JP6855747B2 - 照明装置、及び撮影装置 - Google Patents

照明装置、及び撮影装置 Download PDF

Info

Publication number
JP6855747B2
JP6855747B2 JP2016207219A JP2016207219A JP6855747B2 JP 6855747 B2 JP6855747 B2 JP 6855747B2 JP 2016207219 A JP2016207219 A JP 2016207219A JP 2016207219 A JP2016207219 A JP 2016207219A JP 6855747 B2 JP6855747 B2 JP 6855747B2
Authority
JP
Japan
Prior art keywords
light source
optical element
substrate
diffractive optical
midpoint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016207219A
Other languages
English (en)
Other versions
JP2018067265A (ja
Inventor
智司 前田
智司 前田
幸弘 安孫子
幸弘 安孫子
壮一 ▲浜▼
壮一 ▲浜▼
聡史 仙波
聡史 仙波
元 名田
元 名田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2016207219A priority Critical patent/JP6855747B2/ja
Priority to US15/785,590 priority patent/US10839237B2/en
Priority to EP17197031.2A priority patent/EP3312768A1/en
Publication of JP2018067265A publication Critical patent/JP2018067265A/ja
Application granted granted Critical
Publication of JP6855747B2 publication Critical patent/JP6855747B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/10Image acquisition
    • G06V10/12Details of acquisition arrangements; Constructional details thereof
    • G06V10/14Optical characteristics of the device performing the acquisition or on the illumination arrangements
    • G06V10/145Illumination specially adapted for pattern recognition, e.g. using gratings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/13Sensors therefor
    • G06V40/1318Sensors therefor using electro-optical elements or layers, e.g. electroluminescent sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • G06V40/1365Matching; Classification

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Collating Specific Patterns (AREA)
  • Image Input (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本開示は、照明装置、及び撮影装置に関する。

