S101 stored in the setting storage unit 31. It is determined whether the temperature is lower than the reference temperature (for example, 0 ° C.) (step S106).

出口温度が基準温度を下回っている場合(ステップS106:Yes)、弁開度調節手段30は、状態判断部33を通じて、圧縮機15が液冷媒を吸引してしまう、すなわち液バックが発生してしまうと判断し、弁開度設定部34を通じて電子膨張弁13の開度を縮小、すなわち予め決められた大きさだけ減じた開度に設定し(ステップS107)、その後に手順をリターンさせる。この結果、蒸発器12に対する冷媒の供給が減少され、蒸発器12における過熱度が上昇するように推移することになる。   When the outlet temperature is lower than the reference temperature (step S106: Yes), the valve opening degree adjusting means 30 causes the compressor 15 to suck the liquid refrigerant through the state determination unit 33, that is, the liquid back is generated. The opening degree of the electronic expansion valve 13 is reduced through the valve opening degree setting unit 34, that is, set to an opening degree reduced by a predetermined size (step S107), and then the procedure is returned. As a result, the supply of the refrigerant to the evaporator 12 is reduced, and the superheat degree in the evaporator 12 is increased.

一方、出口温度が基準温度以上の場合(ステップS106:No)、弁開度調節手段30は、状態判断部33を通じて、圧縮機15が停止しているものと判断し、弁開度設定部34を通じて電子膨張弁13を全閉状態にさせ(ステップS108)、その後に手順をリターンさせる。この結果、冷凍サイクルの高圧部(圧縮機15から電子膨張弁13に至る領域)から低圧部(電子膨張弁13から圧縮機15に至る領域)に液冷媒が流入してしまう虞れがない。   On the other hand, when the outlet temperature is equal to or higher than the reference temperature (step S106: No), the valve opening degree adjusting means 30 determines that the compressor 15 is stopped through the state determining unit 33 and the valve opening degree setting unit 34. The electronic expansion valve 13 is fully closed through (step S108), and then the procedure is returned. As a result, there is no possibility that the liquid refrigerant flows from the high pressure portion (region extending from the compressor 15 to the electronic expansion valve 13) into the low pressure portion (region extending from the electronic expansion valve 13 to the compressor 15) of the refrigeration cycle.

その後、弁開度調節手段30は、予め設定された設定時間(例えば60秒間)の経過後、弁開度設定部34を通じて、電子膨張弁13の開度を、状態判断部33により圧縮機15が停止しているものと判断された時点における電子膨張弁13の開度の約70%の大きさに設定する。   Thereafter, the valve opening degree adjusting means 30 determines the opening degree of the electronic expansion valve 13 through the valve opening degree setting unit 34 after the elapse of a preset set time (for example, 60 seconds) by the state determination unit 33 and the compressor 15. Is set to about 70% of the opening degree of the electronic expansion valve 13 at the time when it is determined that is stopped.

ところで、ステップS102で算出した過熱度が過熱度目標値の下限値以上で上限値以下の場合(ステップS103:No,ステップS105:No)、弁開度調節手段30は、状態判断部33を通じて過熱度が適正であると判断し、電子膨張弁13の開度を維持し(ステップS109)、その後に手順をリターンさせる。   By the way, when the degree of superheat calculated in step S102 is greater than or equal to the lower limit value of the superheat degree target value and less than or equal to the upper limit value (step S103: No, step S105: No), the valve opening degree adjuster 30 performs overheat through the state determination unit 33. It is determined that the degree is appropriate, the opening degree of the electronic expansion valve 13 is maintained (step S109), and then the procedure is returned.

図4は、図3に示す弁開度調節手段30の膨張弁開度制御処理の感触試験結果を示す図表であり、(a)は入口温度、出口温度、過熱度の時間変化を示し、(b)は(a)と同一の時間変化における弁開度の変化、並びに圧縮機15の運転状況を示している。ここでは、過熱度目標値の下限値を2℃とし、判定値の基準温度を0℃として膨張弁開度制御処理を実施した。   FIG. 4 is a chart showing the results of a feel test of the expansion valve opening degree control process of the valve opening degree adjusting means 30 shown in FIG. 3, (a) shows changes over time in inlet temperature, outlet temperature, and superheat degree, b) shows the change of the valve opening in the same time change as (a), and the operating state of the compressor 15. Here, the lower limit value of the superheat degree target value is 2 ° C., the reference temperature of the determination value is 0 ° C., and the expansion valve opening degree control process is performed.

