JP6854868B1 - Manufacturing method of core material, gypsum board and core material - Google Patents

Manufacturing method of core material, gypsum board and core material Download PDF

Info

Publication number
JP6854868B1
JP6854868B1 JP2019210920A JP2019210920A JP6854868B1 JP 6854868 B1 JP6854868 B1 JP 6854868B1 JP 2019210920 A JP2019210920 A JP 2019210920A JP 2019210920 A JP2019210920 A JP 2019210920A JP 6854868 B1 JP6854868 B1 JP 6854868B1
Authority
JP
Japan
Prior art keywords
gypsum
core material
specific gravity
raw material
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019210920A
Other languages
Japanese (ja)
Other versions
JP2021080142A (en
Inventor
崇 渡邉
崇 渡邉
誠次 山中
誠次 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiyoda Ute Co Ltd
Original Assignee
Chiyoda Ute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Ute Co Ltd filed Critical Chiyoda Ute Co Ltd
Priority to JP2019210920A priority Critical patent/JP6854868B1/en
Application granted granted Critical
Publication of JP6854868B1 publication Critical patent/JP6854868B1/en
Publication of JP2021080142A publication Critical patent/JP2021080142A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Panels For Use In Building Construction (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

【課題】比重を高い状態に維持しつつビスが入り難いという問題が生じにくい芯材等を提供する。【解決手段】石膏を主成分とする芯材であって、圧縮強度y(N/mm2)と比重xとの関係が、以下の式(1)を満たす、芯材。(1)y≦0.9393×e2.6372x−0.3【選択図】図3PROBLEM TO BE SOLVED: To provide a core material or the like which is less likely to cause a problem that a screw is difficult to enter while maintaining a high specific gravity. SOLUTION: The core material is mainly composed of gypsum, and the relationship between the compressive strength y (N / mm2) and the specific gravity x satisfies the following formula (1). (1) y ≦ 0.9393 × e2.6372x−0.3 [Selection diagram] Fig. 3

Description

本発明は、石膏を主成分とする芯材、当該芯材を用いた石膏ボード及び芯材の製造方法に関する。 The present invention relates to a core material containing gypsum as a main component, a gypsum board using the core material, and a method for producing the core material.

近年の住宅には、天井や壁の下地材として、木製下地から鋼製下地が多く使われてきている。特にLGSと呼ばれる軽量鉄骨下地が主に使用されている。LGSは非住宅にも広く使われるが、非住宅は大型建築物の場合も多く、より高い耐火性能や遮音性能を要求される場合が多いため、製品比重の高い石膏ボードが使われる場合が多い。 In recent years, wooden bases and steel bases are often used as base materials for ceilings and walls. In particular, a lightweight steel frame base called LGS is mainly used. LGS is also widely used in non-residential buildings, but non-residential buildings are often large buildings and often require higher fire resistance and sound insulation performance, so gypsum board with a high product specific gravity is often used. ..

木は湿気による影響を受けて反りや曲がりなど寸法変化による狂いが生じる事があるが、LGSはそのような変形が生じる事が少ない材料であること、また木材に比べて軽量なので、搬入が容易で施工には熟練した能力もいらず、工事が早いというメリットがある。 Wood may be affected by moisture and may be distorted due to dimensional changes such as warping and bending, but LGS is a material that is less likely to undergo such deformation and is lighter than wood, so it is easy to carry in. There is no need for skilled ability in the construction, and there is an advantage that the construction is quick.

また、石膏ボードを鋼製下地に留め付けるビス施工時には、高圧または常圧ねじ打ち機(ターボドライバー)を用いて行われることが多く、工事の効率化は期待できるが、微調整が難しい。 In addition, when screwing the gypsum board to the steel base, it is often done using a high-pressure or normal-pressure screwdriver (turbo driver), which can be expected to improve the efficiency of the work, but it is difficult to make fine adjustments.

このような背景のなかで、工事の効率化とは反対に、石膏ボードの施工においては、特に製品比重の高い石膏ボードを鋼製下地(LGS)に施工する際に、ビスが入り難いという問題が発生し、逆に工事の効率化を下げてしまうという問題が発生することがある。なお、石膏ボードとしては例えば特許文献1等が提案されているが、このような問題に対応することは提案されていない。 Against this background, contrary to the efficiency of construction, in the construction of gypsum board, there is a problem that it is difficult for screws to enter, especially when the gypsum board with high product specific gravity is constructed on a steel base (LGS). On the contrary, there may be a problem that the efficiency of construction is reduced. As the gypsum board, for example, Patent Document 1 and the like have been proposed, but it has not been proposed to deal with such a problem.

特開2017-190262号公報JP-A-2017-190262

本発明は、比重を高い状態に維持しつつビスが入り難いという問題が生じにくい芯材等を提供する。 The present invention provides a core material or the like that does not easily cause a problem that screws are difficult to enter while maintaining a high specific gravity.

本発明による芯材は、
石膏を主成分とする芯材であって、
圧縮強度y(N/mm2)と比重xとの関係が、以下の式(1)を満たしてもよい。
(1)y≦0.9393×e2.6372x−0.3
The core material according to the present invention is
A core material mainly composed of gypsum
The relationship between the compression strength y (N / mm 2 ) and the specific gravity x may satisfy the following equation (1).
(1) y ≦ 0.9393 × e 2.6372x −0.3

本発明による芯材は、
石膏を主成分とする芯材であって、
圧縮強度y(N/mm2)と比重xとの関係が、以下の式(2)を満たしてもよい。
(2)y≦1.05×0.7414×e2.8026x
The core material according to the present invention is
A core material mainly composed of gypsum
The relationship between the compression strength y (N / mm 2 ) and the specific gravity x may satisfy the following equation (2).
(2) y ≦ 1.05 × 0.7414 × e 2.8026x

本発明による芯材は、
石膏を主成分とする芯材であって、
圧縮強度y(N/mm2)と比重xとの関係が、以下の式(3)を満たしてもよい。
(3)y≦1.05×0.5373×e3.0281x
The core material according to the present invention is
A core material mainly composed of gypsum
The relationship between the compression strength y (N / mm 2 ) and the specific gravity x may satisfy the following equation (3).
(3) y ≦ 1.05 × 0.5373 × e 3.0281x

本発明による芯材は、
石膏を主成分とする芯材であって、
圧縮強度y(N/mm2)と比重xとの関係が、以下の式(4)を満たしてもよい。
(4)y≦1.05×0.426×e3.1377x
The core material according to the present invention is
A core material mainly composed of gypsum
The relationship between the compression strength y (N / mm 2 ) and the specific gravity x may satisfy the following equation (4).
(4) y ≦ 1.05 × 0.426 × e 3.1377x

本発明による芯材において、
圧縮強度が2.0N/mm2以上であってもよい。
In the core material according to the present invention
The compression strength may be 2.0 N / mm 2 or more.

本発明による芯材において、
圧縮強度が7.0N/mm2以下であってもよい。
In the core material according to the present invention
The compression strength may be 7.0 N / mm 2 or less.

本発明による芯材において、
断面において50μm以上の長さを有する結晶を含んでもよい。
In the core material according to the present invention
It may contain crystals having a length of 50 μm or more in cross section.