近年、手または指の静脈のパターン、指紋または掌紋のパターンなどの生体情報を表す生体画像に基づいて、システムの利用者を非接触で認証する生体認証技術が開発されている。生体認証技術を利用した生体認証装置は、利用者の生体情報を表す入力生体画像を、予め登録された登録利用者の生体画像を表す登録生体情報と照合する。生体認証装置は、照合処理の結果に基づき、登録生体情報と一致すると判定された入力生体情報で表される生体情報を持つ利用者を正当な権限を有する登録利用者として認証し、上記のシステムの利用を許可する。
生体認証装置は、例えばパーソナルコンピュータ(PC:Personal Computer)へのログオン管理、銀行のATM(Automated Teller Machine)における本人確認、オフィスなどの入退室管理などの様々な分野で利用されている。
生体認証装置が高精度で利用者を照合するためには、生体画像上で生体情報の特徴的な構造が鮮明に写っていることが望ましい。そこで、生体情報を撮影して生体画像を生成する生体認証装置用センサは、生体情報を含む手などの被写体を結像レンズとCCD(Charge Coupled Device)などの撮像素子で撮影する撮影光学系に加え、被写体に照明光を照射する照明光学系を有していることもある。
照明光学系と撮影光学系を備えた生体認証装置用センサの技術が提案されている(例えば特許文献1、特許文献2及び特許文献3)。
特開2009−31903号公報 特開2013−130981号公報 特表2005−527874号公報 特開2016−133905号公報
上記のような従来技術では、複数の光源を用いて照明領域を均一に照明することが難しい。例えば、基板上への光源の搭載精度には限界があり、設計通りの位置に各光源が搭載されるとは限らない。その結果、各光源と各回折光学素子との間の搭載位置の関係が設計通りとならず、照明領域の均一な照明が損なわれる場合がある。
そこで、1つの側面では、本発明は、複数の光源を用いて照明領域を均一に照明することを目的とする。
1つの側面では、照明領域に光を照射する第1光源及び第2光源と、
前記第1光源及び前記第2光源が搭載された第1の基板と、
前記第1の基板に対して前記第1及び第2光源の光の照射方向に配置され、前記第1光源に対応して設けられる第1回折光学素子及び前記第2光源に対応して設けられる第2回折光学素子とが一体成形された第2の基板とを含む、照明装置が提供される。
1つの側面では、本発明によれば、複数の光源を用いて照明領域を均一に照明することが可能となる。
生体認証装置用センサの第1の例を説明する図である。 生体認証装置用センサの第2の例を説明する図である。 1対の光源及び回折光学素子の一例を模式的に断面視で示す図である。 回折光学素子の回折格子の一例を示す上面図である。 照明領域における光強度の分布を示す図である。 実装誤差と照明分布との関係を示す表図である。 本実施例の照明装置の一例を模式的に断面視で示す図である。 光源が搭載された光源用基板を概略的に示す2面図である。 回折光学素子が搭載された回折光学素子用基板を概略的に示す上面図である。 図9AのラインA−Aに沿った断面図である。 回折光学素子の他の搭載方法の説明図である。 図10AのラインA−Aに沿った断面図である。 中点合わせの説明図である。 光源搭載位置誤差と照明分布との関係を示す表図である。 中点合わせ用のマーカを備える回折光学素子用基板の一例を概略的に示す上面図である。 中点合わせ用のマーカを備える回折光学素子用基板の他の一例を概略的に示す上面図である。 照明装置の製造方法の一例を示す概略フローチャートである。 光源用基板における光源に係る中点の導出方法の一例の説明図である。 光源用基板における光源に係る中点の導出方法の他の一例の説明図である。 照明装置を組み込んだ生体認証装置用センサの一例を上面視で概略的に示す図である。 図18のラインB−Bに沿った断面図である。 照明装置を組み込んだ生体認証装置用センサの他の一例を上面視で概略的に示す図である。 照明装置を組み込んだ生体認証装置用センサの他の一例を上面視で概略的に示す図である。 照明装置を組み込んだ生体認証装置用センサの他の一例を上面視で概略的に示す図である。 照明装置を組み込んだ生体認証装置用センサの他の一例を上面視で概略的に示す図である。 照明装置を組み込んだ生体認証装置用センサの他の一例を上面視で概略的に示す図である。 生体認証装置の一例を示すブロック図である。 コンピュータの構成の一例を示すブロック図である。 回折光学素子の外形の変形例の説明図である。 回折光学素子の配置の変形例の説明図である。
以下、添付図面を参照しながら各実施例について詳細に説明する。
図1は、生体認証装置用センサの第1の例を説明する図である。図1中、(a)は生体認証装置用センサの上面図、(b)は生体認証装置用センサの側面の模式図、(c)は照明装置用センサの照明光と照明分布を示す模式図である。生体認証装置用センサ1Aは、カメラなどの撮影光学系2と、照明光学系3とを有する。照明光学系3は、基板4上に設けられた複数(この例では8個)のLED(Light-Emitting Diode)5と、レンズアレイ6を有する。この例では、図1中、(a)に示すように、LED5は撮影光学系2の外側にリング状に配置されており、レンズアレイ6はLED5と対向するようにリング状に設けられている。
図1中、(c)に示すように、各LED5からの照明光はレンズアレイ6により広がりを持たされて照明領域10に照射される。図1中、(c)の上部に示すように、照明光の強度(任意単位)は、照明領域10上の位置(任意単位)に応じて異なり、この例では、照明領域10の中央部分での光強度が照明領域10の他の部分での光強度より高い。このように、LED5の配置及びレンズアレイ6の特性などに応じて、照明領域10には明暗分布が発生し、照射される照明光の強度分布を均一化することは難しい。
図2は、生体認証装置用センサの第2の例を説明する図である。図2中、(a)は生体認証装置用センサの上面図、(b)は生体認証装置用センサの側面の模式図、(c)は照明装置用センサの照明光と照明分布を示す模式図である。図2中、図1と同一部分には同一符号を付し、その説明は省略する。図2に示す生体認証装置用センサ1Bでは、図1のレンズアレイ6の代わりに、拡散導光板7がLED5と対向するようにリング状に設けられている。図2中、(c)に示すように、各LED5からの照明光は拡散導光板7により拡散されて照明領域10に照射される。図2中、(c)の上部に示すように、照明光の強度(任意単位)は、照明領域10上の位置(任意単位)にかかわらず略均一となる。しかし、拡散された照明光は、照明領域10より広い領域に照射され、照明領域10の外側では、図2中、(c)において楕円で囲んで示すように漏れ光による無駄が増大してしまうので、照明光の強度が低下してしまう。照明光の低下を防止するために、LED5の数を増加させたり、高出力のLEDを用いることが考えられるが、LED5の数を増加させると照明光学系3が大型化してしまう。また、LED5に高出力LEDを用いた場合、高出力LEDが一般的には熱対策のため比較的大型であることから、照明光学系3が大型化してしまう。
そこで、以下で説明する実施例では、複数の光源を用いた照明装置より照明領域における照明光の強度分布の均一化を図る。また、以下で説明する実施例では、生体認証装置の認証精度低下の防止を図る。
本実施例では、光源及び回折光学素子は、1つずつ対をなし、2対以上が用いられる。即ち、本実施例では、一の光源と一の回折光学素子とが対(組)となり、2対以上で用いられる。
ここでは、まず、図3乃至図6を参照して、本実施例で用いられるのに好適な光源及び回折光学素子について、1対での構成に関して説明する。
図3は、1対の光源25及び回折光学素子26の一例を模式的に断面視で示す図である。図3には、互いに直交しあう3方向として、X,Y及びZ方向が定義されている。以下、X方向の正側とは、図3のX方向の矢印の側を相対的に示す。同様に、X方向の負側とは、図3のX方向の矢印の側とは反対側を相対的に示す。Y方向やZ方向に関する同様の用語も同様である。また、図3には、回折光学素子26から照明領域33に向かう光の広がりが模式的にハッチング範囲Sで示されている。尚、図3では、光源25の光軸と回折光学素子26の中心とが一致しているものとする。尚、ここでは、一例として、Z方向は光源25の光軸Iと平行であるとする。
図3には、照明領域33が模式的に断面視で示されている。照明領域33は、図3に示すように、X方向で、光源25に対して中心331がオフセットする態様で設けられる。以下では、このような照明領域33と光源25との位置関係(X方向にオフセットした配置)を、「オフセット型配置」とも称する。オフセット型配置は、照明領域33に対向してカメラなどの撮影光学系(後述)を配置できる点で有利となる。
照明領域33の外形やサイズは、任意であるが、典型的には、認証対象の生体の部位の外形やサイズ等に応じて決まる。例えば、非接触型の認証方法を用いる場合は、照明領域33は、認証時に生体の部位が位置すべき想定領域でありうる。他方、接触型の認証方法を用いる場合は、照明領域33は、生体の部位が接触する部位(例えば、透明なガラス等の素材により形成された載置台)でありうる。尚、照明領域33のサイズは、回折光学素子26の回折領域や光源25の出射面のサイズよりも有意に大きい。以下では、照明領域33は、一例として、XY平面に平行に延在する平面状の矩形領域であるとする。
光源25は、照明領域33に光を照射する。光源25の光軸が符号Iで示される。図示の例では、光軸Iは、照明領域33に垂直である(即ち、Z方向に平行)。光源25は、好ましくは、レーザー光のような直進性及び平行性が保たれる光を発生する光源ではなく、LEDなどの発散光源である。光源25は、例えば、LED(例えば近赤外LED、白色LED)により形成される。
回折光学素子26は、照明領域33と光源25との間に設けられる。回折光学素子26は、複数の回折格子が2次元配置された集合体(図4参照)により形成される。図3に示す例では、2次元配置面は、XY平面に平行に延在する。
尚、図3に示す例では、一例として、照明領域33は105mm×50mmの大きさの矩形であり、光源25と回折光学素子26との間隔は1mmである。また、照明領域33と回折光学素子26との間隔はZ方向で66mmである。また、図3に示す例では、回折光学素子26の2次元配置面の中心(以下、「回折光学素子26の中心」ともいう)は、光源25の光軸上に配置されている。
図4は、回折光学素子の回折格子の一例を示す上面図である。尚、以下の説明において、上側とは、Z方向の正側であり、上面視とは、Z方向の下向き(Z方向の負側に向かう向き)に視たビューを指す。尚、図4では、回折光学素子26の中央部以外は、回折格子の図示が省略されている。この例では、回折光学素子26は、マトリクス状に配置された複数の回折格子(以下、「セル」とも言う)263を有する。各セル263は、プレーングレーティング、平面格子、直線格子等の複数の凹凸が直線状に平行に並んだ1次元パターンを有する。各セル263の格子間隔(ピッチ)及び回転方向は、互いに異なってもよい。セル263の形状は矩形に限定されず、セル263の配置はマトリクス状に限定されず、セル263の数も特に限定されない。以下の説明では、特定の1つのセル263を特定するときは、X方向及びY方向のPIX番号で指示し、X方向及びY方向のPIX番号は、図4に示すビューで左下のセル263を(1,1)として基準とする。尚、図4では、各セル263は、例えば0.02mm×0.02mmのサイズであり、セル263は、250個×250個で2次元配列され、回折光学素子26は、例えば5mm×5mmのサイズである。なお,各セル263の複数の凹凸は、半径の大きい同心円弧の一部が並んだパターンであってもよい。同心円弧の半径が大きければ、直線と同等の回折効果を得ることが可能となる。
図5は、照明領域33における光強度の分布を示す図であり、(A)は、0次透過光による光強度の分布を示し、(B)は、n次回折光の分布を示し、(C)は、0次透過光とn次回折光とを足し合わせたときの光強度の分布を示す図である。図5において、グレースケールの黒になるほど、光強度が“小”(即ち“暗”)であることを意味する。