この図4に示すように、時刻t1において、過熱度が過熱度目標値の下限値(2℃)を下回り、かつ出口温度が基準温度(0℃)以上となっており、弁開度調節手段30は電子膨張弁13を全閉状態にさせる。かかる時刻t1においては、圧縮機15が実際に駆動停止している。時刻t1から所定時間(例えば60秒間)経過後の時刻t2において、弁開度調節手段30は、電子膨張弁13の開度を、時刻t1における開度(すなわち圧縮機15が駆動停止しているものと判断した時点での開度)の約70%の大きさに調節している。   As shown in FIG. 4, at time t1, the degree of superheat falls below the lower limit (2 ° C.) of the superheat degree target value, and the outlet temperature is equal to or higher than the reference temperature (0 ° C.). 30 makes the electronic expansion valve 13 fully closed. At time t1, the compressor 15 is actually stopped. At time t2 after elapse of a predetermined time (for example, 60 seconds) from time t1, the valve opening degree adjusting means 30 changes the opening degree of the electronic expansion valve 13 to the opening degree at time t1 (that is, the compressor 15 is stopped driving). The degree of opening is adjusted to about 70% of the opening degree at the time when it is determined to be.

時刻t3及び時刻t4においては、過熱度が過熱度目標値の下限値を下回るが、出口温度が基準温度以上であるので、弁開度調節手段30は電子膨張弁13の開度を例えば10パルス程度小さく設定している。   At times t3 and t4, the degree of superheat falls below the lower limit value of the superheat degree target value, but since the outlet temperature is equal to or higher than the reference temperature, the valve opening degree adjusting means 30 sets the opening degree of the electronic expansion valve 13 to 10 pulses, for example. It is set small.

かかる図4の感触試験にも示すように、弁開度調節手段30が圧縮機15が駆動停止しているものと判断した時刻t1においては、圧縮機15が実際に駆動停止しており、上記膨張弁開度制御処理が圧縮機15の駆動停止を良好に判断することができたことが理解される。   As shown in the feel test of FIG. 4, at time t1 when the valve opening degree adjusting means 30 determines that the compressor 15 has stopped driving, the compressor 15 has actually stopped driving. It will be understood that the expansion valve opening degree control process was able to satisfactorily determine whether the compressor 15 was stopped.

以上説明したように、本発明の実施の形態である冷却装置によれば、弁開度調節手段30が、過熱度算出部32で算出された過熱度が設定記憶部31に記憶された過熱度目標値の下限値未満で、かつ出口温度が設定記憶部31に記憶された判定値の基準温度以上である場合には、冷凍機を構成する圧縮機15が停止しているものと判断して電子膨張弁13を全閉状態にさせる一方、過熱度算出部32で算出された過熱度が下限値未満で、かつ出口温度が基準温度未満である場合には、圧縮機15が液冷媒を吸引してしまうと判断して電子膨張弁13の開度を縮小させる制御を行うので、冷凍機油戻し制御のように圧縮機15自体の要因により圧縮機15が駆動停止したことを良好に検出することができる。そして、電子膨張弁13を全閉状態にさせるため、その後に圧縮機15が再び駆動開始した場合に、該圧縮機15が液冷媒を吸引してしまう虞れがない。従って、冷凍機油戻し制御のように圧縮機15の要因により駆動停止した圧縮機15が再び駆動開始する場合に、液冷媒を吸引してしまうことを防止することができる。   As described above, according to the cooling device according to the embodiment of the present invention, the degree of superheat in which the valve opening degree adjusting unit 30 stores the superheat degree calculated by the superheat degree calculation unit 32 in the setting storage unit 31. When it is less than the lower limit value of the target value and the outlet temperature is equal to or higher than the reference temperature of the determination value stored in the setting storage unit 31, it is determined that the compressor 15 constituting the refrigerator is stopped. While the electronic expansion valve 13 is fully closed, when the degree of superheat calculated by the superheat degree calculation unit 32 is less than the lower limit value and the outlet temperature is less than the reference temperature, the compressor 15 sucks the liquid refrigerant. Since it is determined that the opening of the electronic expansion valve 13 is reduced, it is possible to detect well that the compressor 15 has stopped driving due to the factor of the compressor 15 itself, such as refrigeration oil return control. Can do. And since the electronic expansion valve 13 is made into a fully-closed state, when the compressor 15 starts a drive again after that, there is no possibility that this compressor 15 may attract | suck a liquid refrigerant. Therefore, it is possible to prevent the liquid refrigerant from being sucked when the compressor 15 whose driving has been stopped due to the factor of the compressor 15 starts to drive again like the refrigerating machine oil return control.

