JP6853172B2 - ビッグデータ環境におけるリソース管理 - Google Patents

ビッグデータ環境におけるリソース管理 Download PDF

Info

Publication number
JP6853172B2
JP6853172B2 JP2017523189A JP2017523189A JP6853172B2 JP 6853172 B2 JP6853172 B2 JP 6853172B2 JP 2017523189 A JP2017523189 A JP 2017523189A JP 2017523189 A JP2017523189 A JP 2017523189A JP 6853172 B2 JP6853172 B2 JP 6853172B2
Authority
JP
Japan
Prior art keywords
information
network
computer system
data
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017523189A
Other languages
English (en)
Other versions
JP2017529811A (ja
Inventor
タピア,パブロ
Original Assignee
トゥプル,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トゥプル,インコーポレイテッド filed Critical トゥプル,インコーポレイテッド
Publication of JP2017529811A publication Critical patent/JP2017529811A/ja
Priority to JP2021038871A priority Critical patent/JP7280302B2/ja
Application granted granted Critical
Publication of JP6853172B2 publication Critical patent/JP6853172B2/ja
Priority to JP2022205693A priority patent/JP2023027358A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/12Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks
    • H04L67/125Protocols specially adapted for proprietary or special-purpose networking environments, e.g. medical networks, sensor networks, networks in vehicles or remote metering networks involving control of end-device applications over a network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)
  • Computer And Data Communications (AREA)