図5(A)に示すように、回折光学素子26においては0次透過光が不可避的に発生するため、照明領域33における照明光の光強度の分布は、0次透過光による照明光の光強度の分布の影響を受ける。特に、回折光学素子26の中心領域では、光源25から入射する光の強度が他の領域よりも高いため(例えば、ガウス分布)、回折光学素子26の中心領域内のセル263からの0次透過光による光強度の分布の影響が大きくなる。また、図5(B)に示すように、照明領域33の中心領域を照明するn次回折光の強度は、照明領域33の端部領域を照明するn次回折光の強度よりも小さくなる。即ち、n次回折光による光強度の分布は、図5(B)に示すように、Z方向に視て、照明領域33の中心(光源25の中心)が最も低くなる。従って、図5(C)に示すように、0次透過光とn次回折光とを足し合わせたときの光強度の分布の均一化の図ることができる。
このようにして、本実施例の回折光学素子26は、回折光学素子26の中心が光源25の光軸上に位置するときに照明領域33において図5(C)に示すような均一な光強度の分布を実現するように形成される。
図6は、実装誤差と照明分布との関係を示す表図である。図6において、実装誤差の列には、上面視で光源25と回折光学素子26との位置関係を模式的に示す各絵が示される。また、図6において、照明分布の列には、上面視で照明領域33における照明分布(光強度の分布)を模式的に示す各絵が示される。同様に、照明領域33における照明分布に関して、グレースケールの黒になるほど、光強度が“小”(即ち“暗”)であることを意味する。
ケース1は、実装誤差が“0”(なし)の場合であり、回折光学素子26の中心が光源25の光軸I上に位置する場合を示す。ケース2は、光源25の光軸Iが回折光学素子26の中心に対してX方向に−200μmずれた場合を示し、ケース3は、光源25の光軸Iが回折光学素子26の中心に対してX方向に+200μmずれた場合を示す。ケース4は、光源25の光軸Iが回折光学素子26の中心に対してY方向に+200μmずれた場合を示し、ケース5は、光源25の光軸Iが回折光学素子26の中心に対してY方向に−200μmずれた場合を示す。
図6に示すように、回折光学素子26は、その中心が光源25の光軸Iに対してXY平面内の一方側にずれた場合に、ずれない場合に比べて、照明領域33における一方側の端部の光強度が小さくなる特性を有する。例えば、ケース2の場合、回折光学素子26は、その中心が光源25の光軸Iに対してX方向で正側にずれている。そして、ケース2の場合、ケース1の場合に比べて、照明領域33におけるX方向で正側の端部の光強度が小さくなる特性を有している。同様に、例えば、ケース4の場合、回折光学素子26は、その中心が光源25の光軸Iに対してY方向で負側にずれている。そして、ケース4の場合、ケース1の場合に比べて、照明領域33におけるY方向で負側の端部の光強度が小さくなる特性を有している。
また、回折光学素子26は、その中心が光源25の光軸Iに対してXY平面内の一方側にずれた場合に、ずれない場合に比べて、照明領域33における他方側の端部の光強度が大きくなる特性を有する。例えば、ケース2の場合、回折光学素子26は、その中心が光源25の光軸Iに対してX方向で正側にずれている。そして、ケース2の場合、ケース1の場合に比べて、照明領域33におけるX方向で負側の端部の光強度が大きくなる特性を有している。同様に、例えば、ケース4の場合、回折光学素子26は、その中心が光源25の光軸Iに対してY方向で負側にずれている。そして、ケース4の場合、ケース1の場合に比べて、照明領域33におけるY方向で正側の端部の光強度が大きくなる特性を有している。
以下で説明する本実施例の照明装置100では、複数の光源を用いた照明装置より照明領域における照明光の強度分布の均一化を図る際、光源等の実装誤差をある程度許容しつつ、該実装誤差に起因した不都合(光強度の分布の不均一化)を低減する。具体的には、図7以降を参照して、本実施例の照明装置100について説明する。
図7は、本実施例の照明装置の一例を模式的に断面視で示す図である。図7には、本実施例の照明装置における照明装置の一例が符号“100”で指示されている。図7には、光源用基板70、及び回折光学素子用基板72の図示は省略されている。図8は、光源25が搭載された光源用基板70を概略的に示す2面図であり、平面図は、上面視で示される。図9Aは、回折光学素子26が搭載された回折光学素子用基板72を概略的に示す上面図である。図9Bは、図9AのラインA−Aに沿った断面図である。図10A及び図10Bは、回折光学素子26の他の搭載方法の説明図であり、それぞれ、図9A及び図9Bと同様の上面図及び断面図である。
照明装置100は、2つの光源25(第1光源及び第2光源の一例)と、2つの回折光学素子26(第1回折光学素子及び第2回折光学素子の一例)と、光源用基板70(第1の基板の一例)と、回折光学素子用基板72(第2の基板の一例)とを含む。以下では、2つの光源25のそれぞれについて、区別するときは、それぞれ、光源25−1,25−2という符号を用いる。同様に、2つの回折光学素子26のそれぞれについて、区別するときは、それぞれ、回折光学素子26−1,26−2という符号を用いる。
光源25−1及び回折光学素子26−1は、第1の対をなし、光源25−2及び回折光学素子26−2は、第2の対をなす。尚、図7には、第1の対から照明領域33に向かう光の広がりが模式的にハッチング範囲S1で示され、第2の対から照明領域33に向かう光の広がりが模式的にハッチング範囲S2で示されている。
光源25−1,25−2は、X方向に並ぶ態様で設けられる。但し、光源25−1,25−2は、実装誤差等に起因して、Y方向に僅かにオフセットして配置されうる(図12のケース14,15参照)。光源25−1,25−2は、図7に示すように、X方向で、照明領域33のX方向の中心331に対して同一側(図7の例では、X方向の正の側)にオフセットして設けられる。即ち、図7に示す例でも、オフセット型配置が実現される。オフセット型配置は、上述のように、光源25−1,25−2と略同一のZ座標位置におけるXY平面内において、照明領域33に対向してカメラなどの撮影光学系(後述)を配置できる点で有利となる。
本実施例では、一例として、光源25−1,25−2は、図8に示すように、共通の光源用基板70に搭載される。光源25−1,25−2は、光源部品(チップ)250の形態で光源用基板70に搭載される。光源部品250は、内部に発光部(ダイ)251を有する。尚、図8では、2つの光源25−1,25−2は、光源用基板70に対して設計通りの位置に搭載されているが、後述のように、光源25−1,25−2の搭載位置は設計位置に対してずれうる。
光源用基板70は、光源25−1,25−2が実装される基板である。光源用基板70は、光源25−1,25−2のそれぞれに対して別々の基板であってもよいが、好ましくは、光源25−1,25−2に共通の基板である。光源用基板70が光源25−1,25−2に共通の基板である場合は、後述の中点合わせが容易となる。
本実施例では、一例として、回折光学素子26−1,26−2は、図9A及び図9Bに示すように、共通の回折光学素子用基板72に搭載される。回折光学素子26−1,26−2は、例えば半導体プロセス(例えばエッチング等)により、回折光学素子用基板72に直接形成されてもよい。或いは、回折光学素子26−1,26−2は、図10A及び図10Bに示すように、回折光学素子用基板72上に樹脂80等で複製を貼り合わせることで搭載されてもよい。この場合、樹脂80としては、透明(透光性のある)な樹脂が使用されてよい。
回折光学素子26−1,26−2は、それぞれ、各中心が光源25−1,25−2の光軸I−1、I−2上に略位置するように、光源25−1,25−2に対して設けられる。但し、後述の中点合わせの結果として、回折光学素子26−1,26−2の各中心は、光源25−1,25−2の光軸I−1、I−2に対して僅かにずれうる(図12のケース12〜15参照)。
回折光学素子26−1,26−2は、回折光学素子用基板72上に同一の向きで搭載される。ここで、回折光学素子26−1,26−2は、それぞれ、図4に示したように、複数のセル263の集合体である。回折光学素子26−1,26−2は、同一のパターンでセル263を含む。即ち、回折光学素子26−1,26−2は、各PIX番号のセル263が同一の構成(格子間隔及び回転方向)である集合体である。回折光学素子26−1,26−2の向きが同一であることは、回折光学素子26−1,26−2のうちの一方をXY平面内で回転を伴わずに並進移動させたときに、他方と同一となる(重なり合う)関係を意味する。但し、実際には、実装上の僅かな誤差が生じうるため、回折光学素子26−1,26−2の向きは略同一であればよい。
回折光学素子用基板72は、回折光学素子26−1,26−2が実装される基板である。回折光学素子用基板72は、例えばガラス(例えば合成石英)やプラスティックにより形成される。回折光学素子用基板72は、回折光学素子26−1,26−2に共通の基板である。即ち、一の回折光学素子用基板72に、回折光学素子26−1,26−2が形成される。回折光学素子用基板72が回折光学素子26−1,26−2に共通の基板である場合は、後述の中点合わせが容易となる。
本実施例では、光源用基板70及び回折光学素子用基板72は、光源用基板70における光源25に係る中点と、回折光学素子用基板72における回折光学素子26に係る中点とが、上面視で重なる態様で位置合わせされる。光源用基板70における光源25に係る中点は、光源用基板70における光源25−1,25−2の各搭載位置の中点を指す。同様に、回折光学素子用基板72における回折光学素子26に係る中点とは、回折光学素子用基板72における回折光学素子26−1,26−2の各搭載位置の中点を指す。これにより、光源用基板70における光源25−1,25−2の各搭載位置が設計位置に対してずれた場合でも、該ずれに起因した不都合(照明領域33における光強度の分布の不均一化)を低減できる。以下、光源用基板70における光源25−1,25−2の各搭載位置が設計位置に対してずれることを、「光源搭載位置誤差」と称する。また、光源用基板70及び回折光学素子用基板72が、互いに対して、光源用基板70における光源25に係る中点と、回折光学素子用基板72における回折光学素子26に係る中点とが上面視で重なる態様で位置合わせされることを、「中点合わせ」と称する。
図11は、中点合わせの説明図であり、光源25−1,25−2と回折光学素子26−1,26−2との位置関係を上面視で模式的に示す。図11において、左側は、中点合わせ前の状態を模式的に示し、右側は、中点合わせ後の状態を模式的に示す。尚、図11では、光源用基板70及び回折光学素子用基板72の図示は省略されている。
図11には、光源用基板70における光源25に係る中点が符号P1で指示され、回折光学素子用基板72における回折光学素子26に係る中点が符号P2で指示されている。上述の中点合わせは、好ましくは、回折光学素子26−1,26−2のうちの一方をXY平面内で回転を伴わずに並進移動させて実現される。即ち、上述の中点合わせは、好ましくは、回折光学素子26−1,26−2の向きを変化させることなく、実現される。尚、回折光学素子26−1,26−2の向きを変化させると、それに伴い、照明領域33における照明範囲の向きが変化しうる。従って、上述の中点合わせを回折光学素子26−1,26−2の向きを変化させることなく実現することで、該中点合わせに起因した照明範囲の向きの変化を低減できる。これは、例えば照明装置100を後述のように生体認証装置用センサに組み込む場合に効果的になる。
尚、中点合わせのための回折光学素子26−1,26−2の移動は、回折光学素子用基板72の移動により実現できる。即ち、例えば、光源用基板70が固定される筐体(図示せず)に対する回折光学素子用基板72の固定位置を、XY平面内で微調整することで、上述の中心合わせを実現できる。尚、本実施例では、一例として、回折光学素子用基板72の移動により中心合わせが実現されるが、光源用基板70の移動により中心合わせが実現されてもよい。