特に上記冷却装置によれば、弁開度調節手段30は、電子膨張弁13を全閉状態にさせてから所定時間経過後に電子膨張弁13の開度を、圧縮機15が停止しているものと判断した時点での電子膨張弁13の開度の約70%の大きさに設定するので、圧縮機15が再び駆動開始した場合の蒸発器12における冷媒の蒸発温度を低く設定でき、圧縮機15が液冷媒を吸引してしまう事態を発生させることを確実に回避させることができる。   Particularly, according to the cooling device, the valve opening degree adjusting means 30 is such that the compressor 15 stops the opening degree of the electronic expansion valve 13 after a predetermined time has elapsed since the electronic expansion valve 13 is fully closed. Is set to about 70% of the opening degree of the electronic expansion valve 13 at the time when it is determined that the evaporating temperature of the refrigerant in the evaporator 12 when the compressor 15 starts to drive again can be set. It is possible to reliably avoid occurrence of a situation in which the liquid 15 sucks the liquid refrigerant.

以上、本発明の好適な実施の形態について説明したが、本発明はこれに限定されるものではなく、種々の変更を行うことができる。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to this, and various modifications can be made.

上述した実施の形態では、弁開度調節手段30は、電子膨張弁13の開度を全閉状態にした場合には、予め設定された設定時間(例えば60秒間)の経過後、電子膨張弁13の開度を、状態判断部33により圧縮機15が停止しているものと判断された時点における電子膨張弁13の開度の約70%の大きさに設定していたが、本発明では、55〜75%の大きさに設定できれば良く、必ずしも70%に限られるものではない。   In the above-described embodiment, when the opening degree of the electronic expansion valve 13 is fully closed, the valve opening degree adjusting unit 30 is configured so that the electronic expansion valve after a preset time (for example, 60 seconds) elapses. The opening degree of 13 is set to about 70% of the opening degree of the electronic expansion valve 13 at the time when the state determination unit 33 determines that the compressor 15 is stopped. The size may be set to 55 to 75%, and is not necessarily limited to 70%.

また、上述した実施の形態では、弁開度調節手段30は、電子膨張弁13の開度を全閉状態にした場合には、予め設定された設定時間(例えば60秒間)の経過後、電子膨張弁13の開度を、状態判断部33により圧縮機15が停止しているものと判断された時点における電子膨張弁13の開度の約70%の大きさに設定していたが、本発明はこれに限られず、電子膨張弁を全閉状態にさせた後、過熱度算出部(過熱度算出手段)により算出された過熱度が過熱度目標値の下限値(閾値)以上、あるいは出口温度が判定値の基準温度未満となる場合に、電子膨張弁の開度を、圧縮機が停止しているものと判断した時点での電子膨張弁の開度の55〜75%の大きさに設定しても良い。つまり、一旦全閉状態にした電子膨張弁の復帰条件は、所定時間の経過としても良いし、圧縮機が停止しているものとの判断が解除された時であっても良い。   Further, in the above-described embodiment, the valve opening degree adjusting means 30 is configured such that, when the opening degree of the electronic expansion valve 13 is fully closed, the electronic opening valve 13 is electronically set after a preset time (for example, 60 seconds) has elapsed. Although the opening degree of the expansion valve 13 is set to about 70% of the opening degree of the electronic expansion valve 13 at the time when the state determination unit 33 determines that the compressor 15 is stopped, The invention is not limited to this, and after the electronic expansion valve is fully closed, the superheat degree calculated by the superheat degree calculation unit (superheat degree calculation means) is equal to or higher than the lower limit value (threshold value) of the superheat degree target value, or the outlet When the temperature is lower than the reference temperature of the determination value, the opening degree of the electronic expansion valve is set to 55 to 75% of the opening degree of the electronic expansion valve when it is determined that the compressor is stopped. May be set. That is, the return condition of the electronic expansion valve that is once fully closed may be the elapse of a predetermined time or may be when the determination that the compressor is stopped is released.

