JP6853140B2 - Wavelength conversion member and light emitting device - Google Patents

Wavelength conversion member and light emitting device Download PDF

Info

Publication number
JP6853140B2
JP6853140B2 JP2017154471A JP2017154471A JP6853140B2 JP 6853140 B2 JP6853140 B2 JP 6853140B2 JP 2017154471 A JP2017154471 A JP 2017154471A JP 2017154471 A JP2017154471 A JP 2017154471A JP 6853140 B2 JP6853140 B2 JP 6853140B2
Authority
JP
Japan
Prior art keywords
light
wavelength conversion
conversion member
phosphor
phosphor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017154471A
Other languages
Japanese (ja)
Other versions
JP2019032472A (en
Inventor
俊光 菊地
俊光 菊地
美史 傳井
美史 傳井
誉史 阿部
誉史 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2017154471A priority Critical patent/JP6853140B2/en
Priority to PCT/JP2018/018835 priority patent/WO2019031016A1/en
Priority to TW107127131A priority patent/TWI760541B/en
Publication of JP2019032472A publication Critical patent/JP2019032472A/en
Application granted granted Critical
Publication of JP6853140B2 publication Critical patent/JP6853140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0239Combinations of electrical or optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Description

本発明は、特定範囲の波長の光を他の波長の光に変換する波長変換部材および発光装置に関する。 The present invention relates to a wavelength conversion member and a light emitting device that convert light having a specific range of wavelengths into light having another wavelength.

発光素子として、例えば青色LED素子に接触するようにエポキシやシリコーンなどに代表される樹脂に蛍光体粒子を分散させた波長変換部材を配置したものが知られている。そして、近年では、LEDに代えて、エネルギー効率が高く、小型化、高出力化に対応しやすい、レーザダイオード(LD)が用いられたアプリケーションが増えてきている。 As a light emitting element, for example, one in which a wavelength conversion member in which phosphor particles are dispersed in a resin typified by epoxy or silicone so as to come into contact with a blue LED element is known. In recent years, there have been an increasing number of applications in which a laser diode (LD) is used instead of an LED, which has high energy efficiency and is easy to cope with miniaturization and high output.

レーザは局所的に高いエネルギーの光を照射するため、集中的にレーザ光が照射された樹脂は、その照射箇所が焼け焦げる。これに対し、樹脂の代わりに無機バインダを使用し、無機材料のみからなる蛍光体プレートを適用することで、レーザをはじめとしたエネルギーの高い励起源を用いた場合における耐熱性の課題は解決された(特許文献1)。 Since the laser locally irradiates high-energy light, the resin irradiated with the laser light intensively burns the irradiated portion. On the other hand, by using an inorganic binder instead of resin and applying a phosphor plate made of only an inorganic material, the problem of heat resistance when using a high-energy excitation source such as a laser is solved. (Patent Document 1).

また、ばらつきのない白色の発光を得ることを目的として、賦活剤としてのCe濃度を所定範囲とするYAG蛍光体セラミック焼結体が開示されている(特許文献2)。 Further, for the purpose of obtaining white light emission without variation, a YAG phosphor ceramic sintered body having a Ce concentration as an activator within a predetermined range is disclosed (Patent Document 2).

特開2015−038960号公報Japanese Unexamined Patent Publication No. 2015-08960 特開2010−024278号公報Japanese Unexamined Patent Publication No. 2010-024278

特許文献1は、蛍光体プレートを無機材料のみで構成することにより蛍光体プレートの耐熱性は改善することを開示している。しかし、レーザパワーに対する発熱・蓄熱により、蛍光体自体の性能が消失する、温度消光と呼ばれる現象は依然として生じる。 Patent Document 1 discloses that the heat resistance of the phosphor plate is improved by forming the phosphor plate only with an inorganic material. However, a phenomenon called temperature quenching, in which the performance of the phosphor itself is lost due to heat generation and heat storage with respect to the laser power, still occurs.

また、特許文献2は材料粉末を混合・焼成し、その後研磨することで得られるYAG蛍光体セラミック焼結体を開示している。しかし、高エネルギー励起源を用いたときの放熱性は考慮されていないため、使用環境によっては蓄熱が起こり温度消光による性能低下をする虞がある。 Further, Patent Document 2 discloses a YAG phosphor ceramic sintered body obtained by mixing and firing material powder and then polishing. However, since heat dissipation when a high-energy excitation source is used is not taken into consideration, heat storage may occur depending on the usage environment and performance may deteriorate due to temperature quenching.

本発明は、このような事情に鑑みてなされたものであり、ハイパワーの用途において温度消光による性能低下が発生しにくく、少ないエネルギーで多くの発光量を得ることができる波長変換部材および発光装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a wavelength conversion member and a light emitting device that are less likely to cause performance deterioration due to temperature quenching in high power applications and can obtain a large amount of light emission with a small amount of energy. The purpose is to provide.

(1)上記の目的を達成するため、本発明の波長変換部材は、基材と前記基材上に設けられた蛍光体層とを備える特定範囲の波長の光を他の波長の光に変換する波長変換部材であって、前記蛍光体層の厚みは200μm以下かつ前記蛍光体層の積層方向の前記基材の厚みの4分の1以下であり、前記蛍光体層は、透光性の無機材料と前記無機材料と結合された蛍光体粒子とで形成され、前記蛍光体粒子の材料は、YAG:CeまたはLuAG:Ceのいずれか一方であり、前記蛍光体粒子のCe濃度は、0.03at%以上0.60at%以下であることを特徴としている。 (1) In order to achieve the above object, the wavelength conversion member of the present invention converts light having a specific range of wavelengths including a base material and a phosphor layer provided on the base material into light having another wavelength. The thickness of the phosphor layer is 200 μm or less and one-fourth or less of the thickness of the base material in the stacking direction of the phosphor layer, and the phosphor layer is translucent. It is formed of an inorganic material and phosphor particles bonded to the inorganic material, and the material of the phosphor particles is either YAG: Ce or LuAG: Ce, and the Ce concentration of the phosphor particles is 0. It is characterized by being .03 at% or more and 0.60 at% or less.

このように、Ce濃度が小さい蛍光体を用いることで、蛍光体で生じる熱の発生ポイントを分散させ、蛍光変換時に生じる熱の密度を減らし放熱性を高めることが可能となり、蛍光体層全体の温度上昇を防ぐことができる。その結果、高いエネルギーを有するレーザ等による励起においても、蛍光体の発光性能が低下する温度まで到達しにくくなり、ハイパワーでも高い発光強度を維持することができる。また、蛍光体層よりも大きな厚みを有する基材を備えることで、放熱板として機能する基材が大きな重量比を占めることから、基材からの放熱も可能となり、放熱性をより一層高めることができ、温度消光による性能低下を抑制できる。 In this way, by using a phosphor having a low Ce concentration, it is possible to disperse the heat generation points generated by the phosphor, reduce the heat density generated during fluorescence conversion, and improve the heat dissipation property of the entire phosphor layer. It is possible to prevent the temperature from rising. As a result, even when excited by a laser or the like having high energy, it becomes difficult to reach a temperature at which the emission performance of the phosphor deteriorates, and high emission intensity can be maintained even at high power. Further, by providing a base material having a thickness larger than that of the phosphor layer, the base material functioning as a heat radiating plate occupies a large weight ratio, so that heat can be dissipated from the base material, further improving heat dissipation. It is possible to suppress the deterioration of performance due to temperature quenching.

