JP2018159681A - Gas detection material and gas detector - Google Patents

Gas detection material and gas detector Download PDF

Info

Publication number
JP2018159681A
JP2018159681A JP2017058319A JP2017058319A JP2018159681A JP 2018159681 A JP2018159681 A JP 2018159681A JP 2017058319 A JP2017058319 A JP 2017058319A JP 2017058319 A JP2017058319 A JP 2017058319A JP 2018159681 A JP2018159681 A JP 2018159681A
Authority
JP
Japan
Prior art keywords
metal complex
gas detection
gas
same manner
pyrazine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017058319A
Other languages
Japanese (ja)
Other versions
JP6852497B2 (en
Inventor
友彦 加藤
Tomohiko Kato
友彦 加藤
貴之 丸山
Takayuki Maruyama
貴之 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2017058319A priority Critical patent/JP6852497B2/en
Publication of JP2018159681A publication Critical patent/JP2018159681A/en
Application granted granted Critical
Publication of JP6852497B2 publication Critical patent/JP6852497B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas detection material and a gas detector that are capable of detecting pyrazine compounds simply and sensitively.SOLUTION: Use of a metal complex represented by general formula (1) defined by M1[NiM2(CN)].zHO (M1=Fe or Co; 0.9≤x≤1.1; M2=Pd or Pt; 0≤y<0.15; and 2.2≤z<4.4) can provide a gas detection material and a gas detector that are capable of detecting pyrazine compounds simply and sensitively.SELECTED DRAWING: Figure 1

Description

本発明は、簡易的に感度良くピラジン類化合物を検出することが可能なガス検知材およびガス検知器に関する。 The present invention relates to a gas detector and a gas detector capable of simply and easily detecting a pyrazine compound.

ピラジン類化合物は食品の加熱調理の際にメイラード反応により生成し、特に低級アルキルピラジンはローストのような香気に重要な寄与していることが知られている。また、メトキシピラジンなどはある種のワインに含まれていることが知られている。したがって、食品やワインなどの製造においては、その呈味性、香気性を的確に評価し、その結果に基づいて各工程を管理することが重要である。従来、製造工程における味やにおいに対する品質管理は、人間の感覚に頼る官能試験を中心にし、糖度や透視度等を測定するといった評価法で行われている。しかし、近年品質については厳しい要求がなされるようになっており、従来のような評価法では十分な品質管理を行うことが困難であるため、ピラジン類化合物などの香気成分を評価することにより、各工程の品質を管理することが試みられている。 It is known that pyrazine compounds are produced by Maillard reaction during cooking of foods, and in particular, lower alkyl pyrazines make an important contribution to aroma such as roast. In addition, it is known that methoxypyrazine and the like are contained in certain types of wine. Therefore, in the production of food, wine, etc., it is important to accurately evaluate the taste and aroma and manage each process based on the results. Conventionally, quality control for taste and odor in the manufacturing process has been performed by an evaluation method such as measuring sugar content, transparency, etc. with a focus on sensory tests that rely on human senses. However, in recent years, strict requirements for quality have been made, and it is difficult to perform sufficient quality control with conventional evaluation methods, so by evaluating aroma components such as pyrazine compounds, Attempts have been made to control the quality of each process.

ピラジン類化合物の検出方法としては、特許文献1に記載されている半導体センサを用いる方法や特許文献2に記載されているガスクロマトグラフ質量分析法を用いる方法があるが、大型分析設備やガスの抽出・捕集作業などが必要となり、簡易的に測定することが出来ないという課題がある。 As a method for detecting a pyrazine compound, there are a method using a semiconductor sensor described in Patent Document 1 and a method using a gas chromatograph mass spectrometry described in Patent Document 2, but a large analytical facility and gas extraction are known. -There is a problem that it is impossible to measure easily because collection work is required.

特開平6−34592号公報JP-A-6-34592 特開2016−198092号公報JP 2006-198092 A

本発明は、上記問題点に鑑みてなされたものであって、従来よりも簡易的に感度良くピラジン類化合物を検出することが可能なガス検知材およびガス検知器を提供することを目的としている。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a gas detector and a gas detector capable of detecting a pyrazine compound more easily and with a higher sensitivity than before. .

本発明者らは鋭意検討し、一般式(1)で表される金属錯体を用いることにより、上記目的を達成することができることを見出し、本発明に至った。
M1 [Ni1−yM2(CN)]・zHO ・・・(1)
(M1= Fe、Co、0.9≦x≦1.1、M2=Pd、Pt、0≦y<0.15、2.2≦z<4.4)
The present inventors diligently studied and found that the above object can be achieved by using the metal complex represented by the general formula (1), and have reached the present invention.
M1 x [Ni 1-y M2 y (CN) 4] · zH 2 O ··· (1)
(M1 = Fe, Co, 0.9 ≦ x ≦ 1.1, M2 = Pd, Pt, 0 ≦ y <0.15, 2.2 ≦ z <4.4)

すなわち、本発明によれば、以下のものが提供される。
(1)一般式(1)で表される金属錯体を用いたことを特徴とするガス検知材。
(2)Cu−Kαを線源とする粉末X線回折測定によって得られる回折パターンにおいて、10°< 2 θ <45 °の範囲に少なくとも2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークが最も強い積分強度を示す金属錯体を用いたことを特徴とする請求項1記載のガス検知材。
(3)(1)または(2)に記載のガス検知材を用いることを特徴とするガス検知器。
That is, according to the present invention, the following is provided.
(1) A gas detection material using a metal complex represented by the general formula (1).
(2) In a diffraction pattern obtained by powder X-ray diffraction measurement using Cu—Kα as a radiation source, at least 2θ = 19.3 to 21 ° and 30.2 to 31.10 in the range of 10 ° <2θ <45 °. 2. The gas detection material according to claim 1, wherein a metal complex having a diffraction peak at 2 [deg.] And a diffraction peak at 2 [theta] = 19.3-21 [deg.] Exhibiting the strongest integrated intensity is used.
(3) A gas detector using the gas detector according to (1) or (2).