図12は、光源搭載位置誤差と照明分布との関係を示す表図である。図12において、光源搭載位置誤差の列には、上面視で光源25−1,25−2と回折光学素子26−1,26−2との位置関係を模式的に示す各絵が示される。また、図12において、照明分布(組み合わせ)の列には、上面視で照明領域33における照明分布(2対の組み合わせによる照明分布)を模式的に示す各絵が示される。また、図12において、照明分布(個別)の列には、上面視で照明領域33における照明分布(2対のそれぞれによる照明分布)を模式的に示す各絵が示され、左側が第1の対(光源25−1及び回折光学素子26−1)に関する。同様に、照明領域33における照明分布に関して、グレースケールの黒になるほど、光強度が“小”(即ち“暗”)であることを意味する。
ケース11は、光源搭載位置誤差が“0”(なし)の場合であり、回折光学素子26−1,26−2の各中心が光源25−1,25−2の各光軸I−1、I−2上にそれぞれ位置する場合を示す。
ケース12は、光源搭載位置誤差として、光源25−1,25−2の各搭載位置間のX方向の距離が設計値よりも大きい場合を示す。図12では、上述の中点合わせの結果として、光源25−1の光軸I−1が回折光学素子26−1の中心に対してX方向に−200μmずれ且つ光源25−2の光軸I−2が回折光学素子26−2の中心に対してX方向に+200μmずれる。
ケース13は、光源搭載位置誤差として、光源25−1,25−2の各搭載位置間のX方向の距離が設計値よりも小さい場合を示す。図12では、上述の中点合わせの結果として、光源25−1の光軸I−1が回折光学素子26−1の中心に対してX方向に+200μmずれ且つ光源25−2の光軸I−2が回折光学素子26−2の中心に対してX方向に−200μmずれる。
ケース14は、光源搭載位置誤差として、光源25−1,25−2の各搭載位置間のY方向の距離が設計値(例えば0)よりも大きく、光源25−1が光源25−2よりもY方向の正側に搭載される場合を示す。図12では、上述の中点合わせの結果として、光源25−1の光軸I−1が回折光学素子26−1の中心に対してY方向に+200μmずれ且つ光源25−2の光軸I−2が回折光学素子26−2の中心に対してY方向に−200μmずれる。
ケース15は、光源搭載位置誤差として、光源25−1,25−2の各搭載位置間のY方向の距離が設計値(例えば0)よりも大きく、光源25−1が光源25−2よりもY方向の負側に搭載される場合を示す。図12では、上述の中点合わせの結果として、光源25−1の光軸I−1が回折光学素子26−1の中心に対してY方向に−200μmずれ且つ光源25−2の光軸I−2が回折光学素子26−2の中心に対してY方向に+200μmずれる。
図12では、ケース12〜15のいずれの場合も、光源搭載位置誤差が生じている。従って、照明領域33における照明分布は、各対の個別では、図12に示すように、不均一となる。これは、図6を参照して上述した特性によるものである。他方、図12に示すように、ケース12〜15のいずれの場合も、照明領域33における照明分布は、各対の組み合わせでは、図12に示すように、均一となり、ケース1の場合と有意な差が生じていない。これは、上述のように光源25に係る中点と回折光学素子26に係る中点とを上面視で一致させることで、照明領域33での照明分布における各対の不均一が是正(相殺)されるためである。
例えば、ケース12の場合、回折光学素子26−1は、その中心が光源25−1の光軸I−1に対してX方向で正側にずれている。従って、ケース12の場合、第1の対の照明分布は、照明領域33におけるX方向の正側の端部で光強度が小さくなり、負側の端部で光強度が大きくなる(図6のケース2参照)。他方、回折光学素子26−2は、その中心が光源25−2の光軸I−2に対してX方向で負側にずれている。従って、ケース12の場合、第2の対の照明分布は、照明領域33におけるX方向の負側の端部で光強度が小さくなり、正側の端部で光強度が大きくなる(図6のケース3参照)。従って、ケース12の場合、第1の対の照明分布と、第2の対の照明分布とは、X方向で反転した関係となるので、組み合わせることで(重ね合わせることで)、それぞれの不均一が相殺されて均一化される。これは、ケース13〜15の場合も同様である。
ところで、光源25から出射した光を回折光学素子26を介して被照射体(照明領域33)に照射する方法では、光源25を複数備えることで照明領域33における光強度を高めることができる。他方、照明領域33における光量分布を均一化するには、複数の光源25及び複数の回折光学素子26を正確に位置合わせすることが有効である。しかしながら、光源用基板70上への光源25の実装精度には限界があり、光源25が設計通りの位置に搭載されるとは限らない。特に、光源用基板70への光源25の搭載は、回折光学素子用基板72への回折光学素子26の搭載とは異なり半導体プロセスで実現することが困難であるので、有意な光源搭載位置誤差が生じやすい。
この点、上述の中点合わせがなされていない比較例では、光源搭載位置誤差に起因して、被照射体における光強度の分布が不均一となるという不都合が生じる。
これに対して、本実施例によれば、上述の中点合わせが実現されるので、各種の光源搭載位置誤差が生じた場合でも、該実装誤差に起因した不都合(照明領域33における光強度の分布の不均一化)を低減できる。
尚、図12に示す例では、回折光学素子用基板72における回折光学素子26の搭載誤差は実質的にないと見做されているが、回折光学素子用基板72における回折光学素子26の搭載誤差があった場合でも、該搭載誤差は上述の中点合わせにより補償できる。
次に、図13乃至図14を参照して、回折光学素子26に係る中点に関連した構成について説明する。
図13は、中点合わせ用のマーカを備える回折光学素子用基板72の一例を概略的に示す上面図である。
図13に示す例では、マーカM1は、回折光学素子26に係る中点に対応する位置に付与される。マーカM1は、回折光学素子26を形成する半導体プロセス時に併せて形成できる。従って、かかるマーカM1の位置精度は高く、上述の中点合わせに有効に利用できる。中点合わせのために、マーカM1の位置は、回折光学素子用基板72毎に導出される。マーカM1の位置は、例えばカメラによる撮像画像に基づいて導出できる。この場合、マーカM1は、カメラによる撮像画像に基づいて認識され易い態様で形成される。マーカM1の形状は、任意であり、図13に示す例では、十字状であるが、他の形態であってもよい。
図14は、中点合わせ用のマーカを備える回折光学素子用基板72の他の一例を概略的に示す上面図である。
図14に示す例では、マーカM2、M3は、回折光学素子26に係る中点が中点となる2点の位置に付与される。即ち、マーカM2、M3の各位置の中点は、回折光学素子26に係る中点に対応する。マーカM2、M3は、回折光学素子26を形成する半導体プロセス時に併せて形成できる。従って、かかるマーカM2、M3の位置精度は高く、上述の中点合わせに有効に利用できる。尚、マーカM2、M3の形状は、任意であり、図13に示す例では、十字状であるが、他の形態であってもよい。
図13及び図14に示すように、回折光学素子26に係る中点に対して所定の位置にマーカ(マーカM1又はマーカM2、M3)が回折光学素子用基板72に形成される場合、該マーカを利用して回折光学素子26に係る中点を精度良く特定できる。この結果、上述の中点合わせの精度を高めることができる。
尚、マーカ(マーカM1又はマーカM2、M3)を用いない場合は、回折光学素子26に係る中点は、回折光学素子26−1の外形に基づく基準位置と回折光学素子26−2の外形に基づく同基準位置との中点として特定できる。基準位置は、回折光学素子26−1及び回折光学素子26−2における同一の属性の位置である限り任意であるが、例えば回折光学素子26−1及び回折光学素子26−2の各中心である。回折光学素子26−1及び回折光学素子26−2の各中心は、マーカ(マーカM1又はマーカM2、M3)と同様、回折光学素子用基板72毎に、画像認識等(例えばエッジ検出、パターンマッチング等)により特定できる。
次に、図15乃至図17を参照して、上述の中点合わせの具体的な方法の例について説明する。
図15は、照明装置100の製造方法の一例を示す概略フローチャートである。図15の処理は、例えば製造用のロボット(図示せず)を制御するコンピュータ(図示せず)により実現されてよい。図15に示す処理は、組立対象の一の照明装置100毎に実行される。
ステップS500では、コンピュータは、ロボットに、光源25が搭載された光源用基板70を、照明装置100の筐体(図示せず)に組み付ける。
ステップS502では、コンピュータは、ロボットに、カメラ(図示せず)により光源用基板70の上面視の画像を取得させる。
ステップS504では、コンピュータは、ステップS502で取得した画像に基づいて、画像処理(エッジ検出等)を行うことで、光源25−1,25−2に係る各光源部品250の外形を検出する。例えば、図16には、光源25−1,25−2に係る各光源部品250の外形として検出されたエッジE1,E2が模式的に示される。
ステップS506では、コンピュータは、ステップS504で得た各光源部品250の外形に基づいて、光源用基板70における光源25に係る中点の座標値を導出する。具体的には、コンピュータは、各光源部品250の外形の各図心の座標値を算出し、算出した各図心の座標値の中点を、光源用基板70における光源25に係る中点の座標値とする。尚、各座標値は、カメラの座標系から変換されることで絶対座標系で導出されてよい。
ステップS508では、コンピュータは、回折光学素子用基板72における回折光学素子26に係る中点の座標値を取得する。回折光学素子用基板72における回折光学素子26に係る中点の座標値は、事前に導出されており、例えば回折光学素子用基板72の識別番号毎に記憶装置(図示せず)に記憶される。この場合、コンピュータは、光源用基板70に組み付けられる対象である回折光学素子用基板72(回折光学素子26が搭載された回折光学素子用基板72)に係る識別番号に基づいて、該識別番号に対応する中点の座標値を記憶装置から取得する。尚、同様に、回折光学素子26に係る中点の座標値は、カメラの座標系から変換されることで絶対座標系で導出されてよい。
ステップS510では、コンピュータは、ステップS506で得た光源25に係る中点の座標値と、ステップS508で得た回折光学素子26に係る中点の座標値とに基づいて、回折光学素子用基板72の組み付け位置を決定する。即ち、コンピュータは、上述の中点合わせが実現されるように、照明装置100の筐体に対する回折光学素子用基板72の組み付け位置(XY平面内の位置)を決定する。
ステップS512では、コンピュータは、ロボットに、ステップS510で得た組み付け位置に回折光学素子用基板72を組み付けさせる。この際、コンピュータは、ロボットに、該組み付け位置への組み付けを実現するための教示点を与える。
図15に示す処理によれば、ロボットを用いて、組み付け対象の光源用基板70及び回折光学素子用基板72の対毎に中点合わせを実現できる。これにより、光源用基板70において光源搭載位置誤差が生じた場合でも、該実装誤差に起因した照明装置100の照明分布の不均一化(照明領域33における光強度の分布の不均一化)を低減できる。
尚、図15に示す処理では、光源用基板70及び回折光学素子用基板72は、それぞれ、別々に筐体に組み付けられているが、光源用基板70及び回折光学素子用基板72はサブアセンブリされてから、筐体に組み付けられてもよい。この場合、回折光学素子用基板72は、光源用基板70に組み付けられる。この際も、同様の中点合わせを実現できる。
また、図15に示す処理では、ステップS504及びステップS506において、各光源部品250の外形の各図心の座標値に基づいて、光源用基板70における光源25に係る中点の座標値が算出されるが、これに限られない。例えば、ステップS504では、コンピュータは、ステップS502で取得した画像に基づいて、画像処理(エッジ検出等)を行うことで、光源25−1,25−2に係る各発光部(ダイ)251の位置を検出する。例えば、図16には、光源25−1,25−2に係る各発光部251として検出された特徴点E3,E4が模式的に示される。各発光部251は、特徴点E3,E4の各中心位置として導出されてよい。ステップS506では、コンピュータは、ステップS504で得た各発光部251の位置の座標値の中点を、光源用基板70における光源25に係る中点の座標値とする。かかる変形例によれば、発光部251の実装公差も吸収できるため、更なる高精度な中点合わせを実現できる。