(2)また、本発明の波長変換部材において、前記蛍光体層の厚みは、10μm以上であり、前記蛍光体粒子のCe濃度は、0.12at%以上であることを特徴としている。これにより、蛍光体層の厚みやCe濃度が小さすぎないため、発光効率の低下を抑制できる。 (2) Further, in the wavelength conversion member of the present invention, the thickness of the phosphor layer is 10 μm or more, and the Ce concentration of the phosphor particles is 0.12 at% or more. As a result, the thickness of the phosphor layer and the Ce concentration are not too small, so that a decrease in luminous efficiency can be suppressed.

(3)また、本発明の波長変換部材において、前記基材は、サファイアで形成されていることを特徴としている。このように、高い熱伝導率により良好な放熱性が期待できる透明材料であるサファイアを基材として用いることで、高いエネルギーを有するレーザ等を励起光に用いたとき、高い発光強度を維持できる透過型の波長変換部材を構成できる。 (3) Further, in the wavelength conversion member of the present invention, the base material is made of sapphire. In this way, by using sapphire, which is a transparent material that can be expected to have good heat dissipation due to its high thermal conductivity, as the base material, transmission that can maintain high emission intensity when a laser or the like having high energy is used for excitation light. A type of wavelength conversion member can be constructed.

(4)また、本発明の波長変換部材において、前記基材は、アルミニウムで形成されていることを特徴としている。このように、高い熱伝導率により良好な放熱性が期待できる反射材料であるアルミニウムを基材として用いることで、高いエネルギーを有するレーザ等を励起光に用いたとき、高い発光強度を維持できる反射型の波長変換部材を構成できる。 (4) Further, in the wavelength conversion member of the present invention, the base material is made of aluminum. In this way, by using aluminum, which is a reflective material that can be expected to have good heat dissipation due to its high thermal conductivity, as the base material, reflection that can maintain high emission intensity when a laser or the like having high energy is used for excitation light. A type of wavelength conversion member can be constructed.

(5)また、本発明の発光装置は、特定範囲の波長の光源光を発生させる光源を備える発光装置であって、前記光源光を吸収し、他の波長の光に変換し発光する上記(1)から(4)のいずれかに記載の波長変換部材と、を備えることを特徴としている。これにより、ハイパワーでも高い発光強度を維持できるとともに、発光効率の低下を抑制できる発光装置を構成できる。 (5) Further, the light emitting device of the present invention is a light emitting device including a light source that generates light source light having a wavelength in a specific range, and absorbs the light source light, converts it into light having another wavelength, and emits light. It is characterized by including the wavelength conversion member according to any one of 1) to (4). As a result, it is possible to configure a light emitting device capable of maintaining high light emission intensity even at high power and suppressing a decrease in light emission efficiency.

本発明によれば、ハイパワーの用途において温度消光による性能低下が発生しにくく、少ないエネルギーで多くの発光量を得ることができる波長変換部材を構成できる。 According to the present invention, it is possible to configure a wavelength conversion member capable of obtaining a large amount of light emission with a small amount of energy without causing performance deterioration due to temperature quenching in high power applications.

本発明の波長変換部材を表す模式図である。It is a schematic diagram which shows the wavelength conversion member of this invention. (a)は、本発明の透過型の発光装置を表す模式図である。(b)は、本発明の反射型の発光装置を表す模式図である。(A) is a schematic diagram showing the transmission type light emitting device of the present invention. (B) is a schematic diagram showing the reflection type light emitting device of the present invention. 本発明の波長変換部材の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the wavelength conversion member of this invention. 波長変換部材に対する発光強度試験のための透過型の評価システムを示す断面図である。It is sectional drawing which shows the transmission type evaluation system for emission intensity test for a wavelength conversion member. 反射型の試料1〜5について、レーザパワー密度(レーザ入力)を横軸に取ったときの発光強度を表すグラフである。It is a graph which shows the light emission intensity when the laser power density (laser input) is taken on the horizontal axis about the reflection type samples 1-5. 透過型の試料6〜10について、レーザパワー密度(レーザ入力)を横軸に取ったときの発光強度を表すグラフである。It is a graph which shows the light emission intensity when the laser power density (laser input) is taken on the horizontal axis about the transmission type samples 6-10. 試料の各種条件と、ピーク時レーザ入力、ピーク時発光強度および3W時の発光強度(発光効率)のそれぞれの結果を表す表である。It is a table showing various conditions of a sample, and the results of each of the peak laser input, the peak emission intensity, and the emission intensity at 3W (luminous efficiency).

次に、本発明の実施の形態について、図面を参照しながら説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の参照番号を付し、重複する説明は省略する。なお、構成図において、各構成要素の大きさは概念的に表したものであり、必ずしも実際の寸法比率を表すものではない。 Next, an embodiment of the present invention will be described with reference to the drawings. In order to facilitate understanding of the description, the same reference number is assigned to the same component in each drawing, and duplicate description is omitted. In the configuration diagram, the size of each component is conceptually represented, and does not necessarily represent the actual dimensional ratio.

[波長変換部材の構成]
図1は、波長変換部材10を表す模式図である。波長変換部材10は、基材12上に蛍光体層14が形成されている。波長変換部材10は、光源から照射された光源光を透過または反射させつつ、光源光を吸収し励起して波長の異なる光を発生させる。例えば、青色光の光源光を透過または反射させつつ、蛍光体層14で変換された変換光を放射させて、変換光と光源光を合わせて、または、変換光のみを利用し、様々な色の光に変換できる。
[Structure of wavelength conversion member]
FIG. 1 is a schematic view showing a wavelength conversion member 10. In the wavelength conversion member 10, the phosphor layer 14 is formed on the base material 12. The wavelength conversion member 10 transmits or reflects the light source light emitted from the light source, absorbs and excites the light source light, and generates light having a different wavelength. For example, while transmitting or reflecting the light source of blue light, the converted light converted by the phosphor layer 14 is emitted, and the converted light and the light source are combined, or only the converted light is used, and various colors are used. Can be converted to light.

基材12の材料は、透過型の場合は、サファイア、ガラス等の透光性を有する材料を用いることができる。発光強度の観点から、光が透過する部分は少なくとも光源光を吸収しにくい材料とする。また、高エネルギーの光が照射されて温度が高くなるので、熱伝導性が高い方がよい。そのため、透過型の基材は、サファイアで形成されていることが好ましい。 When the material of the base material 12 is a transmissive type, a translucent material such as sapphire or glass can be used. From the viewpoint of light emission intensity, at least the portion through which light is transmitted is made of a material that does not easily absorb light from the light source. Further, since high energy light is irradiated and the temperature rises, it is preferable that the heat conductivity is high. Therefore, the transmissive substrate is preferably formed of sapphire.