本発明により、従来よりも簡易的に感度良くピラジン類化合物を検出することが可能なガス検知材およびガス検知器を提供することができる。 According to the present invention, it is possible to provide a gas detector and a gas detector capable of detecting a pyrazine compound more easily and with a higher sensitivity than before.

実施例1で得た金属錯体の粉末X線回折パターン図。3 is a powder X-ray diffraction pattern of the metal complex obtained in Example 1. FIG. 実施例7で得た金属錯体の粉末X線回折パターン図。The powder X-ray-diffraction pattern figure of the metal complex obtained in Example 7. FIG. 比較例1で得た金属錯体の粉末X線回折パターン図。The powder X-ray-diffraction pattern figure of the metal complex obtained by the comparative example 1. 比較例2で得た金属錯体の粉末X線回折パターン図。The powder X-ray-diffraction pattern figure of the metal complex obtained by the comparative example 2.

本発明を実施するための形態(実施形態)につき、図面を参照しながら詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。 DESCRIPTION OF EMBODIMENTS Embodiments (embodiments) for carrying out the present invention will be described in detail with reference to the drawings. The present invention is not limited by the contents described in the following embodiments.

本実施形態の金属錯体は、式(1)で表される。
M1 [Ni1−yM2(CN)]・zHO ・・・(1)
(M1= Fe、Co、0.9≦x≦1.1、M2=Pd、Pt、0≦y<0.15、2.2≦z<4.4)
The metal complex of this embodiment is represented by Formula (1).
M1 x [Ni 1-y M2 y (CN) 4] · zH 2 O ··· (1)
(M1 = Fe, Co, 0.9 ≦ x ≦ 1.1, M2 = Pd, Pt, 0 ≦ y <0.15, 2.2 ≦ z <4.4)

本実施形態の金属錯体は、鉄イオン又はコバルトイオンもしくはその両方に、テトラシアノニッケル酸イオンと水が規則的に並んだ構造であることにより、容易に水とピラジン類化合物が置換することが可能となり感度が良くなると考えられる。また、ニッケルの一部がパラジウムおよび白金の少なくとも1つで置換されていてもよい。 The metal complex of the present embodiment has a structure in which tetracyano nickelate ions and water are regularly arranged on iron ions or cobalt ions or both, so that water and pyrazine compounds can be easily substituted. It is considered that the sensitivity is improved. A part of nickel may be substituted with at least one of palladium and platinum.

図1に示すように、本実施形態の金属錯体はCu−Kαを線源とする粉末X線回折測定によって得られる回折パターンにおいて、10°<2θ<45 °の範囲に少なくとも2θ=19.3〜21°および30.2〜31.2°に回折ピークを有している。2θ=19.3〜21°の回折ピークは、ピラジン類化合物の吸着に関して影響の大きい結晶面であると推察され、2θ=19.3〜21°の回折ピークが最も強い積分強度を示す場合、より容易に水とピラジン類化合物が置換することが可能となりより感度が良くなると考えられる。 As shown in FIG. 1, the metal complex of the present embodiment has a diffraction pattern obtained by powder X-ray diffraction measurement using Cu—Kα as a radiation source, and at least 2θ = 19.3 in the range of 10 ° <2θ <45 °. It has diffraction peaks at ˜21 ° and 30.2-31.2 °. When the diffraction peak at 2θ = 19.3-21 ° is presumed to be a crystal plane having a large influence on the adsorption of the pyrazine compound, and when the diffraction peak at 2θ = 19.3-21 ° shows the strongest integrated intensity, It is considered that water and a pyrazine compound can be more easily replaced and sensitivity is improved.

粉末X線回折測定については以下の通り行う。測定試料はサンプルホルダーの凹部に金属錯体粒子をふりかけ投入し、余分な試料を取り除くことでサンプルホルダー表面と試料測定面との高さを合わることにより作製する。測定試料を株式会社リガク社製「UltimaIV」X線回折装置に設置し、以下の測定条件にて、2θ=10°から45°の範囲を測定し、2θ=19.3〜21°および30.2〜31.2°の回折ピークの有無と最も強い積分強度を示す回折ピークを求める。
測定条件
Filter: Ni
ターゲット:Cu Kα 1.54060Å
X線出力設定:45kV−40mA
スリット:発散1/2°、散乱1/2°、受光0.15mm
走査速度:4°/min
サンプリング幅:0.02°
The powder X-ray diffraction measurement is performed as follows. The measurement sample is prepared by sprinkling metal complex particles into the concave portion of the sample holder and removing the excess sample so that the heights of the sample holder surface and the sample measurement surface are matched. The measurement sample was placed in an “UltimaIV” X-ray diffractometer manufactured by Rigaku Corporation. Under the following measurement conditions, a range of 2θ = 10 ° to 45 ° was measured, and 2θ = 19.3-21 ° and 30.30. A diffraction peak showing the presence or absence of a diffraction peak at 2 to 31.2 ° and the strongest integrated intensity is obtained.
Measurement conditions Filter: Ni
Target: Cu Kα 1.54060Å
X-ray output setting: 45kV-40mA
Slit: Divergence 1/2 °, scattering 1/2 °, light receiving 0.15mm
Scanning speed: 4 ° / min
Sampling width: 0.02 °

本実施形態の金属錯体の組成については、ICP発光分光分析、炭素硫黄分析および酸素窒素水素分析などを用いることにより確認することができる。 The composition of the metal complex of the present embodiment can be confirmed by using ICP emission spectroscopic analysis, carbon sulfur analysis, oxygen nitrogen hydrogen analysis and the like.

