JP2016223945A - Gas detection device - Google Patents

Gas detection device Download PDF

Info

Publication number
JP2016223945A
JP2016223945A JP2015111459A JP2015111459A JP2016223945A JP 2016223945 A JP2016223945 A JP 2016223945A JP 2015111459 A JP2015111459 A JP 2015111459A JP 2015111459 A JP2015111459 A JP 2015111459A JP 2016223945 A JP2016223945 A JP 2016223945A
Authority
JP
Japan
Prior art keywords
gas
detection
magnetic
detection agent
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015111459A
Other languages
Japanese (ja)
Inventor
貴之 丸山
Takayuki Maruyama
貴之 丸山
洞井 高志
Takashi Doi
高志 洞井
圭 田邊
Kei Tanabe
圭 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2015111459A priority Critical patent/JP2016223945A/en
Publication of JP2016223945A publication Critical patent/JP2016223945A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gas detection device capable of easily measuring gas concentration in the atmosphere with good sensitivity.SOLUTION: A gas detection device comprises a gas detection agent containing a porous coordination polymer whose magnetic property changes when gas is adsorbed thereby, and magnetic detection means configured to capture changes in magnetic property of the detection agent exposed to a target gas, and is configured to easily detect the gas concentration in the atmosphere with good sensitivity by having the magnetic detection means detect changes in the magnetic property of the detection agent. Thus, a gas detection device capable of easily measuring the gas concentration in the atmosphere with good sensitivity is realized.SELECTED DRAWING: Figure 1

Description

本発明は、環境中のガスを測定するためのガス検出装置に関するものである。   The present invention relates to a gas detector for measuring gas in the environment.

大気汚染の原因の1つとして揮発性有機化合物(VOC:volatile organic compounds)が知られている。VOCの中にはシックハウス症候群などの健康被害を引き起こす物質(アセトアルデヒド、トルエン、キシレン、フタル酸エステルなど)がある。飲酒運転は、生命にかかわる事故につながるおそれがある。これらを防止するために、ガス濃度をその場で簡便に測定するガスセンサーが必要とされている。   As one of the causes of air pollution, volatile organic compounds (VOC) are known. Some VOCs cause health hazards such as sick house syndrome (acetaldehyde, toluene, xylene, phthalates, etc.). Drunk driving can lead to life-threatening accidents. In order to prevent these problems, there is a need for a gas sensor that simply measures the gas concentration on the spot.

従来、ガス濃度を簡易的に測定するためにガス検知管が用いられている。一般的なガス検知管は、透明なガラス管の内部に検知剤が充てんされた構造をしており、ガス吸引ポンプを用いて気体を通気させ、被測定ガスに反応して変色した検知剤によってガス濃度を測定する。しかし、このようなガス検知管では管の表面に印字してある濃度目盛を直接もしくは光学的読み取り装置を用いて読み取らなければならないため、測定精度が低いという問題があった。   Conventionally, a gas detector tube has been used to easily measure the gas concentration. A typical gas detector tube has a structure in which a detection agent is filled inside a transparent glass tube. A gas suction pump is used to vent the gas, and the detector is discolored in response to the gas to be measured. Measure the gas concentration. However, such a gas detection tube has a problem in that the measurement accuracy is low because the concentration scale printed on the surface of the tube must be read directly or using an optical reader.

これに対し、ガス濃度を簡便に数値化するセンサーとして、半導体式ガスセンサーが知られている。半導体式ガスセンサーは、センサーが被測定ガスに曝露されると電気抵抗が変化するという性質を持っており,これを利用して,ガスの検出を行なうものであるが、感度が低い、測定濃度範囲が狭い、妨害ガスにより誤動作するなどの問題点がある。   On the other hand, a semiconductor-type gas sensor is known as a sensor that easily digitizes the gas concentration. The semiconductor gas sensor has the property that the electrical resistance changes when the sensor is exposed to the gas to be measured, and this is used to detect the gas. There are problems such as narrow range and malfunction due to interfering gas.

アルコール類などに限れば高感度な測定が可能な燃料電池式アルコールセンサーがある。これはアルコールが酸化されるときに発生する電流を検出するもので、アルコール選択性が高く非常に高感度であるが、白金触媒等が必要なため高価であり、定期的なメンテナンスが必要で寿命が短い。   There is a fuel cell type alcohol sensor that can measure with high sensitivity if it is limited to alcohols. It detects the current generated when alcohol is oxidized and has high alcohol selectivity and very high sensitivity, but is expensive because it requires a platinum catalyst, etc., requires regular maintenance, and has a long service life. Is short.