次に、図18乃至図24を参照して、上述した照明装置100を組み込んだ生体認証装置用センサの例について説明する。
図18は、照明装置100を組み込んだ生体認証装置用センサの一例を上面視で概略的に示す図である。図18には、照明装置100を組み込んだ生体認証装置用センサの一例が符号“90A”で指示されている。尚、図18では、光源25が透視で示される。図19は、図18のラインB−Bに沿った断面図である。
生体認証装置用センサ90Aは、カメラなどの撮影光学系92と、2つの光源25−1,25−2と、2つの回折光学素子26−1,26−2とを含む。2つの光源25−1,25−2は、上述のように、光源用基板70に搭載される。また、2つの回折光学素子26は、上述のように、回折光学素子用基板72に搭載される。図18及び図19に示す例では、光源用基板70及び回折光学素子用基板72は、生体認証装置用センサ90Aの筐体60に支持及び固定される。
回折光学素子26−1,26−2は、光源25−1,25−2のそれぞれに対して、光源25−1,25−2の出射面側に設けられる。光源25−1,25−2及び回折光学素子26−1,26−2は、照明領域33の中心に対して同一側にオフセットして配置される。尚、回折光学素子26−1,26−2及び光源25−1,25−2の各組は、上述の照明装置100を形成する。
撮影光学系92は、照明領域33に対向して設けられる。撮影光学系92の光軸I3は、例えば、Z軸に平行である。撮影光学系92は、図19に示すように、光軸I3が照明領域33の中心上に来るように設けられるが、光軸I3が照明領域33の中心に対して僅かにオフセットして設けられてもよい。また、撮影光学系92は、図18に示すように、光源25−1,25−2を結ぶ直線上に配置される。例えば、撮影光学系92は、図18に示すように、光源25−1,25−2を結ぶ直線に光軸I3が交わる態様で配置される。図18及び図19に示す例では、照明領域33は、ガラス等の透明な材料により形成され、筐体60に固定される。
撮影光学系92は、照明領域33を撮像することで、照明領域33に載せられたユーザの生体情報を取得する。生体情報は、例えば、ユーザの手または指の静脈のパターン、指紋または掌紋のパターンなどでありうる。撮影光学系92は、照明領域33が上述のように照明装置100により照明されている状態で、照明領域33(及びそれに伴いユーザの手等)を撮像する。照明領域33が上述のように照明装置100により照明されている状態では、上述のように、照明領域33における照明分布が均一化されるので、撮影光学系92による撮像画像に基づいて、精度の良い生体情報を取得できる。
図20乃至図24は、生体認証装置用センサの他の各例を上面視で概略的に示す図である。図20乃至図24では、図18と同様、照明装置100を組み込んだ生体認証装置用センサの一例が符号“90B〜90F”で指示されている。また、図20乃至図24では、図18と同様、光源25が透視で示される。
図20に示す生体認証装置用センサ90Bは、図18に示した例に対して、照明装置100が照明装置101で置換された点が異なる。
照明装置101は、上述した照明装置100に対して、照明領域33に対する搭載の向きが異なる。即ち、照明装置101は、光源25−1,25−2がY方向に並ぶ向きで照明領域33に対して設けられる。尚、照明装置101においても、上述した照明装置100においてと同様、光源用基板70における光源25に係る中点と、回折光学素子用基板72における回折光学素子26に係る中点とが上面視で重なる態様で位置合わせされる。また、光源25−1,25−2は、上述した照明装置100においてと同様、照明領域33の中心に対して同一側にオフセットして配置される。図20に示す例では、上述した照明装置100においてと同様、光源25−1,25−2は、照明領域33の中心に対してX方向の正側にオフセットして配置される。
図20に示す例によっても、照明装置101は上述した照明装置100に対して向きが異なるだけであるので、上述のように、照明領域33における照明分布が均一化される。これにより、撮影光学系92による撮像画像に基づいて、精度の良い生体情報を取得できる。
図21に示す生体認証装置用センサ90Cは、図18に示した例に対して、一の撮影光学系92(即ち一の照明領域33)に対して照明装置100が2つ設けられる点が異なる。具体的には、照明装置100は、図21に示すように、X方向で一の撮影光学系92の両側のそれぞれに設けられる。
図20に示す例によっても、生体認証装置用センサ90Cは、照明装置100を備えるので、上述のように、照明領域33における照明分布が均一化される。また、2つの照明装置100を用いることで、照明領域33における光の強度を高めることができる。これにより、撮影光学系92による撮像画像に基づいて、精度の更に良い生体情報を取得できる。
図22に示す生体認証装置用センサ90Dは、図20に示した生体認証装置用センサ90Bに対して、一の撮影光学系92(即ち一の照明領域33)に対して照明装置101が2つ設けられる点が異なる。具体的には、照明装置101は、図22に示すように、X方向で一の撮影光学系92の両側のそれぞれに設けられる。
図22に示す例によっても、生体認証装置用センサ90Dは、照明装置101を備えるので、上述のように、照明領域33における照明分布が均一化される。また、2つの照明装置101を用いることで、照明領域33における光の強度を高めることができる。これにより、撮影光学系92による撮像画像に基づいて、精度の更に良い生体情報を取得できる。
図23に示す生体認証装置用センサ90Eは、図20に示した生体認証装置用センサ90Bに対して、一の撮影光学系92(即ち一の照明領域33)に対して照明装置101が2つ設けられる点が異なる。具体的には、照明装置101は、図23に示すように、X方向で一の撮影光学系92の一方側に2つ設けられる。
図23に示す例によっても、生体認証装置用センサ90Eは、照明装置101を備えるので、上述のように、照明領域33における照明分布が均一化される。また、2つの照明装置101を用いることで、照明領域33における光の強度を高めることができる。これにより、撮影光学系92による撮像画像に基づいて、精度の更に良い生体情報を取得できる。
尚、図23に示す例では、X方向で一の撮影光学系92の一方側に2つの照明装置101が設けられるが、これに限られない。例えば、X方向で一の撮影光学系92の一方側に2つの照明装置100が設けられてもよい。この場合、2つの照明装置100は、Y方向に並んで配置されてよい。
図24に示す生体認証装置用センサ90Fは、図23に示した生体認証装置用センサ90Eに対して、一の撮影光学系92(即ち一の照明領域33)に対して照明装置101が4つ設けられる点が異なる。具体的には、照明装置101は、図24に示すように、X方向で一の撮影光学系92の両側のそれぞれに2つ設けられる。
図24に示す例によっても、生体認証装置用センサ90Fは、照明装置101を備えるので、上述のように、照明領域33における照明分布が均一化される。また、4つの照明装置101を用いることで、照明領域33における光の強度を高めることができる。これにより、撮影光学系92による撮像画像に基づいて、精度の更に良い生体情報を取得できる。
尚、図24に示す例では、X方向で一の撮影光学系92の両側のそれぞれに2つの照明装置101が設けられるが、これに限られない。例えば、X方向で一の撮影光学系92の両側のそれぞれに2つの照明装置100が設けられてもよい。この場合、撮影光学系92の各側の2つの照明装置100は、Y方向に並んで配置されてよい。
次に、図25及び図26を参照して、一実施例における生体認証装置の例について説明する。
図25は、生体認証装置の一例を示すブロック図である。図25に示す生体認証装置600は、照明光学系23、撮影光学系92、LED制御部63、画像取得部66、生体情報検出部68、照合部71、記憶部73、判定部74、及び結果表示部75を有する。記憶部73は、予め用意された生体テンプレートを記憶しており、照合部71は、生体情報検出部68が検出した生体情報と生体テンプレートを照合する。結果表示部75は、照合部71の照合結果または生体画像を表示する。
照明光学系23は、照明装置100又は101を含む。また、照明光学系23及び撮影光学系92は、上述の生体認証装置用センサ90A〜90Fのいずれかにより形成されてもよい。
ユーザが生体の一例である手のひらを照明領域33に位置させると、生体認証装置600は認証対象を検知し、LED制御部63が照明光学系23の光源25を点灯する。これにより、光源25は回折光学素子26を介して照明領域33に光を照射する。撮影光学系92は、照明領域33における生体(この例では手のひら)を撮影し、画像取得部66が、撮影された入力画像を取得する。生体情報検出部68は、入力画像に基づいて、ユーザ固有の生体情報を検出する。照合部71は、検出された生体情報を、記憶部73に予め記憶されていた生体テンプレートと照合する。判定部74は、照合結果に基づいて、正当なユーザであるか否かを判定する。結果表示部75は、照合部71における照合結果又は判定部74の判定結果を表示部に表示する。結果表示部75は、例えば検出された生体情報が生体テンプレートと一致したか否かを示す照合結果のメッセージなどを表示部に表示する。結果表示部75は、照合部71における照合結果を出力する出力部の一例である。照合結果を出力する出力部は、照合結果を表示する結果表示部75に限定されず、例えば照合結果を音声で出力する音声合成部などで形成されてもよい。また、判定部74は省略されてもよいし、判定部74の機能は照合部71により実現されてもよい。
図26は、コンピュータの構成の一例を示すブロック図である。図25に示す生体認証装置600は、図26に示すコンピュータ300により形成してもよい。図26に示すコンピュータ300は、例えばパーソナルコンピュータなどの汎用コンピュータであってもよい。コンピュータ300は、CPU301、記憶部302、入力部の一例であるキーボード303、インターフェイス305、及び出力部の一例である表示部306を有してもよい。この例では、CPU301、記憶部302、キーボード303、インターフェイス305、及び表示部306がバス307により接続されているが、コンピュータ300はバス307により接続された構成に限定されない。撮影光学系92及び照明光学系23は、例えばインターフェイス305に接続される。
記憶部302は、CPU301が実行するプログラム、生体テンプレートを含む各種データなどを格納する。記憶部302は、メモリ、HDD(Hard Disk Drive)などの記憶装置で形成してもよい。CPU301は、記憶部302に格納されたプログラムを実行することにより、コンピュータ300全体の制御を司る。CPU301は、プログラムを実行することで、図25のLED制御部63、画像取得部66、生体情報検出部68、照合部71、記憶部73、判定部74、及び結果表示部75の全てまたは一部の機能を実現できる。CPU301は、プログラムを実行して例えば照合部71の機能を実現できる。記憶部302は、記憶部73の機能も実現する。
キーボード303は、CPU301にコマンド及びデータを入力するのに用いられる。インターフェイス305は、コンピュータ300と外部装置との接続に使用される。表示部306は、CPU301の制御下で、コンピュータ300のユーザ(または、オペレータ)に対して各種データを表示する。表示部306が表示する各種データは、取得した入力画像、照合結果のメッセージなどを含んでもよい。
以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。