基材12の材料は、反射型の場合は、アルミニウム、鉄、銅等の金属を用いることができる。反射型の基材は、基材のすべてを、光を反射する材料で製造することもできるが、透光性を有する材料または光の反射を考慮しない材料の一面に光を反射する銀などの材料をメッキなどで設けてもよい。発光強度の観点から、光が透過する部分は少なくとも光源光を吸収しにくい材料とする。また、高エネルギーの光が照射されて温度が高くなるので、熱伝導性が高い方がよい。そのため、反射型の基材は、アルミニウムで形成されていることが好ましい。 When the material of the base material 12 is a reflective type, a metal such as aluminum, iron, or copper can be used. Reflective substrates can be made entirely of light-reflecting material, such as silver, which reflects light on one side of a translucent material or a material that does not consider light reflection. The material may be provided by plating or the like. From the viewpoint of light emission intensity, at least the portion through which light is transmitted is made of a material that does not easily absorb light from the light source. Further, since high energy light is irradiated and the temperature rises, it is preferable that the heat conductivity is high. Therefore, the reflective base material is preferably made of aluminum.

蛍光体層14は、基材12上に膜として設けられ、蛍光体粒子16および結合材20(透光性の無機材料)により形成されている。結合材20は、蛍光体粒子16同士および蛍光体粒子16と基材12とを固定している。これにより、高エネルギー密度の光の照射に対して、放熱材として機能する基材12と接合しているため効率よく放熱でき、蛍光体の温度消光を抑制できる。また、上記それぞれの固定は化学結合であることが効率よく放熱するためには好ましい。 The phosphor layer 14 is provided as a film on the base material 12, and is formed of the phosphor particles 16 and the binder 20 (translucent inorganic material). The binder 20 fixes the phosphor particles 16 to each other, the phosphor particles 16 and the base material 12. As a result, the base material 12 that functions as a heat radiating material is bonded to the irradiation of light having a high energy density, so that heat can be efficiently radiated and the temperature quenching of the phosphor can be suppressed. Further, it is preferable that each of the above fixations is a chemical bond in order to efficiently dissipate heat.

蛍光体層14の厚みは、200μm以下かつ蛍光体層の積層方向の基材の厚みの4分の1以下である。これにより、放熱板として機能する基材が大きな重量比を占めることから、蛍光体層14から基材12への放熱がより確実に行なわれ、温度消光による性能低下を抑制できる。また、蛍光体層14の厚みは、10μm以上であることが好ましい。これにより、蛍光体層14の厚みが小さすぎないため、発光効率の低下を抑制できる。また、蛍光体層14の厚みは、100μm以下であることが好ましい。 The thickness of the phosphor layer 14 is 200 μm or less and one-fourth or less of the thickness of the base material in the stacking direction of the phosphor layer. As a result, since the base material that functions as the heat radiating plate occupies a large weight ratio, heat is more reliably dissipated from the phosphor layer 14 to the base material 12, and performance deterioration due to temperature quenching can be suppressed. The thickness of the phosphor layer 14 is preferably 10 μm or more. As a result, since the thickness of the phosphor layer 14 is not too small, it is possible to suppress a decrease in luminous efficiency. The thickness of the phosphor layer 14 is preferably 100 μm or less.

蛍光体粒子16は、発光中心としてセリウム(Ce)が添加されたイットリウム・アルミニウム・ガーネット系蛍光体(YAG:Ce)またはルテチウム・アルミニウム・ガーネット系蛍光体(LuAG:Ce)のいずれか一方で構成される。このとき、発光中心のCe濃度を以下のように定義する。すなわち、YAGの組成式はYAl12であるが、このうちのイットリウム(Y)の一部をCeで置き換えたYAGをYAG:Ceと表し、その組成式を一般的に(Y3−XCe)Al12と表す。そして、組成式全体の原子の数に対するCeの割合を単位「at%」で表す。例えば、X=0.1のとき、0.1/(3+5+12)×100=0.5となるので、これを0.5at%と定義する。 The phosphor particles 16 are composed of either an yttrium-aluminum-garnet-based phosphor (YAG: Ce) or a lutetium-aluminum-garnet-based phosphor (LuAG: Ce) to which cerium (Ce) is added as a light emitting center. Will be done. At this time, the Ce concentration at the center of light emission is defined as follows. That is, the composition formula of YAG is Y 3 Al 5 O 12 , but YAG in which a part of yttrium (Y) is replaced with Ce is expressed as YAG: Ce, and the composition formula is generally (Y 3). -X Ce X ) Expressed as Al 5 O 12 . Then, the ratio of Ce to the number of atoms in the entire composition formula is expressed in the unit "at%". For example, when X = 0.1, 0.1 / (3 + 5 + 12) × 100 = 0.5, so this is defined as 0.5 at%.

LuAGはYAGのすべてのYをルテチウム(Lu)で置き換えたものであり、組成式はLuAl12である。そのため、LuAG:CeのCe濃度も上記と同様に定義し、単位「at%」で表す。 LuAG is obtained by replacing all Y of YAG with lutetium (Lu), and the composition formula is Lu 3 Al 5 O 12 . Therefore, the Ce concentration of LuAG: Ce is also defined in the same manner as above, and is expressed in the unit "at%".

蛍光体粒子16のCe濃度は、0.03at%以上0.60at%以下である。このように、Ce濃度が小さい蛍光体を用いることで、蛍光体で生じる熱の発生ポイントを分散させ、蛍光変換時に生じる熱の密度を減らし放熱性を高めることが可能となり、蛍光体層全体の温度上昇を防ぐことができる。その結果、高いエネルギーを有するレーザ等による励起においても、蛍光体の発光性能が低下する温度まで到達しにくくなり、ハイパワーでも高い発光強度を維持することができる。また、蛍光体粒子16のCe濃度は、0.12at%以上であることが好ましい。これにより、Ce濃度が小さすぎないため、発光効率の低下を抑制できる。 The Ce concentration of the phosphor particles 16 is 0.03 at% or more and 0.60 at% or less. In this way, by using a phosphor having a low Ce concentration, it is possible to disperse the heat generation points generated by the phosphor, reduce the heat density generated during fluorescence conversion, and improve the heat dissipation property of the entire phosphor layer. It is possible to prevent the temperature from rising. As a result, even when excited by a laser or the like having high energy, it becomes difficult to reach a temperature at which the emission performance of the phosphor deteriorates, and high emission intensity can be maintained even at high power. The Ce concentration of the phosphor particles 16 is preferably 0.12 at% or more. As a result, since the Ce concentration is not too small, it is possible to suppress a decrease in luminous efficiency.

蛍光体粒子のCe濃度は、ICPまたはXRFで分析することができる。いずれの方法においても、Ce濃度が既知の蛍光体を検量線として使用することで行なう。Ce濃度は、複数回の分析値の平均値として求めてもよい。 The Ce concentration of the phosphor particles can be analyzed by ICP or XRF. In either method, a phosphor having a known Ce concentration is used as a calibration curve. The Ce concentration may be obtained as an average value of a plurality of analysis values.

蛍光体粒子16は、光源光(励起光)を吸収して、変換光を放射する。YAG:Ceは、光源光(励起光)を吸収して、黄色の変換光を放射する。LuAG:Ceは、光源光(励起光)を吸収して、緑色の変換光を放射する。例えば、光源光が青色または紫色であるときは、光源光と変換光を合わせて、白色の放射光を放射することができる。 The phosphor particles 16 absorb the light source light (excitation light) and emit the converted light. YAG: Ce absorbs the light source light (excitation light) and emits yellow conversion light. LuAG: Ce absorbs the light source light (excitation light) and emits green conversion light. For example, when the light source light is blue or purple, the light source light and the converted light can be combined to emit white synchrotron radiation.