本発明による石膏ボードは、
前述した芯材と、芯材の両面に設けられた紙材とを備えてもよい。
The gypsum board according to the present invention
The above-mentioned core material and paper materials provided on both sides of the core material may be provided.

本発明による芯材の製造方法は、
石膏及びメジアン径が15μm以上からなる2水石膏に水を加えて混合し、スラリーを生成する工程と、
前記スラリーを硬化させる工程と、
を備えてもよい。
The method for producing a core material according to the present invention is
A step of adding water to gypsum and dihydrate gypsum having a median diameter of 15 μm or more and mixing them to generate a slurry, and
The step of curing the slurry and
May be provided.

本発明によれば、比重を高い状態に維持しつつビスが入り難いという問題が生じにくい芯材等を提供できる。 According to the present invention, it is possible to provide a core material or the like that does not easily cause a problem that screws are difficult to enter while maintaining a high specific gravity.

図1(a)は鋼材表面が凹んでいる場合を示した写真であり、図1(b)は鋼材表面が若干凸形状となっている場合を示した写真であり、図1(c)は鋼材表面が凸形状となっている場合を示した写真である。FIG. 1A is a photograph showing a case where the surface of the steel material is recessed, FIG. 1B is a photograph showing a case where the surface of the steel material is slightly convex, and FIG. 1C is a photograph showing the case where the surface of the steel material is slightly convex. It is a photograph which showed the case where a steel material surface has a convex shape. 図2は表1の点数と比重との関係を示したグラフである。FIG. 2 is a graph showing the relationship between the score and the specific gravity in Table 1. 図3は添加した原料2水石膏の所定の比率における比重と圧縮強度との関係を示したグラフである。FIG. 3 is a graph showing the relationship between the specific gravity and the compressive strength at a predetermined ratio of the added raw material dihydrate gypsum. 図4は粉砕2水石膏を用いて生成した芯材の電子顕微鏡の写真である。FIG. 4 is an electron microscope photograph of a core material produced by using crushed dihydrate gypsum. 図5は図4の写真を拡大して示した写真である。FIG. 5 is an enlarged photograph of the photograph of FIG. 図6は原料2水石膏を用いて生成した芯材の電子顕微鏡の写真である。FIG. 6 is an electron microscope photograph of a core material produced by using the raw material dihydrate gypsum. 図7は図6の写真を拡大して示した写真である。FIG. 7 is an enlarged photograph of the photograph of FIG. 図8は、鋼製下地にビスをねじ込み、200Nの引張荷重になるまでオートグラフ装置にて引き抜き、そのときの鋼材表面の状態を観察した写真である。FIG. 8 is a photograph of screwing a screw into a steel base, pulling it out with an autograph device until a tensile load of 200 N is reached, and observing the state of the steel material surface at that time. 図9は、鋼製下地にビスをねじ込み、300Nの引張荷重になるまでオートグラフ装置にて引き抜き、そのときの鋼材表面の状態を観察した写真である。FIG. 9 is a photograph of screwing a screw into a steel base, pulling it out with an autograph device until a tensile load of 300 N is reached, and observing the state of the steel material surface at that time. 図10は、芯材と紙材とを有する石膏ボードの断面図である。FIG. 10 is a cross-sectional view of a gypsum board having a core material and a paper material.

本実施の形態による芯材は石膏を主成分とする芯材であり、石膏ボードに用いられる。本願における主成分とは50質量%を占める成分を意味し、石膏を主成分とする芯材とは、石膏が50質量%以上である芯材のことを意味している。芯材に含まれる石膏は70質量%以上であってもよいし、80質量%以上であってもよいし、90質量%以上であってもよいし、95質量%以上であってもよいし、98質量%以上であってもよいし、その全て(100質量%)が石膏であってもよい。なお、本願(図面を含む。)における「%」は特に断りがない限り「質量%」である。 The core material according to the present embodiment is a core material containing gypsum as a main component, and is used for gypsum board. The main component in the present application means a component occupying 50% by mass, and the core material containing gypsum as a main component means a core material containing 50% by mass or more of gypsum. The gypsum contained in the core material may be 70% by mass or more, 80% by mass or more, 90% by mass or more, or 95% by mass or more. , 98% by mass or more, or all of them (100% by mass) may be gypsum. Unless otherwise specified, "%" in the present application (including drawings) is "mass%".

図10に示すように、石膏ボード100は、芯材10と、芯材10の両面に設けられた紙材の一種であるボード用原紙20とを有してもよい。芯材10とボード用原紙20との間には接着層(図示せず)が設けられてもよい。このような石膏ボード100の表面にLGS等からなる鋼製下地200が設けられることになる。 As shown in FIG. 10, the gypsum board 100 may have a core material 10 and a board base paper 20 which is a kind of paper material provided on both sides of the core material 10. An adhesive layer (not shown) may be provided between the core material 10 and the board base paper 20. A steel base 200 made of LGS or the like is provided on the surface of such gypsum board 100.

本実施の形態による芯材は、例えば、下記のような方法で製造される。 The core material according to the present embodiment is manufactured by, for example, the following method.

2水石膏をロータリーキルン等の焼成窯で焼いて半水石膏にした後で、チューブミル等の粉砕機で細かく砕く。その後で、15μm以上の粒子径を有する原料2水石膏(CaSO4・2H2O)を添加して混合し、スラリーを生成する。従来用いられている2水石膏は「粉砕2水石膏」と言われるものであり、2水石膏を粉砕して細かなものにした後で添加されるものであり、硬化促進剤として利用されていた。他方、本実施の形態による2水石膏は(典型的には粉砕される工程を経ず)大きな2水石膏を含んでいる。このような大きな2水石膏を含む2水石膏を以下では「原料2水石膏」ともいう。 2 Bake the gypsum in a firing kiln such as a rotary kiln to make semi-gypsum, and then crush it finely with a crusher such as a tube mill. Then, added and mixed raw material 2 dihydrate gypsum having a particle size of at least 15μm (CaSO 4 · 2H 2 O ), to produce a slurry. The conventionally used dihydrate gypsum is called "crushed dihydrate gypsum", which is added after crushing the dihydrate gypsum into fine pieces, and is used as a hardening accelerator. Gypsum. On the other hand, the dihydrate gypsum according to the present embodiment contains a large dihydrate gypsum (typically without going through the crushing step). The dihydrate gypsum containing such a large dihydrate gypsum is also referred to as "raw material dihydrate gypsum" below.

スラリーには発泡剤が添加されてもよい。発泡剤の添加量は0.01質量%〜0.1質量%であってもよい。発泡剤の含有量が少な過ぎて0.01質量%未満の場合には芯材内に十分な気泡を確保できない場合がある。他方、発泡剤の含有量を一定程度増加させても軽量化の効果を見込めないため、その上限は例えば0.1質量%である。スラリーには減水剤が添加されてもよい。また、原料2水石膏の他に前述の粉砕2水石膏が例えば0.3質量%〜2.5質量%で添加されてもよい。粉砕2水石膏を添加する場合には、原料2水石膏を添加するタイミングで粉砕2水石膏を添加すればよい。 A foaming agent may be added to the slurry. The amount of the foaming agent added may be 0.01% by mass to 0.1% by mass. If the content of the foaming agent is too small and less than 0.01% by mass, sufficient air bubbles may not be secured in the core material. On the other hand, even if the content of the foaming agent is increased to a certain extent, the effect of weight reduction cannot be expected, so the upper limit thereof is, for example, 0.1% by mass. A water reducing agent may be added to the slurry. Further, in addition to the raw material dihydrate gypsum, the above-mentioned crushed dihydrate gypsum may be added in an amount of, for example, 0.3% by mass to 2.5% by mass. When the crushed dihydrate gypsum is added, the crushed dihydrate gypsum may be added at the timing of adding the raw material dihydrate gypsum.