例えば、上述した実施例では、光源用基板70及び回折光学素子用基板72は、光源用基板70における光源25に係る中点と、回折光学素子用基板72における回折光学素子26に係る中点とが上面視で重なる態様で位置合わせされるが、これに限られない。光源用基板70及び回折光学素子用基板72は、上面視で2つの中点が所定の位置関係になる態様であれば、必ずしも2つの中点が重なる態様である必要はない。例えば、光源用基板70及び回折光学素子用基板72は、上面視で2つの中点が、以下の位置関係H1や位置関係H2、位置関係H3になる態様で位置合わせされてもよい。
(位置関係H1)上面視で、光源用基板70における光源25に係る中点が、回折光学素子用基板72における回折光学素子26に係る中点に対して、所定距離D1だけX方向にオフセットされる関係。
(位置関係H2)上面視で、光源用基板70における光源25に係る中点が、回折光学素子用基板72における回折光学素子26に係る中点に対して、所定距離D2だけY方向にオフセットされる関係。
(位置関係H3)上面視で、光源用基板70における光源25に係る中点が、回折光学素子用基板72における回折光学素子26に係る中点に対して、所定距離D1だけX方向にオフセットされ且つ所定距離D2だけY方向にオフセットされる関係。
これらの場合、所定距離D1,D2は、図12に示したような均一な照明分布(2対の組み合わせによる照明分布)が実現されるように適合される適合値である。
また、上述した実施例では、照明装置100又は101は、同一の2つの回折光学素子26−1,26−2を含むが、これに限られない。例えば、回折光学素子26−1,26−2は、略同一の配置パターンでセル263を含む構成であってもよい。即ち、回折光学素子26−1における各セル263の配置パターンは、回折光学素子26−2における各セル263の配置パターンに対して若干の差異があってもよい。同様に、回折光学素子26−1,26−2は、異なるセル263を部分的に含む構成であってもよい。即ち、回折光学素子26−1における各セル263の一部は、回折光学素子26−2における各セル263の同セル263に対して若干の差異があってもよい。このように、回折光学素子26−1,26−2は、それぞれ、光源25−1,25−2との組み合わせで、図5に示すような特性及び図6に示すような関係を有する限り、完全に同一である必要はなく、若干の差異を有してもよい。
また、上述した実施例では、回折光学素子26の外形は、矩形であったが、回折光学素子26の外形は、任意である。例えば、回折光学素子26の外形は、丸型や多角形、楕円形等であってもよいし、図27に示すように星形の回折光学素子26A−1,26A−2であってもよい。尚、図27には、回折光学素子用基板72には、マーカM2,M3が設けられている。図心を求めることが難しい外形の場合は、マーカM2,M3のようなマーカが設けられるのが望ましい。
また、上述した実施例では、一の回折光学素子用基板72に対して設けられる2つの回折光学素子26−1,26−2は、離間しているが、これに限れない。2つの回折光学素子26−1,26−2は、回折光学素子用基板72上において連続する態様で形成されてもよい。
また、上述した実施例では、一の回折光学素子用基板72に対して2つの回折光学素子26−1,26−2が設けられるが、これに限れない。例えば、一の回折光学素子用基板72に対して4つ、6つ等、偶数個の回折光学素子が設けられてもよい。この場合、光源25についても、各回折光学素子と対をなすべく、回折光学素子26の数と同じ個数設けられる。この場合、中点合わせは、所定の又は任意の2対に着目して実現されてよい。図22に示す例では、回折光学素子用基板72に、4つの回折光学素子26B−1,26B−2,26B−3、及び26B−4が連続して形成されている。図22には、回折光学素子26B−1,26B−2,26B−3、及び26B−4のそれぞれの図心G1〜G4が示される。この場合、中点合わせは、例えば、回折光学素子26B−1の図心G1と回折光学素子26B−3の図心G3との中点P2に基づいて実現されてよい。
また、上述の実施例において、生体情報は、手に関連する情報であったが、これに限られない。例えば、認証対象の生体情報は、目の虹彩パターン、顔の特徴などの他の身体部位に係る情報であってもよい。
なお、以上の実施例に関し、さらに以下の付記を開示する。
[付記1]
照明領域に光を照射する第1光源及び第2光源と、
前記第1光源及び前記第2光源が搭載された第1の基板と、
前記第1の基板に対して前記第1及び第2光源の光の照射方向に配置され、前記第1光源に対応して設けられる第1回折光学素子及び前記第2光源に対応して設けられる第2回折光学素子とが一体成形された第2の基板とを含む、照明装置。
[付記2]
前記第1回折光学素子及び前記第2回折光学素子は、それぞれ、複数の回折格子が2次元配置された集合体である、付記1に記載の照明装置。
[付記3]
前記第1回折光学素子における複数の前記回折格子と、前記第2回折光学素子における複数の前記回折格子とは、それぞれ、略同一であり、且つ、略同一の向き及び配置で前記第2の基板上に2次元配置される、付記2に記載の照明装置。
[付記4]
複数の前記回折格子は、それぞれ、複数の凹凸が直線状に平行に並んだ1次元パターンを有する、付記2又は3に記載の照明装置。
[付記5]
前記第1の基板及び前記第2の基板は、前記第1の基板における前記第1光源及び前記第2光源の各搭載位置の第1の中点と、前記第2の基板における前記第1回折光学素子及び前記第2回折光学素子の各搭載位置の第2の中点とが、前記第1の基板に対して垂直方向に視て所定の位置関係になる態様で、配置され、
前記第1の中点は、前記第1光源に係る部品の外形に基づく基準位置と前記第2光源に係る部品の外形に基づく同基準位置との中点に対応する、付記1〜4のうちのいずれか1項に記載の照明装置。
[付記6]
前記第1の基板及び前記第2の基板は、前記第1の基板における前記第1光源及び前記第2光源の各搭載位置の第1の中点と、前記第2の基板における前記第1回折光学素子及び前記第2回折光学素子の各搭載位置の第2の中点とが、前記第1の基板に対して垂直方向に視て所定の位置関係になる態様で、配置され、
前記第1の中点は、前記第1光源に係る発光部の位置と前記第2光源に係る発光部の位置との中点に対応する、付記1〜4のうちのいずれか1項に記載の照明装置。
[付記7]
前記第1の基板及び前記第2の基板は、前記第1の基板における前記第1光源及び前記第2光源の各搭載位置の第1の中点と、前記第2の基板における前記第1回折光学素子及び前記第2回折光学素子の各搭載位置の第2の中点とが、前記第1の基板に対して垂直方向に視て所定の位置関係になる態様で、配置され、
前記第2の中点は、前記第1回折光学素子の外形に基づく基準位置と前記第2回折光学素子の外形に基づく同基準位置との中点に対応する、付記1〜6のうちのいずれか1項に記載の照明装置。
[付記8]
前記第1の基板及び前記第2の基板は、前記第1の基板における前記第1光源及び前記第2光源の各搭載位置の第1の中点と、前記第2の基板における前記第1回折光学素子及び前記第2回折光学素子の各搭載位置の第2の中点とが、前記第1の基板に対して垂直方向に視て所定の位置関係になる態様で、配置され、
前記第2の基板は、前記第2の中点に対して所定の位置にマーカが形成される、付記1〜4のうちのいずれか1項に記載の照明装置。
[付記9]
前記第1回折光学素子及び前記第2回折光学素子は、それぞれ、前記第2の基板における各搭載中心が前記第1光源及び前記第2光源の光軸に対して第1側にずれた場合に、ずれない場合に比べて、前記照明領域における前記第1側の端部の光強度が小さくなる特性を有する、付記1〜8のうちのいずれか1項に記載の照明装置。
[付記10]
前記第1回折光学素子及び前記第2回折光学素子は、それぞれ、更に、前記第1側にずれた場合に、ずれない場合に比べて、前記照明領域における前記第1側とは逆側の端部の光強度が大きくなる特性を有する、付記9に記載の照明装置。
[付記11]
前記第2の基板は、透光性を有する、付記1〜10のうちのいずれか1項に記載の照明装置。
[付記12]
前記第1の基板及び前記第2の基板は、略平行に配置され、
前記第1光源及び前記第2光源は、前記照明領域の中心に対して同一側にオフセットして配置される、付記1〜11のうちのいずれか1項に記載の照明装置。
[付記13]
前記第1の基板及び前記第2の基板は、前記第1の基板における前記第1光源及び前記第2光源の各搭載位置の第1の中点と、前記第2の基板における前記第1回折光学素子及び前記第2回折光学素子の各搭載位置の第2の中点とが、前記第1の中点と前記第2の中点とが重なる態様で、配置される、付記1〜12のうちのいずれか1項に記載の照明装置。
[付記14]
照明領域に光を照射する照明装置と、
前記照明領域を撮像する撮影光学系とを含み、
前記照明装置は、
照明領域に光を照射する第1光源及び第2光源と、
前記第1光源及び前記第2光源が搭載された第1の基板と、
前記第1光源に対応して設けられる第1回折光学素子及び前記第2光源に対応して設けられる第2回折光学素子と、
前記第1回折光学素子及び前記第2回折光学素子が一体的に搭載された第2の基板とを含み、
前記撮影光学系は、前記第1光源及び第2光源を通る直線上に配置されることを特徴とする、撮影装置。
[付記15]
照明領域に光を照射する照明装置と、
前記照明領域を撮像する撮影光学系と、
前記撮影光学系により撮像された画像に基づいて、生体認証を行う照合部とを含み、
前記照明装置は、
照明領域に光を照射する第1光源及び第2光源と、
前記第1光源及び前記第2光源が搭載された第1の基板と、
前記第1光源に対応して設けられる第1回折光学素子及び前記第2光源に対応して設けられる第2回折光学素子と、
前記第1回折光学素子及び前記第2回折光学素子が一体的に搭載された第2の基板とを含み、
前記撮影光学系は、前記第1光源及び第2光源を通る直線上に配置されることを特徴とする、生体認証装置。
[付記16]
前記第1光源及び前記第2光源は、前記照明領域の中心に対して同一側にオフセットして配置される、付記15に記載の生体認証装置。
[付記17]
照明領域に光を照射する第1光源及び第2光源と、
前記第1光源及び前記第2光源が搭載された第1の基板と、
前記第1光源に対応して設けられる第1回折光学素子及び前記第2光源に対応して設けられる第2回折光学素子と、
マーカーが形成され、前記第1回折光学素子及び前記第2回折光学素子が搭載された第2の基板と、
を含むことを特徴とする照明装置。
[付記18]
照明領域に光を照射する照明装置と、
前記照明領域を撮像する撮影光学系とを含み、
前記照明装置は、
照明領域に光を照射する第1光源及び第2光源と、
前記第1光源及び前記第2光源が搭載された第1の基板と、
前記第1光源に対応して設けられる第1回折光学素子及び前記第2光源に対応して設けられる第2回折光学素子と、
前記第1回折光学素子及び前記第2回折光学素子が一体的に搭載された第2の基板とを含み、
前記撮影光学系は、前記第1光源及び第2光源を通る直線上に配置されることを特徴とする、生体認証装置用センサ。
[付記19]
第1光源及び第2光源を搭載した第1の基板に基づいて、前記第1の基板における前記第1光源及び前記第2光源の各搭載位置の第1の中点を取得し、
第1回折光学素子及び第2回折光学素子を搭載した第2の基板に基づいて、前記第2の基板における前記第1回折光学素子及び前記第2回折光学素子の各搭載位置の第2の中点を取得し、
前記第1の基板及び前記第2の基板を、前記第1の中点と前記第2の中点とが、前記第1の基板に対して垂直方向に視て所定の位置関係になるように、互いに対して位置合わせすることを含む、照明装置の製造方法。
[付記20]
前記第1の中点を取得することは、前記第1の基板の撮像画像に基づいて前記第1の中点を導出することを含む、付記19に記載の照明装置の製造方法。
23 照明光学系
25 光源
26 回折光学素子
33 照明領域
60 ケース
63 制御部
66 画像取得部
68 生体情報検出部
70 光源用基板
71 照合部
72 回折光学素子用基板
73 記憶部
74 判定部
75 結果表示部
80 樹脂
90A〜90F 生体認証装置用センサ
92 撮影光学系
100、101 照明装置
250 光源部品
251 発光部
263 回折格子
600 生体認証装置