本実施形態の金属錯体に含まれるHOの量については、昇温させた際に発生するガスの質量数をダブルショットパイロライザーを備えたガスクロマトグラフ質量分析計などを用いて確認し、さらに熱重量分析を用いて重量減少量を確認することにより、求めることができる。 About the amount of H 2 O contained in the metal complex of the present embodiment, the mass number of the gas generated when the temperature is raised is confirmed using a gas chromatograph mass spectrometer equipped with a double shot pyrolyzer, and the like. This can be determined by confirming the weight loss using thermogravimetric analysis.

本実施形態の金属錯体の製造方法は、第一に二価の鉄塩やコバルト塩と、酸化防止剤と、テトラシアノニッケル酸塩、テトラシアノパラジウム酸塩およびテトラシアノ白金酸塩とを適当な溶媒中で反応させ、析出した沈殿物を濾過し、水やエタノールなどによる洗浄後、オーブン等により乾燥することで金属錯体を得ることができる。 The method for producing a metal complex according to the present embodiment includes firstly divalent iron salt or cobalt salt, an antioxidant, tetracyanonickelate, tetracyanopalladate and tetracyanoplatinate. The metal complex can be obtained by reacting in the solution, filtering the deposited precipitate, washing with water or ethanol, and drying in an oven or the like.

二価の鉄塩としては、硫酸第二鉄・七水和物、硫酸アンモニウム鉄・六水和物などを用いることができる。二価のコバルト塩としては、硫酸コバルト・七水和物、硫酸アンモニウムコバルト・六水和物などを用いることができる。酸化防止剤としては、L−アスコルビン酸などを用いることができる。テトラシアノニッケル酸塩としては、テトラシアノニッケル酸カリウム・水和物などを用いることができる。テトラシアノパラジウム酸塩としては、テトラシアノパラジウム酸カリウム・水和物などを用いることができる。テトラシアノ白金酸塩としては、テトラシアノ白金酸カリウム・水和物などを用いることができる。 As the divalent iron salt, ferric sulfate, heptahydrate, ammonium iron sulfate, hexahydrate and the like can be used. Examples of the divalent cobalt salt include cobalt sulfate heptahydrate and ammonium cobalt sulfate hexahydrate. As the antioxidant, L-ascorbic acid or the like can be used. As tetracyano nickelate, potassium tetracyano nickelate / hydrate can be used. As the tetracyanopalladate, potassium tetracyanopalladate / hydrate can be used. As the tetracyanoplatinate, potassium tetracyanoplatinate and hydrate can be used.

溶媒としては、メタノール、エタノール、プロパノールおよび水などや、またはこれらの混合溶媒などを使用することができる。 As the solvent, methanol, ethanol, propanol, water, or a mixed solvent thereof can be used.

溶媒中での反応時の温度は、オイルバス等を用いて反応容器を加熱することにより任意に調整することができる。 The temperature during the reaction in the solvent can be arbitrarily adjusted by heating the reaction vessel using an oil bath or the like.

本実施形態の金属錯体は、ピラジン類化合物の揮発成分を吸着して乳白色から橙色に変色する特徴を利用して、ピラジン類化合物の揮発成分に対するガス検知材として用いることができる。 The metal complex of the present embodiment can be used as a gas detection material for the volatile component of the pyrazine compound by utilizing the feature that the volatile component of the pyrazine compound is adsorbed to change the color from milky white to orange.

本実施形態のガス検知器は、バインダーなどを用いてガス検知材粉末を固めた成型体状、ガス検知材粉末を支持体に担持させたシート状、ガス検知材粉末をガラス管に封入した検知管状などが考えられるがこれらに限定されない。 The gas detector of this embodiment is a molded body in which a gas detection material powder is hardened using a binder, a sheet shape in which the gas detection material powder is supported on a support, and a detection in which the gas detection material powder is enclosed in a glass tube. Although a tubular shape etc. can be considered, it is not limited to these.

本実施形態のガス検知器は、ガス検知材のピラジン類化合物の揮発成分を吸着して乳白色から橙色に変色する特徴を利用して、ピラジン類化合物の揮発成分に対するガス検知器として用いることができる。 The gas detector of the present embodiment can be used as a gas detector for a volatile component of a pyrazine compound by utilizing a feature that adsorbs a volatile component of a pyrazine compound of a gas detection material and changes its color from milky white to orange. .

ガス検知感度に関しては、ガス検知材粉末100mgもしくはガス検知器とピラジン類化合物100mgを一緒にシャーレに入れ、蓋をした後、25℃に設定した恒温層の中に設置し、乳白色の金属錯体粉末が色見本の橙色(マンセル表色系によるマンセル値5YR6.5/13)に変わるまでの時間を確認することで評価することができる。 Regarding gas detection sensitivity, 100 mg of gas detection material powder or 100 mg of gas detector and pyrazine compounds are put together in a petri dish, covered, placed in a constant temperature layer set at 25 ° C., and milky white metal complex powder. Can be evaluated by confirming the time until the color changes to orange (Munsell value 5YR6.5 / 13 by Munsell color system) of the color sample.