このように必要に応じて発泡剤、減水剤、粉砕2水石膏等の添加剤が添加され、一定程度混合させた後でスラリーを硬化させる。このようにスラリーが硬化すると石膏ボードの芯材が生成されることになる。 In this way, additives such as a foaming agent, a water reducing agent, and crushed dihydrate gypsum are added as needed, and the slurry is cured after being mixed to a certain extent. When the slurry is cured in this way, a core material for gypsum board is produced.

石膏ボードの芯材の両面に紙材を設けることで、図10に示すような石膏ボードが生成される。 By providing paper materials on both sides of the core material of the gypsum board, the gypsum board as shown in FIG. 10 is generated.

原料2水石膏を用いる本実施の形態の芯材は断面において50μm以上の長さを有する結晶を含んでもよい。図4及び図5は粉砕2水石膏を用いて生成された芯材の電子顕微鏡による写真であるが、細かな針状の結晶を含んでいることを確認することができる。他方、図6及び図7は原料2水石膏を用いて生成された芯材の電子顕微鏡による写真であるが、細かな針状の結晶の他に大きな形状の結晶が含まれ、図6及び図7に示す態様では、断面において50μm以上の長さを有する結晶が含まれることを確認できる。 The core material of the present embodiment using the raw material dihydrate gypsum may contain crystals having a length of 50 μm or more in cross section. 4 and 5 are photographs of the core material produced by using pulverized dihydrate gypsum with an electron microscope, and it can be confirmed that the core material contains fine needle-shaped crystals. On the other hand, FIGS. 6 and 7 are photographs of the core material produced by using the raw material dihydrate gypsum by an electron microscope, which includes crystals having a large shape in addition to fine needle-shaped crystals. In the aspect shown in 7, it can be confirmed that a crystal having a length of 50 μm or more is included in the cross section.

[実施例]
次に、本発明の実施例について説明する。
[Example]
Next, examples of the present invention will be described.

<鋼製下地(LGS)への石膏ボードビス留め付けにおける鋼材表面状態観察>
[使用工具]
ビス:MAX 社製 PS3828MW
ねじ打ち機:MAX 社製 TD-341A-ST 常圧(0.7MPa)
鋼製下地:一般材(厚さ0.4mm)
<Observation of steel surface condition when fastening gypsum board screws to steel substrate (LGS)>
[Tools used]
Screw: MAX PS3828MW
Screw driving machine: MAX TD-341A-ST Normal pressure (0.7MPa)
Steel base: General material (thickness 0.4 mm)

[施工試験]
比重(製品比重)が異なる石膏ボードに、常圧ねじ打ち機にて鋼材(LGS)へビス留めする。ビス留めした後、ビスを外し、鋼材(LGS)表面の状態を観察した。その結果を、下記表1に示す。

Figure 0006854868
[Construction test]
Screw gypsum boards with different specific gravities (product specific gravities) to steel (LGS) with a normal pressure screw driving machine. After fastening with screws, the screws were removed and the condition of the steel material (LGS) surface was observed. The results are shown in Table 1 below.
Figure 0006854868

表1の「〇」は鋼材表面が凹んでいる場合であり(図1(a)参照)、点数は3点とした。表1の「△」は鋼板表面が若干凸形状となっている場合であり(図1(b)参照)、点数は1点とした。表1の「×」は鋼板表面が見た目上明らかに凸形状となっている場合であり(図1(c)参照)、点数は0点とした。表1の点数と比重との関係を図2に示した。このように比重が大きくなると点数が低くなり、鋼板表面が凸形状になることを確認できた。表1及び図2で示す通り、厚さ0.4mmの鋼製下地を用いた場合には、比重が0.801を超えると鋼板表面が凸形状になる問題が顕著に生じやすくなることを確認できる。他方、耐火性能や遮音性能の観点から比重を高くしたいという要望が存在する。本実施の形態によれば、後述するとおり、耐火性能や遮音性能を維持しつつ、鋼板表面が凸形状になるという問題を解決することができる。 “○” in Table 1 indicates that the surface of the steel material is recessed (see FIG. 1 (a)), and the score was set to 3 points. “Δ” in Table 1 indicates that the surface of the steel sheet has a slightly convex shape (see FIG. 1 (b)), and the score is 1 point. “X” in Table 1 indicates that the surface of the steel sheet is apparently convex (see FIG. 1 (c)), and the score was set to 0. The relationship between the score in Table 1 and the specific gravity is shown in FIG. As the specific gravity increased in this way, the score decreased, and it was confirmed that the surface of the steel sheet had a convex shape. As shown in Table 1 and FIG. 2, it was confirmed that when a steel base having a thickness of 0.4 mm is used, the problem that the surface of the steel sheet becomes convex when the specific gravity exceeds 0.801 is remarkably likely to occur. it can. On the other hand, there is a desire to increase the specific gravity from the viewpoint of fire resistance and sound insulation. According to this embodiment, as will be described later, it is possible to solve the problem that the surface of the steel sheet has a convex shape while maintaining the fire resistance performance and the sound insulation performance.

<石膏ボードの芯材圧縮強度>
40℃で恒量乾燥した石膏ボード製品を50mm×50mmに切断し、オートグラフ(島津製作所製、型番AG-10TE)を用いて圧縮破壊荷重を測定した。なお、圧縮荷重を1mm/minで試験した。その結果を図3に示す。原料2水石膏を添加しない場合にはy = 0.9393e2.6372xという曲線に沿うような結果となった。原料2水石膏を5質量%添加した場合にはy = 0.7414e2.8026xという曲線に沿うような結果となった。原料2水石膏を10質量%添加した場合にはy = 0.5373e3.0281xという曲線に沿うような結果となった。原料2水石膏を15質量%添加した場合にはy = 0.426e3.1377xという曲線に沿うような結果となった。
<Compressive strength of gypsum board core material>
A gypsum board product dried in a constant amount at 40 ° C. was cut into 50 mm × 50 mm, and the compression fracture load was measured using an autograph (manufactured by Shimadzu Corporation, model number AG-10TE). The compressive load was tested at 1 mm / min. The result is shown in FIG. When the raw material 2 water gypsum was not added, the result was along the curve of y = 0.9393e 2.6372x. When 5% by mass of the raw material dihydrate gypsum was added, the result was along the curve of y = 0.7414e 2.8026x. When 10% by mass of the raw material dihydrate gypsum was added, the result was along the curve of y = 0.5373e 3.0281x. When 15% by mass of raw material dihydrate gypsum was added, the result was along the curve of y = 0.426e 3.1377x.

