JP6852497B2 - Gas detector and gas detector - Google Patents

Gas detector and gas detector Download PDF

Info

Publication number
JP6852497B2
JP6852497B2 JP2017058319A JP2017058319A JP6852497B2 JP 6852497 B2 JP6852497 B2 JP 6852497B2 JP 2017058319 A JP2017058319 A JP 2017058319A JP 2017058319 A JP2017058319 A JP 2017058319A JP 6852497 B2 JP6852497 B2 JP 6852497B2
Authority
JP
Japan
Prior art keywords
metal complex
gas detection
same manner
gas
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017058319A
Other languages
Japanese (ja)
Other versions
JP2018159681A (en
Inventor
友彦 加藤
友彦 加藤
貴之 丸山
貴之 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2017058319A priority Critical patent/JP6852497B2/en
Publication of JP2018159681A publication Critical patent/JP2018159681A/en
Application granted granted Critical
Publication of JP6852497B2 publication Critical patent/JP6852497B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

本発明は、簡易的に感度良くピラジン類化合物を検出することが可能なガス検知材およびガス検知器に関する。 The present invention relates to a gas detector and a gas detector capable of easily and sensitively detecting pyrazine compounds.

ピラジン類化合物は食品の加熱調理の際にメイラード反応により生成し、特に低級アルキルピラジンはローストのような香気に重要な寄与していることが知られている。また、メトキシピラジンなどはある種のワインに含まれていることが知られている。したがって、食品やワインなどの製造においては、その呈味性、香気性を的確に評価し、その結果に基づいて各工程を管理することが重要である。従来、製造工程における味やにおいに対する品質管理は、人間の感覚に頼る官能試験を中心にし、糖度や透視度等を測定するといった評価法で行われている。しかし、近年品質については厳しい要求がなされるようになっており、従来のような評価法では十分な品質管理を行うことが困難であるため、ピラジン類化合物などの香気成分を評価することにより、各工程の品質を管理することが試みられている。 It is known that pyrazine compounds are produced by the Maillard reaction during cooking of foods, and in particular, lower alkylpyrazines make an important contribution to aroma such as roast. It is also known that methoxypyrazines and the like are contained in certain wines. Therefore, in the production of foods and wines, it is important to accurately evaluate the taste and aroma and control each process based on the results. Conventionally, quality control for taste and odor in the manufacturing process has been performed by an evaluation method such as measuring sugar content, transparency, etc., centering on a sensory test that relies on human senses. However, in recent years, strict quality requirements have been made, and it is difficult to perform sufficient quality control with conventional evaluation methods. Therefore, by evaluating aroma components such as pyrazine compounds, it is possible to evaluate them. Attempts have been made to control the quality of each process.

ピラジン類化合物の検出方法としては、特許文献1に記載されている半導体センサを用いる方法や特許文献2に記載されているガスクロマトグラフ質量分析法を用いる方法があるが、大型分析設備やガスの抽出・捕集作業などが必要となり、簡易的に測定することが出来ないという課題がある。 As a method for detecting pyrazine compounds, there are a method using a semiconductor sensor described in Patent Document 1 and a method using a gas chromatograph mass spectrometry method described in Patent Document 2, but large-scale analytical equipment and gas extraction -There is a problem that it is not possible to measure easily because collection work is required.

特開平6−34592号公報Japanese Unexamined Patent Publication No. 6-34592 特開2016−198092号公報Japanese Unexamined Patent Publication No. 2016-198092

本発明は、上記問題点に鑑みてなされたものであって、従来よりも簡易的に感度良くピラジン類化合物を検出することが可能なガス検知材およびガス検知器を提供することを目的としている。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a gas detector and a gas detector capable of detecting pyrazine compounds more easily and sensitively than before. ..

本発明者らは鋭意検討し、一般式(1)で表される金属錯体を用いることにより、上記目的を達成することができることを見出し、本発明に至った。
M1 [Ni1−yM2(CN)]・zHO ・・・(1)
(M1= Fe、Co、0.9≦x≦1.1、M2=Pd、Pt、0≦y<0.15、2.2≦z<4.4)
The present inventors have diligently studied and found that the above object can be achieved by using the metal complex represented by the general formula (1), and have reached the present invention.
M1 x [Ni 1-y M2 y (CN) 4 ] ・ zH 2 O ・ ・ ・ (1)
(M1 = Fe, Co, 0.9 ≦ x ≦ 1.1, M2 = Pd, Pt, 0 ≦ y <0.15, 2.2 ≦ z <4.4)

すなわち、本発明によれば、以下のものが提供される。
(1)一般式(1)で表される金属錯体を用いたことを特徴とするガス検知材。
(2)Cu−Kαを線源とする粉末X線回折測定によって得られる回折パターンにおいて、10°< 2 θ <45 °の範囲に少なくとも2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークが最も強い積分強度を示す金属錯体を用いたことを特徴とする請求項1記載のガス検知材。
(3)(1)または(2)に記載のガス検知材を用いることを特徴とするガス検知器。
That is, according to the present invention, the following are provided.
(1) A gas detection material characterized by using a metal complex represented by the general formula (1).
(2) In the diffraction pattern obtained by powder X-ray diffraction measurement using Cu-Kα as a radiation source, at least 2θ = 19.3 to 21 ° and 30.2 to 31. In the range of 10 ° <2θ <45 °. The gas detection material according to claim 1, wherein a metal complex having a diffraction peak at 2 ° and having a diffraction peak at 2θ = 19.3 to 21 ° showing the strongest integrated intensity is used.
(3) A gas detector using the gas detection material according to (1) or (2).