Description

(関連特許出願の相互参照)
[0001] 本特許出願は、これらの出願が、それらの全体が参照により本明細書に組み込まれている、2014年、7月16日に出願された「Intelligent Automatic Troubleshooting for Cellular Networks」という名称の米国仮出願第62/025,453号と、2014年、7月17日に出願された「Radio Resource Management with Big Data Feeds」という名称の米国仮出願第62/025,958号と、2014年、7月17日に出願された「Recommendation Engine for Network Insights」という名称の米国仮出願第62/025,961号と、2014年、7月16日に出願された「Automatic Healthcare Monitoring System Leveraging Cellular Data Systems」という名称の米国仮出願第62/025,441号と、2015年、7月15日に出願された「Big Data Machine Learning Use Cases」という名称の米国仮出願第62/193,002号との優先権を主張するものである。
[0002] 現在、ビッグデータ技法の出現に伴った革命がある。リレーショナルデータベースなど従来のデータストレージ技術は大量のデータについて十分に高性能ではなかったが、マップ縮小などの並列処理アルゴリズムと共に、クラウドに基づく代替的なデータストアの出現は、ビッグデータを実用的に、高性能に、またコスト効率の高いものにしている。さらに、現在では、データのリアルタイム解析、またはデータのリアルタイムに近い解析を可能にする、大量のデータに対するものを含む高性能の処理が最近進化している。1つの例は、Hadoopに対するそのような処理を提供し、またインメモリ計算を活用するSparkを含む。ビッグデータは、解析すべき統計的にかなりの量のデータを提供するので、ビッグデータは、それ自体を既存の機械学習技法によく役に立つようにしている。
[0003] ビッグデータ技法および機械学習技法は、広範な領域に適用されることもある。1つの例は、新しいネットワーク技術およびサービスの絶え間ない開発によって導かれ、スマートフォン革命とその数え切れないアプリケーションとによって先導される一定の、またかなりの変革を受けているワイヤレス通信である。これに関して、セルラー方式システムなどのワイヤレスシステムは、増大するトラフィック要求、ならびにこれらのアプリケーションによって課される性能要件に立ち向かうために、絶え間なく進化している。ワイヤレス通信システムの進化は、一般的に、無線レベルにおける性能を改善すること、またはコアネットワークのアーキテクチャを改善することなど、分離されたブロックにおいて起こっている。ワイヤレス通信は、過去10年において改善しているが、ネットワークをサポートするバックエンドシステムの一部分は、3Gネットワークや2Gネットワークなどのレガシーアーキテクチャを依然として含むことができる。
[0004] これは、持続可能なように、自分のシステムを成長させる必要があるネットワークオペレータに対してとてつもなく大きな運用の課題を創り出す。異なるタイプのワイヤレスデバイスと、異なるタイプのデータサービスと、異種無線アクセスネットワークとの使用に関連する複雑さに起因して、顧客ケアのコストは、かなり増大している。さらに、ネットワークの中の他のシステムと、ネットワーク要素とからのコンテキスト情報を利用する様々な通信システムを改善することに対しては、あまり進化していない。絶え間なく変わり、要求するネットワーク性能要件に遅れずについて行くために、ワイヤレスプロバイダは、コスト効率のよいように、絶えず進化する顧客要求に対処する柔軟性を有しながら、自分のメンテナンスコスト構造を変革する必要がある。ネットワーク要件の変わりやすさ、進化する顧客ニーズ、コスト効率性を継続する必要性は、従来のアプローチに対する課題を提示する。本開示は、これらの考察および他の考察に関して書かれている。
[0005] 図面は、限定するものではなく単に例として、本教示に合致した1つまたは複数の実装形態を示す。図面の中で、同様な参照番号は、同じ要素または類似した要素を指す。
[0006]無線リソース管理アーキテクチャを実装するための例示のネットワークアーキテクチャを示す図である。 [0007]無線アクセスネットワークの要素の例示の高レベルインターフェースブロック図である。 [0008]例示の一実施形態と整合した、データフレームワークと相互作用する無線リソース管理(RRM: Radio Resource Management)モジュールを示すブロック図である。 [0009]ビッグデータレコードを利用した修正されたRRMのための例示のプロセスの流れ図である。 [0010]測定結果メガストアからの通知に基づいてeノードBとEUとの間の接続を調整するための例示のプロセスの流れ図である。 [0011]例示の一実施形態と整合した、データフレームワークのブロック図である。 [0012]根本原因の識別のための例示のモデルを示す図である。 [0013]無線アクセスネットワーク性能を維持するための例示のプロセスの流れ図である。 [0014]測定結果メガストアに結合された端末の例示のユーザインターフェースを示す図である。 [0015]例示の一実施形態と整合した、リモート健康モニタリングを含むシステムの高レベル図である。 [0016]例示の一実施形態と整合した、モニタリングシステムのデータフレームワークのブロック図である。 [0017]ビッグデータレコードを使用した健康状態を識別するための例示のプロセスの流れ図である。 [0018]ネットワークまたはホストコンピュータを示す図である。 [0019]ユーザインターフェース要素を有するコンピュータを示す図である。
[0020] 本開示は、一般に、ネットワーク要素を最適化する方法およびシステムに関する。スケーラブルネットワークバックエンドが、データに対して単純化されたアクセスを提供し、またオートメーションを向上させるオープンアーキテクチャに基づいて、提供される。運用効率と、ネットワークの動作の全体のコストとは、機能のオートメーションと、ハードウェアリソースおよびソフトウェアリソースの合理化とによって低減される。機械学習アプローチを用いて補完されたビッグデータ技術の使用は、複雑なタスクを簡略化し、また自動化し、より効率的なネットワーク動作と、改善された顧客品質と、加入者の解約の低減とをもたらしている。
[0021] 一態様においては、本明細書において説明されるシステムは、オープンプラットフォームを提供し、ここでは異種ソースからの複数のデータフィードが、組み合わされ、またリアルタイムで処理される。一実施形態においては、システムは各ネットワークノードからの監視されたデータの絶え間ないモニタリングと送信とを実行し、この各ネットワークノードからの監視されたデータは、中央集中化されたリモートサーバにおいて、合成される可能性がある。異種ソースから取り出された合成されたデータは、可能性のある問題について解析され、また関連のある問題解決手法が、提供される。
[0022] 一態様においては、第1のネットワーク要素に関連した異種ソースからのデータは、処理レイヤによって受信される。第1のネットワーク要素と、他のネットワーク要素とに関連したコンテキスト情報が、測定結果メガストアから取り出される。異種ソースからのデータと、コンテキスト情報とは、インテリジェンスレイヤによって解析される。インテリジェンスレイヤが、所定の条件が満たされる、または所定のしきい値が超過されると決定すると、第1のネットワーク要素に対して通知が提供される。
(例示のシステムアーキテクチャ)
[0023] 図1は、無線リソース管理アーキテクチャを実装するための例示のネットワークアーキテクチャを示す。図1は、その加入者顧客と、関連するモバイルデバイスユーザとに対して広範囲のモバイル通信サービスと、補助サービスまたは補助機能とを提供するように、キャリアプロバイダまたはサービスプロバイダによって運営され得るモバイル通信ネットワーク100を示す。参照数字100によって一般に示される要素は、モバイル通信ネットワークの要素であり、またキャリアによって、またはキャリアのために運営される。モバイル通信ネットワーク100は、ユーザ機器(UE: user equipment)102aから102dの間の通信、ならびにモバイル通信ネットワーク100の外側のネットワークおよび局とのUEのための通信を提供する。
[0024] 後での考察のために、いくつかのUEが図面の中に見られ、モバイル通信ネットワーク122を経由して様々なサービスを受信することができるデバイスについてのいくつかの例を表す。今日では、UEは、一般的に、ポータブルハンドセットと、スマートフォンと、タブレットコンピュータと、携帯型個人情報端末(PDA: personal digital assistants)と、スマートウォッチとの形態をとるが、それらは、民生用電子デバイスと、ビジネス用電子デバイスと、ウェアラブル個人用健康モニタ102dなどの医用電子デバイスとを含めて、他のフォームファクタにおいて実装されることもある。モバイル通信ネットワーク100により、UEのユーザ(例えば、顧客または加入者)は、通信を開始し、またインターネット120から情報を受信することができるようになる。
[0025] モバイル通信ネットワーク100は、一般的に、いくつかの相互接続されたネットワークによって実装される。したがって、ネットワーク全体100は、いくつかの無線アクセスネットワーク(RAN: Radio Access Networks)122、ならびにいくつかのRANを相互接続する広域地上ネットワーク、およびマルチメディアメッセージングサービスセンタ(MMSC: Multimedia Messaging Service Centers)などのコアネットワーク要素に広域地上ネットワークを相互接続する広域ネットワーク(WAN: wide area network)を含むことができる。UE102bおよび102cにサービスする地域的部分など、ネットワーク100の地域的部分は、1つまたは複数のRAN(ワイヤレス通信ネットワーク122によって表される)および地域的回路、および/またはパケット交換ネットワークおよび関連するシグナリングネットワーク施設を含むことができる。
[0026] モバイルサービスプロバイダまたはキャリアのうちの1つによって運営されるRAN122の物理的要素は、eノードB119のノードによって図1の例の中に表されるいくつかの基地局を含む。そのようなeノードB119のノードは、UEがレンジ内にあるときに、1つまたは複数のUE(102aから102dまで)と、ノードのサイトにおけるアンテナシステムを経由して、またエアリンクの上で、通信する基地トランシーバシステム(BTS: base transceiver system)を含むことができる。それぞれのeノードB119のノードは、多くの場合に「セル」と称されるカバレッジエリアの内部の無線タワーに取り付けられたいくつかのアンテナに結合されたBTSを含むことができる。BTSは、eノードBのノード119が、現在サービスしているUEに対してRF信号を送信し、またUEからRF信号を受信する無線ネットワークの一部分である。無線アクセスネットワーク122は、それぞれのeノードB119のノードと、UEがそれと通信し、またはそれを通して通信する他の要素との間の、UEのためのユーザ通信を搬送する。様々な実施形態においては、各eノードBにおいて通信信号を(1つまたは複数のUEに対して)送信する無線は、後でより詳細に考察される、測定結果メガストア140から受信されるコンテキスト情報、および/またはモニタリングサーバ130から受信されるアラートに基づいて、電力出力、帯域幅などを調整することができる。無線アクセスネットワーク122を形成する、スイッチおよび/またはルータなどの個別の要素は、簡単にするためにここでは省略されるが、図2との関連で関連のある部分において考察される。
[0027] モバイル通信ネットワーク100の無線アクセスネットワーク部分122は、120において示される「インターネット」と一般的に称されるネットワークなどの公衆パケットデータ通信ネットワークに接続している。無線アクセスネットワーク122と、インターネット120とを経由したパケット通信は、測定結果メガストアからのコンテキスト情報と、モニタリングサーバ130からのアラートとを無線アクセスネットワーク122の様々なネットワーク要素に対して提供するなど、ネットワーク100を通して様々なサービスをサポートし、ならびにUEに対して、テキストメッセージおよびマルチメディアメッセージの通信と、電子メールと、ウェブサーフィンまたはウェブブラウジングと、プログラミングと、メディアダウンローディング(オーディオおよびビデオを含む)などと、を提供することができる。例えば、UE102aから102dは、直接に(ピアツーピアに)、または様々なサーバ(別々に示されてはいない)を経由してのいずれかで、パーソナルコンピュータなどのユーザ端末デバイスからメッセージを受信し、またユーザ端末デバイスに対してメッセージを送信することができるだろう。
[0028] この考察のために留意すべきものとして、本明細書において考察されるネットワークメッセージとアラートとの多くは、無線アクセスネットワーク122ならびに無線アクセスネットワーク122の要素を使用して、様々なUEに対して送信され、また様々なUEから受信される。無線アクセスネットワーク122の進化型パケットコア(EPC: Evolved Packet Core)は、進化型パケットシステム(EPS: Evolved Packet System)ベアラチャネルの概念を使用して、無線アクセスネットワーク122の中のゲートウェイ107からUEへとIPトラフィックをルーティングする。ベアラチャネルは、パケットデータネットワーク(PDN: Packet Data Network)ゲートウェイ(PGW)107と、UE(例えば13aから13eまで)との間の規定されたサービス品質(QoS)を有するIPパケットフローである。
[0029] eノードB119は、通常、「X2」として知られているインターフェースによって互いに相互接続される。各eノードBの間の通信は、無線リソース管理(RRM)を含んでおり、この無線リソース管理は、無線ベアラ制御、無線アドミッション制御、無線モビリティ制御、スケジューリング、アップリンクとダウンリンクとの両方におけるUEに対するリソースの動的配分など、無線ベアラに関連したすべての機能を対象として含む。一態様においては、RRMは、測定結果メガストア140と通信し、かつ/またはモニタリングサーバ130からメッセージを受信して、その制御機能を最適化することができる。
[0030] 一実施形態においては、ネットワーク100は、インターネット120を介する通信のために結合される測定結果メガストアサーバ140を含む。測定結果メガストアサーバは、UEと、無線アクセスネットワーク122との間のより効率的な接続(例えば、消費電力および/または速度)を創り出すこと、ならびに無線アクセスネットワーク122のコンポーネントを最適化することに関連のあるコンテキスト情報(これは、様々なソースからのものである可能性がある)を記憶する。簡単にするために、UEと、無線アクセスネットワークのコンポーネントとは、一括して、本明細書においてネットワーク要素と称される。様々な実施形態においては、測定結果メガストアサーバ140によって提供されるコンテキスト情報は、異なるタイプの情報を含むことができる。例えば、コンテキスト情報は、1つまたは複数の無線アクセスネットワーク122から受信されるディープパケットインスペクション(DPI: Deep Packet Inspection)を経由して抽出されるアプリケーションレベル情報を含むことができる。サーバ140におけるコンテキスト情報は、UE端末カテゴリ(例えば、スマートフォン、タブレット、ラップトップ、個人用健康モニタリングデバイスなど)の情報を含むことができる。コンテキスト情報は、最大送信ビットレートおよび低電力デバイスであるように構成されている(高性能と比べて低電力に構成されている)かどうかなど、ネットワーク要素の能力を関係づけることもできる。一実施形態においては、コンテキスト情報は、ネットワーク要素の最近記憶された電力ステータスを提供することができ、この最近記憶された電力ステータスを使用して、無線アクセスネットワーク122と、それぞれのUEとの間の接続を最適化することができる。
[0031] それに応じて、測定結果メガストアサーバ140は、様々なソースからの異種データを含むコンテキスト情報を記憶する。サーバ140に記憶されるデータは、ワイヤレス通信ネットワーク122のネットワーク要素によって使用されて、それぞれ、各ネットワーク要素のリソースの調整された最適化を提供することができる情報を含む。代わりに、または追加として、モニタリングサーバ130は、測定結果メガストア140からネットワーク全体100からの情報を含むコンテキスト情報を取り出し、このコンテキスト情報をネットワーク要素に関連した異種ソースからのデータと共に解析して、ネットワーク全体100のコンテキストにおいてその性能を最適化するための、それぞれのネットワーク要素に対するメッセージをトリガする1つまたは複数の所定の条件が満たされるかどうかを決定することができる。対照的に、先行技術のセルラー方式通信ネットワークは、同じベンダからのコアネットワークの中のネットワーク要素やネットワークの中で特定の機能を実装するように展開されるネットワーク要素など、ネットワーク要素の小規模サブセットから、ローカルに取得されたメトリクスを単に利用して、無線アクセスネットワーク122に対するUE102の各通信リンクに対してリソースをどのようにして最適に割り当てるかを決定することができる。
[0032] 例えば、UEと、eノードBとの間の接続を確立するために、先行技術の無線スケジューラ(eノードBにおける)は、スケジューラが、UEと、対応するeノードBとの間の各リンクに割り当てるべきターンの数を決定するために、それぞれのUEのバッファにおけるデータの量、識別された無線品質、デバイス能力など、ローカルにアクセス可能な情報を単に考慮することができるだけである。ディープパケットインスペクション(DPI)を使用して、例えば、ファイル転送プロトコル(FTP)転送に対するものに比べて、Skypeビデオコールに対して異なる品質レベルを割り当てることができる、より進化した先行技術システムにおいてさえも、データは特定のサブシステム(すなわち、ワイヤレス通信ネットワーク)から抽出され、異なるネットワーク要素の間で共有されてはいない。しかしながら、この抽出されたデータは、制限され、またeノードBと、対応するUEとの間の接続に割り振られるリソースは、せいぜい推測である。例えば、先行技術のシステムにおいては、たとえeノードB119の無線スケジューラが、端末の端末カテゴリを決定することができるとしても、スケジューラは、UE(例えば、102d)が、できるだけバッテリ寿命を節約する必要があるマシンツーマシン(M2M: machine to machine)モジュールであることを依然として知らない可能性がある。