このことから、原料2水石膏を添加することで、比重を変えることなく、芯材圧縮強度を制御できることが分かった。なお、通常の石膏ボードの製造工程では、硬化促進剤として、2水石膏を粉砕して添加する(粉砕2水石膏)こともあるが、本実施の形態による原料2水石膏とは明らかに使用する目的が異なっている。また物性的にもまったく異なる性質である。 From this, it was found that the compressive strength of the core material can be controlled without changing the specific gravity by adding the raw material dihydrate gypsum. In the normal manufacturing process of gypsum board, dihydrate gypsum may be crushed and added as a hardening accelerator (crushed dihydrate gypsum), but it is clearly used as the raw material dihydrate gypsum according to the present embodiment. The purpose of doing it is different. It also has completely different physical characteristics.

この結果を踏まえ、本実施の形態による芯材では、圧縮強度y(N/mm2)と比重xとの関係が、以下の式(1)を満たす態様となってもよい。
(1)y≦0.9393×e2.6372x−0.3
Based on this result, in the core material according to the present embodiment, the relationship between the compressive strength y (N / mm 2 ) and the specific gravity x may satisfy the following equation (1).
(1) y ≦ 0.9393 × e 2.6372x −0.3

この数式(1)は原料2水石膏を5質量%未満(例えば3質量%程度)で添加した場合に対応しており、比重の高い芯材でも圧縮強度を下げることができる(図3参照)。 This formula (1) corresponds to the case where the raw material dihydrate gypsum is added in an amount of less than 5% by mass (for example, about 3% by mass), and the compressive strength can be lowered even with a core material having a high specific gravity (see FIG. 3). ..

本実施の形態による芯材では、圧縮強度y(N/mm2)と比重xとの関係が、以下の式(2)を満たす態様となってもよい。
(2)y≦1.05×0.7414×e2.8026x
In the core material according to the present embodiment, the relationship between the compressive strength y (N / mm 2 ) and the specific gravity x may satisfy the following equation (2).
(2) y ≦ 1.05 × 0.7414 × e 2.8026x

原料2水石膏を5質量%添加した場合の数式よりも大きな値のプロットも多数存在することから、上記数式(2)は原料2水石膏を5質量%添加した場合の数式を1.05倍したものであり、比重の高い芯材でもより圧縮強度を下げることができる(図3参照)。なお、原料2水石膏を5質量%添加した場合の数式をそのまま用いるのであれば、(5)y≦0.7414×e2.8026xという数式を用いることになる。 Since there are many plots of values larger than the formula when 5% by mass of raw material 2 water gypsum is added, the above formula (2) is 1.05 times the formula when 5% by mass of raw material 2 water gypsum is added. It is possible to further reduce the compressive strength even with a core material having a high specific gravity (see FIG. 3). If the mathematical formula when the raw material dihydrate gypsum is added in an amount of 5% by mass is used as it is, the mathematical formula (5) y ≦ 0.7414 × e 2.8026x is used.

本実施の形態の芯材では、圧縮強度y(N/mm2)と比重xとの関係が、以下の式(3)を満たす態様となってもよい。
(3)y≦1.05×0.5373×e3.0281x
In the core material of the present embodiment, the relationship between the compressive strength y (N / mm 2 ) and the specific gravity x may satisfy the following equation (3).
(3) y ≦ 1.05 × 0.5373 × e 3.0281x

原料2水石膏を10質量%添加した場合の数式よりも大きな値のプロットも多数存在することから、上記数式(3)は原料2水石膏を10質量%添加した場合の数式を1.05倍したものであり、比重の高い芯材でもより圧縮強度を下げることができる(図3参照)。なお、原料2水石膏を10質量%添加した場合の数式をそのまま用いるのであれば、(6)y≦0.5373×e3.0281xという数式を用いることになる。 Since there are many plots of values larger than the formula when 10% by mass of raw material 2 water gypsum is added, the above formula (3) is 1.05 times the formula when 10% by mass of raw material 2 water gypsum is added. It is possible to further reduce the compressive strength even with a core material having a high specific gravity (see FIG. 3). If the mathematical formula when 10% by mass of the raw material dihydrate gypsum is added as it is, the mathematical formula (6) y ≦ 0.5373 × e 3.0281x is used.

本実施の形態の芯材では、圧縮強度y(N/mm2)と比重xとの関係が、以下の式(4)を満たす態様となってもよい。
(4)y≦1.05×0.426×e3.1377x
In the core material of the present embodiment, the relationship between the compressive strength y (N / mm 2 ) and the specific gravity x may satisfy the following equation (4).
(4) y ≦ 1.05 × 0.426 × e 3.1377x

原料2水石膏を15質量%添加した場合の数式よりも大きな値のプロットも多数存在することから、上記数式(4)は原料2水石膏を15質量%添加した場合の数式を1.05倍したものであり、比重の高い芯材でもさらにより圧縮強度を下げることができる(図3参照)。なお、原料2水石膏を15質量%添加した場合の数式をそのまま用いるのであれば、(7)y≦0.426×e3.1377xという数式を用いることになる。 Since there are many plots of values larger than the formula when 15% by mass of raw material 2 water gypsum is added, the above formula (4) is 1.05 times the formula when 15% by mass of raw material 2 water gypsum is added. Even with a core material having a high specific gravity, the compressive strength can be further reduced (see FIG. 3). If the mathematical formula when 15% by mass of the raw material dihydrate gypsum is added as it is, the mathematical formula (7) y ≦ 0.426 × e 3.1377x is used.

本実施の形態の芯材において、圧縮強度は2.0N/mm2以上となってもよい。圧縮強度が2.0N/mm2未満となって小さくなりすぎると、芯材としての強度を保てなくなる可能性が出てくるためである。 In the core material of the present embodiment, the compressive strength may be 2.0 N / mm 2 or more. This is because if the compression strength is less than 2.0 N / mm 2 and becomes too small, the strength as a core material may not be maintained.

本実施の形態の芯材において、圧縮強度は7.0N/mm2以下となってもよい。圧縮強度が7.0N/mm2超過となって大きくなると、ビス留めした際に鋼材表面が凸形状となる可能性が出てくるためである。 In the core material of the present embodiment, the compressive strength may be 7.0 N / mm 2 or less. This is because if the compressive strength exceeds 7.0 N / mm 2 and becomes large, the surface of the steel material may have a convex shape when screwed.

なお、図3で示す通り、上記式(5)の条件を満たす場合には、圧縮強度が7.0N/mm2以下となる条件において、比重を0.80まで大きくすることができる。上記式(6)の条件を満たす場合には、圧縮強度が7.0N/mm2以下となる条件において、比重を0.85まで大きくすることができる。上記式(7)の条件を満たす場合には、圧縮強度が7.0N/mm2以下となる条件において、比重を0.87まで大きくすることができる。このように原料2水石膏の添加量を増加させることで同じ圧縮強度でも利用できる芯材の比重を大きくすることができる。 As shown in FIG. 3, when the condition of the above formula (5) is satisfied, the specific gravity can be increased to 0.80 under the condition that the compression strength is 7.0 N / mm 2 or less. When the condition of the above formula (6) is satisfied, the specific gravity can be increased to 0.85 under the condition that the compression strength is 7.0 N / mm 2 or less. When the condition of the above formula (7) is satisfied, the specific gravity can be increased to 0.87 under the condition that the compression strength is 7.0 N / mm 2 or less. By increasing the amount of the raw material dihydrate gypsum added in this way, the specific gravity of the core material that can be used even with the same compressive strength can be increased.