本発明により、従来よりも簡易的に感度良くピラジン類化合物を検出することが可能なガス検知材およびガス検知器を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a gas detector and a gas detector capable of detecting pyrazine compounds more easily and sensitively than before.

実施例1で得た金属錯体の粉末X線回折パターン図。The powder X-ray diffraction pattern figure of the metal complex obtained in Example 1. FIG. 実施例7で得た金属錯体の粉末X線回折パターン図。The powder X-ray diffraction pattern figure of the metal complex obtained in Example 7. FIG. 比較例1で得た金属錯体の粉末X線回折パターン図。The powder X-ray diffraction pattern figure of the metal complex obtained in the comparative example 1. FIG. 比較例2で得た金属錯体の粉末X線回折パターン図。The powder X-ray diffraction pattern figure of the metal complex obtained in the comparative example 2. FIG.

本発明を実施するための形態(実施形態)につき、図面を参照しながら詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。 An embodiment (embodiment) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited to the contents described in the following embodiments.

本実施形態の金属錯体は、式(1)で表される。
M1 [Ni1−yM2(CN)]・zHO ・・・(1)
(M1= Fe、Co、0.9≦x≦1.1、M2=Pd、Pt、0≦y<0.15、2.2≦z<4.4)
The metal complex of this embodiment is represented by the formula (1).
M1 x [Ni 1-y M2 y (CN) 4 ] ・ zH 2 O ・ ・ ・ (1)
(M1 = Fe, Co, 0.9 ≦ x ≦ 1.1, M2 = Pd, Pt, 0 ≦ y <0.15, 2.2 ≦ z <4.4)

本実施形態の金属錯体は、鉄イオン又はコバルトイオンもしくはその両方に、テトラシアノニッケル酸イオンと水が規則的に並んだ構造であることにより、容易に水とピラジン類化合物が置換することが可能となり感度が良くなると考えられる。また、ニッケルの一部がパラジウムおよび白金の少なくとも1つで置換されていてもよい。 The metal complex of the present embodiment has a structure in which tetracyanonickate ions and water are regularly arranged in iron ions and / or cobalt ions, so that water and pyrazine compounds can be easily replaced. It is thought that the sensitivity will improve. Further, a part of nickel may be replaced with at least one of palladium and platinum.

図1に示すように、本実施形態の金属錯体はCu−Kαを線源とする粉末X線回折測定によって得られる回折パターンにおいて、10°<2θ<45 °の範囲に少なくとも2θ=19.3〜21°および30.2〜31.2°に回折ピークを有している。2θ=19.3〜21°の回折ピークは、ピラジン類化合物の吸着に関して影響の大きい結晶面であると推察され、2θ=19.3〜21°の回折ピークが最も強い積分強度を示す場合、より容易に水とピラジン類化合物が置換することが可能となりより感度が良くなると考えられる。 As shown in FIG. 1, the metal complex of the present embodiment has a diffraction pattern obtained by powder X-ray diffraction measurement using Cu—Kα as a radiation source, and has at least 2θ = 19.3 in the range of 10 ° <2θ <45 °. It has diffraction peaks at ~ 21 ° and 30.2-31.2 °. When the diffraction peak of 2θ = 19.3 to 21 ° is presumed to be a crystal plane having a large influence on the adsorption of pyrazine compounds, and the diffraction peak of 2θ = 19.3 to 21 ° shows the strongest integrated intensity, It is considered that water can be replaced with pyrazine compounds more easily and the sensitivity will be improved.

粉末X線回折測定については以下の通り行う。測定試料はサンプルホルダーの凹部に金属錯体粒子をふりかけ投入し、余分な試料を取り除くことでサンプルホルダー表面と試料測定面との高さを合わることにより作製する。測定試料を株式会社リガク社製「UltimaIV」X線回折装置に設置し、以下の測定条件にて、2θ=10°から45°の範囲を測定し、2θ=19.3〜21°および30.2〜31.2°の回折ピークの有無と最も強い積分強度を示す回折ピークを求める。
測定条件
Filter: Ni
ターゲット:Cu Kα 1.54060Å
X線出力設定:45kV−40mA
スリット:発散1/2°、散乱1/2°、受光0.15mm
走査速度:4°/min
サンプリング幅:0.02°
The powder X-ray diffraction measurement is performed as follows. The measurement sample is prepared by sprinkling metal complex particles into the recesses of the sample holder and removing excess samples to match the heights of the sample holder surface and the sample measurement surface. The measurement sample was installed in an "Integral IV" X-ray diffractometer manufactured by Rigaku Co., Ltd., and the range of 2θ = 10 ° to 45 ° was measured under the following measurement conditions, and 2θ = 19.3 to 21 ° and 30. The presence or absence of a diffraction peak of 2 to 31.2 ° and the diffraction peak showing the strongest integrated intensity are obtained.
Measurement conditions Filter: Ni
Target: Cu Kα 1.54060 Å
X-ray output setting: 45kV-40mA
Slit: divergence 1/2 °, scattering 1/2 °, light receiving 0.15 mm
Scanning speed: 4 ° / min
Sampling width: 0.02 °

本実施形態の金属錯体の組成については、ICP発光分光分析、炭素硫黄分析および酸素窒素水素分析などを用いることにより確認することができる。 The composition of the metal complex of the present embodiment can be confirmed by using ICP emission spectroscopic analysis, carbon sulfur analysis, oxygen nitrogen hydrogen analysis and the like.