金属イオンと有機配位子とが自己集合的に規則的な高分子量の錯体を形成したものは多孔性配位高分子と呼ばれている。多孔性配位高分子はその内部に無数の空間を有することから、様々な分子等を吸着することが知られている。非特許文献1〜3には、特定の構造を有する多孔性配位高分子が、熱や光、分子の吸着などの外的要因によって高スピンと低スピンの2つの状態間で磁性が変化するスピンクロスオーバーと呼ばれる現象を起こすことが記載されている。この現象を用いてガス検知剤とできる可能性があるが、これらの微小な磁性変化を利用した具体的なガス検出装置は提案されていない。   A product in which a metal ion and an organic ligand form a regular high molecular weight complex in a self-assembled manner is called a porous coordination polymer. Porous coordination polymers have an infinite number of spaces inside and are known to adsorb various molecules. Non-Patent Documents 1 to 3 describe that a porous coordination polymer having a specific structure changes in magnetism between two states of high spin and low spin due to external factors such as heat, light, and molecular adsorption. It is described that a phenomenon called spin crossover occurs. Although there is a possibility that this phenomenon can be used as a gas detection agent, a specific gas detection device using these minute magnetic changes has not been proposed.

特公平7−6973号公報Japanese Patent Publication No. 7-6973 特開2007−121048号公報JP 2007-121048 A 特開2011−80983号公報JP 2011-80983 A

インオーガニック ケミストリー (Inorganic Chemistry)、2001年、第40巻、p.3838-3839Inorganic Chemistry, 2001, Volume 40, p.3838-3839 アンゲヴァンテ ケミー インターナショナル エディション (Angewante Chemie International Edition)、2008年、第47巻、p.6433-6437Angewante Chemie International Edition, 2008, Volume 47, p. 6433-6437 ジャーナル オブ ジ アメリカン ケミカル ソサイエティー (Journal of the American Chemical Society)、2009年、第131巻、p.10998-11009Journal of the American Chemical Society, 2009, vol. 131, p.10998-11009

前述のように、従来のガスセンサーでは簡便さや感度に問題があった。   As described above, the conventional gas sensor has a problem in simplicity and sensitivity.

本発明は、上記問題点に鑑みてなされたものであって、大気中のガス濃度を簡便で感度よく測定するガス検出装置を提供することを目的としている。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a gas detection device that easily and easily measures the gas concentration in the atmosphere.

本発明のガス検出装置は、ガス吸着により磁気特性変化が引き起こされる多孔性配位高分子を含んだ検知剤と、対象ガスに暴露された検知剤の磁気特性変化を捉える磁気検出手段とを備えることを特徴とする。   The gas detection device of the present invention includes a detection agent containing a porous coordination polymer that causes a change in magnetic properties due to gas adsorption, and a magnetic detection means that captures a change in magnetic properties of the detection agent exposed to the target gas. It is characterized by that.

本発明により、検知剤の磁気特性変化を磁気検出手段によって検出することによりガス検出を行うことで、大気中のガス濃度を簡便で感度よく検出可能なガス検出装置を提供することができる。   According to the present invention, it is possible to provide a gas detection device capable of detecting the gas concentration in the atmosphere simply and with high sensitivity by detecting the gas by detecting the magnetic property change of the detection agent by the magnetic detection means.

本発明に係る多孔性配位高分子の一例の基本的な化学構造を示す模式図である。It is a schematic diagram which shows the basic chemical structure of an example of the porous coordination polymer which concerns on this invention. 本発明に係るガスセンサーの検出部の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the detection part of the gas sensor which concerns on this invention. アセトニトリル蒸気が吸着した場合に二次コイルの出力電圧が変化する様子を示す特性図である。It is a characteristic view which shows a mode that the output voltage of a secondary coil changes, when acetonitrile vapor | steam adsorb | sucks. アセトニトリル蒸気が吸着した場合に二次コイルからの出力波形の位相差が変化する様子を示す特性図である。It is a characteristic view which shows a mode that the phase difference of the output waveform from a secondary coil changes when acetonitrile vapor | steam adsorb | sucks.