蛍光体粒子16の平均粒子径は、1μm以上30μm以下であり、5μm以上20μm以下であることが好ましい。1μm以上なので、変換光の発光強度が大きくなり、ひいては波長変換部材10の発光強度が大きくなるからである。また、30μm以下なので、個々の蛍光体粒子16の温度を低く維持でき、温度消光を抑制できる。なお、本明細書において平均粒子径とは、メジアン径(D50)であるか、または、SEM画像の解析で得られた粒子における平均粒子径である。メジアン径(D50)である平均粒子径は、レーザ回折/散乱式粒子径分布測定装置の乾式測定または湿式測定を用いて計測することができる。また、SEM画像の解析で得られた粒子における平均粒子径は、蛍光体層14の平面方向と垂直な方向における断面について、例えば、1000倍にて断面のSEM画像の取得を行ない、得られたSEM画像に対して、2値化などの画像解析を行ない、画像から蛍光体粒子16と認められる100個以上の粒子の断面積を算出し、その累積分布から平均粒子径を求めることができる。画像から蛍光体粒子と認められる100個以上の粒子の断面積を算出するときに用いる画像は、蛍光体層14に含まれる蛍光体粒子16について全体的な平均粒子径となるように、蛍光体層14における複数個所の断面画像(例えば3枚以上)を取得することとする。 The average particle size of the phosphor particles 16 is 1 μm or more and 30 μm or less, and preferably 5 μm or more and 20 μm or less. This is because the emission intensity of the converted light is increased because it is 1 μm or more, and the emission intensity of the wavelength conversion member 10 is increased. Further, since it is 30 μm or less, the temperature of each phosphor particle 16 can be kept low, and temperature quenching can be suppressed. In the present specification, the average particle size is the median size (D50) or the average particle size of the particles obtained by analyzing the SEM image. The average particle size, which is the median size (D50), can be measured by using a dry measurement or a wet measurement of a laser diffraction / scattering type particle size distribution measuring device. Further, the average particle diameter of the particles obtained by the analysis of the SEM image was obtained by acquiring the SEM image of the cross section of the phosphor layer 14 in the direction perpendicular to the plane direction, for example, at a magnification of 1000 times. Image analysis such as binarization is performed on the SEM image, the cross-sectional area of 100 or more particles recognized as phosphor particles 16 can be calculated from the image, and the average particle diameter can be obtained from the cumulative distribution. The image used when calculating the cross-sectional area of 100 or more particles recognized as phosphor particles from the image is a phosphor so as to have an overall average particle diameter for the phosphor particles 16 contained in the phosphor layer 14. It is assumed that cross-sectional images (for example, three or more) of a plurality of locations on the layer 14 are acquired.

結合材20は、無機バインダが加水分解または酸化されて形成されたものであり、透光性を有する無機材料により構成されている。結合材20は、例えばシリカ(SiO)、リン酸アルミニウムで構成される。結合材20は無機材料からなるので、レーザダイオード等の高エネルギーの光が照射されても変質しない。また、結合材20は透光性を有するので、光源光や変換光を透過させることができる。無機バインダとしては、エチルシリケート、リン酸アルミニウム水溶液等を用いることができる。 The binder 20 is formed by hydrolyzing or oxidizing an inorganic binder, and is made of a translucent inorganic material. The binder 20 is composed of, for example, silica (SiO 2 ) and aluminum phosphate. Since the binder 20 is made of an inorganic material, it does not deteriorate even when irradiated with high-energy light such as a laser diode. Further, since the binder 20 has a translucent property, it can transmit the light source light and the converted light. As the inorganic binder, ethyl silicate, an aqueous solution of aluminum phosphate, or the like can be used.

なお、透光性を有する物質とは、0.5mmの対象物質に対して、可視光の波長領域(λ=380〜780nm)で光を垂直に入射したとき、反対側から抜けた光の放射束が入射光の80%を超える特性を有する物質をいう。 The translucent substance is the emission of light that escapes from the opposite side when light is vertically incident on a target substance of 0.5 mm in the wavelength region of visible light (λ = 380 to 780 nm). A substance whose bundle has a property of exceeding 80% of the incident light.

波長変換部材10は、光源と組み合わせることで、ハイパワーでも高い発光強度を維持できるとともに、発光効率の低下を抑制できる発光装置を構成できる。特に、波長変換部材10は、蛍光体粒子16のCe濃度が低い所定の範囲にあり、蛍光体層14が放熱板として機能する基材12より薄く、蛍光体層14が無機材料からなるので、光源として高出力のレーザダイオードを用いることができ、高出力の発光装置を構成できる。 By combining the wavelength conversion member 10 with a light source, it is possible to form a light emitting device capable of maintaining high light emission intensity even at high power and suppressing a decrease in light emission efficiency. In particular, the wavelength conversion member 10 is in a predetermined range in which the Ce concentration of the phosphor particles 16 is low, the phosphor layer 14 is thinner than the base material 12 that functions as a heat dissipation plate, and the phosphor layer 14 is made of an inorganic material. A high-power laser diode can be used as a light source, and a high-power light emitting device can be configured.

[発光装置の構成]
図2の(a)、(b)はそれぞれ、本発明の透過型および反射型の発光装置を表す模式図である。透過型の発光装置30は、光源50と透過型の波長変換部材10を備える。反射型の発光装置40は、光源50と反射型の波長変換部材10を備える。光源50は、特定範囲の波長の光源光を発生させるLED、レーザダイオードなどを用いることができる。波長変換部材10はハイパワーでも高い発光強度を維持できるので、光源50はレーザダイオードであることが好ましい。
[Configuration of light emitting device]
(A) and (b) of FIG. 2 are schematic views showing a transmission type and a reflection type light emitting device of the present invention, respectively. The transmission type light emitting device 30 includes a light source 50 and a transmission type wavelength conversion member 10. The reflection type light emitting device 40 includes a light source 50 and a reflection type wavelength conversion member 10. As the light source 50, an LED, a laser diode, or the like that generates light source light having a wavelength in a specific range can be used. Since the wavelength conversion member 10 can maintain high emission intensity even at high power, the light source 50 is preferably a laser diode.

[波長変換部材の製造方法]
波長変換部材の製造方法の一例を説明する。図3は、本発明の波長変換部材の製造方法を示すフローチャートである。最初に印刷用ペーストを作製する。まず、所定のCe濃度および平均粒子径を有する蛍光体粒子を準備する(ステップS1)。蛍光体粒子は、YAG:CeまたはLuAG:Ceのいずれか一方である。
[Manufacturing method of wavelength conversion member]
An example of a method for manufacturing a wavelength conversion member will be described. FIG. 3 is a flowchart showing a method for manufacturing the wavelength conversion member of the present invention. First, a printing paste is prepared. First, phosphor particles having a predetermined Ce concentration and average particle size are prepared (step S1). The phosphor particles are either YAG: Ce or LuAG: Ce.

次に、準備した蛍光体粒子を秤量し、溶剤に分散させ、無機バインダと混合し、印刷用ペーストを作製する(ステップS2)。混合にはボールミル等を用いることができる。溶剤は、α−テルピネオール、ブタノール、イソホロン、グリセリン等の高沸点溶剤を用いることができる。 Next, the prepared phosphor particles are weighed, dispersed in a solvent, and mixed with an inorganic binder to prepare a printing paste (step S2). A ball mill or the like can be used for mixing. As the solvent, a high boiling point solvent such as α-terpineol, butanol, isophorone, and glycerin can be used.