本実施形態の金属錯体に含まれるHOの量については、昇温させた際に発生するガスの質量数をダブルショットパイロライザーを備えたガスクロマトグラフ質量分析計などを用いて確認し、さらに熱重量分析を用いて重量減少量を確認することにより、求めることができる。 Regarding the amount of H 2 O contained in the metal complex of the present embodiment, the mass number of the gas generated when the temperature is raised is confirmed by using a gas chromatograph mass spectrometer equipped with a double shot pyrolyzer, and further. It can be determined by confirming the amount of weight loss using thermogravimetric analysis.

本実施形態の金属錯体の製造方法は、第一に二価の鉄塩やコバルト塩と、酸化防止剤と、テトラシアノニッケル酸塩、テトラシアノパラジウム酸塩およびテトラシアノ白金酸塩とを適当な溶媒中で反応させ、析出した沈殿物を濾過し、水やエタノールなどによる洗浄後、オーブン等により乾燥することで金属錯体を得ることができる。 In the method for producing a metal complex of the present embodiment, first, a divalent iron salt or cobalt salt, an antioxidant, and a tetracyanonickate, a tetracyanopallastate, and a tetracyanoplatinate are used as appropriate solvents. A metal complex can be obtained by reacting in a medium, filtering the precipitated precipitate, washing with water, ethanol, or the like, and then drying with an oven or the like.

二価の鉄塩としては、硫酸第二鉄・七水和物、硫酸アンモニウム鉄・六水和物などを用いることができる。二価のコバルト塩としては、硫酸コバルト・七水和物、硫酸アンモニウムコバルト・六水和物などを用いることができる。酸化防止剤としては、L−アスコルビン酸などを用いることができる。テトラシアノニッケル酸塩としては、テトラシアノニッケル酸カリウム・水和物などを用いることができる。テトラシアノパラジウム酸塩としては、テトラシアノパラジウム酸カリウム・水和物などを用いることができる。テトラシアノ白金酸塩としては、テトラシアノ白金酸カリウム・水和物などを用いることができる。 As the divalent iron salt, ferric sulfate / heptahydrate, ammonium iron sulfate / hexahydrate and the like can be used. As the divalent cobalt salt, cobalt sulfate / heptahydrate, ammonium cobalt sulfate / hexahydrate and the like can be used. As the antioxidant, L-ascorbic acid or the like can be used. As the tetracyanonickate, potassium tetracyanonickate, hydrate or the like can be used. As the tetracyanopalladium salt, potassium tetracyanopalladium acid, hydrate or the like can be used. As the tetracyanoplatinate, potassium tetracyanoplatinate, hydrate or the like can be used.

溶媒としては、メタノール、エタノール、プロパノールおよび水などや、またはこれらの混合溶媒などを使用することができる。 As the solvent, methanol, ethanol, propanol, water and the like, or a mixed solvent thereof and the like can be used.

溶媒中での反応時の温度は、オイルバス等を用いて反応容器を加熱することにより任意に調整することができる。 The temperature during the reaction in the solvent can be arbitrarily adjusted by heating the reaction vessel using an oil bath or the like.

本実施形態の金属錯体は、ピラジン類化合物の揮発成分を吸着して乳白色から橙色に変色する特徴を利用して、ピラジン類化合物の揮発成分に対するガス検知材として用いることができる。 The metal complex of the present embodiment can be used as a gas detection material for the volatile components of the pyrazine compounds by utilizing the characteristic of adsorbing the volatile components of the pyrazine compounds and changing the color from milky white to orange.

本実施形態のガス検知器は、バインダーなどを用いてガス検知材粉末を固めた成型体状、ガス検知材粉末を支持体に担持させたシート状、ガス検知材粉末をガラス管に封入した検知管状などが考えられるがこれらに限定されない。 The gas detector of the present embodiment is a molded body in which the gas detection material powder is hardened using a binder or the like, a sheet shape in which the gas detection material powder is supported on a support, and a detection in which the gas detection material powder is sealed in a glass tube. Tubular and the like can be considered, but the present invention is not limited to these.

本実施形態のガス検知器は、ガス検知材のピラジン類化合物の揮発成分を吸着して乳白色から橙色に変色する特徴を利用して、ピラジン類化合物の揮発成分に対するガス検知器として用いることができる。 The gas detector of the present embodiment can be used as a gas detector for the volatile components of the pyrazine compounds by utilizing the feature of adsorbing the volatile components of the pyrazine compounds of the gas detection material and changing the color from milky white to orange. ..

ガス検知感度に関しては、ガス検知材粉末100mgもしくはガス検知器とピラジン類化合物100mgを一緒にシャーレに入れ、蓋をした後、25℃に設定した恒温層の中に設置し、乳白色の金属錯体粉末が色見本の橙色(マンセル表色系によるマンセル値5YR6.5/13)に変わるまでの時間を確認することで評価することができる。 Regarding the gas detection sensitivity, 100 mg of gas detector powder or 100 mg of gas detector and pyrazine compounds were put together in a chalet, covered, and then placed in a constant temperature layer set at 25 ° C., and a milky white metal complex powder. Can be evaluated by confirming the time until the color changes to orange (Munsell value 5YR6.5 / 13 according to the Munsell color system) of the color sample.