Claims (11)

  1. 照明領域に光を照射する第1光源及び第2光源と、
    前記第1光源及び前記第2光源が搭載された第1の基板と、
    前記第1の基板に対して前記第1及び第2光源の光の照射方向に配置され、前記第1光源に対応して設けられる第1回折光学素子及び前記第2光源に対応して設けられる第2回折光学素子とが一体成形された第2の基板とを含み、
    前記第1の基板及び前記第2の基板は、前記第1の基板における前記第1光源及び前記第2光源の各搭載位置の第1の中点と、前記第2の基板における前記第1回折光学素子及び前記第2回折光学素子の各搭載位置の第2の中点とが、前記第1の基板に対して垂直方向に視て所定の位置関係になる態様で配置されている、照明装置。
  2. 前記第1回折光学素子及び前記第2回折光学素子は、それぞれ、複数の回折格子が2次元配置された集合体である、請求項1に記載の照明装置。
  3. 前記第1回折光学素子における複数の前記回折格子と、前記第2回折光学素子における複数の前記回折格子とは、それぞれ、略同一であり、且つ、略同一の向き及び配置で前記第2の基板上に2次元配置される、請求項2に記載の照明装置。
  4. 記第1の中点は、前記第1光源に係る部品の外形に基づく基準位置と前記第2光源に係る部品の外形に基づく同基準位置との中点に対応する、請求項1〜3のうちのいずれか1項に記載の照明装置。
  5. 記第1の中点は、前記第1光源に係る発光部の位置と前記第2光源に係る発光部の位置との中点に対応する、請求項1〜3のうちのいずれか1項に記載の照明装置。
  6. 記第2の中点は、前記第1回折光学素子の外形に基づく基準位置と前記第2回折光学素子の外形に基づく同基準位置との中点に対応する、請求項1〜5のうちのいずれか1項に記載の照明装置。
  7. 記第2の基板は、前記第2の中点に対して所定の位置にマーカが形成される、請求項1〜3のうちのいずれか1項に記載の照明装置。
  8. 前記第1回折光学素子及び前記第2回折光学素子は、それぞれ、前記第2の基板における各搭載中心が前記第1光源及び前記第2光源の光軸に対して第1側にずれた場合に、ずれない場合に比べて、前記照明領域における前記第1側の端部の光強度が小さくなる特性を有する、請求項1〜7のうちのいずれか1項に記載の照明装置。
  9. 前記第2の基板は、透光性を有する、請求項1〜8のうちのいずれか1項に記載の照明装置。
  10. 前記第1の基板及び前記第2の基板は、前記第1の中点と前記第2の中点とが重なる態様で、配置される、請求項1〜9のうちのいずれか1項に記載の照明装置。
  11. 照明領域に光を照射する照明装置と、
    前記照明領域を撮像する撮影光学系とを含み、
    前記照明装置は、
    照明領域に光を照射する第1光源及び第2光源と、
    前記第1光源及び前記第2光源が搭載された第1の基板と、
    前記第1光源に対応して設けられる第1回折光学素子及び前記第2光源に対応して設けられる第2回折光学素子と、
    前記第1回折光学素子及び前記第2回折光学素子が一体的に搭載された第2の基板とを含み、
    前記撮影光学系は、前記第1光源及び第2光源を通る直線上に配置され、
    前記第1の基板及び前記第2の基板は、前記第1の基板における前記第1光源及び前記第2光源の各搭載位置の第1の中点と、前記第2の基板における前記第1回折光学素子及び前記第2回折光学素子の各搭載位置の第2の中点とが、前記第1の基板に対して垂直方向に視て所定の位置関係になる態様で配置されていることを特徴とする、撮影装置。
JP2016207219A 2016-10-21 2016-10-21 照明装置、及び撮影装置 Active JP6855747B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016207219A JP6855747B2 (ja) 2016-10-21 2016-10-21 照明装置、及び撮影装置
US15/785,590 US10839237B2 (en) 2016-10-21 2017-10-17 Illumination apparatus
EP17197031.2A EP3312768A1 (en) 2016-10-21 2017-10-18 Illumination apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016207219A JP6855747B2 (ja) 2016-10-21 2016-10-21 照明装置、及び撮影装置