本実施形態のガス検知材およびガス検知器を用いることにより、簡易的に感度良くピラジン類化合物を検出することができる。 By using the gas detection material and the gas detector of the present embodiment, it is possible to easily detect the pyrazine compound with high sensitivity.

以下本発明をさらに詳細な実施例に基づき説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.

<実施例1>
(金属錯体の製造)
硫酸アンモニウム鉄(II)・六水和物0.48g、L−アスコルビン酸0.2gおよびテトラシアノニッケル(II)酸カリウム・一水和物0.30gを三角フラスコに取り、蒸留水およびエタノールの混合溶媒480mLを加えて、25℃のオイルバス中で撹拌した。沈殿した粒子を濾過により回収し、水およびエタノールで洗浄した。ろ紙上の粒子を回収し、50℃のオーブンで1時間乾燥させることにより、乳白色の金属錯体が得られた。
<Example 1>
(Production of metal complexes)
Take 0.48 g of ammonium iron (II) sulfate hexahydrate, 0.2 g of L-ascorbic acid and 0.30 g of potassium tetracyanonickel (II) monohydrate in an Erlenmeyer flask and mix with distilled water and ethanol 480 mL of solvent was added and stirred in an oil bath at 25 ° C. The precipitated particles were collected by filtration and washed with water and ethanol. The particles on the filter paper were collected and dried in an oven at 50 ° C. for 1 hour to obtain a milky white metal complex.

得られた金属錯体について、前述の方法により組成分析を行った。また、発生ガス分析により200℃まで昇温させた時のガス成分を確認したところ、ごくわずかにエタノールが検出された以外はHOが検出され、さらに熱重量分析による200℃までの重量減少量より、金属錯体に含まれるHO量を求めた。得られた金属錯体の組成はFe[Ni(CN)]・3.1HOであった。 About the obtained metal complex, the composition analysis was performed by the above-mentioned method. In addition, when the gas component was raised to 200 ° C. by the generated gas analysis, H 2 O was detected except for a very slight amount of ethanol, and the weight was reduced to 200 ° C. by thermogravimetric analysis. From the amount, the amount of H 2 O contained in the metal complex was determined. The composition of the obtained metal complex was Fe [Ni (CN) 4 ] · 3.1H 2 O.

得られた金属錯体について、前述の方法により測定した粉末X線回折パターン(図1)を確認したところ、2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークが最も強い積分強度を示した。 About the obtained metal complex, when the powder X-ray-diffraction pattern (FIG. 1) measured by the above-mentioned method was confirmed, it has a diffraction peak in 2 (theta) = 19.3-21 degree and 30.2-31.2 degree. The diffraction peak at 2θ = 19.3-21 ° showed the strongest integrated intensity.

(ガス検知感度の評価)
実施例1の金属錯体について、前述の方法によりピラジンのガス検知感度の評価を行った結果、約7分後に橙色の色見本とほぼ同等の色となり、実施例1の金属錯体はピラジンを感度良く検知するガス検知材として利用することが可能であることが分かった。
(Evaluation of gas detection sensitivity)
About the metal complex of Example 1, as a result of evaluating the gas detection sensitivity of pyrazine by the above-mentioned method, after about 7 minutes, it becomes a color almost equivalent to an orange color sample, and the metal complex of Example 1 has high sensitivity to pyrazine. It was found that it can be used as a gas detection material for detection.

(ガス検知器の作製)
実施例1の金属錯体粉末50mgを純水50mlに分散させた金属錯体分散液に、支持体としてロールペーパーを浸し、2分間静置後分散液から取り出し、50℃のオーブンで1時間乾燥させることにより、ガス検知器を作製した。
(Production of gas detector)
Roll paper as a support is immersed in a metal complex dispersion in which 50 mg of the metal complex powder of Example 1 is dispersed in 50 ml of pure water, left to stand for 2 minutes, taken out from the dispersion, and dried in an oven at 50 ° C. for 1 hour. Thus, a gas detector was produced.

(ガス検知感度の評価)
作製したガス検知器について、前述の方法によりピラジンのガス検知感度の評価を行った結果、約6分30秒後に橙色の色見本とほぼ同等の色となり、ピラジンを感度良く検知することが可能であることが分かった。
(Evaluation of gas detection sensitivity)
As a result of evaluating the gas detection sensitivity of pyrazine by the above-mentioned method for the prepared gas detector, after about 6 minutes and 30 seconds, it becomes almost the same color as the orange color sample, and it is possible to detect pyrazine with high sensitivity. I found out.

(その他のピラジン類化合物の検知)
ピラジンの替わりに、メチルピラジン、エチルピラジン、フルオロピラジンおよびシアノピリジンについて前述の方法で色調変化を確認したところ、橙色に変化することを確認した。またピラジンの替わりに、シアノピラジンおよびビピリジルについて前述の方法で色調変化を確認したところ、赤色に変化することを確認した。さらに、ピラジンの替わりに、トリアジンについて前述の方法で色調変化を確認したところ、黄色に変化することを確認した。
<実施例2>
(Detection of other pyrazine compounds)
When the color tone change was confirmed by the above-mentioned method about methylpyrazine, ethylpyrazine, fluoropyrazine, and cyanopyridine instead of pyrazine, it changed that it changed to orange. Moreover, when the color tone change was confirmed by the above-mentioned method about cyanopyrazine and bipyridyl instead of pyrazine, it confirmed that it changed to red. Furthermore, when the color tone change was confirmed by the above-mentioned method about triazine instead of pyrazine, it confirmed that it changed into yellow.
<Example 2>

回収したろ紙上の粒子を45℃のオーブンで1時間乾燥させたこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めた結果を表1に示す。実施例1と同様にして測定した粉末X線回折パターンを確認したところ、2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークが最も強い積分強度を示した。 A metal complex was produced in the same manner as in Example 1 except that the particles on the collected filter paper were dried in an oven at 45 ° C. for 1 hour. The results of determining the composition of the metal complex in the same manner as in Example 1 are shown in Table 1. When the powder X-ray diffraction pattern measured in the same manner as in Example 1 was confirmed, it had diffraction peaks at 2θ = 19.3-21 ° and 30.2-31.2 °, and 2θ = 19.3-21. The diffraction peak at ° showed the strongest integrated intensity.