本発明を実施するための形態(実施形態)につき、必要に応じて図面を参照しながら詳細に説明する。以下の実施形態に記載した内容により本発明が限定されるものではない。   DESCRIPTION OF EMBODIMENTS Embodiments (embodiments) for carrying out the present invention will be described in detail with reference to the drawings as necessary. The present invention is not limited by the contents described in the following embodiments.

本実施形態のガス検知剤は、ゲスト分子の吸着によりスピンクロスオーバー現象を示す多孔性配位高分子が含まれている。スピンクロスオーバーとは、錯体を形成する磁性金属イオンの持つ電子配置が、熱、圧力、分子の吸着などの外部刺激によって高スピン状態と低スピン状態と呼ばれる2つの状態間を変化する現象である。スピン変化は一般に数十ナノ秒と言われており、非常に速い応答速度を持つことが特徴である。   The gas detection agent of the present embodiment includes a porous coordination polymer that exhibits a spin crossover phenomenon due to adsorption of guest molecules. Spin crossover is a phenomenon in which the electronic configuration of magnetic metal ions forming a complex changes between two states, called a high spin state and a low spin state, by external stimuli such as heat, pressure, and molecular adsorption. . The spin change is generally said to be several tens of nanoseconds, and is characterized by a very fast response speed.

高スピン状態とは、例えば鉄錯体の場合、錯体中の鉄イオンのd電子の5つの軌道にフント則に従ってスピン角運動量が最大となるように電子が配置された状態を指し、低スピン状態とは、スピン角運動量が最小となるように電子が配置された状態を指し、それぞれ電子状態や結晶格子が異なるため、2つの状態間で錯体の色や磁性が異なる。すなわち、分子の吸着によってスピンクロスオーバー現象が起こることを利用すれば、特定の分子を素早く検知する目的に用いることが可能となる。   For example, in the case of an iron complex, the high spin state refers to a state in which electrons are arranged in the five orbits of d electrons of iron ions in the complex so that the spin angular momentum is maximized according to the Hunt rule. Indicates a state in which electrons are arranged so as to minimize the spin angular momentum. Since the electronic state and the crystal lattice are different from each other, the color and magnetism of the complex are different between the two states. That is, if the spin crossover phenomenon occurs due to the adsorption of molecules, it can be used for the purpose of quickly detecting a specific molecule.

分子の吸着によってスピンクロスオーバー現象が起こる多孔性配位高分子は近年度々報告されており、それらの持つ構造に由来して、特定のガスに選択的に応答するものが多い。   In recent years, porous coordination polymers in which a spin crossover phenomenon occurs due to molecular adsorption have been reported frequently, and many of them selectively respond to a specific gas due to their structure.

例えば、非特許文献1〜3に記載の多孔性配位高分子は、2価の鉄イオンと、テトラシアノニッケル酸イオンと、ピラジンを構成要素とするホフマン型多孔性配位高分子{Fe(ピラジン)[Ni(CN)4]}であり、図1に示すようなジャングルジム型の骨格が広がった構造を持つ。室温でアセトニトリルやアクリロニトリル蒸気を吸着すると低スピン状態が誘起され、また、アルコール蒸気などに暴露されると高スピン状態が誘起される。   For example, the porous coordination polymers described in Non-Patent Documents 1 to 3 are Hoffman-type porous coordination polymers {Fe () having divalent iron ions, tetracyanonickelate ions, and pyrazine as components. Pyrazine) [Ni (CN) 4]}, which has a structure in which a jungle-gym skeleton as shown in FIG. 1 is spread. Adsorption of acetonitrile or acrylonitrile vapor at room temperature induces a low spin state, and exposure to alcohol vapor induces a high spin state.