[0033] 対照的に、一態様においては、本明細書において説明されるシステムは、測定結果メガストアサーバ140においてコンテキスト情報を記憶することにより、複数のeノードB119を通しての情報の共有化を可能にしており、この測定結果メガストアサーバ140は、UE(例えば、102d)と、その対応するeノードB119との間の接続に、例えば、リソースのタイプを割り振ることにより、ワイヤレス通信ネットワーク122の容量を改善する。したがって、顧客のタイプ、データプラン、アプリケーションのタイプ、デバイスのタイプなどのコンテキスト情報を利用することにより、UE102と無線アクセスネットワーク122との間の無線通信がよりよく調整され、このコンテキスト情報は、インターネット140を経由して測定結果メガストア140によって提供される。
[0034] モニタリングサーバ130と、測定結果メガストア140とは、いくつかの類似したプラットフォームの上に分散型の様式で実装されて、処理負荷を分散させ、かつ/または追加の機能を提供することができる。例えば、一実施形態においては、測定結果メガストア140に構成において類似しているが、リモート健康モニタリングの形で専用化されることもあるリモート健康(例えば、人間のための)モニタリングサーバ150が、存在することもある。これに関して、システム100は、オープンプラットフォームを提供しており、ここでは、個人用健康モニタ102dなどの様々なUEと、他のネットワークやサーバなどの異種システムからの複数のデータフィードとが組み合わされ、リアルタイムで数百万人の個人のために処理される。したがって、サーバ130、140、および150のそれぞれに関して本明細書において説明される機能は、1つまたは複数の異なるサーバによって提供される可能性もある。システム100の実際の動作は、後で例として説明される。
[0035] 図2は、無線アクセスネットワーク122の論理ノードの例示の高レベルインターフェースブロック図を示す。例えば、システムアーキテクチャエボリューション(SAE: System Architecture Evolution)200は、第3世代パートナーシッププロジェクト(3GPP)のロングタームエボリューション(LTE: Long Term Evolution)ワイヤレス通信規格のコアネットワークアーキテクチャである。SAE200は、制御プレーントラフィックとユーザプレーントラフィックとの分離を伴うフラットなオールIPアーキテクチャを有する。SAE200システムは、eノードB219と、モビリティ管理エンティティ(MME: Mobility Management Entity)202と、ホーム加入者サーバ(HSS: Home Subscriber Server)204と、ポリシー制御および課金ルールの機能(PCRF: Policy Control and Charging Rules Function)206とを含んでおり、これらは、モバイルトラフィックネットワーク122の一部分であり、またそれぞれネットワーク要素である。eノードB219は、UE202と、無線アクセスネットワーク122との間のインターフェースとしての役割を果たす機能強化された基地局として捉えられ得る。MME202は、通信アクセスネットワークのための制御ノードである。例えば、MME202は、再送信を含むアイドルモードのモバイルデバイストラッキングおよびページングのプロシージャのために使用される。MME202はまた、ベアラチャネルアクティブ化/非アクティブ化プロセスと、UE202eについてのサービングゲートウェイ(SGW: serving gateway)212の選択とを提供する。
[0036] ホーム加入者サーバ(HSS)204は、ユーザ関連情報と、加入関連情報とを含む中央データベースである。HSS204は、モビリティ管理、コールおよびセッションの確立サポート、ユーザ認証、アクセス認可などの機能を提供する。例えば、HSSは、移動局国際加入者ディレクトリ番号(MSISDN: Mobile Station International Subscriber Directory Number)、SIMカード識別情報などを記憶する。
[0037] パケットデータネットワーク(PDN)ゲートウェイ(PGW)107は、UE202から外部パケットデータネットワークへの接続性を提供する。ポリシー制御および課金ルールの機能(PCRF)206は、ポリシー制御意思決定、ならびにポリシー制御強制機能(PCEF: Policy Control Enforcement Function)におけるフローベースの課金機能を制御することを提供し、このポリシー制御強制機能は、PGW107の中に常駐する。PCRF206は、どのようにしてある種のデータフローがPCEFにおいて取り扱われるかを決定し、またこれが、ユーザの加入プロファイルに従っていることを保証するQoS認可を提供する。
[0038] サービングゲートウェイ(SGW)212は、MME202を通してモバイル202に対してデータパケットをルーティングし、転送する。例えば、データパケットは、アカウントしきい値が超過されるという通知メッセージを含むことができる。SGW212は、ネットワーク内部ルーティング情報を含めて、IPベアラチャネルサービスのモバイルデバイスパラメータを管理し、記憶する。これらのネットワーク要素と、他のネットワーク要素とのそれぞれは、測定結果メガストア140からのコンテキストデータと、モニタリングサーバ130のアラート/メッセージとに基づいて、性能において、調整される可能性がある。
(無線リソース管理(RRM))
[0039] 図3は、例示の一実施形態と整合した、データフレームワークと相互作用する無線リソース管理(RRM)モジュールを示すブロック図である。eノードB319は、1つまたは複数のUE(例えば、UE302)と、ワイヤレス通信ネットワークとの間の基地局としての役割を果たす。システム300の例においては、各eノードB330は、UE302と、ワイヤレス通信ネットワークとの間のデータ送信のための優先順位(例えば、ターンの数を割り振る)を提供するように構成されているスケジューラ322を含む。eノードB319は、例えば、変調を調整すること、符号化すること、および送信のための適切な時間を選択することにより、チャネル状態に合わせて送信モードを調整するように構成されているリンク適応ユニット324を含むことができる。
[0040] eノードB319は、eノードB319の動作のフローを制御するように構成されているフロー制御ユニット326を含むことができる。フロー制御ユニット326は、アドミッション制御、セキュリティシグナリングの協調、圧縮などを提供することができる。eノードBは、そのワイヤレス通信レンジの内部の様々なUE(例えば、UE302)と通信するように構成されているアンテナ330を含む。
[0041] eノードB319の様々なコンポーネントは、共に、RRMモジュール328を含んでおり、このRRMモジュール328は、オープンなアプリケーションプログラムインターフェース(API: Application Program Interface)334を経由して、データフレームワーク370と通信するように構成されている。システム300の中に示されるように、データフレームワークは、測定結果メガストア340と、インテリジェンスレイヤ350と、データ処理レイヤ352とを含むことができる。例えば、API334は、インターネット120(図2の)を経由した測定結果メガストア340に対して、ワイヤレス通信ネットワーク122を介したeノードB319の間の通信を可能にすることができる。データ処理レイヤ352はまた、RRM328からローカライズされた情報を受信することもできる。
[0042] 以上で考察されるように、測定結果メガストア340は、異なるeノードBのRRMモジュールなど、様々なネットワーク要素からの、eノードB319(および測定結果メガストア140から情報を受信するように構成された他のeノードB)により、図1のワイヤレス通信ネットワーク122の上の無線通信のそれぞれのネットワーク要素をよりよく調整するために、共有され得るコンテキスト情報を記憶するように構成されている。そのような最適化は、それぞれのeノードBのアドミッション制御プロシージャと、スケジューラプロシージャと、リンク適応プロシージャと、電力制御プロシージャとのうちの少なくとも1つを含むことができる。
[0043] 実施形態において、測定結果メガストア340の中にコンテキスト情報をポピュレートするために、データが、システム300のデータ処理レイヤ352によって収集される。処理レイヤによって収集されるデータは、様々なソースからのものとすることができ、これは、ワイヤレス通信ネットワーク122に結合されたRRMモジュールなど、ワイヤレス通信ネットワーク122の要素、ならびにシステム100の他のサーバ(例えば、130、150)からのデータを含むことができる。データ処理レイヤ352によって受信される情報のタイプは、インターネットからの関連のある情報を含めて、UEによって提供される加入者無線トレース(例えば、ロケーション)情報と、オペレーションサブシステム(OSS: operations subsystem)情報と、顧客ケアレコード情報と、課金情報と、アプリケーション性能モニタリングレポート情報と、他の情報とを含むことができる。一実施形態においては、この情報の少なくとも一部が、測定結果メガストア340によって提供される。
[0044] 一実施形態においては、データは、様々なeノードBによって提供されるディープパケットインスペクション(DPI)からの情報を含む。データ処理レイヤ352は、リアルタイムで、かつ/またはバッチで実行されることもある。データは、リアルタイムでネットワーク要素によって実行される問い合わせを経由して、ネットワーク要素(例えば、eノードB319におけるRRMモジュール328)に対して提供されることもあり、あるいは所定の時間間隔で、またはインテリジェンスレイヤ350によって生成される通知に応じて、RRMモジュールに対してプッシュされることもある。
[0045] 一実施形態においては、インテリジェンスレイヤ350は、データ処理レイヤ352から情報を受信し、また所定の1つまたは複数の条件が満たされるかどうかを決定するように構成されていることもある。これらの条件は、インテリジェンスレイヤのメモリに記憶されるルールセットによって提供されることもある。所定の条件が満たされるときに、インテリジェンスレイヤは、関連のあるアラートを生成することができる。例えば、インテリジェンスレイヤ350は、RRMにおける問題を示すことができる任意の異常値について、データ処理レイヤ352によって提供されるデータのパターンを解析することができる。これに関して、インテリジェンスレイヤ350は、他のRRMモジュールに対する通知をトリガして、拡散しないように問題を防止し、かつ/または軽減することができる。アラートは、単に、システム300の一部分である1つまたは複数のモジュールのRRM方法を変更する通知(例えば、動作する提案)またはアクティブ制御信号とすることができる。
[0046] インテリジェンスレイヤ350は、一般的に、特定の原因および/またはイベントが、ドロップしたコールなどのネットワークイベントの根本原因であった確率を記憶する確率ツリーを含む。確率ツリーの実装形態は、図7を参照してさらに詳細に説明される。インテリジェンスレイヤ350を有するノードは、他のノードと同じ確率ツリーを有する必要がないことに留意されたい。このようにして、ノードは、シナリオおよび/または使用事例に従って区分化されることもある。
[0047] 例えば、データ処理レイヤ352は、問題を示している第1のRRMモジュールから情報を受信することができる。第1のRRMモジュールから受信されるデータは、例えば、シグナリングメッセージを用いてSGWが過負荷であることを示すことができる。インテリジェンスレイヤ350は、第1のSGWに伴う問題を識別すると、ネットワーク要素と他のネットワーク要素とに関連したコンテキスト情報を、測定結果メガストアから取り出すことができる。条件が満たされるか、または所定のしきい値が超過されると決定すると、インテリジェンスレイヤ350は、データフレームワーク370からメッセージを受信するように構成された他のRRMモジュールに対して通知を発行することができる。一実施形態においては、第1のRRMモジュールはまた、インテリジェンスレイヤ350によって生成されるアラートをデータフレームワーク370から受信する。これに関して、他のeノードBモジュールは、それらのシステムに向かっている通信要求をそれぞれバッファし、または破棄し、第1のRRMモジュールに影響を及ぼした問題を防止することができる。
[0048] したがって、測定結果メガストア340の中のコンテキスト情報は、RRMモジュールからの要求(例えば、問い合わせ)に応じて測定結果メガストア340によってRRMモジュールに利用可能にされることもでき、またはデータフレームワーク370からの通知として提供されることもある。
[0049] システムについての上記概要と共に、システム300の例示の動作についての高レベルの考察を考慮することが、今では役に立つ可能性がある。その目的を達成するために、図4は、データフレームワーク430とRRMモジュール402との高レベルフローチャートと、互いのそれらの相互作用とを示す。RRMモジュール402は、データフレームワーク430からデータを受信するように構成されている、いくつかのRRMモジュールのうちの1つとすることができる。データフレームワーク430は、複数のソースから収集されるコンテキスト情報を含んでおり、このコンテキスト情報は、RRMモジュールのリソースを調整するためにRRMモジュール402によって使用される(例えば、eノードBとUEとの間の接続を最適化する)。
[0050] データフレームワーク430から開始して、ステップ434において、関連のあるデータが、様々なソースから共通のデータフレームワークへと収集される。このデータは、リアルタイムで、かつ/またはバッチで、データ処理レイヤによって収集される。収集されるデータは、様々なソースからのものとすることができ、これらのソースは、ワイヤレス通信ネットワーク122の上で動作するように構成された別個のRRMモジュールを含めて、ワイヤレス通信ネットワーク122の異なるコンポーネントを含むことができる。例えば、各RRMモジュールは、図1のシステム100のワイヤレス通信ネットワーク122と、その対応するUEとについてのそのローカルな知識に基づいて、無線リソースを提供することができる。収集されるデータのソースは、システム100の他のサーバおよびインターネットを含むこともできる。データフレームワーク430により(処理レイヤを経由して)受信される情報のタイプは、インターネットからの関連のある情報を含めて、UEによって提供される加入者無線トレース(例えば、ロケーション)情報と、オペレーションサブシステム(OSS)情報と、顧客ケアレコード情報と、課金情報と、アプリケーション性能モニタリングレポート情報と、他の情報とを含むことができる。一実施形態においては、データ処理レイヤによって取り出されるデータは、最終的に、測定結果メガストアサーバ340において記憶されるコンテキストデータになり、このコンテキストデータは、他のネットワーク要素またはデータ処理レイヤによって使用され、また取り出されることもある。
[0051] 一実施形態においては、ステップ436において、データフレームワーク430により様々なソースから収集されるデータが、RRMモジュール402に対して提供されて、eノードBと、対応するUEとの間の接続に割り振られるそのリソースを調整する。情報は、加入者とネットワークノードとについての一般的な情報など、インテリジェンスレイヤによって処理されていないデータを含むことができる。
[0052] 一実施形態においては、ステップ438において、データフレームワークによって収集されるデータは、インテリジェンスレイヤによってさらに処理される。このインテリジェンスレイヤは、データを解析し、またそれらからパターンおよび/またはトレンドを抽出するように動作する。例えば、ステップ438において、インテリジェンスレイヤは、1つまたは複数のしきい値が超過されるか、あるいは1つまたは複数の判断基準が満たされるかを決定することができる。例えば、RRMモジュールがオフである、またはドロップしたコールの数が0.1%を超過する。様々な実施形態においては、インテリジェンスレイヤによる考慮は、ユーザ/加入者の所定の設定、加入者制限(例えば、しきい値データ使用を超過している)、プランのタイプ(例えば、より高いグレードのプランには、優先順位が与えられることもある)、UEのタイプ(例えば、低電力状態の下で機能することを意図しているデバイスには、より少ない電力を要求する接続が提供される)などを含むことができる。これに関して、ステップ422においては、データフレームワーク430は、特別なアラートの形式で、1つまたは複数のメッセージを適切なRRMモジュールに対して提供することができ、このアラートは、個別に、eノードBと、その対応するUEとの間の接続についてのローカルなリソースをどのようにして調整すべきかに対する指示を含むことができる。例えば、データフレームワーク430からアラートが送信される適切なRRMモジュールは、セクタおよび/または時間に基づいたものとすることができる(例えば、RRMは、ゲーム時のスポーツスタジアムをカバーする)。
[0053] RRMモジュール402側では、ステップ406において、RRMモジュール402は、ローカルな知識に基づいて、無線リソースを計算する。ローカルな知識は、それが接続を確立している相手のデバイス(UE)のタイプ、ローカルなeノードBが接続されている相手のUEの数、トラフィック、消費電力、変調品質、eノードBの温度などを含むことができる。一実施形態(図示されていない)においては、この情報は、データ処理レイヤ352を経由してデータフレームワーク430に提供される。