(ガス検知感度の評価)
実施例2で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約7分30秒後に橙色の色見本とほぼ同等の色となり、実施例2の金属錯体はピラジンを感度良く検知するガス検知材として利用することが可能であることが分かった。
<実施例3>
(Evaluation of gas detection sensitivity)
When the gas detection sensitivity was evaluated in the same manner as in Example 1 using the metal complex prepared in Example 2, the color was almost the same as that of the orange color sample after about 7 minutes and 30 seconds. It was found that the complex can be used as a gas detection material for detecting pyrazine with high sensitivity.
<Example 3>

回収したろ紙上の粒子を50℃のオーブンで3時間乾燥させたこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めた結果を表1に示す。実施例1と同様にして測定した粉末X線回折パターンを確認したところ、2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークが最も強い積分強度を示した。 A metal complex was produced in the same manner as in Example 1 except that the collected particles on the filter paper were dried in an oven at 50 ° C. for 3 hours. The results of determining the composition of the metal complex in the same manner as in Example 1 are shown in Table 1. When the powder X-ray diffraction pattern measured in the same manner as in Example 1 was confirmed, it had diffraction peaks at 2θ = 19.3-21 ° and 30.2-31.2 °, and 2θ = 19.3-21. The diffraction peak at ° showed the strongest integrated intensity.

(ガス検知感度の評価)
実施例3で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約7分後に橙色の色見本とほぼ同等の色となり、実施例3の金属錯体はピラジンを感度良く検知するガス検知材として利用することが可能であることが分かった。
<実施例4>
(Evaluation of gas detection sensitivity)
Using the metal complex produced in Example 3, the gas detection sensitivity was evaluated in the same manner as in Example 1. After about 7 minutes, the color was almost the same as that of the orange color sample. It was found that it can be used as a gas detection material for detecting pyrazine with high sensitivity.
<Example 4>

回収したろ紙上の粒子を55℃のオーブンで3時間乾燥させたこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めた結果を表1に示す。実施例1と同様にして測定した粉末X線回折パターンを確認したところ、2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークが最も強い積分強度を示した。 A metal complex was produced in the same manner as in Example 1 except that the particles on the collected filter paper were dried in an oven at 55 ° C. for 3 hours. The results of determining the composition of the metal complex in the same manner as in Example 1 are shown in Table 1. When the powder X-ray diffraction pattern measured in the same manner as in Example 1 was confirmed, it had diffraction peaks at 2θ = 19.3-21 ° and 30.2-31.2 °, and 2θ = 19.3-21. The diffraction peak at ° showed the strongest integrated intensity.

(ガス検知感度の評価)
実施例4で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約7分30秒後に橙色の色見本とほぼ同等の色となり、実施例4の金属錯体はピラジンを感度良く検知するガス検知材として利用することが可能であることが分かった。
<実施例5>
(Evaluation of gas detection sensitivity)
When the gas detection sensitivity was evaluated in the same manner as in Example 1 using the metal complex prepared in Example 4, the color was almost the same as that of the orange color sample after about 7 minutes and 30 seconds. It was found that the complex can be used as a gas detection material for detecting pyrazine with high sensitivity.
<Example 5>

硫酸アンモニウム鉄・六水和物0.45g投入したこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めた結果を表1に示す。実施例1と同様にして測定した粉末X線回折パターンを確認したところ、2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークが最も強い積分強度を示した。 A metal complex was produced in the same manner as in Example 1 except that 0.45 g of ammonium iron sulfate hexahydrate was added. The results of determining the composition of the metal complex in the same manner as in Example 1 are shown in Table 1. When the powder X-ray diffraction pattern measured in the same manner as in Example 1 was confirmed, it had diffraction peaks at 2θ = 19.3-21 ° and 30.2-31.2 °, and 2θ = 19.3-21. The diffraction peak at ° showed the strongest integrated intensity.

(ガス検知感度の評価)
実施例5で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約7分30秒後に橙色の色見本とほぼ同等の色となり、実施例5の金属錯体はピラジンを感度良く検知するガス検知材として利用することが可能であることが分かった。
<実施例6>
(Evaluation of gas detection sensitivity)
Using the metal complex produced in Example 5, the gas detection sensitivity was evaluated in the same manner as in Example 1. After about 7 minutes and 30 seconds, the color was almost the same as that of the orange color sample. It was found that the complex can be used as a gas detection material for detecting pyrazine with high sensitivity.
<Example 6>

硫酸アンモニウム鉄・六水和物0.51g投入したこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めた結果を表1に示す。実施例1と同様にして測定した粉末X線回折パターンを確認したところ、2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークが最も強い積分強度を示した。 A metal complex was prepared in the same manner as in Example 1 except that 0.51 g of ammonium iron sulfate hexahydrate was added. The results of determining the composition of the metal complex in the same manner as in Example 1 are shown in Table 1. When the powder X-ray diffraction pattern measured in the same manner as in Example 1 was confirmed, it had diffraction peaks at 2θ = 19.3-21 ° and 30.2-31.2 °, and 2θ = 19.3-21. The diffraction peak at ° showed the strongest integrated intensity.