図2は、本実施形態に係るガス検出装置の検知部の模式図である。図2において、ガスセンサー検知部11は、管12の中にガス検知剤13を充填し、一次コイル14と二次コイル15を有している。検知剤13は、単一種もしくは複数種のSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hgから選択される金属イオンと有機配位子とからなる多孔性配位高分子を含み、対象ガスを吸着することで磁気特性変化を引き起こすことができる。このとき、多孔性配位高分子以外にガスの通気性を向上させるために多孔性の支持体を含んでいても良い。磁界印加手段としての一次コイル14は電源装置16に、磁界検出手段としての二次コイル15は波形検出装置17に接続されている。電源装置16から印加される電気信号により、一次コイル14は時間的に変化する磁界を引き起こし、検知剤13を介して伝達される磁界により二次コイル15に発生する誘導電圧を波形検出装置17で測定することにより、対象ガスへの暴露前と暴露後の検知剤の磁気特性の差を捉えることができる。電源装置16としては、例えば正弦波交流、矩形波交流、三角波交流、のこぎり波交流、HighおよびLowを繰り返す直流などの、検知剤の磁気特性に応じた電気信号を出力する装置を使用することができる。波形検出装置17は、一般的なオシロスコープを用いることができる。さらに好ましくはロックインアンプを用いることが好ましい。この場合、簡便に差動検出するためにガスセンサー検知部11を2つ用意し、片方をリファレンスとしても良い。リファレンス情報を記録しておける装置であれば、ガスセンサー検知部11は1つあれば良い。   FIG. 2 is a schematic diagram of a detection unit of the gas detection device according to the present embodiment. In FIG. 2, the gas sensor detection unit 11 is filled with a gas detection agent 13 in a pipe 12 and has a primary coil 14 and a secondary coil 15. The detection agent 13 is a single kind or plural kinds of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd. , La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg The magnetic property change can be caused by adsorbing the target gas, including a porous coordination polymer composed of a metal ion selected from the above and an organic ligand. At this time, in addition to the porous coordination polymer, a porous support may be included in order to improve gas permeability. The primary coil 14 as the magnetic field applying means is connected to the power supply device 16, and the secondary coil 15 as the magnetic field detecting means is connected to the waveform detecting device 17. Due to the electrical signal applied from the power supply device 16, the primary coil 14 causes a time-varying magnetic field, and the induced voltage generated in the secondary coil 15 by the magnetic field transmitted through the detection agent 13 is generated by the waveform detection device 17. By measuring, it is possible to capture the difference in magnetic properties of the detection agent before and after exposure to the target gas. As the power supply device 16, for example, a device that outputs an electrical signal corresponding to the magnetic characteristics of the detection agent, such as a sine wave alternating current, a rectangular wave alternating current, a triangular wave alternating current, a sawtooth wave alternating current, or a direct current that repeats high and low, may be used. it can. The waveform detector 17 can be a general oscilloscope. More preferably, a lock-in amplifier is used. In this case, two gas sensor detection units 11 may be prepared for simple differential detection, and one of them may be used as a reference. If the apparatus can record the reference information, only one gas sensor detection unit 11 is required.

ここで、一次コイルから発生する磁束密度Bは、比透磁率をμ、一次コイルが発生する磁場強度をHとすると、式(1)のように表すことができる。 Here, the magnetic flux density B generated from the primary coil can be expressed as Equation (1), where μ S is the relative permeability and H is the magnetic field intensity generated by the primary coil.

Figure 2016223945
Figure 2016223945

一次コイルから発生した磁束密度Bが、検知剤中をロス無く伝達し、二次コイルまで到達した場合、二次コイルに発生する誘導電圧εは、二次コイルの巻き数をN、磁束をΦとすると、式(2)のように表すことができ、二次コイルの断面積をSとすると、式(3)のように表すことができる。 When the magnetic flux density B generated from the primary coil is transmitted without loss through the detection agent and reaches the secondary coil, the induced voltage ε S generated in the secondary coil is the number of turns of the secondary coil N S , the magnetic flux Can be expressed as Equation (2), and when S is the cross-sectional area of the secondary coil, it can be expressed as Equation (3).

Figure 2016223945
Figure 2016223945

Figure 2016223945
Figure 2016223945

二次コイルの長さをl、コイル電流をIとすると式(4)のように表すことができる。   If the length of the secondary coil is 1 and the coil current is I, it can be expressed as in equation (4).

Figure 2016223945
Figure 2016223945

式(1)〜式(4)より、式(5)のように表すことができる。   From Formula (1) to Formula (4), it can be expressed as Formula (5).

Figure 2016223945
Figure 2016223945

ゆえに、二次コイルに発生する誘導電圧εを測定することにより、比透磁率μとして検知剤の磁性変化を検出することができる。 Therefore, by measuring the induced voltage ε S generated in the secondary coil, it is possible to detect the magnetic change of the detection agent as the relative permeability μ S.