Publications (2)

Publication Number Publication Date
JP2018067265A JP2018067265A (ja) 2018-04-26
JP6855747B2 true JP6855747B2 (ja) 2021-04-07

Family

ID=60201319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016207219A Active JP6855747B2 (ja) 2016-10-21 2016-10-21 照明装置、及び撮影装置

Country Status (3)

Country Link
US (1) US10839237B2 (ja)
EP (1) EP3312768A1 (ja)
JP (1) JP6855747B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11995911B2 (en) 2021-02-04 2024-05-28 Fingerprint Cards Ip Ab Biometric imaging device comprising polarizers

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5497390A (en) * 1992-01-31 1996-03-05 Nippon Telegraph And Telephone Corporation Polarization mode switching semiconductor laser apparatus
JPH0762865B2 (ja) 1993-05-13 1995-07-05 日本電気株式会社 指紋画像入力装置
JPH0968705A (ja) * 1995-08-31 1997-03-11 Dainippon Printing Co Ltd アライメントマークとアライメント方法
US6965685B1 (en) 2001-09-04 2005-11-15 Hewlett-Packard Development Company, Lp. Biometric sensor
WO2004081852A1 (en) 2003-03-14 2004-09-23 Nitgen Co. Ltd. Information terminal with fingerprint image acquisition device
JP4552956B2 (ja) 2007-04-03 2010-09-29 セイコーエプソン株式会社 照明装置及びプロジェクタ
JP5003298B2 (ja) * 2007-06-13 2012-08-15 凸版印刷株式会社 光学シート、それを用いたバックライトユニット、およびディスプレイ装置
JP2009031903A (ja) 2007-07-25 2009-02-12 Sony Corp 生体認証装置
JP2013130981A (ja) 2011-12-20 2013-07-04 Hitachi Maxell Ltd 画像取得装置および生体認証装置
JP6343972B2 (ja) * 2014-03-10 2018-06-20 富士通株式会社 照明装置及び生体認証装置
JP6520032B2 (ja) 2014-09-24 2019-05-29 富士通株式会社 照明装置及び生体認証装置
JP6586729B2 (ja) 2015-01-16 2019-10-09 富士通株式会社 照明装置及び生体認証装置
CN104950497B (zh) * 2015-07-30 2018-05-01 京东方科技集团股份有限公司 一种显示面板及其制作方法、驱动方法、显示装置

Also Published As

Publication number Publication date
US20180114080A1 (en) 2018-04-26
US10839237B2 (en) 2020-11-17
JP2018067265A (ja) 2018-04-26
EP3312768A1 (en) 2018-04-25

Similar Documents

Publication Publication Date Title
JP6343972B2 (ja) 照明装置及び生体認証装置
JP4708220B2 (ja) 照明装置及びこれを用いた撮像装置
WO2012137674A1 (ja) 情報取得装置、投射装置および物体検出装置
JP6586729B2 (ja) 照明装置及び生体認証装置
US10198650B2 (en) Image capture apparatus
US20140125788A1 (en) Fingerprint image capturing system
CN106055172A (zh) 光学导航芯片、光学导航模块以及光学编码器
US20120300989A1 (en) Imaging device, biometric authentication device, electronic equipment
EP3006998B1 (en) Image pickup apparatus
US9591194B2 (en) Illumination device and biometric authentication apparatus
WO2012137673A1 (ja) 情報取得装置、投射装置および物体検出装置
JP6855747B2 (ja) 照明装置、及び撮影装置
JP6346294B2 (ja) 測距光生成装置
JP7230358B2 (ja) 回折光学素子、光照射装置、光照射システム、投影パターンの補正方法
CN106264448B (zh) 皮肤分析装置及其影像撷取模块
TWM555505U (zh) 生物辨識裝置
TWI501620B (zh) 光學組件及使用其之影像擷取器
TWI705386B (zh) 指紋辨識模組
CN110941132B (zh) 一种光源结构、光学投影模组、感测装置及设备
EP2490153A1 (en) Vein authentication module
WO2020056720A1 (zh) 一种光源结构、光学投影模组、感测装置及设备
CN110941131B (zh) 一种光源结构、光学投影模组、感测装置及设备
CN108629250A (zh) 生物辨识装置及其制造方法
US20220308271A1 (en) Optical element and manufacturing method for optical element
TWI450157B (zh) 整合式光學模組及其手指掃描裝置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6855747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150