本実施形態のガス検知材およびガス検知器を用いることにより、簡易的に感度良くピラジン類化合物を検出することができる。 By using the gas detector and the gas detector of the present embodiment, the pyrazine compounds can be easily and sensitively detected.

以下本発明をさらに詳細な実施例に基づき説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described based on more detailed examples, but the present invention is not limited to these examples.

<実施例1>
(金属錯体の製造)
硫酸アンモニウム鉄(II)・六水和物0.48g、L−アスコルビン酸0.2gおよびテトラシアノニッケル(II)酸カリウム・一水和物0.30gを三角フラスコに取り、蒸留水およびエタノールの混合溶媒480mLを加えて、25℃のオイルバス中で撹拌した。沈殿した粒子を濾過により回収し、水およびエタノールで洗浄した。ろ紙上の粒子を回収し、50℃のオーブンで1時間乾燥させることにより、乳白色の金属錯体が得られた。
<Example 1>
(Manufacturing of metal complex)
Take 0.48 g of ammonium iron (II) sulfate / hexahydrate, 0.2 g of L-ascorbic acid and 0.30 g of potassium tetracyanonick (II) acid / monohydrate in an Erlenmeyer flask, and mix distilled water and ethanol. 480 mL of solvent was added and stirred in an oil bath at 25 ° C. The precipitated particles were collected by filtration and washed with water and ethanol. The particles on the filter paper were collected and dried in an oven at 50 ° C. for 1 hour to obtain a milky white metal complex.

得られた金属錯体について、前述の方法により組成分析を行った。また、発生ガス分析により200℃まで昇温させた時のガス成分を確認したところ、ごくわずかにエタノールが検出された以外はHOが検出され、さらに熱重量分析による200℃までの重量減少量より、金属錯体に含まれるHO量を求めた。得られた金属錯体の組成はFe[Ni(CN)]・3.1HOであった。 The composition of the obtained metal complex was analyzed by the above-mentioned method. As a result of observation of the gas components when the temperature was raised to 200 ° C. The evolved gas analysis, except that only slightly ethanol was detected is detected H 2 O, further weight reduction of up to 200 ° C. by thermal gravimetric analysis than the amount was determined of H 2 O content in the metal complex. The composition of the obtained metal complex was Fe [Ni (CN) 4 ] · 3.1H 2 O.

得られた金属錯体について、前述の方法により測定した粉末X線回折パターン(図1)を確認したところ、2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークが最も強い積分強度を示した。 When the powder X-ray diffraction pattern (FIG. 1) measured by the above method was confirmed for the obtained metal complex, it had diffraction peaks at 2θ = 19.3 to 21 ° and 30.2 to 31.2 °. The diffraction peak at 2θ = 19.3 to 21 ° showed the strongest integrated intensity.

(ガス検知感度の評価)
実施例1の金属錯体について、前述の方法によりピラジンのガス検知感度の評価を行った結果、約7分後に橙色の色見本とほぼ同等の色となり、実施例1の金属錯体はピラジンを感度良く検知するガス検知材として利用することが可能であることが分かった。
(Evaluation of gas detection sensitivity)
As a result of evaluating the gas detection sensitivity of pyrazine by the above-mentioned method for the metal complex of Example 1, the color became almost the same as that of the orange color sample after about 7 minutes, and the metal complex of Example 1 made pyrazine highly sensitive. It was found that it can be used as a gas detection material for detection.

(ガス検知器の作製)
実施例1の金属錯体粉末50mgを純水50mlに分散させた金属錯体分散液に、支持体としてロールペーパーを浸し、2分間静置後分散液から取り出し、50℃のオーブンで1時間乾燥させることにより、ガス検知器を作製した。
(Manufacturing of gas detector)
A roll paper is dipped as a support in a metal complex dispersion in which 50 mg of the metal complex powder of Example 1 is dispersed in 50 ml of pure water, allowed to stand for 2 minutes, removed from the dispersion, and dried in an oven at 50 ° C. for 1 hour. To produce a gas detector.

(ガス検知感度の評価)
作製したガス検知器について、前述の方法によりピラジンのガス検知感度の評価を行った結果、約6分30秒後に橙色の色見本とほぼ同等の色となり、ピラジンを感度良く検知することが可能であることが分かった。
(Evaluation of gas detection sensitivity)
As a result of evaluating the gas detection sensitivity of pyrazine by the above-mentioned method for the produced gas detector, the color became almost the same as the orange color sample after about 6 minutes and 30 seconds, and it was possible to detect pyrazine with high sensitivity. It turned out that there was.

(その他のピラジン類化合物の検知)
ピラジンの替わりに、メチルピラジン、エチルピラジン、フルオロピラジンおよびシアノピリジンについて前述の方法で色調変化を確認したところ、橙色に変化することを確認した。またピラジンの替わりに、シアノピラジンおよびビピリジルについて前述の方法で色調変化を確認したところ、赤色に変化することを確認した。さらに、ピラジンの替わりに、トリアジンについて前述の方法で色調変化を確認したところ、黄色に変化することを確認した。
<実施例2>
(Detection of other pyrazine compounds)
When the color change of methylpyrazine, ethylpyrazine, fluoropyrazine and cyanopyridine was confirmed by the above-mentioned method instead of pyrazine, it was confirmed that the color changed to orange. When the color change of cyanopyrazine and bipyridyl was confirmed by the above-mentioned method instead of pyrazine, it was confirmed that the color changed to red. Furthermore, when the color change of triazine was confirmed by the above-mentioned method instead of pyrazine, it was confirmed that the color changed to yellow.
<Example 2>

回収したろ紙上の粒子を45℃のオーブンで1時間乾燥させたこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めた結果を表1に示す。実施例1と同様にして測定した粉末X線回折パターンを確認したところ、2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークが最も強い積分強度を示した。 A metal complex was prepared in the same manner as in Example 1 except that the particles on the collected filter paper were dried in an oven at 45 ° C. for 1 hour. Table 1 shows the results of determining the composition of the metal complex in the same manner as in Example 1. When the powder X-ray diffraction pattern measured in the same manner as in Example 1 was confirmed, it had diffraction peaks at 2θ = 19.3 to 21 ° and 30.2 to 31.2 °, and 2θ = 19.3 to 21. The ° diffraction peak showed the strongest integrated intensity.