ここで、二次コイルに発生する誘導電圧εは式(6)のように表すことができる。 Here, the induced voltage ε S generated in the secondary coil can be expressed as shown in Equation (6).

Figure 2016223945
Figure 2016223945

式(5)および式(6)より、二次コイルのインダクタンスをLとすると式(7)のように表すことができる。   From Expression (5) and Expression (6), when the inductance of the secondary coil is L, it can be expressed as Expression (7).

Figure 2016223945
Figure 2016223945

また、一次コイルへの入力波形と二次コイルからの出力波形の位相差Θについて、角周波数をω、寄生抵抗成分をRとすると、式(8)のように表すことができる。   In addition, the phase difference Θ between the input waveform to the primary coil and the output waveform from the secondary coil can be expressed as Equation (8), where ω is the angular frequency and R is the parasitic resistance component.

Figure 2016223945
Figure 2016223945

式(8)に式(7)を代入すると、式(9)のように表すことができる。   When Expression (7) is substituted into Expression (8), it can be expressed as Expression (9).

Figure 2016223945
Figure 2016223945

ゆえに、一次コイルに送られる波形と二次コイルに発生する波形の位相差Θを測定することによっても、比透磁率μとして検知剤の磁性変化を検出することができる。 Thus, by measuring the phase difference Θ waveforms generated in the waveform and a secondary coil that is sent to the primary coil, it is possible to detect the magnetic change of the detecting agent as relative permeability mu S.

以下本発明をさらに詳細な実施例に基づき説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on a more detailed Example, this invention is not limited to these Examples.

(ガス検知剤の製造)
硫酸アンモニウム鉄(II)・六水和物0.72g、L−アスコルビン酸0.3g、テトラシアノニッケル(II)酸カリウム・一水和物0.45gおよびピラジン0.10gを容器中で蒸留水およびエタノールを溶媒として混合し、得られた結晶を回収した(0.11g)。これをガス検知剤とした。
(Manufacture of gas detectors)
In a container, 0.72 g of ammonium iron (II) sulfate hexahydrate, 0.3 g of L-ascorbic acid, 0.45 g of potassium tetracyanonickel (II) monohydrate and 0.10 g of pyrazine were distilled and Ethanol was mixed as a solvent, and the obtained crystals were recovered (0.11 g). This was used as a gas detection agent.

(ガスセンサー検知部の作製)
内径5mm、外径8mmのガラス管70mmにガス検知剤0.14gを充填したものをトランスコアに見立て、太さ0.25mmの銅線を各100回巻き付け一次コイルと二次コイルとし、ガスセンサー検知部を作製した。このとき、ガスセンサー検知部を2つ作製し、一方をリファレンスとして同時に波形出力することで波形の比較を容易化した。
(Production of gas sensor detector)
A gas sensor with an inner diameter of 5 mm and an outer diameter of 8 mm filled with a gas detection agent of 0.14 g is regarded as a transformer core, and a copper wire with a thickness of 0.25 mm is wound 100 times each to form a primary coil and a secondary coil. The detection part was produced. At this time, two gas sensor detection units were prepared, and the waveform comparison was facilitated by simultaneously outputting waveforms using one as a reference.

(差動検出)
ガスセンサー検知部を吸着なしとアセトニトリル蒸気を吸着した場合において、二次コイルの出力および一次コイルへの入力波形と二次コイルからの出力波形の位相差をロックインアンプによって検出した。その結果を表1、表2、図3及び図4に示す。
(Differential detection)
When the gas sensor detector was not adsorbed and acetonitrile vapor was adsorbed, the output of the secondary coil and the phase difference between the input waveform to the primary coil and the output waveform from the secondary coil were detected by a lock-in amplifier. The results are shown in Table 1, Table 2, FIG. 3 and FIG.

Figure 2016223945
Figure 2016223945
Figure 2016223945
Figure 2016223945

以上の結果から、ガスの吸着の有無によって、二次コイルの出力電圧(誘導電圧)の変化だけでなく、一次コイルへの入力波形と二次コイルからの出力波形の位相差においても変化を引き起こすことができた。このような装置を用い、出力電圧と位相差の変化を捉えることにより、ガスを検出できることが示された。   From the above results, depending on the presence or absence of gas adsorption, not only changes in the output voltage (inductive voltage) of the secondary coil, but also changes in the phase difference between the input waveform to the primary coil and the output waveform from the secondary coil. I was able to. It was shown that gas can be detected by using such a device and capturing changes in output voltage and phase difference.