(ガス検知感度の評価)
実施例6で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約7分30秒後に橙色の色見本とほぼ同等の色となり、実施例6の金属錯体はピラジンを感度良く検知するガス検知材として利用することが可能であることが分かった。
<実施例7>
(Evaluation of gas detection sensitivity)
Using the metal complex produced in Example 6, the gas detection sensitivity was evaluated in the same manner as in Example 1. After about 7 minutes and 30 seconds, the color was almost the same as the orange color sample, and the metal of Example 6 was used. It was found that the complex can be used as a gas detection material for detecting pyrazine with high sensitivity.
<Example 7>

回収したろ紙上の粒子を35℃のオーブンで1時間乾燥させたこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めた結果を表1に示す。実施例1と同様にして測定した粉末X線回折パターンを確認したところ(図2)、2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークは5番目に強い積分強度を示した。 A metal complex was produced in the same manner as in Example 1 except that the particles on the collected filter paper were dried in an oven at 35 ° C. for 1 hour. The results of determining the composition of the metal complex in the same manner as in Example 1 are shown in Table 1. When the powder X-ray diffraction pattern measured in the same manner as in Example 1 was confirmed (FIG. 2), it had diffraction peaks at 2θ = 19.3-21 ° and 30.2-31.2 °, and 2θ = 19. The diffraction peak from 3 to 21 ° showed the fifth strongest integrated intensity.

(ガス検知感度の評価)
実施例7で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約9分50秒後に橙色の色見本とほぼ同等の色となり、実施例7の金属錯体はピラジンを感度良く検知するガス検知材として利用することが可能であることが分かった。
<比較例1>
(Evaluation of gas detection sensitivity)
Using the metal complex produced in Example 7, the gas detection sensitivity was evaluated in the same manner as in Example 1. After about 9 minutes and 50 seconds, the color was almost the same as that of the orange color sample. It was found that the complex can be used as a gas detection material for detecting pyrazine with high sensitivity.
<Comparative Example 1>

三角フラスコに蒸留水およびエタノールの混合溶媒160mLを加えて、25℃のオイルバス中で撹拌し、回収したろ紙上の粒子を35℃のオーブンで1時間乾燥させたこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めたところFe[Ni(CN)]・6HOであった。実施例1と同様にして測定した粉末X線回折パターンを確認したところ(図3)、2θ=19.3〜21°および30.2〜31.2°に回折ピークは見られず、回折パターンのデータベースより(Fe(HO)(Ni(CN))・(HO)と一致することが分かった。 Example 1 except that 160 mL of a mixed solvent of distilled water and ethanol was added to an Erlenmeyer flask, stirred in an oil bath at 25 ° C., and the collected particles on the filter paper were dried in an oven at 35 ° C. for 1 hour. Similarly, a metal complex was prepared. When the composition of the metal complex was determined in the same manner as in Example 1, it was Fe [Ni (CN) 4 ] · 6H 2 O. When the powder X-ray diffraction pattern measured in the same manner as in Example 1 was confirmed (FIG. 3), no diffraction peaks were observed at 2θ = 19.3-21 ° and 30.2-31.2 °, and the diffraction pattern. (Fe (H 2 O) 2 (Ni (CN) 4 ) · (H 2 O) 4 ) was found from the above database.

(ガス検知感度の評価)
比較例1で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約10分経過後に明瞭な色変化は確認できなかった。
<比較例2>
(Evaluation of gas detection sensitivity)
When the metal complex prepared in Comparative Example 1 was used to evaluate the gas detection sensitivity in the same manner as in Example 1, no clear color change could be confirmed after about 10 minutes.
<Comparative example 2>

75℃のオイルバス中で撹拌し、回収したろ紙上の粒子を35℃のオーブンで1時間乾燥させたこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めたところFe0.667[Ni(CN)]・3HOであった。実施例1と同様にして測定した粉末X線回折パターンを確認したところ(図4)、2θ=19.3〜21°および30.2〜31.2°に回折ピークは見られず、回折パターンのデータベースよりNi(Fe(CN)0.667 ・(HO)と一致することが分かった。 A metal complex was prepared in the same manner as in Example 1 except that the particles on the filter paper were stirred in a 75 ° C. oil bath and the collected particles on the filter paper were dried in an oven at 35 ° C. for 1 hour. When the composition of the metal complex was determined in the same manner as in Example 1, it was Fe 0.667 [Ni (CN) 4 ] .3H 2 O. When the powder X-ray diffraction pattern measured in the same manner as in Example 1 was confirmed (FIG. 4), no diffraction peaks were observed at 2θ = 19.3-21 ° and 30.2-31.2 °, and the diffraction pattern. From this database, it was found that this was consistent with Ni (Fe (CN) 6 ) 0.667 · (H 2 O) 3

(ガス検知感度の評価)
比較例2で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約10分経過後に明瞭な色変化は確認できなかった。
<比較例3>
(Evaluation of gas detection sensitivity)
When the metal complex produced in Comparative Example 2 was used and the gas detection sensitivity was evaluated in the same manner as in Example 1, no clear color change could be confirmed after about 10 minutes.
<Comparative Example 3>

回収したろ紙上の粒子を30℃のオーブンで10分間乾燥させたこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めた結果を表1に示す。 A metal complex was produced in the same manner as in Example 1 except that the collected particles on the filter paper were dried in an oven at 30 ° C. for 10 minutes. The results of determining the composition of the metal complex in the same manner as in Example 1 are shown in Table 1.