<原料2水石膏と粉砕2水石膏の粒度>
粒度に関し、メジアン径については堀場製作所製 粒度分測定機(HORIBA LA-910)によって測定した。比表面積については、JISR5201セメント物理試験方法(粉末度試験)のブレーン空気透過装置にて測定した。本実施例で用いられた原料2水石膏(原料生石膏)と、硬化促進剤として用いられる粉砕2水石膏のメジアン径とブレーン値を表2に示す。下記表2で示す通り、粉砕2水石膏ではメジアン径がかなり小さくなり、またブレーン値がかなり大きくなっていることから、原料2水石膏と比較して粒径がかなり細かくなっていることを確認できる。本実施の形態では分布の中央値を示すメジアン径が10μm以下の2水石膏を粉砕2水石膏と呼ぶ。他方、本実施の形態の原料2水石膏は添加すると圧縮強度が減少するメジアン径からなる2水石膏を意味している(後述する表5乃至表8と表9参照)。原料2水石膏は、例えば、分布の中央値を示すメジアン径が15μm以上、より限定するのであれば18μm以上、さらに限定するのであれば22μ以上の2水石膏を意味している。

Figure 0006854868
<Particle size of raw material 2 water gypsum and crushed 2 water gypsum>
Regarding the particle size, the median diameter was measured by a particle size measuring machine (HORIBA LA-910) manufactured by HORIBA, Ltd. The specific surface area was measured with a brain air permeation device of the JIS R5201 cement physical test method (powderness test). Table 2 shows the median diameter and brain value of the raw material dihydrate gypsum (raw material raw gypsum) used in this example and the crushed dihydrate gypsum used as a curing accelerator. As shown in Table 2 below, the median diameter of the crushed dihydrate gypsum is considerably smaller and the brain value is considerably larger, so it is confirmed that the particle size is considerably finer than that of the raw material dihydrate gypsum. it can. In the present embodiment, dihydrate gypsum having a median diameter of 10 μm or less, which indicates the median distribution, is referred to as crushed dihydrate gypsum. On the other hand, the raw material dihydrate gypsum of the present embodiment means dihydrate gypsum having a median diameter whose compressive strength decreases when added (see Tables 5 to 8 and 9 described later). The raw material dihydrate gypsum means, for example, dihydrate gypsum having a median diameter indicating the median distribution of 15 μm or more, more limited to 18 μm or more, and further limited to 22 μm or more.
Figure 0006854868

<粒度の異なる原料2水石膏及び粉砕2水石膏の添加率と硬化時間>
焼石膏300gに水255gを混合してスラリーを調製した(混練水量85質量%)。また、所定量の原料2水石膏を添加する場合は、焼石膏から2水石膏の重量を差し引き、これを水と混合してスラリーを調製した。このスラリーを用いて、以下JIS-R9112 陶磁器型材用せっこうの物理試験方法に準拠し、硬化時間(終結)を測定した。その結果を下記表3及び表4に示す。

Figure 0006854868
Figure 0006854868
<Addition rate and curing time of raw material 2 water gypsum and crushed 2 water gypsum with different particle sizes>
A slurry was prepared by mixing 255 g of water with 300 g of gypsum (kneading water amount: 85% by mass). When a predetermined amount of the raw material dihydrate gypsum was added, the weight of the dihydrate gypsum was subtracted from the baked gypsum, and this was mixed with water to prepare a slurry. Using this slurry, the curing time (termination) was measured in accordance with the following physical test method for gypsum for ceramic mold materials. The results are shown in Tables 3 and 4 below.
Figure 0006854868
Figure 0006854868

表3で示すように原料2水石膏を添加した場合には硬化終結時間を短くすることはできるものの、添加率に対して硬化終結時間を短くする効果は粉砕2水石膏と比較して格段に小さいものとなっていることを確認できた。また、添加される原料2水石膏の粒子径が大きくなると硬化終結時間を短くする効果が小さくなることも確認できた。粉砕2水石膏では0.5質量%程度の添加量で硬化終結時間を効果的に短くできるのに対して、原料2水石膏では同程度の硬化終結時間を達成するにはかなりの量で添加する必要があることも確認できた。 As shown in Table 3, when the raw material 2 water gypsum is added, the curing termination time can be shortened, but the effect of shortening the curing termination time with respect to the addition rate is significantly higher than that of the crushed 2 water gypsum. I was able to confirm that it was small. It was also confirmed that the effect of shortening the curing completion time decreases as the particle size of the added raw material dihydrate gypsum increases. With crushed dihydrate gypsum, the curing termination time can be effectively shortened with an addition amount of about 0.5% by mass, whereas with raw material dihydrate gypsum, it is added in a considerable amount to achieve the same degree of curing termination time. I was also able to confirm that it was necessary to do so.

なお、硬化時間のばらつき抑制するため、原料2水石膏に加えて、粉砕2水石膏を0.5質量%〜2.0質量%程度添加してもよい。原料2水石膏を増加させることで硬化終結時間を短くすることはできるが、時間をかけて硬化する傾向にあり、製造工程においてばらつきが生じる可能性がある。このため、硬化終結時間の調整には粉砕2水石膏を用いることが有益である。このように粉砕2水石膏を用いる場合には、ある時間において急速に硬化が行われることから、製造工程においてばらつきが生じ難くなる点で有益である。 In addition to the raw material dihydrate gypsum, crushed dihydrate gypsum may be added in an amount of about 0.5% by mass to 2.0% by mass in order to suppress variations in the curing time. Although the curing completion time can be shortened by increasing the amount of raw material 2 gypsum, it tends to cure over time, and there is a possibility that variations may occur in the manufacturing process. Therefore, it is beneficial to use crushed dihydrate gypsum to adjust the curing termination time. When the crushed dihydrate gypsum is used in this way, it is advantageous in that it is less likely to cause variations in the manufacturing process because it is rapidly cured at a certain time.

そして、このように粉砕2水石膏を用いる場合には、粉砕2水石膏によって硬化終結時間を調整する必要がある。例えば粉砕2水石膏を0.5質量%添加する場合を想定すると、上記表3及び表4の結果から、原料2水石膏の粒子径が22μmの場合では粉砕2水石膏を25質量%までしか添加できない(原料2水石膏30質量%:15.4分<粉砕2水石膏0.5質量%:16.3分<原料2水石膏25質量%:17.7分)。他方、原料2水石膏の粒子径が30μmの場合では、粉砕2水石膏を35質量%まで添加できる(原料2水石膏40質量%:粉砕2水石膏0.5質量%:16.2分<粉砕2水石膏0.5質量%:16.3分<原料2水石膏35質量%:17.3分)。このように原料2水石膏の粒子径を大きくすることで、添加できる原料2水石膏の量を大きくすることができる。このため、添加できる粉砕2水石膏の量を多くするという観点からすると、例えば原料2水石膏の粒子径は30μm以上とすることが有益である。 When the crushed dihydrate gypsum is used in this way, it is necessary to adjust the curing termination time with the crushed dihydrate gypsum. For example, assuming that 0.5% by mass of crushed dihydrate gypsum is added, from the results in Tables 3 and 4 above, when the particle size of the raw material 2 water gypsum is 22 μm, only up to 25% by mass of crushed 2 water gypsum. Cannot be added (raw material 2 water gypsum 30% by mass: 15.4 minutes <crushed 2 water gypsum 0.5% by mass: 16.3 minutes <raw material 2 water gypsum 25% by mass: 17.7 minutes). On the other hand, when the particle size of the raw material 2 water gypsum is 30 μm, crushed 2 water gypsum can be added up to 35% by mass (raw material 2 water gypsum 40% by mass: crushed 2 water gypsum 0.5% by mass: 16.2 minutes < Crushed 2 water gypsum 0.5% by mass: 16.3 minutes <raw material 2 water gypsum 35% by mass: 17.3 minutes). By increasing the particle size of the raw material dihydrate gypsum in this way, the amount of the raw material dihydrate gypsum that can be added can be increased. Therefore, from the viewpoint of increasing the amount of crushed dihydrate gypsum that can be added, it is beneficial that the particle size of the raw material dihydrate gypsum is, for example, 30 μm or more.