(ガス検知感度の評価)
実施例2で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約7分30秒後に橙色の色見本とほぼ同等の色となり、実施例2の金属錯体はピラジンを感度良く検知するガス検知材として利用することが可能であることが分かった。
<実施例3>
(Evaluation of gas detection sensitivity)
When the gas detection sensitivity was evaluated in the same manner as in Example 1 using the metal complex prepared in Example 2, the color became almost the same as the orange color sample after about 7 minutes and 30 seconds, and the metal of Example 2 was obtained. It was found that the complex can be used as a gas detection material for detecting pyrazine with high sensitivity.
<Example 3>

回収したろ紙上の粒子を50℃のオーブンで3時間乾燥させたこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めた結果を表1に示す。実施例1と同様にして測定した粉末X線回折パターンを確認したところ、2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークが最も強い積分強度を示した。 A metal complex was prepared in the same manner as in Example 1 except that the particles on the collected filter paper were dried in an oven at 50 ° C. for 3 hours. Table 1 shows the results of determining the composition of the metal complex in the same manner as in Example 1. When the powder X-ray diffraction pattern measured in the same manner as in Example 1 was confirmed, it had diffraction peaks at 2θ = 19.3 to 21 ° and 30.2 to 31.2 °, and 2θ = 19.3 to 21. The ° diffraction peak showed the strongest integrated intensity.

(ガス検知感度の評価)
実施例3で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約7分後に橙色の色見本とほぼ同等の色となり、実施例3の金属錯体はピラジンを感度良く検知するガス検知材として利用することが可能であることが分かった。
<実施例4>
(Evaluation of gas detection sensitivity)
When the gas detection sensitivity was evaluated in the same manner as in Example 1 using the metal complex prepared in Example 3, the color became almost the same as the orange color sample after about 7 minutes, and the metal complex in Example 3 was found. It was found that it can be used as a gas detection material that detects pyrazine with high sensitivity.
<Example 4>

回収したろ紙上の粒子を55℃のオーブンで3時間乾燥させたこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めた結果を表1に示す。実施例1と同様にして測定した粉末X線回折パターンを確認したところ、2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークが最も強い積分強度を示した。 A metal complex was prepared in the same manner as in Example 1 except that the particles on the collected filter paper were dried in an oven at 55 ° C. for 3 hours. Table 1 shows the results of determining the composition of the metal complex in the same manner as in Example 1. When the powder X-ray diffraction pattern measured in the same manner as in Example 1 was confirmed, it had diffraction peaks at 2θ = 19.3 to 21 ° and 30.2 to 31.2 °, and 2θ = 19.3 to 21. The ° diffraction peak showed the strongest integrated intensity.

(ガス検知感度の評価)
実施例4で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約7分30秒後に橙色の色見本とほぼ同等の色となり、実施例4の金属錯体はピラジンを感度良く検知するガス検知材として利用することが可能であることが分かった。
<実施例5>
(Evaluation of gas detection sensitivity)
When the gas detection sensitivity was evaluated in the same manner as in Example 1 using the metal complex prepared in Example 4, the color became almost the same as the orange color sample after about 7 minutes and 30 seconds, and the metal of Example 4 was obtained. It was found that the complex can be used as a gas detection material for detecting pyrazine with high sensitivity.
<Example 5>

硫酸アンモニウム鉄・六水和物0.45g投入したこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めた結果を表1に示す。実施例1と同様にして測定した粉末X線回折パターンを確認したところ、2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークが最も強い積分強度を示した。 A metal complex was prepared in the same manner as in Example 1 except that 0.45 g of ammonium iron sulfate hexahydrate was added. Table 1 shows the results of determining the composition of the metal complex in the same manner as in Example 1. When the powder X-ray diffraction pattern measured in the same manner as in Example 1 was confirmed, it had diffraction peaks at 2θ = 19.3 to 21 ° and 30.2 to 31.2 °, and 2θ = 19.3 to 21. The ° diffraction peak showed the strongest integrated intensity.

(ガス検知感度の評価)
実施例5で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約7分30秒後に橙色の色見本とほぼ同等の色となり、実施例5の金属錯体はピラジンを感度良く検知するガス検知材として利用することが可能であることが分かった。
<実施例6>
(Evaluation of gas detection sensitivity)
When the gas detection sensitivity was evaluated in the same manner as in Example 1 using the metal complex prepared in Example 5, the color became almost the same as the orange color sample after about 7 minutes and 30 seconds, and the metal of Example 5 was obtained. It was found that the complex can be used as a gas detection material for detecting pyrazine with high sensitivity.
<Example 6>

硫酸アンモニウム鉄・六水和物0.51g投入したこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めた結果を表1に示す。実施例1と同様にして測定した粉末X線回折パターンを確認したところ、2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークが最も強い積分強度を示した。 A metal complex was prepared in the same manner as in Example 1 except that 0.51 g of ammonium iron sulfate hexahydrate was added. Table 1 shows the results of determining the composition of the metal complex in the same manner as in Example 1. When the powder X-ray diffraction pattern measured in the same manner as in Example 1 was confirmed, it had diffraction peaks at 2θ = 19.3 to 21 ° and 30.2 to 31.2 °, and 2θ = 19.3 to 21. The ° diffraction peak showed the strongest integrated intensity.