(ガス検知感度の評価)
比較例3で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約10分経過後に明瞭な色変化は確認できなかった。
<比較例4>
(Evaluation of gas detection sensitivity)
When the metal complex prepared in Comparative Example 3 was used and the gas detection sensitivity was evaluated in the same manner as in Example 1, no clear color change could be confirmed after about 10 minutes.
<Comparative example 4>

回収したろ紙上の粒子を80℃のオーブンで1時間間乾燥させたこと以外は、実施例1と同様にして金属錯体を作製した。実施例1と同様にして金属錯体の組成を求めた結果を表1に示す。 A metal complex was prepared in the same manner as in Example 1 except that the particles on the collected filter paper were dried in an oven at 80 ° C. for 1 hour. The results of determining the composition of the metal complex in the same manner as in Example 1 are shown in Table 1.

(ガス検知感度の評価)
比較例4で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価をおこなったところ、約10分経過後に明瞭な色変化は確認できなかった。
(Evaluation of gas detection sensitivity)
When the metal complex produced in Comparative Example 4 was used and the gas detection sensitivity was evaluated in the same manner as in Example 1, no clear color change could be confirmed after about 10 minutes.

Figure 2018159681
<実施例8〜13および比較例5〜7>
Figure 2018159681
<Examples 8 to 13 and Comparative Examples 5 to 7>

表2記載の組成となるように硫酸アンモニウム鉄・六水和物、硫酸アンモニウムコバルト・六水和物、テトラシアノニッケル(II)酸カリウム・一水和物、テトラシアノパラジウム酸カリウム・水和物およびテトラシアノ白金酸カリウム・水和物を秤量した以外は、実施例1と同様にして金属錯体を作製した。 Ammonium iron sulfate hexahydrate, ammonium cobalt sulfate hexahydrate, potassium tetracyanonickel (II) acid monohydrate, potassium tetracyanopalladate potassium hydrate and tetracyano so as to have the composition shown in Table 2 A metal complex was prepared in the same manner as in Example 1 except that potassium platinumate hydrate was weighed.

(ガス検知感度の評価)
実施例8〜13および比較例5〜7で作製した金属錯体を用い、実施例1と同様にしてガス検知感度の評価を行ったところ、実施例8〜13の金属錯体では10分以内に橙色の色見本とほぼ同等の色となり、ピラジンを感度良く検知するガス検知材として利用することが可能であることが分かった。比較例5〜7で作製した金属錯体では約10分経過後に明瞭な色変化は確認できなかった。
(Evaluation of gas detection sensitivity)
Using the metal complexes prepared in Examples 8 to 13 and Comparative Examples 5 to 7, the gas detection sensitivity was evaluated in the same manner as in Example 1. The metal complexes of Examples 8 to 13 were orange within 10 minutes. The color sample was almost the same as the color sample, and it was found that it can be used as a gas detection material for detecting pyrazine with high sensitivity. In the metal complexes prepared in Comparative Examples 5 to 7, no clear color change could be confirmed after about 10 minutes.

Figure 2018159681
Figure 2018159681

以上の結果から、実施例のガス検知材および実施例の金属錯体を用いて作製したガス検知器は簡易的に感度良くピラジン類化合物を検出することが可能であることが分かった。 From the above results, it was found that the gas detector produced using the gas detection material of the example and the metal complex of the example can easily detect the pyrazine compounds with high sensitivity.

Claims (3)

一般式(1)で表される金属錯体を用いたことを特徴とするガス検知材。
M1 [Ni1−yM2(CN)]・zHO ・・・(1)
(M1= Fe、Co、0.9≦x≦1.1、M2=Pd、Pt、0≦y<0.15、2.2≦z<4.4)
A gas detection material using a metal complex represented by the general formula (1).
M1 x [Ni 1-y M2 y (CN) 4] · zH 2 O ··· (1)
(M1 = Fe, Co, 0.9 ≦ x ≦ 1.1, M2 = Pd, Pt, 0 ≦ y <0.15, 2.2 ≦ z <4.4)
Cu−Kαを線源とする粉末X線回折測定によって得られる回折パターンにおいて、10°< 2 θ <45 °の範囲に少なくとも2θ=19.3〜21°および30.2〜31.2°に回折ピークを有し、2θ=19.3〜21°の回折ピークが最も強い積分強度を示す前記金属錯体を用いたことを特徴とする請求項1記載のガス検知材。 In a diffraction pattern obtained by powder X-ray diffraction measurement using Cu-Kα as a radiation source, at least 2θ = 19.3-21 ° and 30.2-31.2 ° in the range of 10 ° <2θ <45 °. 2. The gas detection material according to claim 1, wherein the metal complex having a diffraction peak and having the strongest integrated intensity with a diffraction peak of 2θ = 19.3-21 ° is used. 請求項1または請求項2に記載のガス検知材を用いることを特徴とするガス検知器。 A gas detector using the gas detector according to claim 1.
JP2017058319A 2017-03-24 2017-03-24 Gas detector and gas detector Active JP6852497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017058319A JP6852497B2 (en) 2017-03-24 2017-03-24 Gas detector and gas detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017058319A JP6852497B2 (en) 2017-03-24 2017-03-24 Gas detector and gas detector

Publications (2)

Publication Number Publication Date
JP2018159681A true JP2018159681A (en) 2018-10-11
JP6852497B2 JP6852497B2 (en) 2021-03-31

Family

ID=63796574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017058319A Active JP6852497B2 (en) 2017-03-24 2017-03-24 Gas detector and gas detector

Country Status (1)