また、無機バインダは、エチルシリケート等の有機シリケートであることが好ましい。有機シリケートを用いることで蛍光体粒子が印刷用ペースト全体に分散し、適切な粘度の印刷用ペーストを作製することができる。例えば、無機バインダとしてエチルシリケートを用いるときは、水および触媒の質量に対して、エチルシリケートを70wt%以上100wt%以下、好ましくは80wt%以上90wt%以下の質量とする。その他、無機バインダは、加水分解あるいは酸化により酸化ケイ素となる酸化ケイ素前駆体、ケイ酸化合物、シリカ、およびアモルファスシリカからなる群のうちの少なくとも1種を含む原料を、常温で反応させるか、または、500℃以下の温度で熱処理することにより得られたものであってもよい。酸化ケイ素前駆体としては、例えば、ペルヒドロポリシラザン、エチルシリケート、メチルシリケートを主成分としたものが挙げられる。 Further, the inorganic binder is preferably an organic silicate such as ethyl silicate. By using the organic silicate, the phosphor particles are dispersed in the entire printing paste, and a printing paste having an appropriate viscosity can be prepared. For example, when ethyl silicate is used as the inorganic binder, the mass of ethyl silicate is 70 wt% or more and 100 wt% or less, preferably 80 wt% or more and 90 wt% or less, based on the mass of water and the catalyst. In addition, the inorganic binder is prepared by reacting a raw material containing at least one of a group consisting of a silicon oxide precursor, a silicic acid compound, silica, and amorphous silica, which becomes silicon oxide by hydrolysis or oxidation, at room temperature. , It may be obtained by heat treatment at a temperature of 500 ° C. or lower. Examples of the silicon oxide precursor include those containing perhydropolysilazane, ethyl silicate, and methyl silicate as main components.

印刷用ペーストの作製後、基材上に印刷用ペーストを塗布してペースト層を形成する(ステップS3)。印刷用ペーストの塗布は、スクリーン印刷法、スプレー法、ディスペンサーによる描画法、インクジェット法を用いることができる。スクリーン印刷法を用いると、厚みの薄いペースト層を安定的に形成できるので好ましい。ペースト層の厚みは、焼成後に10μm以上200μm以下になるように調整することが好ましい。 After preparing the printing paste, the printing paste is applied onto the base material to form a paste layer (step S3). The printing paste can be applied by a screen printing method, a spray method, a drawing method using a dispenser, or an inkjet method. The screen printing method is preferable because a thin paste layer can be stably formed. The thickness of the paste layer is preferably adjusted to be 10 μm or more and 200 μm or less after firing.

そして、ペースト層を形成した基材を大気炉を用いて焼成し、蛍光体層を作製する(ステップS4)。焼成温度は、150℃以上500℃以下であることが好ましく、焼成時間は、0.5時間以上2.0時間以下であることが好ましい。また、昇温速度は、50℃/h以上200℃/h以下であることが好ましい。また、焼成前に乾燥工程を設けてもよい。 Then, the base material on which the paste layer is formed is fired in an atmospheric furnace to prepare a phosphor layer (step S4). The firing temperature is preferably 150 ° C. or higher and 500 ° C. or lower, and the firing time is preferably 0.5 hours or longer and 2.0 hours or lower. The rate of temperature rise is preferably 50 ° C./h or more and 200 ° C./h or less. Further, a drying step may be provided before firing.

このような製造工程により、蛍光体層全体に蛍光体粒子が均一に存在する波長変換部材を容易に製造できる。得られた波長変換部材は、ハイパワーでも高い発光強度を維持できるとともに、発光効率の低下を抑制できる。 By such a manufacturing process, a wavelength conversion member in which the phosphor particles are uniformly present in the entire phosphor layer can be easily manufactured. The obtained wavelength conversion member can maintain high emission intensity even at high power and can suppress a decrease in luminous efficiency.

[実施例]
(試料の作製方法)
平均粒径6μm、0.03at%〜0.90at%のCe濃度を有する蛍光体粒子(YAG:Ce粒子、およびLuAG:Ce粒子)を準備した。これらの蛍光体粒子を秤量し、α−テルピネオール(溶剤)を混合して分散材を作製し、エチルシリケート(無機バインダ)と混合して印刷用ペーストを作製した。
[Example]
(Sample preparation method)
Fluorescent particles (YAG: Ce particles and LuAG: Ce particles) having an average particle size of 6 μm and a Ce concentration of 0.03 at% to 0.90 at% were prepared. These phosphor particles were weighed and mixed with α-terpineol (solvent) to prepare a dispersant, and mixed with ethyl silicate (inorganic binder) to prepare a printing paste.

次に、スクリーン印刷法を用いて基材(サファイア基材またはアルミニウムに銀コートされたアルミニウム基材)に印刷用ペーストを焼成後に8〜220μmの厚みになるよう塗布した。塗布後に100℃で20分乾燥させた後、無機バインダで封孔処理をした。最後に大気炉を用いて150℃/hで350℃まで昇温し、30分焼成して試料が完成した。 Next, using a screen printing method, a printing paste was applied to a base material (sapphire base material or an aluminum base material coated with silver on aluminum) to a thickness of 8 to 220 μm after firing. After coating, it was dried at 100 ° C. for 20 minutes and then sealed with an inorganic binder. Finally, the temperature was raised to 350 ° C. at 150 ° C./h using an atmospheric furnace and calcined for 30 minutes to complete the sample.

上記試料のCe濃度は、ICPを用いて、Ce濃度が既知の蛍光体を検量線として使用し、行なった。また、蛍光体層の膜厚(厚み)は、各試料のSEM断面写真を1000倍の倍率で撮影し、等間隔で10本の垂線を引き、蛍光体層のトップ面から基材のトップ面までの距離を測定し、10本の線の平均長さから蛍光体層の膜厚を算出した。 The Ce concentration of the above sample was determined by using ICP and using a phosphor having a known Ce concentration as a calibration curve. For the film thickness (thickness) of the phosphor layer, an SEM cross-sectional photograph of each sample was taken at a magnification of 1000 times, 10 perpendicular lines were drawn at equal intervals, and the top surface of the phosphor layer to the top surface of the base material. The film thickness of the phosphor layer was calculated from the average length of the 10 lines.

(試料の評価方法)
完成した各試料に対して、最大24Wの入力となる複数のレーザによる励起で、反射型または透過型の発光強度試験を行なった。光源光の波長は445nm、集光レンズにより照射径は0.15mmに調整した。図4は、波長変換部材に対する発光強度試験のための透過型の評価システムを示す断面図である。図4に示すように、透過型の評価システム700は、光源710、平面凸レンズ720、両凸レンズ730、バンドパスフィルタ735、パワーメータ740で構成されている。波長変換部材10からの透過光を集光して測定できるように各要素が配置されている。
(Sample evaluation method)
Each completed sample was subjected to a reflective or transmissive emission intensity test by excitation with multiple lasers with a maximum input of 24 W. The wavelength of the light source light was adjusted to 445 nm, and the irradiation diameter was adjusted to 0.15 mm 2 by a condenser lens. FIG. 4 is a cross-sectional view showing a transmission type evaluation system for a emission intensity test on a wavelength conversion member. As shown in FIG. 4, the transmission type evaluation system 700 includes a light source 710, a planar convex lens 720, a biconvex lens 730, a bandpass filter 735, and a power meter 740. Each element is arranged so that the transmitted light from the wavelength conversion member 10 can be collected and measured.