(ガス検知感度の評価)
実施例6で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約7分30秒後に橙色の色見本とほぼ同等の色となり、実施例6の金属錯体はピラジンを感度良く検知するガス検知材として利用することが可能であることが分かった。
<実施例7>
(Evaluation of gas detection sensitivity)
When the gas detection sensitivity was evaluated in the same manner as in Example 1 using the metal complex prepared in Example 6, the color became almost the same as the orange color sample after about 7 minutes and 30 seconds, and the metal of Example 6 was obtained. It was found that the complex can be used as a gas detection material for detecting pyrazine with high sensitivity.
<Example 7>

回収したろ紙上の粒子を35℃のオーブンで1時間乾燥させたこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めた結果を表1に示す。実施例1と同様にして測定した粉末X線回折パターンを確認したところ(図2)、2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークは5番目に強い積分強度を示した。 A metal complex was prepared in the same manner as in Example 1 except that the particles on the collected filter paper were dried in an oven at 35 ° C. for 1 hour. Table 1 shows the results of determining the composition of the metal complex in the same manner as in Example 1. When the powder X-ray diffraction pattern measured in the same manner as in Example 1 was confirmed (FIG. 2), it had diffraction peaks at 2θ = 19.3 to 21 ° and 30.2 to 31.2 °, and 2θ = 19 The diffraction peak of .3 to 21 ° showed the fifth strongest integrated intensity.

(ガス検知感度の評価)
実施例7で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約9分50秒後に橙色の色見本とほぼ同等の色となり、実施例7の金属錯体はピラジンを感度良く検知するガス検知材として利用することが可能であることが分かった。
<比較例1>
(Evaluation of gas detection sensitivity)
When the gas detection sensitivity was evaluated in the same manner as in Example 1 using the metal complex prepared in Example 7, the color became almost the same as the orange color sample after about 9 minutes and 50 seconds, and the metal of Example 7 was obtained. It was found that the complex can be used as a gas detection material for detecting pyrazine with high sensitivity.
<Comparative example 1>

三角フラスコに蒸留水およびエタノールの混合溶媒160mLを加えて、25℃のオイルバス中で撹拌し、回収したろ紙上の粒子を35℃のオーブンで1時間乾燥させたこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めたところFe[Ni(CN)]・6HOであった。実施例1と同様にして測定した粉末X線回折パターンを確認したところ(図3)、2θ=19.3〜21°および30.2〜31.2°に回折ピークは見られず、回折パターンのデータベースより(Fe(HO)(Ni(CN))・(HO)と一致することが分かった。 Except that 160 mL of a mixed solvent of distilled water and ethanol was added to the Erlenmeyer flask, the mixture was stirred in an oil bath at 25 ° C., and the particles on the collected filter paper were dried in an oven at 35 ° C. for 1 hour. A metal complex was prepared in the same manner. When the composition of the metal complex was determined in the same manner as in Example 1, it was Fe [Ni (CN) 4 ] · 6H 2 O. When the powder X-ray diffraction pattern measured in the same manner as in Example 1 was confirmed (FIG. 3), no diffraction peak was observed at 2θ = 19.3 to 21 ° and 30.2 to 31.2 °, and the diffraction pattern was observed. It was found from the database of (Fe (H 2 O) 2 (Ni (CN) 4 ) and (H 2 O) 4 ).

(ガス検知感度の評価)
比較例1で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約10分経過後に明瞭な色変化は確認できなかった。
<比較例2>
(Evaluation of gas detection sensitivity)
When the gas detection sensitivity was evaluated in the same manner as in Example 1 using the metal complex prepared in Comparative Example 1, no clear color change could be confirmed after about 10 minutes had passed.
<Comparative example 2>

75℃のオイルバス中で撹拌し、回収したろ紙上の粒子を35℃のオーブンで1時間乾燥させたこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めたところFe0.667[Ni(CN)]・3HOであった。実施例1と同様にして測定した粉末X線回折パターンを確認したところ(図4)、2θ=19.3〜21°および30.2〜31.2°に回折ピークは見られず、回折パターンのデータベースよりNi(Fe(CN)0.667 ・(HO)と一致することが分かった。 A metal complex was prepared in the same manner as in Example 1 except that the particles on the collected filter paper were stirred in an oil bath at 75 ° C. and dried in an oven at 35 ° C. for 1 hour. When the composition of the metal complex was determined in the same manner as in Example 1, it was Fe 0.667 [Ni (CN) 4 ] · 3H 2 O. When the powder X-ray diffraction pattern measured in the same manner as in Example 1 was confirmed (FIG. 4), no diffraction peak was observed at 2θ = 19.3 to 21 ° and 30.2 to 31.2 °, and the diffraction pattern was observed. It was found that it matches Ni (Fe (CN) 6 ) 0.667 · (H 2 O) 3 from the database of.