Country Link
JP (1) JP6852497B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165958A (en) * 2019-03-26 2020-10-08 Tdk株式会社 Ammonia sensing material and ammonia detector
CN111751359A (en) * 2019-03-26 2020-10-09 Tdk株式会社 Ammonia detection material and detector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0928966A1 (en) * 1998-01-09 1999-07-14 Eidgenössische Technische Hochschule Zürich Reactands for the determination of amines by chemical sensors
JP2009244094A (en) * 2008-03-31 2009-10-22 Kao Corp Indicator for determining damp-dry odor
JP2016223945A (en) * 2015-06-01 2016-12-28 Tdk株式会社 Gas detection device
JP2017181058A (en) * 2016-03-28 2017-10-05 Tdk株式会社 Gas detection sheet and electrochemical device having the same
JP2019045189A (en) * 2017-08-30 2019-03-22 国立研究開発法人産業技術総合研究所 Ammonia gas indicator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0928966A1 (en) * 1998-01-09 1999-07-14 Eidgenössische Technische Hochschule Zürich Reactands for the determination of amines by chemical sensors
JP2009244094A (en) * 2008-03-31 2009-10-22 Kao Corp Indicator for determining damp-dry odor
JP2016223945A (en) * 2015-06-01 2016-12-28 Tdk株式会社 Gas detection device
JP2017181058A (en) * 2016-03-28 2017-10-05 Tdk株式会社 Gas detection sheet and electrochemical device having the same
JP2019045189A (en) * 2017-08-30 2019-03-22 国立研究開発法人産業技術総合研究所 Ammonia gas indicator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAJ-HUSSEIN: "Spectrophotometric determination of cyanide by flow-injection analysis", ANALYTICAL LETTERS, vol. 21, no. 7, JPN6020039373, 1988, pages 1285 - 1296, ISSN: 0004439323 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020165958A (en) * 2019-03-26 2020-10-08 Tdk株式会社 Ammonia sensing material and ammonia detector
CN111751359A (en) * 2019-03-26 2020-10-09 Tdk株式会社 Ammonia detection material and detector

Also Published As

Publication number Publication date
JP6852497B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
You et al. A colorimetric sensor for the sequential detection of Cu 2+ and CN− in fully aqueous media: practical performance of Cu 2+
Khan et al. Sensitive and selective colorimetric detection of Pb2+ by silver nanoparticles synthesized from Aconitum violaceum plant leaf extract
Yousefi et al. Simultaneous extraction and preconcentration of uranium and thorium in aqueous samples by new modified mesoporous silica prior to inductively coupled plasma optical emission spectrometry determination
Mehta et al. Malonamide dithiocarbamate functionalized gold nanoparticles for colorimetric sensing of Cu 2+ and Hg 2+ ions
Miao et al. Bipyridine hydrogel for selective and visible detection and absorption of Cd 2+
Aravind et al. Green silver nanoparticles as a multifunctional sensor for toxic Cd (ii) ions
Panjali et al. Development of a selective sorbent based on a magnetic ion imprinted polymer for the preconcentration and FAAS determination of urinary cadmium
JP6852497B2 (en) Gas detector and gas detector
Islam et al. A newly developed salicylanilide functionalized Amberlite XAD-16 chelating resin for use in preconcentration and determination of trace metal ions from environmental and biological samples
Čonková et al. Schiff base capped gold nanoparticles for transition metal cation sensing in organic media
Shariati-Rad et al. Application of response surface methodology and green carbon dots as reducing agents in speciation of iron
CN112321841B (en) Metal organic framework material based on biomolecules as well as preparation method and application thereof
Shaalan et al. Preparation and Characterization of New Tetra-Dentate N 2 O 2 Schiff Base with Some of Metal Ions Complexes
Ghaedi et al. Modification of platinum nanoparticles loaded on activated carbon and activated carbon with a new chelating agent for solid phase extraction of some metal ions
George et al. Schiff base functionalized 1, 2, 3-triazole derivative for Fe (III) ion recognition, as N, O, O-Fe-O, O, N sandwich complex: DFT analysis
Taher et al. Differential pulse polarographic determination of tin in alloys and environmental samples after preconcentration with the ion pair of 2-nitroso-1-naphthol-4-sulfonic acid and tetradecyldimethylbenzylammonium chloride onto microcrystalline naphthalene or by column method
Floquet et al. Neutral ferric complexes of salicylaldehyde thiosemicarbazone ligands: An exceptional family of complexes exhibiting discontinuous spin transition behavior
Taher et al. Determination of trace amounts of iron by a simple fluorescence quenching method
Batista et al. Metal-organic framework-modified carbon paste electrode for determining lead in aqueous solutions
Moazzen et al. A high selective ion‐imprinted polymer grafted on a novel nanoporous material for efficient gold extraction
CN113848242A (en) Electrochemical luminescence sensor for detecting synthesized cannabinoid RCS-4 and preparation method and application thereof
Mohammadi et al. Carrier Element-Free Coprecipitation for Preconcentration of Mn2+, Co2+, Ni2+, Cd2+ and Cu2+ Ions from Water, Brewed Tea and Tobacco Samples
Shafaatian et al. Synthesis, Electrochemical and Luminescence Studies of Nickel and Vanadium Complexes Containing Tetradentate Schiff Base Ligand with N2O2 Donor Atoms
Arockiasamy et al. Precursor development, characterisation and evaluation of sublimation enthalpies of novel volatile complexes of nickel
CN104371709A (en) Fluorescent sensing material as well as preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210222

R150 Certificate of patent or registration of utility model

Ref document number: 6852497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150