[0054] ステップ406において、RRMモジュール402は、ステップ420においてデータフレームワーク430から受信される一般的な情報データに基づいて、個別に、そのeノードBと各UEとの間のリソース配分を調整する。上記で考察されるように、一実施形態においては、RRMモジュール402は、1つまたは複数の特別なアラート(すなわち、通知)の形式で、データフレームワーク430から1つまたは複数のメッセージを受信することができる。ステップ408において、RRMモジュール402は、データフレームワークから受信される特別なアラートに基づいて、加入者とネットワークノードとに対してeノードBのリソースを割り当てる。ステップ406と、408とは、別々のステップであるべき例として示されているが、一実施形態においては、リソースの調整と、リソースの割り当てとは、同じステップ(例えば、408)によって実行されることもある。
[0055] 例えば、測定結果メガストア140を有するデータフレームワーク430から受信される情報に基づいて、RRMモジュール402のeノードBは、個別に各UEについての電力(例えば、消費制限)要件に基づいて、接続を調整することができる。様々な例においては、測定結果メガストア140から受信されるコンテキスト情報に基づいて、eノードBは、無線アクセスネットワーク122のリソースのバランスを取るために、かつ/または故障を防止するために、それぞれのeノードBに対して接続することが許可されるUEの数を徐々に低減させることができる。例えば、スケジューラ322は、測定結果メガストア340からの警告を受信すると、無線アクセスネットワーク122に対して新しいセッション要求を送信することを停止することができる。
[0056] 他の是正アクションは、帯域幅を低減させること、あるいは所定のしきい値を超過しており、または1つもしくは複数の判断基準を満たしていない特定のUEとの通信を防止することを含むことができる。様々な実施形態においては、制約は、しきい値時間の後に、あるいは、UEが所定のしきい値内であるという測定結果メガストア140からのメッセージを受信すると、引き上げられることもある。一例においては、制約は、判断基準が満たされる(例えば、eノードB319によってサービスされるアリーナにおけるスポーツイベントが、完了している)ときに引き上げられる可能性があり、これは、RRMモジュール402のeノードBを過負荷にするリスクを低減させる。
[0057] 図5は、測定結果メガストア140からの通知に基づいて、eノードBと、EUとの間の接続を調整するための例示のプロセスの流れ図である。図5の流れ図は、ネットワーク要素のタイプと、そのようなタイプの要素についての記憶された判断基準とを考慮する特定の例である。ステップ506において、RRMモジュールは、ローカルな知識に基づいて、UEと、eノードBとの間の無線信号品質を決定する。一実施形態においては、ステップ508において、RRMモジュールは、ローカルな知識に基づいて決定された無線信号品質に基づいて、適切な符号化フォーマットを決定する。
[0058] ステップ510において、RRMモジュールは、測定結果メガストア140と通信して、それからコンテキスト情報を受信する。このステップは、RRMモジュールから測定結果メガストア140への問い合わせとして実行され、または測定結果メガストア140に記憶される所定の判断基準に基づいて、測定結果メガストア140からRRMモジュールへのプッシュ通知として、実行されることもある。
[0059] 図5の例においては、RRMモジュールは、様々なネットワーク動作をサポートして、測定結果メガストア140に対する問い合わせ(例えば、インターネット120の上で)を実行することができる。本例においては、ネットワーク動作は、UEのための通信を開始し、また確立することである。様々な実施形態においては、RRMは、測定結果メガストア140に対して、ローカルな知識に基づいて、UEデバイス識別子および/または無線信号品質の他のインジケータを送信することができる。それに応じて、ステップ520においては、測定結果メガストア140は、RRMモジュールが接続を確立するプロセスの最中であるUEのタイプが、低電力で機能することを意図しており、eノードBとUEとの間の接続が低電力動作のために最適化されるべきであることを示すことができる。例えば、接続は、最少量の電力を使用する接続から利益を得ることができるM2M顧客にサービスしている可能性がある。このシナリオは、埋め込み個人用健康モニタリングデバイス、またはウェアラブル個人用健康モニタリングデバイスである医療用デバイスにとって重要である可能性がある。したがって、ステップ520においては、測定結果メガストア140によって提供されるコンテキスト情報は、UEが、より最適化された(例えば、最少の)量の電力を消費するように、接続を調整するRRMモジュールに対する通知(例えば、警告)または指示の形態とすることができる。
[0060] 別のシナリオにおいては、ローカルな知識に基づいて決定され、測定結果メガストア140に対して提供された無線品質のインジケータは、バッテリステータス(例えば、残り少なくなっている)を含むことができる。これに関して、インテリジェンスレイヤと協力する測定結果メガストア140は、以前に記憶されたユーザの設定から、UE(これは、今や電力が少なくなっている)は、可能な限りその持続時間を延ばすために、低電力モードで動作させられるべきであることを識別することができる。これに関して、インテリジェンスレイヤは、eノードBと、UEとの間の接続が、低電力のものであるべきであるという通知を(ステップ520において)RRMモジュールに対して発行することができる。したがって、測定結果メガストア140からの追加の入力なくして、RRMモジュールは、所定の条件が満たされる(すなわち、低電力で実行している)ときに、ユーザの設定が低電力動作を含むことを決定することはできないだろう。
[0061] それに応じて、ステップ512において、RRMは、より低い帯域幅の動作を含み得る最も大きな電力節約を提供する、UEとの接続を提供するように符号化スキームを修正する。これによって、他の目的のために無線アクセスネットワーク122のリソースを解放することができる。例えば、インテリジェンスレイヤから受信される警告は、eノードBにおいて「イベントハンドラ」をトリガして、いくつかの電力節約機能を実行する。
(無線アクセスネットワークのためのインテリジェントな自動的トラブルシューティング)
[0062] 上記で考察されるように、一態様においては、測定結果メガストア140を使用することにより、加入者レベルにおけるネットワークの問題の自動検出が、可能にされる。いくつかのシナリオにおいては、問題は、顧客がその問題について知るようになる前でさえも、識別される(また時として防止される)可能性があり、これは、顧客との関係を非常に改善している。この利点は、既存のアプローチの観点からよりよく理解されて、ネットワーク問題と、関連した顧客の不満とに対処することができる。例えば、加入者(例えば、顧客)が、ネットワークの問題を受けたときに、一般的には、非常に長くて退屈な、また時としてフラストレーションを引き起こすようなプロセスが関与しており、このプロセスは、一般的に、非常に人手がかかり、課題を識別し、また解決するために熟練したエンジニアの頻繁な介入を必要としている。
[0063] 例えば、顧客が、最初に、電話をかけ、また顧客ケア代表者に症状を説明する必要があり、この顧客ケア代表者は、所定の判断基準に基づいて、問題を分類する。内部レコードが生成されて、適切な熟練したエンジニアによって解析されることもある。エンジニアは、トラフィックボリュームと、ドロップしたコールの数と、ドロップしたコールの理由と、気がかりなノードについての全体の計算されたドロップコールレートとを含むコール信頼性レポートを作成することができる。いくつかの場合には、不満のうちのいくつかに対処することができる中間のエンジニアリングトリアージグループが存在するが、他の場合には、事例は、フィールドエンジニアに送信されて、問題の根源を調査する。無線アクセスネットワークの複雑さに起因して、フィールドエンジニアは、複数のシステムを調査して、フィールドエンジニアがネットワークのローカルな知識から実行することができる限られた解析に基づいて、何が問題の原因であり得るかを決定することができる。
[0064] 今日のセルラー方式ネットワークにおいて、各ネットワーク要素(例えば、eノードB)から収集されるかなりの量の性能データを有するデータソース数の増大により、エンジニアの課題はさらに悪化させられる。この性能データは、多くの場合に、数分、数時間、数日などの時間間隔の中で集約される。データは共に、キー性能インジケータ(KPI: key performance indicators)を提供し、これらのキー性能インジケータは、無線アクセスネットワークの全体の健全性をよりよく理解し、問題となる状況を検出し、またいつネットワークの一部分をアップグレードすべきかを決定するために、エンジニアによって検討される。さらに、既存のシステムにおいては、異種ソースからデータを集約することは、とりわけそれらが、異なる性質のものである場合には、難しい。例えば、1つのエリアにおけるドロップコールレートのトレンドを含むレポートは、解約率のトレンドと組み合わせることが容易ではない。そのような専用のレポートは、かなりの処理を必要としており、したがって、エンジニアにとって直ちに利用可能ではない可能性がある。データが、利用可能にされた後であっても、エンジニアは、依然として、大量のデータを手作業で解析する必要がある。この手作業での解析は、エンジニアが、複数のデータソースからトレンドを効果的に理解することができない可能性があるので、非効率であるだけでなく、不完全である可能性もある。結果は、一般的に、準最適な無線アクセスネットワーク性能である。
[0065] 対照的に、本明細書において説明されるシステムにおいては、ネットワークの状態の解析の大部分(すべてでない場合に)は、測定結果メガストア140を含むデータフレームワークによって自動的に実行される。実際に、問題の根本原因は、(防止されない場合には)顧客が問題について知るようになる前でさえも決定されることもある。そのようなオートメーションは、データ処理レイヤおよびインテリジェンスレイヤと共に、ネットワーク要素のローカルな知識に頼ることだけでなく、ネットワーク全体に関連したデータを使用することにより、および問題を自動的に治し、かつ/または通知を適切な代表者および/またはフィールドエンジニアに対して提供すること(例えば、それを報告すること)により、加入者レベルで問題を検出するように構成されている測定結果メガストア140によって可能にされる。
[0066] 一実施形態においては、多数の(例えば、数百万人の)加入者によって生成されているリアルタイムの、また大量の情報を受け入れるために、測定結果メガストア140は、Hadoop、Storm、またはSparkなどの超並列処理技術を使用する。加えて、機械学習コンポーネントを使用して、所定のトレーニングセットに基づいて、パターンおよびトレンドを識別する。一実施形態においては、これまでに知られていない問題が、異なるクラスタリングモデルによって検出される。例えば、同じグループ(すなわち、クラスタ)の中のオブジェクトは、他のグループ(すなわち、クラスタ)の中のオブジェクトに比べて、互いにより類似しているように、データはグループ分けされる。
[0067] 図6は、例示の一実施形態と整合した、データフレームワークのブロック図である。図6のデータフレームワークは、上記で考察された図3のデータフレームワークに類似しているが、無線アクセスネットワークの自動的トラブルシューティングの考察を容易にするために、明確にするために再び示されている。図6のデータフレームワークは、データ処理レイヤ682と、プログラマブルなパターン検出ルール688を含むことができるインテリジェンスレイヤ684と、問題のタイプ690に基づいて、プログラマブルなアクションの組を記憶するように構成されているオートメーションレイヤ686と、測定結果メガストア680とを含む。
[0068] データ処理レイヤ682によって受信される情報のタイプは、他の要素:顧客ケアのトラブルチケットデータベースからのデータ;ネットワーク要素カウンタおよびKPI;ネットワーク要素(UE)ロケーション;警告情報および故障情報;加入者プラン、利用(例えば、報告書/データ)、課金アドレスなどを含む加入者情報;ハンドセットタイプ、OS、アプリケーション、バッテリステータスなどを含むハンドセット情報;ジオロケーショントレース、無線トレース、コアネットワークトレース、およびIPレベルトレースを含む加入者の詳細情報レコード;Wi−Fiレコードおよびメトリクスなどを含むことができる。データ処理レイヤ682は、リアルタイムで、かつ/またはバッチで実行されることもある。モニタリングは、絶え間なく、24時間体制で、所定の間隔で、またはモニタリングシステムのインテリジェンスレイヤ384からのトリガに応じて、実行されることもある。したがって、データ処理レイヤ682は、詳細な加入者トレースを監視し、またドロップしたコール、アクセス障害、インターネット接続性に伴う問題などの故障状況を記録する。このデータは、様々なネットワーク要素によって使用され得るコンテキスト情報として、他のネットワーク要素からのデータと共に、測定結果メガストア680に記憶される。
[0069] インテリジェンスレイヤ684は、データ処理レイヤ682からの情報と、インテリジェンスレイヤ684においてあらかじめプログラムされていることもあるパターン検出ルール688とを受信するように構成されている。一実施形態においては、インテリジェンスレイヤ684は、異なるタイプの故障についての異なるインテリジェンスモデルを含むことができる。インテリジェンスレイヤ684は、問題についての起こりそうな原因、ならびにエラー検出についての精度(エラー)の推定を識別するように、構成されている。一実施形態においては、検出の精度は、エラーの発生の頻度に基づいている。
[0070] 例えば、メンテナンスを受けていることをインテリジェンスレイヤによって識別されているエリア、またはカバレッジ不足が知られているエリアにおいて、顧客が悪化した性能(切断、アクセス障害など)を経験している可能性があるときに、精度の推定値は高くなることができる。インテリジェンスレイヤは、顧客トレースと、ネットワーク健康インジケータと、UEレポートなどとを検討することにより、さらに、精度を改善することができる。データの異種ソースから、インテリジェンスレイヤ684は、切断が、(1)カバレッジに起因するものか、(2)干渉に起因するものか、(3)ハードウェア障害に起因するものか、(4)ソフトウェア障害に起因するものかなどを識別することができる。
[0071] オートメーションレイヤ686は、データ処理レイヤ682によって取り出される生データについての先行した人間の処理に頼ることなく、識別されたネットワークエラーに対する自動的応答をトリガすることができる。一実施形態においては、識別された問題のための適切なアクションは、インテリジェンスレイヤにおいて、またはネットワーク要素ノードにおいて、システムアドミニストレータによってあらかじめプログラムされる。アクションは、識別された問題と、可能性のある問題解決手法とを用いて、ノードについてリセットすること、またはフィールドエンジニアに対してメモを送信することとすることができる。他の場合には、自動化されたアクションは、問題の原因(例えば、エリアにおいて進行中のメンテナンス作業がある)について彼らに通知し、または自動的なクレジットを提供して、悪化された性能について補償し、またその同じことについて加入者に通知するメッセージを加入者に対して送信することとすることができる。
[0072] 一例においては、複数の加入者が、1つのエリアにおいて実質的に類似した問題の影響を受ける場合に、オートメーションレイヤ686は、そのエリアにおけるすべての加入者に対してメッセージを自動的に送信して、加入者がその問題によって影響を及ぼされる前に、予防的に問題を治すことができる。別の言い方をすれば、第1のネットワーク要素のエリアにおける他のネットワーク要素のグループが、所定の条件を満たす、または所定のしきい値を超過すると決定すると、そのグループにおけるすべてのネットワーク要素に対して、通知が自動的に送信される。一実施形態においては、第1のしきい値を下回る精度を用いて識別されるネットワークエラーは、第2のしきい値を上回る精度を用いて識別されるネットワークエラーとは異なるように取り扱われる。一実施形態においては、第1のしきい値と、第2のしきい値とは、同じ値を有する。例えば、低い精度のものであるように見なされるエラーが検出されている場合には、自動的アクションは、問題についての精度および/または加入者コールを改善する追加のデータが受信されるまで、実行されなくてもよい。しかしながら、エラーが高い精度で識別される場合には、自動的な即時改善策が着手される。
[0073] 例えば、インテリジェンスレイヤ684と協力しているオートメーションレイヤ686は、特定の加入者が期待されたサービス品質を受信していないと決定すると、緩和するアクションを提案することができる。カバレッジ問題の場合には、インテリジェンスレイヤは、Wi−Fiコーリングを使用するオプションがあるかどうかを決定することができる。これに関して、オートメーションレイヤ686は、加入者とケア代表者とに対して通知を送信して、Wi−Fiコーリングのアクティブ化を可能にすることができる。
[0074] 図7は、自動的な根本原因の識別のための例示のモデルを示す。具体的には、図7は、ドロップしたコールについてのありそうな根本原因についての情報を記憶する確率ツリーを示す。データの大きなコーパスに基づいて、機械学習アルゴリズムは、ドロップしたコールなどのイベントが、特定の原因に相互に関連づけられた確率を決定することができる。同様にして、特定の原因は、それ自身の異なる可能性のある原因を有することができ、可能性のある原因のそれぞれは、自身の確率を有する。最終的に、根本原因の確率を把握することができる。
[0075] 図7において、我々は、ドロップしたコールのイベント702を有する確率ツリーの最上部から開始する。あらゆるイベントが、確率P(イベント)に関連づけられる。例えば、検出されたネットワークイベントが、ドロップしたコールである確率は、P(はい)=0.15(または15%)として示される。検出されたネットワークイベントが、何らかの他のイベントである確率は、P(いいえ)=0.85である。