(ガス検知感度の評価)
比較例2で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約10分経過後に明瞭な色変化は確認できなかった。
<比較例3>
(Evaluation of gas detection sensitivity)
When the gas detection sensitivity was evaluated in the same manner as in Example 1 using the metal complex prepared in Comparative Example 2, no clear color change could be confirmed after about 10 minutes had passed.
<Comparative example 3>

回収したろ紙上の粒子を30℃のオーブンで10分間乾燥させたこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めた結果を表1に示す。 A metal complex was prepared in the same manner as in Example 1 except that the particles on the collected filter paper were dried in an oven at 30 ° C. for 10 minutes. Table 1 shows the results of determining the composition of the metal complex in the same manner as in Example 1.

(ガス検知感度の評価)
比較例3で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約10分経過後に明瞭な色変化は確認できなかった。
<比較例4>
(Evaluation of gas detection sensitivity)
When the gas detection sensitivity was evaluated in the same manner as in Example 1 using the metal complex prepared in Comparative Example 3, no clear color change could be confirmed after about 10 minutes had passed.
<Comparative example 4>

回収したろ紙上の粒子を80℃のオーブンで1時間間乾燥させたこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めた結果を表1に示す。 A metal complex was prepared in the same manner as in Example 1 except that the particles on the collected filter paper were dried in an oven at 80 ° C. for 1 hour. Table 1 shows the results of determining the composition of the metal complex in the same manner as in Example 1.

(ガス検知感度の評価)
比較例4で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約10分経過後に明瞭な色変化は確認できなかった。
(Evaluation of gas detection sensitivity)
When the gas detection sensitivity was evaluated in the same manner as in Example 1 using the metal complex prepared in Comparative Example 4, no clear color change could be confirmed after about 10 minutes had passed.

Figure 0006852497
<実施例8〜13および比較例5〜7>
Figure 0006852497
<Examples 8 to 13 and Comparative Examples 5 to 7>

表2記載の組成となるように硫酸アンモニウム鉄・六水和物、硫酸アンモニウムコバルト・六水和物、テトラシアノニッケル(II)酸カリウム・一水和物、テトラシアノパラジウム酸カリウム・水和物およびテトラシアノ白金酸カリウム・水和物を秤量した以外は、実施例1と同様にして金属錯体を作製した。 Ammonium iron sulfate hexahydrate, ammonium cobalt sulfate hexahydrate, potassium tetracyanonickel (II) acid monohydrate, potassium tetracyanoplatinate hydrate and tetracyano A metal complex was prepared in the same manner as in Example 1 except that potassium platinate and hydrate were weighed.

(ガス検知感度の評価)
実施例8〜13および比較例5〜7で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価を行ったところ、実施例8〜13の金属錯体では10分以内に橙色の色見本とほぼ同等の色となり、ピラジンを感度良く検知するガス検知材として利用することが可能であることが分かった。比較例5〜7で作製した金属錯体では約10分経過後に明瞭な色変化は確認できなかった。
(Evaluation of gas detection sensitivity)
When the gas detection sensitivity was evaluated in the same manner as in Example 1 using the metal complexes prepared in Examples 8 to 13 and Comparative Examples 5 to 7, the metal complexes of Examples 8 to 13 were orange within 10 minutes. The color was almost the same as that of the color sample, and it was found that it can be used as a gas detection material to detect pyrazine with high sensitivity. No clear color change could be confirmed after about 10 minutes in the metal complexes prepared in Comparative Examples 5 to 7.

Figure 0006852497
Figure 0006852497

以上の結果から、実施例のガス検知材および実施例の金属錯体を用いて作製したガス検知器は簡易的に感度良くピラジン類化合物を検出することが可能であることが分かった。 From the above results, it was found that the gas detector produced by using the gas detection material of the example and the metal complex of the example can easily and sensitively detect pyrazine compounds.

Claims (3)

一般式(1)で表される金属錯体を用いたことを特徴とする、ピラジン類化合物を検出するためのガス検知材。
M1x [Ni1−yM2y(CN)4]・zH2O ・・・(1)
(M1= Fe、Co、0.9≦x≦1.1、M2=Pd、Pt、0≦y<0.15、2.2≦z<4.4)
A gas detection material for detecting a pyrazine compound, which comprises using a metal complex represented by the general formula (1).
M1x [Ni1-yM2y (CN) 4] ・ zH2O ・ ・ ・ (1)
(M1 = Fe, Co, 0.9 ≦ x ≦ 1.1, M2 = Pd, Pt, 0 ≦ y <0.15, 2.2 ≦ z <4.4)
Cu−Kαを線源とする粉末X線回折測定によって得られる回折パターンにおいて、10°< 2 θ <45 °の範囲に少なくとも2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークが最も強い積分強度を示す前記金属錯体を用いたことを特徴とする請求項1記載のガス検知材。 In the diffraction pattern obtained by powder X-ray diffraction measurement using Cu-Kα as the radiation source, at least 2θ = 19.3 to 21 ° and 30.2 to 31.2 ° in the range of 10 ° <2θ <45 °. The gas detection material according to claim 1, wherein the metal complex having a diffraction peak and having a diffraction peak of 2θ = 19.3 to 21 ° showing the strongest integrated intensity is used. 請求項1または請求項2に記載のガス検知材を用いることを特徴とするガス検知器。 A gas detector using the gas detection material according to claim 1 or 2.
JP2017058319A 2017-03-24 2017-03-24 Gas detector and gas detector Active JP6852497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017058319A JP6852497B2 (en) 2017-03-24 2017-03-24 Gas detector and gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017058319A JP6852497B2 (en) 2017-03-24 2017-03-24 Gas detector and gas detector