<原料2水石膏及び硬化促進剤2水石膏の添加率と圧縮強度>
焼石膏300gに水225g、発泡剤を焼石膏に対して0.017質量%添加し、表5で示す添加率で原料2水石膏を添加してスラリーを調整した。この際の硬化体比重は0.90となった(表5)。同様に焼石膏300gに水225g、発泡剤を焼石膏に対して、0.020質量%、0.025質量%、0.030質量%添加し、表6、表7及び表8の各々で示す添加率で原料2水石膏を添加してスラリーを調製した。この際の硬化体比重はそれぞれ0.85、0.77及び0.68となった(表6、表7及び表8)。
<Addition rate and compressive strength of raw material 2 water gypsum and curing accelerator 2 water gypsum>
To 300 g of gypsum, 225 g of water and a foaming agent were added in an amount of 0.017% by mass based on the gypsum, and the raw material 2 gypsum was added at the addition rate shown in Table 5 to prepare a slurry. The specific gravity of the cured product at this time was 0.90 (Table 5). Similarly, 225 g of water and 0.020% by mass, 0.025% by mass, and 0.030% by mass of a foaming agent were added to 300 g of gypsum, and are shown in Tables 6, 7 and 8, respectively. A slurry was prepared by adding raw material 2 gypsum at the addition rate. The specific gravities of the cured product at this time were 0.85, 0.77 and 0.68, respectively (Tables 6, 7 and 8).

また、焼石膏300gに水225g、発泡剤を焼石膏に対して0.020質量%添加し、表9で示す添加率で硬化促進剤として用いられる粉砕2水石膏を焼石膏に対して添加してスラリーを調製した。この際の硬化体比重は0.85となった(表9)。 Further, 225 g of water and 0.020% by mass of a foaming agent were added to 300 g of gypsum, and crushed dihydrate gypsum used as a curing accelerator at the addition rate shown in Table 9 was added to gypsum. Prepared the gypsum. The specific gravity of the cured product at this time was 0.85 (Table 9).

これらのスラリーを50mm×50mm×50mmの型枠に装填し、硬化させた後、脱型して、40℃で恒量になるまで乾燥し、硬化体を得た。この硬化体を、オートグラフ(島津製作所社製、型番AG-10TE)に供し、荷重速度1mm/minで荷重して、硬化体が座屈したときの荷重値を硬化体面積で除した値を圧縮強度(N/1mm2)とした。その結果を表5乃至表9に示す。圧縮強度を2.0N/mm2以上の芯材を用いるのであれば、比重0.90及び比重0.85の態様では原料2水石膏の添加率を35質量%以下とし、比重0.77の態様では原料2水石膏の添加率を30質量%以下とし、比重0.68の態様では原料2水石膏の添加率を25質量%以下とすることが考えられる。 These slurries were loaded into a 50 mm × 50 mm × 50 mm mold, cured, then demolded and dried at 40 ° C. to a constant weight to obtain a cured product. This cured product was subjected to an autograph (manufactured by Shimadzu Corporation, model number AG-10TE), loaded at a load speed of 1 mm / min, and the value obtained by dividing the load value when the cured product buckled by the cured product area was calculated. The compression strength was set to (N / 1 mm 2 ). The results are shown in Tables 5 to 9. If a core material having a compressive strength of 2.0 N / mm 2 or more is used, the addition rate of the raw material dihydrate gypsum is 35% by mass or less in the embodiment of the specific gravity of 0.90 and the specific gravity of 0.85, and the specific gravity is 0.77. In the embodiment, the addition rate of the raw material dihydrate gypsum is 30% by mass or less, and in the aspect of the specific gravity of 0.68, the addition rate of the raw material dihydrate gypsum is 25% by mass or less.

Figure 0006854868
Figure 0006854868
Figure 0006854868
Figure 0006854868
Figure 0006854868
Figure 0006854868
Figure 0006854868
Figure 0006854868
Figure 0006854868
Figure 0006854868

<原料2水石膏添加で圧縮強度が低減する理由>
圧縮強度試験体の断面を電子顕微鏡にて観察した。その写真を図4乃至図7に示す。図5と図7を比較すれば分かるように、原料2水石膏を添加しない場合(図4及び図5)では、水和した2水石膏の針状結晶が絡み合っていることが分かる。他方、原料2水石膏を添加した場合には、原料2水石膏の結晶の大きさが50μm程度あるため、水和した2水石膏の結晶とは絡み合わないことが分かる。このため、原料2水石膏を添加した場合には、圧縮強度が添加率に応じて低減することが分かる。
<Reason for reducing compressive strength by adding raw material 2 water gypsum>
The cross section of the compressive strength test piece was observed with an electron microscope. The photographs are shown in FIGS. 4 to 7. As can be seen by comparing FIGS. 5 and 7, it can be seen that the acicular crystals of the hydrated dihydrate gypsum are entangled when the raw material dihydrate gypsum is not added (FIGS. 4 and 5). On the other hand, when the raw material dihydrate gypsum is added, the crystal size of the raw material dihydrate gypsum is about 50 μm, so that it can be seen that the crystals do not entangle with the hydrated dihydrate gypsum crystals. Therefore, it can be seen that when the raw material dihydrate gypsum is added, the compressive strength decreases according to the addition rate.

図8及び図9に示すように、鋼製下地にビスをねじ込み、所定の引張荷重になるまでオートグラフ装置(島津製作所社製、型番AG-10TE)にて引き抜き、そのときの鋼材表面の状態を観察した。引張荷重速度は1mm/minである。図8は200Nで引張荷重をかけたものであるが、ビス廻りの鉄製下地は平滑状態であった。図9は300Nで引張荷重をかけたものであるが、ビス廻りの鉄製下地が凸状態に盛り上がった。 As shown in FIGS. 8 and 9, a screw is screwed into a steel base and pulled out with an autograph device (manufactured by Shimadzu Corporation, model number AG-10TE) until a predetermined tensile load is reached, and the state of the steel surface at that time. Was observed. The tensile load rate is 1 mm / min. In FIG. 8, a tensile load was applied at 200 N, but the iron base around the screw was in a smooth state. In FIG. 9, a tensile load was applied at 300 N, and the iron base around the screw was raised in a convex state.