以上詳述したように、本発明は、ガス検出装置に係るものであり、ガス吸着により磁気特性変化が引き起こされる多孔性配位高分子を含んだ検知剤と、対象ガスに暴露された検知剤の磁気特性変化を捉える磁気検出手段とを備えることで、大気中のガス濃度を簡便で感度よく検出可能なガス検出装置を提供するものとして有用である。   As described above in detail, the present invention relates to a gas detection device, and includes a detection agent containing a porous coordination polymer that causes a change in magnetic properties by gas adsorption, and a detection agent exposed to the target gas. It is useful for providing a gas detection device that can detect the gas concentration in the atmosphere simply and with high sensitivity by providing a magnetic detection means that captures the change in the magnetic characteristics of the gas.

1 {Fe(ピラジン)[Ni(CN)]}
2 鉄イオン
3 テトラシアノニッケル酸イオン
4 ピラジン
11 ガスセンサー検知部
12 管
13 ガス検知剤
14 一次コイル
15 二次コイル
16 電源装置
17 波形検出装置
1 {Fe (pyrazine) [Ni (CN) 4 ]}
2 Iron ion 3 Tetracyano nickelate ion 4 Pyrazine 11 Gas sensor detection unit 12 Tube 13 Gas detection agent 14 Primary coil 15 Secondary coil 16 Power supply device 17 Waveform detection device

Claims (5)

ガス吸着により磁気特性変化が引き起こされる多孔性配位高分子を含んだ検知剤と、
対象ガスに暴露された前記検知剤の磁気特性変化を捉える磁気検出手段と
を備えるガス検出装置。
A detection agent containing a porous coordination polymer whose magnetic properties are changed by gas adsorption;
A gas detection apparatus comprising: a magnetic detection means that captures a change in magnetic characteristics of the detection agent exposed to the target gas.
前記検知剤は、単一種もしくは複数種のSc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hgから選択される金属イオンと有機配位子とからなる多孔性配位高分子を含み、対象ガスを吸着することで磁気特性変化を引き起こす
ことを特徴とする請求項1に記載のガス検出装置。
The detection agent may be a single kind or plural kinds of Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd. , La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg The gas detection device according to claim 1, comprising a porous coordination polymer composed of a metal ion selected from the group consisting of an organic ligand and a magnetic property change caused by adsorbing a target gas.
前記磁気検出手段は、対象ガスへの暴露前と暴露後の検知剤の磁気特性の差を捉える
ことを特徴とする請求項1に記載のガス検出装置。
The gas detection apparatus according to claim 1, wherein the magnetic detection means captures a difference in magnetic properties of the detection agent before and after exposure to the target gas.
前記磁気検出手段は、前記検知剤の磁気特性に応じた電気信号を出力する
ことを特徴とする請求項1に記載のガス検出装置。
The gas detection apparatus according to claim 1, wherein the magnetic detection unit outputs an electric signal corresponding to a magnetic characteristic of the detection agent.
前記磁気検出手段は、
前記検知剤に対して磁界を印加する磁界印加手段と、
前記検知剤を介して前記磁界を検出する磁界検出手段と
を備えることを特徴とする請求項1に記載のガス検出装置。
The magnetic detection means includes
Magnetic field applying means for applying a magnetic field to the detection agent;
The gas detection apparatus according to claim 1, further comprising a magnetic field detection unit that detects the magnetic field via the detection agent.
JP2015111459A 2015-06-01 2015-06-01 Gas detection device Pending JP2016223945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015111459A JP2016223945A (en) 2015-06-01 2015-06-01 Gas detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015111459A JP2016223945A (en) 2015-06-01 2015-06-01 Gas detection device

Publications (1)

Publication Number Publication Date
JP2016223945A true JP2016223945A (en) 2016-12-28

Family

ID=57748538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015111459A Pending JP2016223945A (en) 2015-06-01 2015-06-01 Gas detection device

Country Status (1)

Country Link
JP (1) JP2016223945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159681A (en) * 2017-03-24 2018-10-11 Tdk株式会社 Gas detection material and gas detector