バンドパスフィルタ735は、波長480nmを閾値として光をカットするフィルタであり、透過した光源光(吸収光)を測定する際には波長の大きい側をカットするフィルタが用いられる。また、変換光の発光強度を測定する際には波長の小さい側をカットするフィルタが用いられる。このように、透過した光源光を変換光と切り分けるために、両凸レンズとパワーメータの間に設置される。 The bandpass filter 735 is a filter that cuts light with a wavelength of 480 nm as a threshold, and when measuring transmitted light source light (absorbed light), a filter that cuts the side having a large wavelength is used. Further, when measuring the emission intensity of the converted light, a filter that cuts the side having a small wavelength is used. In this way, in order to separate the transmitted light source light from the converted light, it is installed between the biconvex lens and the power meter.

このように構成されたシステムにおいて、平面凸レンズ720に入った光源光は、波長変換部材の試料S上の焦点へ集光される。そして、試料Sから生じた放射光を両凸レンズ730で集光し、その集光された光についてバンドパスフィルタ735でカットした光の強度をパワーメータ740で測定する。この測定値を変換光の発光強度とする。レーザ光をレンズで集光し、照射面積を絞ることで、低出力のレーザでも単位面積あたりのエネルギー密度が上げられる。このエネルギー密度をレーザパワー密度とする。また、反射型の評価システムは、集光された光源光および変換光が試料の基材で反射される以外は、同様のシステムで評価することができる。 In the system configured in this way, the light source light entering the planar convex lens 720 is focused on the focal point on the sample S of the wavelength conversion member. Then, the synchrotron radiation generated from the sample S is collected by the biconvex lens 730, and the intensity of the collected light cut by the bandpass filter 735 is measured by the power meter 740. This measured value is taken as the emission intensity of the converted light. By condensing the laser light with a lens and narrowing the irradiation area, the energy density per unit area can be increased even with a low-power laser. This energy density is defined as the laser power density. Further, the reflection type evaluation system can be evaluated by the same system except that the focused light source light and the converted light are reflected by the base material of the sample.

図5および図6は、それぞれ反射型の試料1〜5および透過型の試料6〜10について、レーザパワー密度(レーザ入力)を横軸に取ったときの発光強度を表すグラフである。それぞれの試料について、上記の発光強度試験を行ない、ピーク時レーザ入力、ピーク時発光強度および3W時の発光強度を算出した。ピーク時レーザ入力は、レーザパワー密度(レーザ入力)を横軸に取ったときの発光強度が最大となるレーザ入力とした。ピーク時発光強度は、ピーク時レーザ入力に対する発光強度とした。また、ピーク時発光強度および3W時の発光強度は、反射型は試料1の波長変換部材の、透過型は試料6の波長変換部材の発光強度を100としたときの相対値で表した。また、図7は、試料の各種条件と、ピーク時レーザ入力、ピーク時発光強度および3W時の発光強度(発光効率)のそれぞれの結果を表す表である。試料11〜20についても上記と同様に各値を算出した。 5 and 6 are graphs showing the emission intensities of the reflective samples 1 to 5 and the transmissive samples 6 to 10 when the laser power density (laser input) is taken on the horizontal axis, respectively. The above emission intensity test was performed on each sample, and the peak laser input, peak emission intensity and 3W emission intensity were calculated. The peak laser input is a laser input that maximizes the emission intensity when the laser power density (laser input) is taken on the horizontal axis. The peak emission intensity was defined as the emission intensity with respect to the peak laser input. The peak emission intensity and the emission intensity at 3 W are represented by relative values when the emission intensity of the wavelength conversion member of the sample 1 is 100 for the reflection type and 100 is the emission intensity of the wavelength conversion member of the sample 6 for the transmission type. Further, FIG. 7 is a table showing various conditions of the sample and the results of the peak laser input, the peak emission intensity, and the emission intensity at 3 W (luminous efficiency). For samples 11 to 20, each value was calculated in the same manner as described above.

図5および図6のグラフを見てわかるとおり、Ce濃度の異なる試料毎に、レーザパワー密度が低い所定の範囲では、レーザパワー密度の増加に対して発光強度は直線的に増加していることが分かる。そのため、その範囲におけるグラフの傾きは、発光効率に対応していると考えることができる。そこで、グラフに示したすべての試料がいずれも直線的なグラフとなる3W時の発光強度を発光効率と見なすことにした。 As can be seen from the graphs of FIGS. 5 and 6, the emission intensity increases linearly with the increase of the laser power density in a predetermined range where the laser power density is low for each sample having a different Ce concentration. I understand. Therefore, it can be considered that the slope of the graph in that range corresponds to the luminous efficiency. Therefore, it was decided that the luminous intensity at 3 W, in which all the samples shown in the graph are linear graphs, is regarded as the luminous efficiency.

ピーク時レーザ入力は3Wより大きいものを、ピーク時発光強度は相対値が100より大きいものを合格として表中の○で表し、不合格のものを×で表した。また、3W時の発光強度(発光効率)は、相対値が35以上であることが好ましく、40以上であることがより好ましい。これは、発光効率が小さいと、蛍光体粒子に吸収されずに透過または反射する光源光の割合が増加するため、この割合が過剰になると透過または反射して放射される光源光を制御する必要がでてくるからである。そのため、40以上のものを○で表し、40未満のものを△で表した。 The peak laser input was larger than 3 W, the peak emission intensity was higher than 100 as a pass, and the one that failed was indicated by x. Further, the light emission intensity (luminous efficiency) at 3 W preferably has a relative value of 35 or more, and more preferably 40 or more. This is because if the luminous efficiency is low, the proportion of light source light that is transmitted or reflected without being absorbed by the phosphor particles increases, so if this proportion is excessive, it is necessary to control the light source light that is transmitted or reflected and emitted. Because it comes out. Therefore, those having 40 or more are represented by ◯, and those having less than 40 are represented by Δ.

試料1〜5は、反射型の波長変換部材で、蛍光体粒子としてYAG:Ce粒子を用いて、基材の厚みおよび蛍光体層の厚み(膜厚)を一定にして、Ce濃度を変化させた試料である。試料1は、Ce濃度が高いので、蛍光体層内での熱の分散が効率よく行なえず、3Wと低い入力で温度消光した。そのため、高エネルギー励起源を用いることができない。試料2〜4は、適正範囲のCe濃度なので、蛍光体層内での熱の分散性が向上し、ピーク時レーザ入力およびピーク時発光強度は向上した。また、発光効率の相対値も反射型の基準となる試料1に対して40以上をキープした。試料5は、Ce濃度が低かったため、ピーク時レーザ入力およびピーク時発光強度は向上したが、発光効率の相対値は40を下回った。 Samples 1 to 5 are reflective wavelength conversion members, and YAG: Ce particles are used as phosphor particles to keep the thickness of the base material and the thickness (thickness) of the phosphor layer constant and change the Ce concentration. This is a sample. Since the sample 1 had a high Ce concentration, heat could not be efficiently dispersed in the phosphor layer, and the temperature was quenched with a low input of 3 W. Therefore, a high energy excitation source cannot be used. Since the samples 2 to 4 had a Ce concentration in an appropriate range, the heat dispersibility in the phosphor layer was improved, and the peak laser input and the peak emission intensity were improved. In addition, the relative value of the luminous efficiency was kept at 40 or more with respect to the sample 1 which is the reference of the reflection type. In Sample 5, since the Ce concentration was low, the peak laser input and the peak emission intensity were improved, but the relative value of the luminous efficiency was less than 40.