鉄製下地の表面が凸状になるときの引張荷重の結果は下記表10のようになった。

Figure 0006854868
The results of the tensile load when the surface of the iron base becomes convex are shown in Table 10 below.
Figure 0006854868

ビス頭部にかかる荷重値が鋼製下地におけるビス引張荷重値と石膏ボード芯材圧縮強度値を比較し、鋼材表面が凸状になる条件を算出した(推計した)。
ビス頭部径:8.2mmの場合 面積:52.8(=4.1mm×4.1mm×3.14)mm2
ビス胴部径:3.8mmの場合 面積:11.3(=1.9mm×1.9mm×3.14)mm2
これより、石膏の芯材がビス頭下部にかかる荷重面積は、52.8−11.3=41.5mm2となる。したがって、上記表の引張荷重を単位面積当たりに変換すると、下記表11のようになる。

Figure 0006854868
The condition for the steel surface to be convex was calculated (estimated) by comparing the load value applied to the screw head with the screw tensile load value on the steel base and the compressive strength value of the gypsum board core material.
When the screw head diameter is 8.2 mm Area: 52.8 (= 4.1 mm x 4.1 mm x 3.14) mm 2
When the screw body diameter is 3.8 mm Area: 11.3 (= 1.9 mm x 1.9 mm x 3.14) mm 2
From this, the load area applied to the lower part of the screw head by the gypsum core material is 52.8-11.3 = 41.5 mm 2 . Therefore, when the tensile load in the above table is converted per unit area, it becomes as shown in Table 11 below.
Figure 0006854868

上記表11の単位面積当たりの荷重値より、石膏ボードの圧縮強度が高い場合に、鋼材表面が凸状に盛り上がるということになる。 When the compressive strength of the gypsum board is higher than the load value per unit area in Table 11, the surface of the steel material rises in a convex shape.

鋼製下地が0.4mm厚の場合、石膏ボードの芯材圧縮強度が7.2N/mm2のときの比重は下記表12のようになり、原料2水石膏の添加率を増加させることで高い比重の芯材を用いることができる。鋼製下地が0.4mmと比較的薄い場合に、例えば比重を0.85としても、原料2水石膏を15質量%添加することで、鋼製下地が凸状になることを抑制することが可能となる。

Figure 0006854868
When the steel base is 0.4 mm thick, the specific gravity when the core material compression strength of the gypsum board is 7.2 N / mm 2 is as shown in Table 12 below, and by increasing the addition rate of the raw material 2 gypsum. A core material having a high specific gravity can be used. When the steel base is relatively thin at 0.4 mm, for example, even if the specific gravity is 0.85, it is possible to suppress the steel base from becoming convex by adding 15% by mass of the raw material dihydrate gypsum. It will be possible.
Figure 0006854868

鋼製下地が0.45mm厚の場合、石膏ボード芯材圧縮強度が、9.6N/mm2のときの製品比重は下記表13のようになり、原料2水石膏の添加率を増加させることで高い比重の芯材を用いることができる。鋼製下地が0.45mmの比較的薄い場合に、例えば比重を0.95としても、原料2水石膏を15質量%添加することで、鋼製下地が凸状になることを抑制することが可能となる。

Figure 0006854868
When the steel base is 0.45 mm thick and the compression strength of the gypsum board core material is 9.6 N / mm 2 , the product specific gravity is as shown in Table 13 below, and the addition rate of the raw material 2 gypsum is increased. A core material having a high specific gravity can be used. When the steel base is relatively thin at 0.45 mm, for example, even if the specific gravity is 0.95, it is possible to suppress the steel base from becoming convex by adding 15% by mass of the raw material dihydrate gypsum. It will be possible.
Figure 0006854868

ただし、上記表1で示した試験結果を見ても分かるように、比重0.726であっても、ビス留め付け時に鋼材表面は若干凸状態になることがある。これは石膏ボードを鋼製下地にビス打ちするときの工具の圧力や施工のばらつき等が考えられる。 However, as can be seen from the test results shown in Table 1 above, even if the specific gravity is 0.726, the surface of the steel material may be slightly convex when the screws are fastened. This may be due to variations in tool pressure and construction when gypsum board is screwed onto a steel base.

なお、本件出願人が確認している限り、鋼製下地が0.45mm以下と比較的薄い場合には、鋼製下地が凸状になるという問題が生じやすくなっており、JIS材のように鋼製下地が0.8mm厚となり、比較的厚みの厚い場合には、鋼製下地が凸状になるという問題が生じ難くなっている。このため鋼製下地の厚みが薄く0.6mm以下となる場合に本実施の形態は有益な効果を示し、鋼製下地の厚みが0.5mm以下となる場合には本実施の形態はより有益な効果を示し、鋼製下地の厚みが0.45mm以下となる場合には本実施の形態はさらにより有益な効果を示す。 As far as the applicant has confirmed, when the steel base is relatively thin, 0.45 mm or less, the problem that the steel base becomes convex is likely to occur, as in JIS materials. When the steel base has a thickness of 0.8 mm and is relatively thick, the problem that the steel base becomes convex is less likely to occur. Therefore, the present embodiment shows a beneficial effect when the thickness of the steel base is thin and is 0.6 mm or less, and the present embodiment is more useful when the thickness of the steel base is 0.5 mm or less. When the thickness of the steel base is 0.45 mm or less, the present embodiment shows an even more beneficial effect.

<原料2水石膏添加時の石膏ボード発熱性試験結果>
石膏ボードの発熱性試験も行ったので、その結果を下記表14で示す。原料2水石膏を添加し、その添加率を増加させても発熱性試験結果に影響がないことを確認できた。

Figure 0006854868
<Gypsum board heat generation test result when raw material 2 water gypsum is added>
A heat generation test of gypsum board was also conducted, and the results are shown in Table 14 below. It was confirmed that the exothermic test result was not affected even if the raw material 2 water gypsum was added and the addition rate was increased.
Figure 0006854868

上述した実施の形態及び実施例の記載は、特許請求の範囲に記載された発明を説明するための一例に過ぎない。また、出願当初の特許請求の範囲の記載は本件特許明細書の範囲内で適宜変更することもでき、その範囲を拡張及び変更することもできる。 The description of the above-described embodiments and examples is merely an example for explaining the invention described in the claims. In addition, the description of the scope of claims at the time of filing can be appropriately changed within the scope of the patent specification, and the scope can be extended or changed.

Claims (8)