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315892A (en) * 1976-07-29 1978-02-14 Stanley Electric Co Ltd Sensing apparatus for lack of oxygen
JPH05223785A (en) * 1992-02-13 1993-08-31 Sony Corp Hydrogen gas detector
JP2009511880A (en) * 2005-10-05 2009-03-19 ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ Chemical micromachining microsensor
JP2011168558A (en) * 2010-02-22 2011-09-01 Japan Science & Technology Agency Porous coordinated polymer having photoreactive site
WO2014009516A1 (en) * 2012-07-13 2014-01-16 Universite Montpellier 2, Sciences Et Techniques Micromagnetometry detection system and method for detecting magnetic signatures of magnetic materials.
WO2014046107A1 (en) * 2012-09-20 2014-03-27 国立大学法人京都大学 Metal nanoparticle complex and method for producing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315892A (en) * 1976-07-29 1978-02-14 Stanley Electric Co Ltd Sensing apparatus for lack of oxygen
JPH05223785A (en) * 1992-02-13 1993-08-31 Sony Corp Hydrogen gas detector
JP2009511880A (en) * 2005-10-05 2009-03-19 ザ・ボード・オブ・トラスティーズ・オブ・ザ・レランド・スタンフォード・ジュニア・ユニバーシティ Chemical micromachining microsensor
JP2011168558A (en) * 2010-02-22 2011-09-01 Japan Science & Technology Agency Porous coordinated polymer having photoreactive site
WO2014009516A1 (en) * 2012-07-13 2014-01-16 Universite Montpellier 2, Sciences Et Techniques Micromagnetometry detection system and method for detecting magnetic signatures of magnetic materials.
WO2014046107A1 (en) * 2012-09-20 2014-03-27 国立大学法人京都大学 Metal nanoparticle complex and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018159681A (en) * 2017-03-24 2018-10-11 Tdk株式会社 Gas detection material and gas detector

Similar Documents

Publication Publication Date Title
Fu et al. SERS‐active MIL‐100 (Fe) sensory array for ultrasensitive and multiplex detection of VOCs
Song et al. Water stable [Tb4] cluster-based metal–organic framework as sensitive and recyclable luminescence sensor of Quercetin
WO2017085796A1 (en) Odor sensor and odor measurement system
Chai et al. Fluorescent gold nanoprobes for the sensitive and selective detection for Hg 2+
Choi et al. Field‐effect biosensors for on‐site detection: recent advances and promising targets
JP2006519366A (en) Method and apparatus for selectively detecting ferromagnetic particles or supermagnetic particles
Qian et al. Improving the SERS detection sensitivity of aromatic molecules by a PDMS-coated Au nanoparticle monolayer film
CN105548098B (en) A kind of fluorescence probe and detection method detecting crystal methamphetamine or/and ketamine
Liu et al. Detection of hydrogen sulphide using cataluminescence sensors based on alkaline‐earth metal salts
Jin et al. Extraction of quinolones from milk samples using bentonite/magnetite nanoparticles before determination by high‐performance liquid chromatography with fluorimetric detection
Li et al. Two new reversible naphthalimide‐based fluorescent chemosensors for Hg2+
Tang et al. Cataluminescence‐based sensors: principle, instrument and application
Chu et al. A cataluminescence sensor for propionaldehyde based on the use of nanosized zirconium dioxide
JP2016223945A (en) Gas detection device
Arnanthigo et al. Sniff-testing for indoor air contaminants from new buildings environment detecting by aspiration-type ion mobility spectrometry
Duan et al. Determination of norfloxacin in food by an enhanced spectrofluorimetric method
CN103524540A (en) Luminous metal organic frame material for quickly detecting PCP (persistent organic pollutant)
Lee et al. Needle trap extraction for GC analysis of formic and acetic acids in aqueous solution
Wu et al. Magnetic immunoassays: A review of virus and pathogen detection before and amidst the coronavirus disease-19 (COVID-19)
JP4691687B2 (en) Organic-inorganic hybrid gas sensor material and manufacturing method thereof
Okabayashi et al. Temperature-programmed sensing for gas identification using the cataluminescence-based sensors
CN106840415B (en) The method of infrared acquisition is realized using the desorption phenomenon of infrared excitation molecule
JP2019168441A (en) Molecule detector and molecule detection method
Karuppuswami et al. Wireless EAS sensor tags for volatile profiling in food packages
Praikaew et al. Colorimetric sensor for detection of Hg2+ in aqueous samples utilizing rhodamine B hydrazide-modified silica

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200310