試料6〜10は、透過型の波長変換部材で、蛍光体粒子としてYAG:Ce粒子を用いて、基材の厚みおよび蛍光体層の膜厚を一定にして、Ce濃度を変化させた試料である。試料6は、Ce濃度が高いので、蛍光体層内での熱の分散が効率よく行なえず、3Wで温度消光した。そのため、高エネルギー励起源を用いることができない。試料7〜9は、適正範囲のCe濃度なので、蛍光体層内での熱の分散性が向上し、ピーク時レーザ入力およびピーク時発光強度は向上した。また、発光効率の相対値も透過型の基準となる試料6に対して40以上をキープした。試料10は、Ce濃度が低かったため、ピーク時レーザ入力およびピーク時発光強度は向上したが、発光効率の相対値は35を下回ってしまった。透過型の試料10の方が反射型の試料5よりも発光効率の相対値が低くなった理由として、反射型の場合、最初に蛍光体粒子に吸収されなかった光源光が反射して戻る際に、蛍光体粒子に吸収されることがあるためと考えられる。 Samples 6 to 10 are transmission-type wavelength conversion members, in which YAG: Ce particles are used as phosphor particles, the thickness of the base material and the thickness of the phosphor layer are kept constant, and the Ce concentration is changed. is there. Since the sample 6 had a high Ce concentration, heat could not be efficiently dispersed in the phosphor layer, and the temperature was extinguished at 3 W. Therefore, a high energy excitation source cannot be used. Since the samples 7 to 9 had a Ce concentration in an appropriate range, the heat dispersibility in the phosphor layer was improved, and the peak laser input and the peak emission intensity were improved. In addition, the relative value of the luminous efficiency was kept at 40 or more with respect to the sample 6 which is the reference of the transmission type. Since the Ce concentration of sample 10 was low, the peak laser input and the peak emission intensity were improved, but the relative value of the luminous efficiency was less than 35. The reason why the transmission type sample 10 has a lower relative value of luminous efficiency than the reflection type sample 5 is that in the case of the reflection type, when the light source light that was not first absorbed by the phosphor particles is reflected and returned. This is probably because it may be absorbed by the phosphor particles.

試料11、12および13、14は、それぞれ透過型の波長変換部材で、蛍光体粒子としてYAG:Ce粒子を用いて、基材の厚みおよびCe濃度を一定にして、蛍光体層の膜厚を変化させた試料である。試料11は、膜厚が薄いため、発光効率が低下した。これは、膜厚が薄すぎると、発光に寄与する蛍光体が減少するためと考えられる。試料14は、基材の厚みに対して膜厚が4分の1以上あるため、ピーク時レーザ入力が低下した。これは、蛍光体層が厚くなり過ぎたことにより、蛍光体層の厚みに対する基材の厚みの割合が不足してしまい、蛍光体層内の熱が効率よく基材によって放熱されなかったためと考えられる。 Samples 11, 12, 13 and 14 are transmission type wavelength conversion members, respectively, and use YAG: Ce particles as phosphor particles to keep the thickness of the base material and the Ce concentration constant and to increase the thickness of the phosphor layer. It is a changed sample. Since the sample 11 has a thin film thickness, the luminous efficiency is lowered. It is considered that this is because if the film thickness is too thin, the amount of phosphor that contributes to light emission decreases. Since the film thickness of the sample 14 is one-fourth or more of the thickness of the base material, the peak laser input is reduced. It is considered that this is because the ratio of the thickness of the base material to the thickness of the phosphor layer became insufficient because the phosphor layer became too thick, and the heat in the phosphor layer was not efficiently dissipated by the base material. Be done.

試料15、16は、反射型の波長変換部材で、蛍光体粒子としてYAG:Ce粒子を用いて、Ce濃度を一定にして、試料1〜5と比べて基材の厚みを厚くした上で、蛍光体層の膜厚を変化させた試料である。試料15は、蛍光体層の膜厚および基材の厚みと蛍光体層の膜厚の比が適正範囲であるため、結果はいずれも基準を満たした。試料16は、基材の厚みと蛍光体層の膜厚の比は適正範囲であるが、蛍光体層の膜厚が厚すぎたため、ピーク時レーザ入力およびピーク時発光強度は基準を満たさなかった。これは、膜厚が厚すぎると、Ce濃度の変更による蛍光体層内での熱の分散の効果を超える熱が発生し、蛍光体層自身の放熱性が低下し、蛍光体層に熱がこもるためと考えられる。 Samples 15 and 16 are reflective wavelength conversion members, and YAG: Ce particles are used as phosphor particles, the Ce concentration is kept constant, and the thickness of the base material is made thicker than that of Samples 1 to 5. This is a sample in which the film thickness of the phosphor layer is changed. In Sample 15, the film thickness of the phosphor layer and the ratio of the thickness of the base material to the film thickness of the phosphor layer were within an appropriate range, and all the results satisfied the criteria. In sample 16, the ratio of the thickness of the base material to the film thickness of the phosphor layer was within an appropriate range, but the film thickness of the phosphor layer was too thick, so that the peak laser input and the peak emission intensity did not meet the criteria. .. This is because if the film thickness is too thick, heat that exceeds the effect of heat dispersion in the phosphor layer due to the change in Ce concentration is generated, the heat dissipation of the phosphor layer itself is lowered, and heat is generated in the phosphor layer. It is thought that it is for muffled.

試料17〜20は、反射型の波長変換部材で、蛍光体粒子としてLuAG:Ce粒子を用いて、基材の厚みおよび蛍光体層の膜厚を一定にして、Ce濃度を変化させた試料である。LuAG:Ce粒子を用いても、YAG:Ce粒子を用いたときと同様に、適正範囲のCe濃度のときに、蛍光体層内での熱の分散性が向上し、ピーク時レーザ入力およびピーク時発光強度は向上した。また、発光効率の相対値も反射型の基準となる試料1に対して40以上をキープした。 Samples 17 to 20 are reflective wavelength conversion members, in which LuAG: Ce particles are used as phosphor particles, the thickness of the base material and the film thickness of the phosphor layer are kept constant, and the Ce concentration is changed. is there. Even when LuAG: Ce particles are used, the heat dispersibility in the phosphor layer is improved at a Ce concentration in an appropriate range, as in the case where YAG: Ce particles are used, and the peak laser input and peak are used. The emission intensity at the time was improved. In addition, the relative value of the luminous efficiency was kept at 40 or more with respect to the sample 1 which is the reference of the reflection type.

以上の結果によって、本発明の波長変換部材は、ハイパワーの用途において温度消光による性能低下が発生しにくく、少ないエネルギーで多くの発光量を得ることができることがわかった。 From the above results, it was found that the wavelength conversion member of the present invention is less likely to cause performance deterioration due to temperature quenching in high power applications, and can obtain a large amount of light emission with a small amount of energy.