Publications (2)

Publication Number Publication Date
JP2018159681A JP2018159681A (en) 2018-10-11
JP6852497B2 true JP6852497B2 (en) 2021-03-31

Family

ID=63796574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017058319A Active JP6852497B2 (en) 2017-03-24 2017-03-24 Gas detector and gas detector

Country Status (1)

Country Link
JP (1) JP6852497B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165958A (en) * 2019-03-26 2020-10-08 Tdk株式会社 Ammonia sensing material and ammonia detector
US20200309751A1 (en) * 2019-03-26 2020-10-01 Tdk Corporation Ammonia detection material and detector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0928966B1 (en) * 1998-01-09 2010-02-24 Spichiger-Keller, Dr., Ursula Reactands for the determination of amines by chemical sensors
JP4950927B2 (en) * 2008-03-31 2012-06-13 花王株式会社 Indicator substance for judgment of raw dry odor
JP2016223945A (en) * 2015-06-01 2016-12-28 Tdk株式会社 Gas detection device
JP6645308B2 (en) * 2016-03-28 2020-02-14 Tdk株式会社 Gas detection sheet and electrochemical element equipped with gas detection sheet
JP6982295B2 (en) * 2017-08-30 2021-12-17 国立研究開発法人産業技術総合研究所 Ammonia gas indicator

Also Published As

Publication number Publication date
JP2018159681A (en) 2018-10-11

Similar Documents

Publication Publication Date Title
You et al. A colorimetric sensor for the sequential detection of Cu 2+ and CN− in fully aqueous media: practical performance of Cu 2+
Divrikli et al. Preconcentration of Pb (II), Cr (III), Cu (II), Ni (II) and Cd (II) ions in environmental samples by membrane filtration prior to their flame atomic absorption spectrometric determinations
Yousefi et al. Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination
Ghaedi et al. The determination of some heavy metals in food samples by flame atomic absorption spectrometry after their separation-preconcentration on bis salicyl aldehyde, 1, 3 propan diimine (BSPDI) loaded on activated carbon
Liang et al. Dispersive liquid–liquid microextraction preconcentration of palladium in water samples and determination by graphite furnace atomic absorption spectrometry
Shenashen et al. Visual monitoring and removal of divalent copper, cadmium, and mercury ions from water by using mesoporous cubic Ia3d aluminosilica sensors
Sharma et al. An optimized procedure for preconcentration, determination and on-line recovery of palladium using highly selective diphenyldiketone-monothiosemicarbazone modified silica gel
Hajizadeh et al. Silver nanoparticles as a cyanide colorimetric sensor in aqueous media
Wu et al. A novel method for the determination of trace copper in cereals by dispersive liquid–liquid microextraction based on solidification of floating organic drop coupled with flame atomic absorption spectrometry
Khan et al. Sensitive and selective colorimetric detection of Pb2+ by silver nanoparticles synthesized from Aconitum violaceum plant leaf extract
Cook et al. Iron (ii) and cobalt (ii) complexes of tris-azinyl analogues of 2, 2′: 6′, 2′′-terpyridine
JP6852497B2 (en) Gas detector and gas detector
Çiftçi et al. Enrichment and determination of Ni2+ ions in water samples with a diamino-4-(4-nitro-phenylazo)-1H-pyrazole (PDANP) by using FAAS
Panjali et al. Development of a selective sorbent based on a magnetic ion imprinted polymer for the preconcentration and FAAS determination of urinary cadmium
Parvizi et al. Preconcentration and ultra-trace determination of hexavalent chromium ions using tailor-made polymer nanoparticles coupled with graphite furnace atomic absorption spectrometry: ultrasonic assisted-dispersive solid-phase extraction
Jin et al. A novel purine derivative‐based colorimetric chemosensor for sequential detection of copper ion and sulfide anion
Li et al. Highly selective fluorescent carbon dots probe for mercury (II) based on thymine–mercury (II)–thymine structure
Kamakura et al. Determination of Chromium (III), Chromium (VI), and Chromium (III) acetylacetonate in water by ion-exchange disk extraction/metal furnace atomic absorption spectrometry
Islam et al. A newly developed salicylanilide functionalized Amberlite XAD-16 chelating resin for use in preconcentration and determination of trace metal ions from environmental and biological samples
Ghaedi et al. Modification of platinum nanoparticles loaded on activated carbon and activated carbon with a new chelating agent for solid phase extraction of some metal ions
Čonková et al. Schiff base capped gold nanoparticles for transition metal cation sensing in organic media
Dobrowolski et al. Development of sensitive determination method for platinum in geological materials by carbon slurry sampling graphite furnace atomic absorption spectrometry
Salih et al. Matrix elimination method for the determination of precious metals in ores using electrothermal atomic absorption spectrometry
George et al. Schiff base functionalized 1, 2, 3-triazole derivative for Fe (III) ion recognition, as N, O, O-Fe-O, O, N sandwich complex: DFT analysis
Taher et al. Differential pulse polarographic determination of tin in alloys and environmental samples after preconcentration with the ion pair of 2-nitroso-1-naphthol-4-sulfonic acid and tetradecyldimethylbenzylammonium chloride onto microcrystalline naphthalene or by column method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R150 Certificate of patent or registration of utility model

Ref document number: 6852497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150