石膏を主成分とする芯材であって、
圧縮強度y(N/mm2)と比重xとの関係が、以下の式(1)を満たし、
断面において50μm以上の長さを有する結晶を含み、
比重が0.99未満となる、芯材。
(1)y≦0.9393×e2.6372x−0.3
A core material mainly composed of gypsum
The relationship between the compressive strength y (N / mm 2 ) and the specific gravity x satisfies the following equation (1).
Crystals only contains with length over 50μm in cross-section,
A core material with a specific gravity of less than 0.99.
(1) y ≦ 0.9393 × e 2.6372x −0.3
石膏を主成分とする芯材であって、
圧縮強度y(N/mm2)と比重xとの関係が、以下の式(2)を満たし、
断面において50μm以上の長さを有する結晶を含み、
比重が0.99未満となる、芯材。
(2)y≦1.05×0.7414×e2.8026x
A core material mainly composed of gypsum
The relationship between the compressive strength y (N / mm 2 ) and the specific gravity x satisfies the following equation (2).
Crystals only contains with length over 50μm in cross-section,
A core material with a specific gravity of less than 0.99.
(2) y ≦ 1.05 × 0.7414 × e 2.8026x
石膏を主成分とする芯材であって、
圧縮強度y(N/mm2)と比重xとの関係が、以下の式(3)を満たし、
断面において50μm以上の長さを有する結晶を含み、
比重が0.99未満となる、芯材。
(3)y≦1.05×0.5373×e3.0281x
A core material mainly composed of gypsum
The relationship between the compressive strength y (N / mm 2 ) and the specific gravity x satisfies the following equation (3).
Crystals only contains with length over 50μm in cross-section,
A core material with a specific gravity of less than 0.99.
(3) y ≦ 1.05 × 0.5373 × e 3.0281x
石膏を主成分とする芯材であって、
圧縮強度y(N/mm2)と比重xとの関係が、以下の式(4)を満たし、
断面において50μm以上の長さを有する結晶を含み、
比重が0.99未満となる、芯材。
(4)y≦1.05×0.426×e3.1377x
A core material mainly composed of gypsum
The relationship between the compressive strength y (N / mm 2 ) and the specific gravity x satisfies the following equation (4).
Crystals only contains with length over 50μm in cross-section,
A core material with a specific gravity of less than 0.99.
(4) y ≦ 1.05 × 0.426 × e 3.1377x
圧縮強度が2.0N/mm2以上である、請求項1乃至4のいずれか1項に記載の芯材。 The core material according to any one of claims 1 to 4, wherein the compression strength is 2.0 N / mm 2 or more. 圧縮強度が7.0N/mm2以下である、請求項1乃至5のいずれか1項に記載の芯材。 The core material according to any one of claims 1 to 5, wherein the compression strength is 7.0 N / mm 2 or less. 請求項1乃至6のいずれか1項に記載の芯材と、芯材の両面に設けられた紙材とを備えた石膏ボード。 A gypsum board comprising the core material according to any one of claims 1 to 6 and paper materials provided on both sides of the core material. 請求項1乃至7のいずれか1項に記載の芯材の製造方法であって、
石膏及びメジアン径が15μm以上からなる2水石膏に水を加えて混合し、スラリーを生成する工程と、
前記スラリーを硬化させる工程と、
を備える芯材の製造方法。
The method for producing a core material according to any one of claims 1 to 7.
A step of adding water to gypsum and dihydrate gypsum having a median diameter of 15 μm or more and mixing them to generate a slurry, and
The step of curing the slurry and
A method of manufacturing a core material comprising.
JP2019210920A 2019-11-22 2019-11-22 Manufacturing method of core material, gypsum board and core material Active JP6854868B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019210920A JP6854868B1 (en) 2019-11-22 2019-11-22 Manufacturing method of core material, gypsum board and core material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019210920A JP6854868B1 (en) 2019-11-22 2019-11-22 Manufacturing method of core material, gypsum board and core material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020180029A Division JP2021080159A (en) 2020-10-27 2020-10-27 Core material, gypsum board and method for producing core material

Publications (2)

Publication Number Publication Date
JP6854868B1 true JP6854868B1 (en) 2021-04-07
JP2021080142A JP2021080142A (en) 2021-05-27

Family

ID=75267940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019210920A Active JP6854868B1 (en) 2019-11-22 2019-11-22 Manufacturing method of core material, gypsum board and core material

Country Status (1)

Country Link
JP (1) JP6854868B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3232072A1 (en) * 2021-10-05 2023-04-13 Ushio SUDO Wooden load-bearing wall, method of constructing wooden load-bearing wall, method of increasing co-efficient of effective wall length of wooden load-bearing wall, and gypsum-based load-bearing board
JP7359506B1 (en) 2022-07-30 2023-10-11 吉野石膏株式会社 Wooden load-bearing walls, construction methods for wooden load-bearing walls, methods for increasing the wall magnification of wooden load-bearing walls, and gypsum load-bearing facing materials
WO2024029210A1 (en) * 2022-07-30 2024-02-08 吉野石膏株式会社 Wooden structure load-bearing wall, construction method for wooden structure load-bearing wall, method for increasing wall magnification of wooden structure load-bearing wall, and gypsum-based load-bearing surface material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5192824A (en) * 1975-02-12 1976-08-14
JPH04254447A (en) * 1991-02-01 1992-09-09 Onoda Cement Co Ltd Low water-carrying rapid hardening alpha type hemihydrate gypsum
JP3251565B2 (en) * 1999-10-04 2002-01-28 株式会社エーアンドエーマテリアル Lightweight calcium silicate plate and method for producing the same
JP6088277B2 (en) * 2013-02-07 2017-03-01 株式会社トクヤマ How to use waste gypsum board
EP2848597A1 (en) * 2013-09-17 2015-03-18 Basf Se Light-weight gypsum board with improved strength and method for making same
JP6207090B2 (en) * 2014-12-25 2017-10-04 チヨダウーテ株式会社 Gypsum member, gypsum board, and method for manufacturing gypsum member
JP2019069884A (en) * 2017-10-11 2019-05-09 チヨダウーテ株式会社 Gypsum board, production method of gypsum board, and adsorbent composition
JP6529205B1 (en) * 2018-10-16 2019-06-12 チヨダウーテ株式会社 Method of manufacturing gypsum board and gypsum board

Also Published As

Publication number Publication date
JP2021080142A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP6854868B1 (en) Manufacturing method of core material, gypsum board and core material
US20210252832A1 (en) Building material and method for producing building material
KR20140018215A (en) High performance non-combustible gypsum-cement compositions with enhanced water durability and thermal stability for reinforced cementitious lightweight structural cement panels
JP2009057226A (en) Method for manufacturing autoclaved lightweight concrete
WO2015170421A1 (en) Gypsum cured body, gypsum plate, method for manufacturing gypsum cured body, and method for manufacturing gypsum board
JP2021080159A (en) Core material, gypsum board and method for producing core material
JP2007099546A (en) Method of producing autoclaved light-weight concrete
JP4932383B2 (en) Expanded cement joint material for lightweight cellular concrete board
JP4786272B2 (en) Method for producing lightweight cellular concrete
KR20080094225A (en) Fiber-reinforced, lightweight aggregate, cellular concrete
JP2011051200A (en) Method of manufacturing autoclaved lightweight concrete panel
US11691918B2 (en) Production method of ready injection material comprising nano hydraulic lime
JP2013189327A (en) Method for producing inorganic cured body
JP2012091962A (en) Method for producing autoclaved lightweight concrete panel
JP2002145653A (en) Cemented chip board and cemented chip laminate
JP2746332B2 (en) Method for producing high-strength cellular mortar and lightweight concrete
JP2020063165A (en) Method for producing gypsum board, and gypsum board
JP2775116B2 (en) Cement for ALC production
JP2018127778A (en) Reinforced cement board
JP6910777B2 (en) Manufacturing method of building materials
JP2014159151A (en) Method of manufacturing light-weight foam concrete
JP3023057B2 (en) Wood cement board and method for producing the same
JP2013203600A (en) Inorganic molded board
JP6624511B2 (en) Method of forming hardened concrete
JP2005335967A (en) Light-weight cellular concrete panel excellent in sound insulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191122

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200302

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200317

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200707

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201027

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201027

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20201110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201130

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201217

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210316

R150 Certificate of patent or registration of utility model

Ref document number: 6854868

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250