10 波長変換部材
12 基材
14 蛍光体層
16 蛍光体粒子
20 結合材
30 透過型の発光装置
40 反射型の発光装置
50 光源
700 評価システム
710 光源
720 平面凸レンズ
730 両凸レンズ
735 バンドパスフィルタ
740 パワーメータ
S 試料
10 Wavelength conversion member 12 Base material 14 Fluorescent material layer 16 Fluorescent material 20 Bonding material 30 Transmission type light emitting device 40 Reflective type light emitting device 50 Light source 700 Evaluation system 710 Light source 720 Planar convex lens 730 Biconvex lens 735 Band pass filter 740 Power meter S sample

Claims (5)

基材と前記基材上に設けられた蛍光体層とを備える特定範囲の波長の光を他の波長の光に変換する波長変換部材であって、
前記基材は、サファイアまたはアルミニウムで形成され、
前記蛍光体層の厚みは200μm以下かつ前記蛍光体層の積層方向の前記基材の厚みの4分の1以下であり、
前記蛍光体層は、透光性の無機材料と前記無機材料と結合された蛍光体粒子とで形成さ
れ、
前記蛍光体粒子の材料は、YAG:CeまたはLuAG:Ceのいずれか一方であり、
前記蛍光体粒子のCe濃度は、0.03at%以上0.60at%以下であることを特徴とする波長変換部材。
A wavelength conversion member comprising a base material and a phosphor layer provided on the base material and converting light having a wavelength in a specific range into light having another wavelength.
The substrate is made of sapphire or aluminum
The thickness of the phosphor layer is 200 μm or less and one-fourth or less of the thickness of the base material in the stacking direction of the phosphor layer.
The phosphor layer is formed of a translucent inorganic material and phosphor particles bonded to the inorganic material.
The material of the phosphor particles is either YAG: Ce or LuAG: Ce.
A wavelength conversion member characterized in that the Ce concentration of the phosphor particles is 0.03 at% or more and 0.60 at% or less.
前記蛍光体層の厚みは、10μm以上であり、
前記蛍光体粒子のCe濃度は、0.12at%以上であることを特徴とする請求項1記載の波長変換部材。
The thickness of the phosphor layer is 10 μm or more, and the thickness is 10 μm or more.
The wavelength conversion member according to claim 1, wherein the Ce concentration of the phosphor particles is 0.12 at% or more.
前記無機材料は、前記蛍光体粒子同士および前記蛍光体粒子と前記基材とを固定することを特徴とする請求項1または請求項2記載の波長変換部材。The wavelength conversion member according to claim 1 or 2, wherein the inorganic material fixes the fluorescent particles to each other and the fluorescent particles to the base material. 前記無機材料は、シリカまたはリン酸アルミニウムであることを特徴とする請求項1から請求項3の何れかに記載の波長変換部材。The wavelength conversion member according to any one of claims 1 to 3, wherein the inorganic material is silica or aluminum phosphate. 特定範囲の波長の光源光を発生させる光源を備える発光装置であって、
前記光源光を吸収し、他の波長の光に変換し発光する請求項1から請求項4のいずれかに記載の波長変換部材と、を備えることを特徴とする発光装置。
A light emitting device provided with a light source that generates light from a light source having a specific wavelength range.
A light emitting device comprising the wavelength conversion member according to any one of claims 1 to 4, which absorbs the light source light, converts it into light of another wavelength, and emits light.
JP2017154471A 2017-08-09 2017-08-09 Wavelength conversion member and light emitting device Active JP6853140B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017154471A JP6853140B2 (en) 2017-08-09 2017-08-09 Wavelength conversion member and light emitting device
PCT/JP2018/018835 WO2019031016A1 (en) 2017-08-09 2018-05-16 Wavelength conversion member and light-emitting device
TW107127131A TWI760541B (en) 2017-08-09 2018-08-03 Wavelength conversion member and light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017154471A JP6853140B2 (en) 2017-08-09 2017-08-09 Wavelength conversion member and light emitting device

Publications (2)

Publication Number Publication Date
JP2019032472A JP2019032472A (en) 2019-02-28
JP6853140B2 true JP6853140B2 (en) 2021-03-31

Family

ID=65272229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017154471A Active JP6853140B2 (en) 2017-08-09 2017-08-09 Wavelength conversion member and light emitting device

Country Status (3)

Country Link
JP (1) JP6853140B2 (en)
TW (1) TWI760541B (en)
WO (1) WO2019031016A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023229022A1 (en) * 2022-05-27 2023-11-30 パナソニックIpマネジメント株式会社 Fluorescent body device and light source module

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003243727A (en) * 2001-12-14 2003-08-29 Nichia Chem Ind Ltd Light emitting apparatus
CN100566490C (en) * 2005-03-14 2009-12-02 皇家飞利浦电子股份有限公司 Phosphor in the polycrystalline ceramic structure and the light-emitting component that comprises this phosphor
US7879258B2 (en) * 2005-03-14 2011-02-01 Koninklijke Philips Electronics N.V. Phosphor in polycrystalline ceramic structure and a light-emitting element comprising same
EP2531571A1 (en) * 2010-02-04 2012-12-12 Nitto Denko Corporation Light emissive ceramic laminate and method of making same
JP2011216543A (en) * 2010-03-31 2011-10-27 Ube Industries Ltd Light emitting diode, substrate for light emitting diode used therein, and method of manufacturing the same
KR101843760B1 (en) * 2010-12-01 2018-05-14 닛토 덴코 가부시키가이샤 Emissive ceramic materials having a dopant concentration gradient and methods of making and using the same
CN103270138B (en) * 2010-12-16 2015-04-29 宇部兴产株式会社 Ceramic composite for photoconversion, method for producing same, and light-emitting device comprising same
JP2013056999A (en) * 2011-09-08 2013-03-28 Covalent Materials Corp Ceramic composite

Also Published As

Publication number Publication date
WO2019031016A1 (en) 2019-02-14
JP2019032472A (en) 2019-02-28
TW201921042A (en) 2019-06-01
TWI760541B (en) 2022-04-11

Similar Documents

Publication Publication Date Title
WO2017169117A1 (en) Wavelength conversion member, manufacturing method therefor, and light-emitting device
JP6524474B2 (en) Wavelength conversion member and light emitting device
KR102470285B1 (en) Optical wavelength conversion device and optical composite device
JP6917244B2 (en) Phosphor wheels, wheel devices and projectors
TWI657602B (en) Wavelength conversion member, manufacturing method thereof, and light emitting device
JP6516271B2 (en) Wavelength conversion member and light emitting device
JP2012074273A (en) Light source device and lighting system
JP7019496B2 (en) Wavelength conversion member and its manufacturing method
JP6853140B2 (en) Wavelength conversion member and light emitting device
JP7188893B2 (en) Optical wavelength conversion member and optical wavelength conversion device
CN110291430B (en) Wavelength conversion member
JP6990065B2 (en) Wavelength conversion member, its manufacturing method and light emitting device
JP6934316B2 (en) Wavelength conversion member
JP6902373B2 (en) Wavelength conversion member and its manufacturing method
JP6775429B2 (en) Manufacturing method of wavelength conversion member
JP2021103247A (en) Wavelength conversion member and light-emitting device
JP2021099415A (en) Wavelength conversion member and light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210311

R150 Certificate of patent or registration of utility model

Ref document number: 6853140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250