また、上述した実施の形態では、過熱度と過熱度目標値との偏差に基づいた膨張弁開度制御処理について説明したが、本発明においては、かかる膨張弁開度制御処理に並行して、収容庫の内部温度と、設定温度との偏差に基づいて電子膨張弁の開度を調節する制御を行っても構わない。   Moreover, in the above-described embodiment, the expansion valve opening degree control process based on the deviation between the superheat degree and the superheat degree target value has been described, but in the present invention, in parallel with the expansion valve opening degree control process, You may perform control which adjusts the opening degree of an electronic expansion valve based on the deviation of the internal temperature of a storage and preset temperature.

以上のように、本発明に係る冷却装置は、オープンショーケースの収容庫の冷却に有用である。   As described above, the cooling device according to the present invention is useful for cooling the open showcase container.

10 収容庫
11 オープンショーケース
12 蒸発器
13 電子膨張弁
14 凝縮器
15 圧縮機
20 入口部冷媒温度センサ
21 出口部冷媒温度センサ
30 弁開度調節手段
31 設定記憶部
32 過熱度算出部
33 状態判断部
34 弁開度設定部
DESCRIPTION OF SYMBOLS 10 Container 11 Open showcase 12 Evaporator 13 Electronic expansion valve 14 Condenser 15 Compressor 20 Inlet part refrigerant | coolant temperature sensor 21 Outlet part refrigerant | coolant temperature sensor 30 Valve opening degree adjustment means 31 Setting memory | storage part 32 Superheat degree calculation part 33 State judgment Part 34 Valve opening setting part

Claims (1)

電子膨張弁の開度を調節して、収容装置に配設した蒸発器に対する冷媒の供給制御を行うことにより該収容装置の収容庫を所望の温度状態とする冷却装置において、
前記蒸発器の出口部における冷媒の出口温度から前記蒸発器の入口部における冷媒の入口温度を減算して、該蒸発器における過熱度を算出する過熱度算出手段と、
前記過熱度算出手段により算出された過熱度が予め決められた閾値未満で、かつ前記出口温度が予め決められた基準温度以上である場合には、前記蒸発器から吐出された冷媒を圧縮する圧縮機が停止しているものと判断して前記電子膨張弁を全閉状態にさせる一方、前記過熱度算出手段により算出された過熱度が前記閾値未満で、かつ前記出口温度が前記基準温度未満である場合には、前記圧縮機が液冷媒を吸引してしまうと判断して前記電子膨張弁の開度を縮小させる制御を行う制御手段と
を備え
前記制御手段は、前記電子膨張弁を全閉状態にさせた後、前記過熱度算出手段により算出された過熱度が前記閾値以上、あるいは前記出口温度が前記基準温度未満となる場合に、前記電子膨張弁の開度を、前記圧縮機が停止しているものと判断した時点での電子膨張弁の開度の55〜75%の大きさに拡大させる制御を行うことを特徴とする冷却装置。
In the cooling device that adjusts the opening of the electronic expansion valve and controls the supply of the refrigerant to the evaporator disposed in the storage device to bring the storage of the storage device into a desired temperature state,
A superheat degree calculating means for subtracting the refrigerant inlet temperature at the inlet of the evaporator from the refrigerant outlet temperature at the outlet of the evaporator to calculate the degree of superheat in the evaporator;
Compression that compresses the refrigerant discharged from the evaporator when the superheat calculated by the superheat calculating means is less than a predetermined threshold and the outlet temperature is equal to or higher than a predetermined reference temperature. It is determined that the machine is stopped and the electronic expansion valve is fully closed, while the superheat calculated by the superheat calculation means is less than the threshold and the outlet temperature is less than the reference temperature. In some cases, the controller includes a control unit that performs control to reduce the opening of the electronic expansion valve by determining that the compressor sucks the liquid refrigerant ,
After the electronic expansion valve is fully closed, the control means, when the superheat degree calculated by the superheat degree calculation means is equal to or higher than the threshold value, or the outlet temperature is lower than the reference temperature. A cooling device that performs control to increase the opening degree of the expansion valve to 55 to 75% of the opening degree of the electronic expansion valve when it is determined that the compressor is stopped .
JP2009111979A 2009-05-01 2009-05-01 Cooling system Expired - Fee Related JP5458656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009111979A JP5458656B2 (en) 2009-05-01 2009-05-01 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009111979A JP5458656B2 (en) 2009-05-01 2009-05-01 Cooling system