[0076] 次いで、確率ツリーをトラバースして、最も可能性の高い根本原因を決定することができる。そのようにするために、確率ツリーを、ドロップしたコールイベント702についての可能性のある直接的な原因を表すノードにトラバースする。これらは、無線干渉704、不十分なカバレッジ706、ハードウェア障害708、ソフトウェア障害710、または他の障害712を含むことができる。ドロップしたコールイベントと同様に、各原因は、確率に関連づけられる。これらの原因は、可能性のある原因であるので、それらの確率は、条件付き確率P(条件|イベント)として表現される。例えば、ドロップしたコールが、ハードウェア障害708によって引き起こされた確率は、P(HW|DC)=0.2として示される。同様に、ドロップしたコールが、ソフトウェア障害710によって引き起こされた確率は、P(SW|DC)=0.3として示される。
[0077] 原因ノードは、ひいては、それら自体のそれぞれの原因を有することができる。例えば、無線干渉704と、不十分なカバレッジ706とは、同じ原因714を有することができる。ハードウェア障害708は、物理的エラー716と、ユーザ機器の間違った構成718として、ここで示される異なる可能性のある原因を有することができる。この場合にも、各ノードは、それぞれの確率に関連づけられ、また可能性のある原因として、各確率は、条件付き確率として表現される。ここで、ハードウェアの中の物理的エラー716が、ハードウェア障害を引き起こした確率は、P(PH|HW)=0.1として示される。間違って構成されたハードウェアがハードウェア障害を引き起こした確率718は、P(MCG|HW)=0.6として示される。
[0078] ソフトウェア障害710もまた、間違った構成718によって引き起こされる可能性もあることに留意されたい。たとえ確率ツリーが、ハードウェア障害708からトラバース可能でもあるノードにトラバースするとしても、間違った構成のノード718は、P(MCG|SW)=0.3として示されるようなソフトウェア障害710の原因としてそれ自体の確率を有する。ソフトウェア障害710は、P(WVER|SW)=0.5という原因の条件付き確率を用いて、インストールされるソフトウェアの誤ったバージョン720を有することにより、引き起こされる可能性もある。
[0079] 同様に、他の原因712は、それら自体のそれぞれの原因722を有することもできる。
[0080] 確率ツリーは、一般に、データの統計的にかなりのコーパスを受信することを経由して、ポピュレートされる。次いで、データは、確率ツリーに適用されて、確率ツリーの中の確率を計算する。
[0081] 診断を実行するときに、確率ツリーは、原因および/またはKPIのリーフノード724、726、728、730、732から開始する。観察されるネットワークデータに応じて、原因および/またはKPIのリーフノード724、726、728、730、732の確率は、更新される。例えば、間違った構成が、実際に観察される場合に、間違った構成728の確率は、100%に変更される。原因724が、観察されない場合に、その確率は、0%に変更される。確率は、2進数、すなわち、100%または0%だけである必要はない。中間の(非0%、非100%)の確率は、データのサンプリングまたは移動平均に基づいて、計算されることもある。
[0082] 原因および/またはKPIのリーフノード724、726、728、730、732が更新された後で、親ノードの確率は、ベイズアルゴリズムに従って更新される。したがって、親ノード714、716、718、720および722の条件付き確率は、条件が満たされたかどうかについての決定として、子ノードを使用して更新される。親ノード714、716、718、720および722の確率は、次いで更新される。このプロセスは、ルートノード702が、到達されるまで、上記の親ノードのレベルについて、反復される。このポイントにおいて、確率ツリーの中のすべての確率が、観察された原因および/またはKPIの724、726、728、730、732を考慮して、更新されている。
[0083] ルートノード、ドロップしたコール702の可能性のある根本原因は、更新された確率が所定のしきい値を超過しているすべての子ノードを選択することにより、ユーザに明るみに出されるであろう。
[0084] 解析を終了した後に、確率ツリーは、その元の状態と、元の確率へと戻される。
[0085] しかしながら、時間と共に、履歴データは、収集され、またアドミニストレータによる合意の直後に、履歴データの少なくともサブセットが、確率ツリーに適用されて、確率ツリーの中の確率を恒久的に更新することができる。次いで、後続の解析は、更新された確率ツリーを使用することになる。このようにして、確率ツリーは、履歴データから学習する。
[0086] 機械学習におけるこの特定のアプローチは、1つのオプションにすぎないことを強調すべきである。他のよく知られているオプションは、エントロピーベースのツリーと、ナイーブベイジアンツリーとを含む。ベイジアンベースのツリーに特有の1つの利点は、原因および/またはKPIのドメインが、確率の再計算を強制することなく、サブドメインへと区分化され得ることである。それに応じて、確率ツリーは、アドミニストレータによって望まれるように、ネットワークの異なるサブセットについて区分化されることもある。
[0087] 図8は、無線アクセスネットワーク性能を維持する際にエンジニアを支援するための例示のプロセスの流れ図である。ステップ802において、測定結果メガストアに記憶されるデータは、様々なソースから共通データフレームワークへと自動的に収集される。ステップ804において、パターン認識が、1つまたは複数のクラスタリングアルゴリズムによってデータに対して実行される。一実施形態においては、ステップ806において、解析されるべきキーメトリクスは、測定結果メガストアにおいてあらかじめプログラムされ、またはオペレータによりユーザインターフェース900(図9参照)を経由して測定結果メガストアに対して対話的に提供される。ユーザインターフェース900は、図1の測定結果メガストア140に対して直接に、またはワイヤレスで、通信するように結合される端末もしくはハンドヘルドデバイスの上のソフトウェアアプリケーションを経由したものとすることができる。様々な実施形態においては、エンジニアは、ネットワーク要素(例えば、地理的/ノードのレベル)においても、またKPIレベルにおいても、実行されるべき解析のタイプと、報告されるべき詳細のレベルとを選択する(例えば、904)ことができる。
[0088] 測定結果メガストアが検出することができる無制限の数のパターンがある。例えば、高い解約率を有するエリアは、加入者のほとんどが、狭い地理的エリアに集中していることを示すことがある。低下した性能を経験するセクタは、特定の期間において多数のリセットを示すことがある。顧客ケアに電話する多数の顧客は、所定の限界値を超過しているボイスメールに直接にルーティングされているコールの数を示すことができる。所定のしきい値内であるドロップコールレートを示すエリアは、顧客が所定の時間内に再ダイアルする必要があり、限界値を超過した(これは不十分なコール品質を示すことができる)いくつかの例を示すことができる。セクタは、限界値を下回るトラフィックを搬送するにもかかわらず、混雑状態を示す可能性がある。しきい値数の顧客は、ネットワークアップグレード後に、それらのカバレッジ縮小を経験する可能性がある。もちろん、数え切れない他のシナリオが、サポートされる。
[0089] ステップ808において、それらが学習されるときに、関連のあるパターンが、例えば、測定結果メガストア140のメモリの中に存在し続ける。一実施形態においては、測定結果メガストア140は、ユーザインターフェース900の上でエンジニアに対して、最も関連のあるパターンを含む解析結果を表示する。別の実施形態においては、自動化された解決策に関連するパターンは、これらの自動化された解決策の実行をトリガすることができる。
[0090] 一実施形態においては、ステップ810において、エンジニアは、測定結果メガストアの解析結果を格付けすることができる。これに関して、図900は、例として、エンジニアによって使用されて、1から5までの星印906の選択により、測定結果メガストアの解析(例えば、発見)の適合性を格付けすることができるインターフェースを示す。様々な実施形態においては、エンジニアが確認してネットワークの課題を治した後に、またはユーザインターフェース900の上の最初の表示の直後に、選択を実行することができる。
[0091] 一実施形態においては、ステップ810において、エンジニアは、自動的なKPIおよび/または通知が、解析に基づいて発行されることを要求することができる。KPIは、測定結果メガストアに記憶され、また基準として使用される可能性がある。KPIと通知とを使用して、いつエリアが解約レベルを増大させる可能性が高くなるかなどのイベントを予測することができる。
[0092] 一実施形態においては、ステップ812において、上記で説明されるシステムは、トレーニングされる可能性があり、ここではシステムは、従来の類似の状況に基づいて、従来の解析を自動的に反復し、また所定の間隔で、または特定のエラーが識別されるときに、絶え間なく類似したKPIおよび/または警告を生成する。一例においては、本明細書において説明されるシステムのインテリジェンスレイヤは、自己組織化ネットワーク(SON: self-organizing network)と組み合わされて、自動的プランニングと、構成と、管理と、最適化と、無線アクセスネットワークの回復とを実行することができる。
(医療用分野における例示の使用事例)
[0093] 上記で考察されるように、一態様においては、本明細書において説明されるシステムは、オープンプラットフォームを提供しており、ここでは異種ソースからの複数のデータフィードが、組み合わされ、またリアルタイムで処理される可能性がある。従来の考察の多くは、ネットワーク管理におけるアプリケーションに向けられている。しかしながら、本明細書において説明される技法は、イベントデータのストリームがある任意の分野に適用され得る学習とフィードバックループとを提供しており、ここではイベントデータは、原因と相互に関連づけられることもあるカテゴリに分類される可能性がある。確率ツリーが構築され得る場合には、従来の技法が適用される可能性がある。
[0094] この能力が特に有用である場合の1つの例示の代替的な分野は、医療用分野におけるものであり、この医療用分野は、UE102dなどの健康モニタをますます使用しており、この健康モニタは、健常者と、病人との両方によって着用されて、着用者の医療用の健康状態を監視することができる。今日では、1つまたは複数のそのような健康モニタが、着用されて、ユーザ(時として、患者または加入者と本明細書において称される)についての、あるレンジの医療用解析を提供することができ、また適切な介護者に対して提供されて、1つまたは複数の健康モニタから関連のある情報を抽出することができる。
[0095] これらの健康モニタは、埋め込まれたり、手首の上に着用されたり、ネックレスとして首の周囲に着用されたり、胸の周囲にストラップされたりなど様々な形態で登場することができる。これらのモニタは、心拍数、心拍リズム、血圧、運動、酸素飽和度、体温、血糖値など、様々な健康機能を監視することができる。従来、各健康モニタは、分離して動作する。例えば、心拍数を測定する健康モニタは、血糖値または運動を測定する健康モニタから相互に排他的である。獲得されるデータポイントは、そのときに、ユーザディスプレイの上で患者に対して直接に提供されるか、またはそれぞれ、健康モニタのメモリに記憶されて、後で1人または複数人の介護者によって読み取られるかのいずれかである。いくつかの場合には、獲得されたデータは、1人または複数人の介護者における異種レシーバに対して、定期的に、あるいはユーザからのトリガの直後に、送信される。各健康モニタは、一般的に、介護者によって疑われる健康疾患に応じて、適用される。それに応じて、従来のシステムにおいては、疑われていない健康状態を識別する、健康モニタからの情報の合成を提供した絶え間ないモニタリングは、利用可能ではない。
[0096] 対照的に、本明細書において説明されるシステムは、絶え間ないモニタリングおよび/または各健康モニタからの監視されたデータの絶え間ない送信を実行することができ、この監視されたデータは、中央集中化されたリモート健康モニタリングシステム150において、合成される可能性がある。異種ソースから取り出される合成された情報は、可能性のある疾患についてのデータを解析し、また関連のある通知を提供するように構成されている。
[0097] 次に図10を参照すると、この図10は、例示の一実施形態と整合した、リモート健康モニタリングを含むシステムの高レベル図を示す。システム1000において、UE1002(1)から1002(N)までによって表される1つまたは複数の健康モニタは、ユーザ1004の健康の様々な様相を監視するように動作する。健康モニタ1002(1)から1002(N)までは、アプリケーションサーバ1、2(1030、1032)と、UE収集システム1からNまで(1034(1)から1034(N)まで)によってシステム1000の形で表される1つまたは複数の異種モニタリングシステムに対して健康情報を提供することができる。例えば、アプリケーションサーバ1、2(1030、1032)と、UE収集システム1からNまで(1034(1)から1034(N)まで)とは、対応する健康モニタから測定結果の健康に関連したレコーディングを提供するサードパーティシステムと見なされることもあり、これらの健康モニタは、Samsung(登録商標) Gear WatchまたはApple(登録商標) iWatch(登録商標)の形態とすることができる。
[0098] 健康情報は、様々なネットワークによって提供されることもある。例えば、いくつかの健康モニタは、1つの無線アクセスネットワーク1022(a)の上で、それらのモニタリングシステムと通信することができるが、他の健康モニタは、別の無線アクセスネットワーク1022(b)の上で通信することができる。一実施形態においては、健康モニタは、スマートフォン、タブレットなど、ネットワーク1022(a)の上で通信するように構成されているデバイスを使用することにより、無線アクセスネットワーク1022(a)の上で彼らのそれぞれの(例えば、加入された)モニタリングシステムと通信することができる。一実施形態においては、健康モニタ1002(1)から1002(N)までは、健康情報を直接に健康モニタリングサーバ150に対して提供する。
[0099] 一態様においては、例示のシステム1000は、物理的セーフガードと技術的セーフガードとが、リモート健康モニタリングサーバに対するアクセスを認可された個人とアカウント保持者とだけに制限するために含められた医療保険の相互運用性と説明責任に関する法令(HIPPA: Health Insurance Portability and Accountability Act)に準拠している。一例においては、固有のユーザIDと、自動的ログオフプロシージャと、暗号化と、暗号解読とが、システム1000にアクセスするために必要とされる。
[00100] 一態様においては、リモート健康モニタリングサーバ150は、測定結果メガストアとしての役割を果たし、またオープンプラットフォームを提供しており、ここでは異種サーバ1030、1032からの複数のデータフィードと、収集システム1034(1)から1034(N)までとが、組み合わされる。健康データは、データ処理レイヤにより、ユーザ1004のような多数(例えば、数百万人)の個人について、リアルタイムで処理され、このデータ処理レイヤは、健康モニタリングサーバ150の一部分とすることができ、またはそれと通信していることもある。加えて、リモート健康モニタリングサーバ150は、病院1040と、介護提供者1050とから、患者記録などのデータを収集することができる。そのようなデータは、病歴、前治療、記録された血液検査などを含むことができる。加えて、リモート健康モニタリングサーバは、無線アクセスネットワーク(例えば、1022(a)、1022(b))からデータを収集して、ユーザ1004のロケーション情報を決定し、データ送信を防止する可能性があるネットワークの問題と、ネットワーク接続性および顧客エンドポイントに影響を及ぼす他の変数とを識別することができる。様々な実施形態においては、ユーザ1004のロケーションは、健康モニタ(例えば、1002(1)から1002(N)まで)、またはその対応するUE(例えば、1006)によって提供され得る、三角測量、マルチラテレーション、および/またはGPS座標など、様々な技法によって決定されることもある。
[00101] 異種モニタからのデータは、パターンとトレンドとについて解析される。1つまたは複数のしきい値が超過される、あるいは1つまたは複数の判断基準が満たされることを決定すると、リモート健康モニタリングサーバ150は、対応する健康モニタ(例えば、UE1002(1))または対応するUEネットワーク可能デバイス1006のユーザインターフェースに対する通知を経由して通知をユーザ1004に対して送信することができる。一実施形態においては、健康モニタサーバ150は、状態のタイプに基づいて、関連のある介護提供者1050および/または病院に対して通知を送信することができる。
[00102] 図11は、例示の一実施形態と整合した、モニタリングシステムのデータフレームワークのブロック図である。システム1100の中のデータフレームワークは、超並列処理方法を使用して、1つまたは複数の健康モニタ(UEの)から健康データをリアルタイムで収集する。考察を容易にするために、オートメーションレイヤ1108と、インテリジェンスレイヤ1104と、データ処理レイヤ1102とは、測定結果メガストア1110から分離しているように示されるが、様々な実施形態においては、これらの機能は、単一プラットフォーム(すなわち、データ処理レイヤと、インテリジェンスレイヤと、オートメーションレイヤとの機能を実行する単一の測定結果メガストア)の上で組み合わされることもあることが、理解されるであろう。
[00103] データフレームワークは、データ処理レイヤ1102と、パターン検出ルール1106を含むことができるインテリジェンスレイヤ1104と、オートメーションレイヤ1108と、測定結果メガストア1110とを含む。データ処理レイヤ352によって受信される情報のタイプは、WEBからの関連のある情報を含めて、UEおよび/または無線アクセスネットワークによって提供される加入者無線トレース(例えば、ロケーション)情報と、1つまたは複数のソースからの医療レコード情報と、顧客ケアレコード情報と、課金情報と、アプリケーション性能モニタリングレポート情報と、他の情報とを含むことができる。データ処理レイヤ1102は、リアルタイムで、かつ/またはバッチで実行されることもある。モニタリングは、絶え間なく、24時間体制で、所定の間隔で、あるいはモニタリングシステムのインテリジェンスレイヤ1104からのトリガに応じて、実行されることもある。
[00104] インテリジェンスレイヤ1104は、データ処理レイヤ1102からの情報と、インテリジェンスレイヤにおいてあらかじめプログラムされ得るパターン検出ルール1106とを受信するように構成されている。一実施形態においては、検出は、従来の知識に基づいて、エキスパートの専門家によって最初にプログラムされていることもある。インテリジェンスレイヤの自己学習機能は、その特定の問題についての事前知識なしに異常状態を検出するように動作している。具体的には、ドロップしたコールなどの望ましくないイベントが発生するときに、原因および/またはKPIが存在すると検出されることもある。図7に関して説明されるように、確率ツリーは、ポピュレートされ、かつ/または更新されて、これらの原因および/またはKPIが、望ましくないイベントと相互に関連づけられる確率を記憶することができる。一実施形態においては、パターン検出ルール1106は、患者のタイプ(例えば、白血病対糖尿病)に応じて異なる。例えば、健康医学的状態と整合しているパターンを識別すると、健康モニタリングシステムは、その医学的状態に関連した健康データについてのより多くの解析を実行することにより、そのルールセットを更新して、その状態に焦点を当てることができる。したがって、パターン検出ルール1106は、加入したユーザごとに異なる可能性がある。
[00105] 特定の状態を検出するために、データ処理レイヤ1102において処理された複数のデータソースは、解析され、また相互に関連づけられて、1つまたは複数の条件が満たされるかどうかを決定することができる。具体的には、第1の検出された原因および/またはKPIは、それらが、場合によっては、ドロップしたコールなど検出された望ましくないネットワークイベントについての根本原因である可能性があるかどうかを確率ツリーに対して(図7に関する考察を参照)、チェックされる。次いで、確率ツリーを、検出された原因および/またはKPIから出発してトラバースする。確率ツリーは、検出された原因および/またはKPIが、イベントを引き起こした確率を記憶するので、確率ツリーを、最も可能性のある経路に従ってトラバースすることができる。このようにして、望ましくないネットワーク条件についての状態が、特定の原因および/またはKPI(および確率ツリーにおける経路に沿った他のイベント/原因)が、実際にこれらの望ましくないネットワーク状態を引き起こした可能性について評価される可能性がある。
[00106] したがって、インテリジェンスレイヤ1104は、絶えず、データを通してシフトして、異種データソースの内部のパターンを識別する。所定の条件が満たされると、インテリジェンスレイヤは、ユーザ604、介護提供者650、測定結果メガストア1110のデータベースに前もって記憶された連絡担当者、および/または救急サービスのうちの少なくとも1人に対する関連のあるアラートを生成することができる。例えば、インテリジェンスレイヤ1104は、個別のタイプの測定結果(血圧)についてのデータのパターンを解析し、またはデータ処理レイヤ352によって提供される異なるタイプの測定結果またはデータ(例えば、血糖値、体重、年齢、白血球など)と、測定結果メガストア1110からの家族歴とを相互に関連づけて、患者に伴う健康上の懸念を示す可能性がある任意の異常値(例えば、所定の条件を満たしており、または所定のしきい値を超過している)を識別することができる。
[00107] それに応じて、オートメーションレイヤ1108は、データ処理レイヤによって取り出される生データの従来の人間の処理に頼ることなく、患者604の識別された状態に対して自動的な応答をトリガすることができる。別の言い方をすれば、オートメーションレイヤ1108と結合されたインテリジェンスレイヤは、加入者(すなわち、患者)レベルで、健康上の問題を検出し、また加入者または医療提供者が、加入者に伴う健康上の問題を疑ってさえもいることなしに、通知を提供することができる。認可された介護者、医師、家族および友人、または緊急対応者は、測定結果メガストア1110に記憶されるユーザプロファイルに記憶された設定に基づいて、自動的に連絡を受けることができる。例えば、医者211aは、緊急の医療用アドバイスを提供することができる。適切なエンティティは、測定結果メガストア1110のアプリケーションサーバのオートメーションレイヤ1108を経由して、自動的に連絡を受けることができる。適切なエンティティは、無線アクセスネットワーク122を通して、公衆交換電話網(PSTN: public switched telephone network)(図示せず)を通して、またはインターネット接続(図1における120)を通して、連絡を受けることもできる。一例においては、受信するエンティティに応じて、異なる情報が送信される。例えば、家族/友人が、連絡を受ける場合、ロケーション情報と、緊急事態のタイプとを送信することができる。対照的に、医師が連絡を受ける場合、ロケーション情報、緊急事態のタイプ、生命徴候、医療履歴などが送信される。したがって、助けを求めるために様々なエンティティが連絡を受ける可能性があるが、特別に認可されたエンティティだけが、ロケーション情報を受信する。一例においては、ロケーション情報を使用して、健康モニタ(例えば、図1における102d)に最も近い薬局に対して処方箋情報を送信する。
[00108] 図12は、測定結果メガストアから受信されるコンテキスト情報を使用して、健康状態を識別するための例示のプロセスの流れ図である。1つまたは複数の健康モニタを着用している加入者(この人は、健康であると信じている)のことを考える。例えば、それらの健康モニタは、電子フィットネスブレスレットと、温度/湿度とを測定することができる電子ネックレスと、加入者が休息しているときにベッドの上に置かれているスマートフォンとすることができる。さらに、加入者は、スマートフォンのアプリケーションに対して、電話を彼のベッドの上に置くことにより、アプリケーションに加入者の睡眠パターンを監視させることを示す。
[00109] ステップ1204において、測定結果メガストアは、3つのすべてのセンサから連続した情報を受信することができる。例えば、スマートフォンは、その全地球測位システム(GPS: global positioning system)からのロケーション情報と、その加速度計からの運動情報とを提供することができ、電子フィットネスブレスレットは、その加速度計からの心拍数と、運動情報とを提供することができ、また電子ネックレスは、加入者の体温の測定値を提供することができる。様々な実施形態においては、健康情報は、上記の図6との関連で考察されるように、異なる無線アクセスネットワークと、収集システムとの上で測定結果メガストアによって受信されることもある。とりわけ、健康情報は、測定結果メガストアを含むデータフレームワークのデータ処理レイヤによって受信されることもある。
[00110] ステップ1206において、測定結果メガストアのインテリジェンスレイヤは、健康情報を解析して、高いレベルの運動があるかどうかを決定する。例えば、インテリジェンスレイヤは、フィットネスブレスレットからの運動情報をスマートフォンからの情報と相互に関連づけることができる。いずれのソースも高いレベルの運動がないことを示す場合には、インテリジェンスレイヤは、睡眠時無呼吸に関連した健康上の問題がないことを結論づける(すなわち、ステップ1210)。しかしながら、ソースのうちの一方が、第2のソースによって確認されない高いレベルの運動を示す場合には、インテリジェンスレイヤは、WEBを調べて、スマートフォンが、より正確な加速度計を有しているか、またはフィットネスブレスレットが、より正確な加速度計を有しているかを決定し、また運動に関するその解析をこの測定についてのより正確なフィットネスモニタに基づいたものにすることができる。
[00111] 測定結果メガストアのインテリジェンスレイヤが、高いレベルの運動を識別する場合、インテリジェンスレイヤは、次いで、高い心拍数があるかどうかを決定する。その目的を達成するために、ステップ1208において、インテリジェンスレイヤは、フィットネスブレスレットから取得される健康情報を解析する。一実施形態においては、インテリジェンスレイヤは、WEB(またはルックアップテーブル)および/または他の以前に記憶されたデータを調べて、この加入者についての高い心拍数で何が考えられるかを決定することができる。例えば、記憶された情報は、加入者の体重、身長、および年齢と、心拍数に影響を及ぼす可能性がある以前の医学的状態(例えば、ペースメーカー)とを示すことができる。心拍数がこの加入者について高いと考えられない場合には、インテリジェンスレイヤは、睡眠時無呼吸に関連した健康上の問題がないことを結論づける(すなわち、ステップ1210)。
[00112] 心拍数が高いと決定される場合、ステップ1212において、インテリジェンスレイヤは、オートメーションレイヤと相互作用して、状態の深刻さ、または加入者の所定の個人用設定に応じて、1つまたは複数の受信側(例えば、スマートフォン、フィットネスブレスレット、認可された介護者、医師、家族および友人、および/または緊急対応)に対して通知を提供する。例えば、加入者は、彼らが睡眠時無呼吸を患っている可能性があることを示す通知を彼らのスマートフォンの上で受信することができる。オートメーションレイヤはまた、医学的状態をよりよく解析するように、1つまたは複数の追加の健康モニタに推奨することができ、これらの追加の健康モニタは、後続の測定において使用されることもある(すなわち、ステップ1214)。
(例示のコンピュータプラットフォーム)
[00113] 上記の考察によって示されるように、コンテキスト情報を記憶するための機能と、モニタリングネットワーク要素と、加入者の健康のリモートモニタリングと、ローカルな知識に基づいてネットワークステータスを識別する工程と、ネットワーク要素の間の接続を提供する工程と、他の機能とは、図1および2に示されるように、モニタリングサーバ130と、測定結果メガストア140と、eノードB119と、無線アクセスネットワーク122のコンポーネントとして動作する、無線アクセスネットワーク122のネットワーク要素を経由して、データ通信のために接続されるコンピュータの上で実装される可能性がある。専用のデバイスが使用されることもあるが、そのようなデバイスはまた、「サーバ」プログラミングを実行するために一般的に使用されるデータ処理デバイスの一般的なクラスを表すことを意図している1つまたは複数のハードウェアプラットフォームを使用して、実装されて、上記で考察されるように、データ通信のための適切なネットワーク接続にもかかわらず、異種ソースからデータを受信する工程と、コンテキスト情報を取り出す工程と、所定の条件が満たされるか、または所定のしきい値が超過されるかを決定するために情報を解析する工程と、通知を提供する工程と、を実装することができる。
[00114] 図13および14は、汎用コンピュータハードウェアプラットフォームの機能ブロック図の説明図を提供するものである。図13は、サーバを実装するために、一般的に、使用され得るようなネットワークまたはホストコンピュータプラットフォームを示す。図14は、図1のコンピュータ102cやワークステーションなどのパーソナルコンピュータを実装し、あるいはポータブルハンドセット、スマートフォン、タブレットコンピュータ、携帯型個人情報端末、他のタイプの移動局またはモバイル端末デバイス(例えば、図1のデバイス102aから102dまで)などのコンピューティングデバイスを実装するために使用され得るような、ユーザインターフェース要素を有するデバイスを示すが、図14のデバイスはまた、適切にプログラムされる場合に、サーバとしての役割を果たすこともできる。図13および14に示されるようなそのような機器の汎用構造および汎用動作は、高レベルの説明図から自己説明されるはずであることが、信じられている。
[00115] 例えば、サーバとして構成された汎用コンピュータは、パケットデータ通信のためのデータ通信インターフェースを含む。サーバコンピュータはまた、プログラム命令を実行するための、1つまたは複数のプロセッサの形態の、中央演算処理装置(CPU: central processing unit)を含む。サーバプラットフォームは、一般的に、内部通信バスと、プログラムストレージと、様々なデータファイルが、サーバによって処理され、かつ/または通信されるためのデータストレージとを含むが、サーバは、多くの場合にネットワーク通信を経由してプログラミングおよびデータを受信する。そのようなサーバについてのハードウェア要素と、オペレーティングシステムと、プログラミング言語とは、本来は、従来型のものである。本明細書において使用される場合、図14のコンピュータシステムは、Hadoop、Storm、Sparkなどの超並列処理技術を使用している。もちろん、サーバ機能は、いくつかの類似したプラットフォームの上で分散型の様式で実装されて、処理負荷を分散させることができる。様々な他の実施形態においては、モニタリングサーバ130の機能と、測定結果メガストア140と、リモート健康モニタリングシステムとは、1つまたは複数のサーバプラットフォームの形で組み合わされることもある。
[00116] ソフトウェア機能は、実行可能コード、ならびに関連する記憶されたデータ、例えば、コンピューティングデバイスの上のアプリケーションが、処理レイヤによって異種ソースからデータを受信するために使用されるファイルを含めて、測定結果メガストアからコンテキスト情報を取り出し、異種ソースからのデータとそのコンテキスト情報とを解析し、また通知を提供するプログラミングを必要とする。ソフトウェアコードは、コンピューティングデバイスによって、実行可能である。動作中に、コードは、コンピューティングデバイスの内部に記憶される。他の時間には、しかしながら、ソフトウェアは、他のロケーションに記憶され、かつ/または適切なコンピューティングデバイスのシステムへとロードするために移送されることもある。コンピューティングデバイスのプロセッサによるそのようなコードの実行により、コンピューティングデバイスは、本明細書において考察され、また示される実装形態において実行される実質的な方法で、情報を取り出す機能、情報を解析する機能、通知を提供する機能などを実行することができるようになる。
[00117] したがって、上記で概説されるようなSUを受信し、また処理する方法についての態様は、プログラミングで具現化されることもある。本技術のプログラム態様は、非一時的な機械読取り可能媒体のタイプで、実行され、または具現化される実行可能コードおよび/または関連するデータの形態の、一般的に、「製品」または「製造の物品」として考えられることもある。
結論
[00118] 上記は、何が、最良の形態および/または他の例であるように考えられるかについて説明しているが、様々な修正形態が、その中で作られ得ること、本明細書において開示される主題は、様々な形態および例の形で実装され得ること、およびそれらの教示が、非常に多数のアプリケーションにおいて適用される可能性があり、それらのアプリケーションのうちの一部だけが、本明細書において説明されていることが、理解される。本教示についての真の範囲内に含まれる任意の、またすべてのアプリケーションと、修正形態と、変形形態とを特許請求することが、添付の特許請求の範囲によって、意図される。
[00119] 別段述べられていない限り、添付の特許請求の範囲を含めて、本明細書において記載されるすべての測定結果と、値と、格付けと、位置と、大きさと、サイズと、他の仕様とは、近似的なものであり、正確ではない。それらは、それらが関連する当技術分野において、それらが関連しており、また慣習となっている機能と整合している妥当な範囲を有することを意図している。
[00120] すぐ上記で述べられているものを除いて、述べられ、または示されているものは何も、特許請求の範囲において列挙されているか、または列挙されていないかに関係なく、どのようなコンポーネント、ステップ、特徴、オブジェクト、利益、利点、または公衆に対する同等物についての専念を引き起こすことを意図しておらず、または引き起こすように解釈されるべきではない。
[00121] 本明細書において使用される用語および表現は、特定の意味が、別段本明細書において記載されている場合を除いて、問い合わせおよび調査のそれらの対応するそれぞれの分野に関連するそのような用語および表現に対して与えられるような通常の意味を有することが、理解されるであろう。第1の、第2のなどのような相関的な用語を使用して、そのようなエンティティまたはアクションの間の、どのような実際のそのような関係または順序も必ずしも必要とし、または意味するとは限らずに、1つのエンティティまたはアクションを別のエンティティまたはアクションからただ区別することができる。用語「備える/含む」、「備えている/含む」またはその任意の他の変形は、要素のリストを含むプロセス、方法、物品、または装置が、これらの要素だけを含むのではないが、そのようなプロセス、方法、物品、または装置に対して明示的にリストアップされてはいない、または固有ではない他の要素を含むことができるように、非排他的な包含を対象として含むことを意図している。「1つのa」または「1つのan」によって先行される要素は、さらなる制約条件なしに、その要素を含むプロセス、方法、物品、または装置の中の追加の同一の要素の存在を除外することはない。
[00122] 本開示の「要約」は、読者が、本技術的開示の本質を直ちに確認することを可能にするように、提供される。要約は特許請求の範囲または意味を解釈し、または限定するために使用されないことを、理解と共に述べる。さらに、上記の「発明を実施するための態様」においては、様々な特徴は、本開示を簡素化する目的のために、様々な実施形態において、共にグループ分けされることが、分かる。この開示の方法は、特許請求された実施形態が、各請求項において明示的に列挙されるよりも多くの特徴を必要とするという意図を反映するように解釈されるべきではない。もっと正確に言えば、添付の特許請求の範囲が、反映しているように、発明の主題は、単一の開示された実施形態についてのすべての特徴よりも少ないものにある。したがって、添付の特許請求の範囲は、これによって「発明を実施するための態様」の中に組み込まれており、各請求項は、別々に特許請求された主題として、それ自体に基づいている。

Claims (9)

  1. プロセッサと、
    前記プロセッサに結合され、通信ネットワークを経由した通信を可能にするように構成されたネットワークインターフェースと、
    コンテンツおよびプログラミングのためのストレージデバイスと、
    前記ストレージデバイスに記憶され、データ処理レイヤとインテリジェンスレイヤとを有するプログラムと、
    を備えており、前記プロセッサによる前記プログラムの実行は、
    ネットワーク及び前記ネットワークへの加入者の一方又は両方に関するネットワーク情報を受信することと、
    前記ネットワーク情報を用いて、故障状況を決定することと、
    それぞれが1つ以上のパターン検出ルールを有する一つ以上の第1の機械学習コンポーネントを用いて、確率ツリーをトラバースすることにより、前記故障状況の根本原因を識別することと、
    前記根本原因の発生の頻度、前記通信ネットワークのエリアがメンテナンスを受けているものと識別されるか否か、又は前記通信ネットワークによるカバレッジの知られている不足があるか否かに基づいて、前記根本原因識別の精度を決定することと、
    を含む動作を実行するようにコンピュータシステムを構成し、
    前記確率ツリーは、
    複数のノードであって、前記故障状況に対応するルートノードと、それぞれのイベントに対応する複数の原因ノードとを含む、複数のノードと、
    前記複数のノードのうちの一対のノードにそれぞれ対応する複数の確率であって、前記複数の確率のそれぞれの確率は、対応する一対のノードのうちの第1のノードに関連する第1のイベントが、対応する一対のノードのうちの第2のノードに関連する第2のイベントによって引き起こされる確率を示す、複数の確率と、
    を含む、コンピュータシステム。
  2. 請求項1に記載のコンピュータシステムであって、
    前記プログラムの実行は、前記根本原因検出の精度が所定の第1の閾値より高いことに応答して、前記識別された根本原因に対応する是正策を実行することを含む動作を実行するようにコンピュータシステムを構成する、コンピュータシステム。
  3. 請求項2に記載のコンピュータシステムであって、
    前記是正策は、ノードにおいてリセットすること、エンジニアに通知を送信すること、前記加入者に通知を送信すること、ユーザデバイスコンフィギュレーションを修正すること、又はこれらの組み合わせから選択される一つ以上のアクションを含む、コンピュータシステム。
  4. 請求項1乃至3のうち何れか1項に記載のコンピュータシステムであって、
    前記故障状況の根本原因を識別することは、複数の故障タイプにそれぞれ関連付けられる複数の第1の機械学習コンポーネントを用いて実行される、コンピュータシステム。
  5. 請求項1乃至4のうち何れか1項に記載のコンピュータシステムであって、
    前記ネットワーク情報は、
    顧客ケアのトラブルチケットデータベース、加入者情報、及びユーザデバイス情報を含む群から選択される一つ又はそれ以上の情報と、
    ネットワーク要素カウンタ情報、ネットワークキー性能インジケータ情報、ネットワーク要素位置情報、低品質音声サービス、警告情報、故障情報、顧客ケアのトラブルチケットデータベース、ネットワーク要素カウンタ、キー性能インジケータ、ネットワーク要素位置、警告及び故障情報、ハンドセット情報、加入者詳細情報レコードを含む群から選択される一つ又はそれ以上の情報と、を含み、
    前記加入者情報は、加入者プラン、利用、及び課金アドレスを含み、
    前記ハンドセット情報は、ハンドセットタイプ、ハンドセットオペレーティングシステム、前記ハンドセット上のアプリケーション、及びバッテリステータスを含み、
    前記加入者詳細情報レコードは、ジオロケーショントレース、無線トレース、コアネットワーク及びIPレベルトレース、Wi−Fiレコード及びメトリクス、及び無線ローカルアクセスネットワーク情報を含む、コンピュータシステム。
  6. 請求項1乃至5のうち何れか1項に記載のコンピュータシステムであって、
    前記故障状況は、ドロップしたコール、アクセス障害、インターネット接続の問題、又はこれらの組み合わせである、コンピュータシステム。
  7. 請求項1乃至6のうち何れか1項に記載のコンピュータシステムであって、
    前記複数の原因ノードは、複数の可能性のある直接的な原因にそれぞれ関連付けられる複数の可能性のある直接的な原因ノードを含み、前記可能性のある直接的な原因は、カバレッジ不足、無線干渉、ハードウェア障害、及びソフトウェア障害を含み、
    前記複数の確率は、複数の可能性のある直接的な原因確率を含み、前記複数の可能性のある直接的な原因確率のそれぞれの確率は、前記ルートノードに関連付けられる第1の状況が、前記複数の可能性のある直接的な原因ノードの一つのノードに関連付けられるイベントによって引き起こされる確率を示す、コンピュータシステム。
  8. 請求項1乃至7のうち何れか1項に記載のコンピュータシステムであって、
    前記プログラムの実行は、パターン類似に基づくクラスタリングの問題があるときに、
    ユーザインターフェースを用いて、前記根本原因を識別するのに用いられるパターンに関するフィードバックを収集することと、
    前記パターンに関する前記フィードバックに基づいて、且つ、第2の機械学習コンポーネントを用いて、前記ネットワークの新しいキー性能インジケータのセットを決定することと、
    を含む動作を実行するように前記コンピュータシステムを構成する、コンピュータシステム。
  9. 請求項1乃至8のうち何れか1項に記載のコンピュータシステムであって、
    前記プログラムの実行は、複数の顧客が経験する、同一のネットワーク要素に関連付けられる、それぞれの問題に応答して、統一された是正策を実行することを含む動作を実行するように前記コンピュータシステムを構成する、コンピュータシステム。
JP2017523189A 2014-07-16 2015-07-16 ビッグデータ環境におけるリソース管理 Active JP6853172B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021038871A JP7280302B2 (ja) 2014-07-16 2021-03-11 ビッグデータ環境におけるリソース管理
JP2022205693A JP2023027358A (ja) 2014-07-16 2022-12-22 ビッグデータ環境におけるリソース管理

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
US201462025441P 2014-07-16 2014-07-16
US201462025453P 2014-07-16 2014-07-16
US62/025,441 2014-07-16
US62/025,453 2014-07-16
US201462025958P 2014-07-17 2014-07-17
US201462025961P 2014-07-17 2014-07-17
US62/025,958 2014-07-17
US62/025,961 2014-07-17
US201562193002P 2015-07-15 2015-07-15
US14/800,648 2015-07-15
US62/193,002 2015-07-15
US14/800,648 US20160021173A1 (en) 2014-07-16 2015-07-15 Resource management in a big data environment
PCT/US2015/040809 WO2016011295A2 (en) 2014-07-16 2015-07-16 Resource management in a big data environment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021038871A Division JP7280302B2 (ja) 2014-07-16 2021-03-11 ビッグデータ環境におけるリソース管理

Publications (2)

Publication Number Publication Date
JP2017529811A JP2017529811A (ja) 2017-10-05
JP6853172B2 true JP6853172B2 (ja) 2021-03-31

Family

ID=55075585

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017523189A Active JP6853172B2 (ja) 2014-07-16 2015-07-16 ビッグデータ環境におけるリソース管理
JP2021038871A Active JP7280302B2 (ja) 2014-07-16 2021-03-11 ビッグデータ環境におけるリソース管理
JP2022205693A Pending JP2023027358A (ja) 2014-07-16 2022-12-22 ビッグデータ環境におけるリソース管理

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2021038871A Active JP7280302B2 (ja) 2014-07-16 2021-03-11 ビッグデータ環境におけるリソース管理
JP2022205693A Pending JP2023027358A (ja) 2014-07-16 2022-12-22 ビッグデータ環境におけるリソース管理

Country Status (3)

Country Link
US (2) US20160021173A1 (ja)
JP (3) JP6853172B2 (ja)
WO (1) WO2016011295A2 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11290912B2 (en) 2011-12-14 2022-03-29 Seven Networks, Llc Mobile device configured for operating in a power save mode and a traffic optimization mode and related method
US10623258B2 (en) * 2015-06-22 2020-04-14 Arista Networks, Inc. Data analytics on internal state
US10129330B2 (en) * 2015-11-18 2018-11-13 International Business Machines Corporation Attachment of cloud services to big data services
US10770181B2 (en) * 2015-12-16 2020-09-08 Alegeus Technologies, Llc Systems and methods for reducing resource consumption via information technology infrastructure
US10355918B2 (en) * 2016-01-20 2019-07-16 Level 3 Communications, Llc System and method for automatically repairing a network element
US10838849B2 (en) 2016-03-08 2020-11-17 International Business Machines Corporation Analyzing software test failures using natural language processing and machine learning
US10505789B2 (en) * 2016-03-28 2019-12-10 TUPL, Inc. Intelligent configuration system for alert and performance monitoring
US10437839B2 (en) 2016-04-28 2019-10-08 Entit Software Llc Bulk sets for executing database queries
US10708795B2 (en) * 2016-06-07 2020-07-07 TUPL, Inc. Artificial intelligence-based network advisor
US10411946B2 (en) * 2016-06-14 2019-09-10 TUPL, Inc. Fixed line resource management
US10263877B1 (en) * 2016-08-12 2019-04-16 Pinterest, Inc. Generating collections of sets based on user provided annotations
WO2018084851A1 (en) * 2016-11-04 2018-05-11 Google Llc Realtime busyness for places
CN106982253A (zh) * 2017-03-27 2017-07-25 中国联合网络通信集团有限公司 一种用户画像解析方法及装置、网络系统
JP2020519079A (ja) * 2017-04-28 2020-06-25 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. コンテキスト設定情報の取得方法、端末装置及びアクセスネットワーク機器
EP3447642B1 (en) 2017-08-24 2022-03-23 Tata Consultancy Services Limited System and method for predicting application performance for large data size on big data cluster
US12088474B2 (en) * 2018-07-12 2024-09-10 Ribbon Communications Operating Company, Inc. Predictive scoring based on key performance indicators in telecommunications system
US10701216B2 (en) 2018-10-12 2020-06-30 Verizon Patent And Licensing Inc. Methods and devices for time-based conditional presence reporting
US11388040B2 (en) 2018-10-31 2022-07-12 EXFO Solutions SAS Automatic root cause diagnosis in networks
US11645293B2 (en) 2018-12-11 2023-05-09 EXFO Solutions SAS Anomaly detection in big data time series analysis
EP3932105A1 (en) * 2019-02-27 2022-01-05 Telefonaktiebolaget LM Ericsson (publ) Transfer learning for radio resource management
US10992331B2 (en) * 2019-05-15 2021-04-27 Huawei Technologies Co., Ltd. Systems and methods for signaling for AI use by mobile stations in wireless networks
US11138163B2 (en) 2019-07-11 2021-10-05 EXFO Solutions SAS Automatic root cause diagnosis in networks based on hypothesis testing
WO2021063474A1 (en) * 2019-09-30 2021-04-08 Telefonaktiebolaget Lm Ericsson (Publ) Controlling traffic and interference in a communications network
EP3866395B1 (en) 2020-02-12 2024-05-22 EXFO Solutions SAS Method and system for determining root-cause diagnosis of events occurring during the operation of a communication network
WO2021188821A1 (en) * 2020-03-20 2021-09-23 Hewlett-Packard Development Company, L.P. Recommendation of modifications in computing devices
WO2021204451A1 (en) * 2020-04-07 2021-10-14 Nokia Solutions And Networks Oy Communication system
US12052134B2 (en) 2021-02-02 2024-07-30 Exfo Inc. Identification of clusters of elements causing network performance degradation or outage
JP7246560B1 (ja) 2022-12-12 2023-03-27 株式会社インターネットイニシアティブ 通信制御方法および通信制御装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118011A (ja) * 1984-07-04 1986-01-25 Hitachi Ltd 機器故障診断方法
JPH07206297A (ja) * 1994-01-25 1995-08-08 Hitachi Building Syst Eng & Service Co Ltd エレベータの故障診断装置
US6914893B2 (en) * 1998-06-22 2005-07-05 Statsignal Ipc, Llc System and method for monitoring and controlling remote devices
US7136657B2 (en) * 2000-03-02 2006-11-14 Fujitsu Limited Area-dependent service system and method for mobile stations
JP2004207839A (ja) * 2002-12-24 2004-07-22 Nec Corp 無線リソース管理システムとその方法及びそれに用いる管理装置、基地局及び端末
US7689843B2 (en) * 2004-12-15 2010-03-30 Microsoft Corporation Ultra wide band power save
US8582584B2 (en) * 2005-10-04 2013-11-12 Time Warner Cable Enterprises Llc Self-monitoring and optimizing network apparatus and methods
JP5193533B2 (ja) * 2007-09-04 2013-05-08 株式会社東芝 遠隔監視システム及び遠隔監視方法
US8358972B2 (en) * 2008-02-05 2013-01-22 Telefonaktiebolaget Lm Ericsson (Publ) Power control in a radio base station with sustained cell radius
US8249606B1 (en) * 2008-07-30 2012-08-21 Optimi Corporation Frequency planning optimization for mobile communications
US8966055B2 (en) * 2008-11-14 2015-02-24 Qualcomm Incorporated System and method for facilitating capacity monitoring and recommending action for wireless networks
US9031599B2 (en) * 2009-12-08 2015-05-12 Futurewei Technologies, Inc. System and method for power control
US20130145024A1 (en) * 2010-08-16 2013-06-06 Nokia Corporation Method and apparatus for transfer of radio resource allocation
US20120072267A1 (en) * 2010-09-22 2012-03-22 Carrier Iq, Inc. Quality of Service Performance Scoring and Rating Display and Navigation System
WO2012037637A1 (en) * 2010-09-23 2012-03-29 Research In Motion Limited System and method for dynamic coordination of radio resources usage in a wireless network environment
US20120281594A1 (en) * 2011-05-04 2012-11-08 Motorola Mobility, Inc. Method and apparatus for providing user equipment access to tv white space resources by a broadband cellular network
US9191444B2 (en) 2011-06-09 2015-11-17 Alcatel Lucent Intelligent network management of network-related events
US8553580B2 (en) * 2011-09-30 2013-10-08 Intel Corporation Multi-radio medium-agnostic access architecture
US8942673B2 (en) * 2011-10-03 2015-01-27 At&T Intellectual Property I, L.P. Method and apparatus for providing cellphone service from any device
EP2595425A1 (en) * 2011-11-18 2013-05-22 Panasonic Corporation Active bandwidth indicator for power-saving UEs
US9021021B2 (en) * 2011-12-14 2015-04-28 Seven Networks, Inc. Mobile network reporting and usage analytics system and method aggregated using a distributed traffic optimization system
US9326189B2 (en) * 2012-02-03 2016-04-26 Seven Networks, Llc User as an end point for profiling and optimizing the delivery of content and data in a wireless network
US20130225183A1 (en) * 2012-02-24 2013-08-29 Qualcomm Incorporated Methods and apparatus for turning off macro carriers to deploy femtocells
JP6141889B2 (ja) * 2012-03-12 2017-06-07 ノキア ソリューションズ アンド ネットワークス オサケユキチュア 通信ネットワークにおけるサービスアクセス経験品質問題の予想及び根本原因の推奨
WO2013136813A1 (ja) * 2012-03-15 2013-09-19 日本電気株式会社 無線通信システム、無線局、ネットワーク運用管理装置およびネットワーク修復方法
US9426754B2 (en) * 2013-06-13 2016-08-23 Blackberry Limited Device dynamic total RF power compensation
US8966074B1 (en) * 2013-09-13 2015-02-24 Network Kinetix, LLC System and method for real-time analysis of network traffic
US9633041B2 (en) * 2013-09-26 2017-04-25 Taiwan Semiconductor Manufacturing Co., Ltd. File block placement in a distributed file system network
US10341208B2 (en) * 2013-09-26 2019-07-02 Taiwan Semiconductor Manufacturing Co., Ltd. File block placement in a distributed network
US9386078B2 (en) * 2014-05-30 2016-07-05 Ca, Inc. Controlling application programming interface transactions based on content of earlier transactions
US10033786B2 (en) * 2014-11-04 2018-07-24 CineVR Europe S.à r.l. Triggering of notifications in a communications network

Also Published As

Publication number Publication date
WO2016011295A2 (en) 2016-01-21
US20160021173A1 (en) 2016-01-21
US20210185117A1 (en) 2021-06-17
WO2016011295A3 (en) 2016-09-29
JP2023027358A (ja) 2023-03-01
JP2017529811A (ja) 2017-10-05
JP7280302B2 (ja) 2023-05-23
JP2021106388A (ja) 2021-07-26

Similar Documents

Publication Publication Date Title
JP7280302B2 (ja) ビッグデータ環境におけるリソース管理
US12120012B2 (en) Dynamic quality of service in edge cloud architectures
US11018958B2 (en) Communication network quality of experience extrapolation and diagnosis
US12081412B2 (en) Federated learning across UE and RAN
US11943280B2 (en) 5G network edge and core service dimensioning
US20220007198A1 (en) Method and Apparatus for Monitoring and Predicting Channel Availability and Preemptively Reconfiguring the Network in a Spectrum Controlled Network
EP4434252A1 (en) Radio access network intelligent application manager
US10602523B2 (en) Allocation of network resources based on antenna information and/or device type information
KR20210054923A (ko) 이동통신 네트워크에서 rfsp 인덱스 선택을 위한 네트워크 분석 정보 제공하는 방법 및 장치
WO2022098713A1 (en) Mda report request, retrieval and reporting
US11805022B2 (en) Method and device for providing network analytics information in wireless communication network
WO2022123532A1 (en) Real time protocol-based cell analysis
US20190116130A1 (en) Context Information Processor, Profile Distribution Unit and Method for a Communication Network
US20240137751A1 (en) Data-centric computing and communication infrastructure
US11509723B1 (en) Systems and methods for dynamic and efficient device monitoring via a network
US11816608B2 (en) Systems and methods for service allocation based on real-time service provider and requestor attributes
US11774542B2 (en) Systems and methods for remote monitoring care using wireless sensing technologies
Varshney Enhancing wireless patient monitoring by integrating stored and live patient information
US20230186167A1 (en) Systems and methods for node weighting and aggregation for federated learning techniques
US20240040494A1 (en) Systems and methods for network slice modification by policy control function in a wireless network
US20230394799A1 (en) Systems and methods for explanation of models using image analysis techniques
US12108263B2 (en) Systems and methods for providing network failure and cause code handling in 5G networks
US20240027564A1 (en) Systems and methods for remote monitoring care using wireless sensing technologies
US20240155475A1 (en) Systems and methods for dynamic edge computing device assignment and reassignment
US20220232368A1 (en) Clustering of user entities in a cellular network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190401

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190701

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200603

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210311

R150 Certificate of patent or registration of utility model

Ref document number: 6853172

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250