Publications (2)

Publication Number Publication Date
JP2010261637A JP2010261637A (en) 2010-11-18
JP5458656B2 true JP5458656B2 (en) 2014-04-02

Family

ID=43359867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009111979A Expired - Fee Related JP5458656B2 (en) 2009-05-01 2009-05-01 Cooling system

Country Status (1)

Country Link
JP (1) JP5458656B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103307754B (en) * 2012-03-15 2015-06-10 珠海格力电器股份有限公司 Method and device for controlling openings of electronic expansion valves of water heater and air conditioner
CN113669967B (en) * 2021-07-29 2023-04-07 广东芬尼克兹节能设备有限公司 Control method, system, medium and heat pump for pre-judging leakage of heat pump refrigerant in advance
CN113864993B (en) * 2021-11-04 2022-12-06 宁波奥克斯电气股份有限公司 Control method of auxiliary oil return device of multi-split air conditioning system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3601817A1 (en) * 1986-01-22 1987-07-23 Egelhof Fa Otto CONTROL DEVICE FOR THE REFRIGERANT FLOW FOR EVAPORATING REFRIGERATION SYSTEMS OR HEAT PUMPS AND EXPANSION VALVES ARRANGED IN THE REFRIGERANT FLOW
JPH076716B2 (en) * 1987-08-04 1995-01-30 ダイキン工業株式会社 Refrigeration equipment
JPH07208835A (en) * 1994-01-17 1995-08-11 Hitachi Ltd Freezing air conditioner
JPH1030852A (en) * 1996-07-15 1998-02-03 Toshiba Ave Corp Air conditioner
JP4303062B2 (en) * 2003-08-29 2009-07-29 日立アプライアンス株式会社 refrigerator
JP4819385B2 (en) * 2004-08-03 2011-11-24 株式会社鷺宮製作所 Control device for cooling system
JP4951383B2 (en) * 2007-03-29 2012-06-13 三洋電機株式会社 Refrigeration cycle equipment

Also Published As

Publication number Publication date
JP2010261637A (en) 2010-11-18

Similar Documents

Publication Publication Date Title
KR101705528B1 (en) Refrigerator and controlling method of the same
JP4289427B2 (en) Refrigeration equipment
KR101602741B1 (en) Constant temperature liquid circulating device and operation method thereof
JP2010525292A (en) Refrigerant vapor compression system and method in transcritical operation
JP6004670B2 (en) Air conditioner control device, air conditioner control method, air conditioner program, and air conditioner equipped with the same
JP2010249452A (en) Air conditioner
JPWO2017221287A1 (en) Cooling system
KR20190079278A (en) Air Conditioner
JP4951383B2 (en) Refrigeration cycle equipment
JP5458656B2 (en) Cooling system
JP4952535B2 (en) Cooling system
JP4910725B2 (en) Cooling system
JP2017067318A (en) Air conditioner
JP6254065B2 (en) Control device and control method for refrigerator
JP2007333298A (en) Refrigerant flow control device
JP2008209016A (en) Cooling system
JP2016080304A (en) Control device and control method of cooling box
JP2008175442A (en) Cooling device
JP5572995B2 (en) Cooling system
KR102213634B1 (en) Refrigerator and Control method of the same
JP2004019950A (en) Refrigerator
JP2008107880A (en) Automatic vending machine
JP2008249240A (en) Condensing unit and refrigerating device comprising the same
KR20160099329A (en) A refrigeration control device of showcase refrigerator
JP2010164276A (en) Freezing/refrigerating system, its control device and control method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100819

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100819

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130701

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131230

R150 Certificate of patent or registration of utility model

Ref document number: 5458656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees