JP6851485B2 - 13族元素窒化物層、自立基板および機能素子 - Google Patents

13族元素窒化物層、自立基板および機能素子 Download PDF

Info

Publication number
JP6851485B2
JP6851485B2 JP2019538018A JP2019538018A JP6851485B2 JP 6851485 B2 JP6851485 B2 JP 6851485B2 JP 2019538018 A JP2019538018 A JP 2019538018A JP 2019538018 A JP2019538018 A JP 2019538018A JP 6851485 B2 JP6851485 B2 JP 6851485B2
Authority
JP
Japan
Prior art keywords
group
crystal layer
light emitting
nitride crystal
element nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019538018A
Other languages
English (en)
Other versions
JPWO2019039190A1 (ja
Inventor
崇行 平尾
崇行 平尾
中西 宏和
宏和 中西
幹也 市村
幹也 市村
孝直 下平
孝直 下平
坂井 正宏
正宏 坂井
隆史 吉野
隆史 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2017/030373 external-priority patent/WO2019038892A1/ja
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2019039190A1 publication Critical patent/JPWO2019039190A1/ja
Application granted granted Critical
Publication of JP6851485B2 publication Critical patent/JP6851485B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Description

本発明は、13族元素窒化物層、自立基板および機能素子に関するものである。
単結晶基板を用いた発光ダイオード(LED)等の発光素子として、サファイア(α−アルミナ単結晶)上に各種窒化ガリウム(GaN)層を形成したものが知られている。例えば、サファイア基板上に、n型GaN層、InGaN層からなる量子井戸層とGaN層からなる障壁層とが交互積層された多重量子井戸層(MQW)、及びp型GaN層が順に積層形成された構造を有するものが量産化されている。
特許文献1に記載の窒化ガリウム層は、多数の窒化ガリウム単結晶粒子からなる多結晶窒化ガリウムであり、横方向に向かって多数の柱状窒化ガリウム単結晶粒子が配列されている。
特許文献2に記載の窒化ガリウム層は、多数の窒化ガリウム単結晶粒子からなる多結晶窒化ガリウムであり、横方向に向かって多数の柱状窒化ガリウム単結晶粒子が配列されている。また、表面における平均チルト角(表面に対する法線方向の結晶方位(結晶軸)の傾きの平均値))が1〜10°である。
特許文献3では、底面から途中位置まではインクルージョンを高濃度で含み、途中位置から上面までは低濃度しか含まない粒界が下面から斜め方向に複数形成されている。また、粒界がc軸に対して50〜70°の角度をもつ方向に斜めに伸びている。
特許文献5には、融液中のGa比率を高くすることによって低転位密度を有する窒化ガリウム結晶を得ることが記載されている。
特許第5770905号 特許第6154066号 特許第5897790号 WO 2011/046203 WO2010/084682
特許文献1および2の窒化ガリウム結晶の上に発光素子を作製した場合、素子サイズと粒径のバランスに因るが、電流パスが遮断されて発光効率の低下の原因となる場合もあることが判明してきた。この理由は明らかではないが、単結晶粒子間の方位の異方性が関与している可能性がある。
特許文献3および4の窒化ガリウム結晶では、大口径になるほど、基板全面での融液の流れの制御が困難となり、結晶の外周にボイドが残存する場合がある。
特許文献5では、高Ga比とフラックスの流れ制御でグレインサイズを大きくして転位密度を低減する事ができるが、グレインとグレインの間にボイドが含有されやすくなる。
本発明の課題は、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶から選択された13族元素窒化物結晶からなり、上面及び底面を有する13族元素窒化物結晶層において、転位密度を低くでき、全体にわたって特性のばらつきを少なくできるような微構造を提供することである。
本発明の第一の態様は、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶から選択された13族元素窒化物結晶からなり、上面及び底面を有する13族元素窒化物結晶層であって、
前記上面をカソードルミネッセンスによって観測したときに、線状の高輝度発光部と、前記高輝度発光部に隣接する低輝度発光領域とを有しており、
前記上面におけるX線ロッキングカーブの(0002)面反射の半値幅が3000秒以下、20秒以上であり、
酸素原子の含有量が1×1018atom/cm以下であり、珪素原子、マンガン原子、炭素原子、マグネシウム原子およびカルシウム原子の含有量がそれぞれ1×1017atom/cm以下であり、クロム原子の含有量が1×1016atom/cm以下であり、塩素原子の含有量が1×1015atom/cm以下であることを特徴とする。
また、本発明の第二の態様は、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶から選択された13族元素窒化物結晶からなり、上面及び底面を有する13族元素窒化物結晶層であって、
前記上面をカソードルミネッセンスによって観測したときに、線状高輝度発光部と、前記線状高輝度発光部に隣接する低輝度発光領域とを有しており、
前記上面におけるX線ロッキングカーブの(10−10)面反射の半値幅が10000秒以下、20秒以上であり、
酸素原子の含有量が1×1018atom/cm以下であり、珪素原子、マンガン原子、炭素原子、マグネシウム原子およびカルシウム原子の含有量がそれぞれ1×1017atom/cm以下であり、クロム原子の含有量が1×1016atom/cm以下であり、塩素原子の含有量が1×1015atom/cm以下であることを特徴とする。
また、本発明は、前記13族元素窒化物層からなることを特徴とする、自立基板に係るものである。
また、本発明は、
支持基板、および
前記支持基板上に設けられた前記13族元素窒化物層
を備えていることを特徴とする、複合基板に係るものである。
また、本発明は、前記自立基板、および
前記13族元素窒化物層上に設けられた機能層を有することを特徴とする、機能素子に係るものである。
また、本発明は、前記複合基板、および
前記13族元素窒化物層上に設けられた機能層を有することを特徴とする、機能素子に係るものである。
本発明の第一の態様によれば、13族元素窒化物結晶層の上面をカソードルミネッセンスによって観測したときに、線状の高輝度発光部と、高輝度発光部に隣接する低輝度発光領域とを有しており、かつ上面におけるX線ロッキングカーブの(0002)面反射の半値幅が3000秒以下、20秒以上である。これは、上面に線状の高輝度発光部が現れていることから、13族元素窒化物結晶に含有されるドーパント成分や微量成分等が濃い線状の高輝度発光部を生成していることを意味している。これと同時に、上面における平均チルト角が小さく、結晶軸の方位がほぼ揃った状態となっていることから、単結晶に類似した非常に均質性の高い微構造が得られているものである。
本発明の第二の態様によれば、13族元素窒化物結晶層の上面をカソードルミネッセンスによって観測したときに、線状の高輝度発光部と、高輝度発光部に隣接する低輝度発光領域とを有しており、かつ13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(10−10)面反射の半値幅が10000秒以下、20秒以上である。これは、上面に線状の高輝度発光部が現れていることから、13族元素窒化物結晶に含有されるドーパント成分が非常に濃い線状の高輝度発光部を生成していることを意味している。これと同時に、上面における平均ツイスト角が小さく、結晶軸の方位がほぼ揃った状態となっていることから、単結晶に類似した非常に均質性の高い微構造が得られているものである。
これらのような新規な微構造を有する13族元素窒化物結晶層によって、寸法を大きくしても(例えば径6インチ以上としても)、転位密度を低くでき、全体にわたって特性のばらつきを少なくできるような13族元素窒化物結晶層を提供することができる。
これに加えて、酸素原子、珪素原子、マンガン原子、炭素原子、マグネシウム原子、カルシウム原子、クロム原子および塩素原子は、多量に含有されていると、高輝度領域を集中させ、偏らせる作用がある。これら原子の含有量を前述のような微量に抑えることによって、高輝度発光部が全表面にわたって均一に発生し易くなり、その上に形成する機能層の特性のバラツキを一層抑制することができる。
(a)は、支持基板1上にアルミナ層2、種結晶層3および13族元素窒化物結晶層13を設けた状態を示し、(b)は、支持基板から分離された13族元素窒化物結晶層13を示す。 13族元素窒化物結晶層13の上面13aのカソードルミネセンス像を説明するための模式図である。 13族元素窒化物結晶層13の上面13aのカソードルミネセンス像を示す写真である。 図3の部分拡大写真である。 図4のカソードルミネセンス像に対応する模式図である。 13族元素窒化物結晶層13の断面のカソードルミネセンス像を示す写真である。 13族元素窒化物結晶層13の断面を示す走査型電子顕微鏡写真である。 本発明に係る機能素子21を示す模式図である。 13族元素窒化物結晶層の上面の走査型電子顕微鏡による撮像写真である。 CL画像から生成したグレースケールのヒストグラムを示す。
以下、本発明を更に詳細に説明する。
(13族元素窒化物結晶層)
本発明の13族元素窒化物結晶層は、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶から選択された13族元素窒化物結晶からなり、上面及び底面を有する。例えば、図1(b)に示すように、13族元素窒化物結晶層13では上面13aと底面13bとが対向している。
13族元素窒化物結晶層を構成する窒化物は、窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶である。具体的には、GaN、AlN、InN、GaAl1−xN(1>x>0)、GaIn1−xN(1>x>0)、GaAlInzN(1>x>0、1>y>0、x+y+z=1)である。
特に好ましくは、13族元素窒化物結晶層を構成する窒化物が窒化ガリウム系窒化物である。具体的には、GaN、GaAl1−xN(1>x>0.5)、GaIn1−xN(1>x>0.4)、GaAlInzN(1>x>0.5、1>y>0.3、x+y+z=1)である。
13族元素窒化物は、亜鉛、カルシウムや、その他のn型ドーパント又はp型ドーパントでドープされていてもよく、この場合、多結晶13族元素窒化物を、p型電極、n型電極、p型層、n型層等の基材以外の部材又は層として使用することができる。p型ドーパントの好ましい例としては、ベリリウム(Be)、マグネシウム(Mg)、ストロンチウム(Sr)、及びカドミウム(Cd)からなる群から選択される1種以上が挙げられる。n型ドーパントの好ましい例としては、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)及び酸素(O)からなる群から選択される1種以上が挙げられる。
ここで、13族元素窒化物結晶層13の上面13aをカソードルミネッセンスによって観測したときに、図2に模式的に示すように、線状の高輝度発光部5と、高輝度発光部5に隣接する低輝度発光領域6とを有している。
ただし、カソードルミネッセンス(CL)による観測は以下のようにして行うものとする。
CL観察には、カソードルミネッセンス検出器付きの走査電子顕微鏡(SEM)を用いる。例えばGatan製MiniCLシステム付きの日立ハイテクノロジーズ製S−3400N走査電子顕微鏡を用いた場合、測定条件は、CL検出器を試料と対物レンズの間に挿入した状態で、加速電圧10kV、プローブ電流「90」、ワーキングディスタンス(W.D.)22.5mm、倍率50倍で観察するのが好ましい。
また、高輝度発光部と低輝度発光領域とは、カソードルミネッセンスによる観測から以下のようにして区別する。
加速電圧10kV、プローブ電流「90」、ワーキングディスタンス(W.D.)22.5mm、倍率50倍でCL観察した画像の輝度を、画像解析ソフト(例えば、三谷商事(株)製WinROOF Ver6.1.3)を用いて、縦軸を度数、横軸を輝度(GRAY)として、256段階のグレースケールのヒストグラムを作成する。ヒストグラムには、図10のように、2つのピークが確認され、2つのピーク間で度数が最小値となる輝度を境界として、高い側を高輝度発光部、低い側を低輝度発光領域と定義する。
また、13族元素窒化物結晶層の上面では、線状の高輝度発光部に低輝度発光領域が隣接する。これによって、隣り合う低輝度発光領域は、それらの間にある線状の高輝度発光部によって区分される。ここで、高輝度発光部が線状であるとは、隣り合う低輝度発光領域の間で高輝度発光部が細長く伸びていて境界線をなしている状態を示す。
ここで、高輝度発光部がなしている線は、直線であってよく、また曲線であってよく、更には直線と曲線との組み合わせであってもよい。曲線は円弧、楕円、放物線、双曲線などの種々の形態を含んでいても良い。また、互いに方向の異なる高輝度発光部が連続していて良いが、高輝度発光部の末端が切れていても良い。
13族元素窒化物結晶層の上面においては、低輝度発光領域は、その下に成長してきた13族元素窒化物結晶の露出面であってよく、面状に、二次元的に広がっている。一方、高輝度発光部は線状をなしているが、隣り合う低輝度発光領域を区分する境界線のように一次元的に伸びている。これは、例えば、下から成長してきた13族元素窒化物結晶からドーパント成分や微量成分等が排出され、成長過程で隣り合う13族元素窒化物結晶の間に集まり、上面において隣り合う低輝度発光領域の間に、線状に強く発光する部分を生成したものと考えられる。
例えば図3に、実施例で得られた13族元素窒化物結晶層の上面のカソードルミネッセンス測定による写真を示す。図4は、図3の部分拡大図であり、図5は図4に対応する模式図である。低輝度発光領域が面状に、二次元的に広がっており、高輝度発光部は線状をなしており、隣り合う低輝度発光領域を区分する境界線のように一次元的に伸びていることがわかる。
このことから、低輝度発光領域の形状には特に制限はなく、通常は面状に、二次元的に伸びているものである。一方、高輝度発光部が形成する線は、細長いものである必要がある。こうした観点からは、高輝度発光部の幅は、100μm以下であることが好ましく、20μm以下であることが更に好ましく、5μm以下であることが特に好ましい。また、高輝度発光部の幅は通常0.01μm以上である。
また、本発明の観点からは、高輝度発光部の長さと幅との比率(長さ/幅)は、1以上が好ましく、10以上が更に好ましい。
また、本発明の観点からは、上面において、高輝度発光部の面積の低輝度発光領域の面積に対する比率(高輝度発光部の面積/低輝度発光領域の面積)は、0.001以上であることが好ましく、0.01以上であることが更に好ましい。
また、本発明の観点からは、上面において、高輝度発光部の面積の低輝度発光領域の面積に対する比率(高輝度発光部の面積/低輝度発光領域の面積)は、0.3以下であることが好ましく、0.1以下であることが更に好ましい。
更に、本発明においては、酸素原子の含有量が1×1018atom/cm以下であり、珪素原子、マンガン原子、炭素原子、マグネシウム原子およびカルシウム原子の含有量がそれぞれ1×1017atom/cm以下であり、クロム原子の含有量が1×1016atom/cm以下であり、塩素原子の含有量が1×1015atom/cm以下である。これら原子の含有量を前述のような微量に抑えることによって、高輝度発光部が全表面にわたって均一に発生し易くなり、その上に形成する機能層の特性のバラツキを一層抑制することができる。
こうした観点からは、酸素原子の含有量を1×1017atom/cm以下とすることが好ましく、1×1016atom/cm以下とすることが更に好ましい。珪素原子、マンガン原子、炭素原子の含有量をそれぞれ1×1016atom/cm以下とすることが好ましく、1×1015atom/cm以下とすることが更に好ましい。マグネシウム原子、カルシウム原子の含有量をそれぞれ2×1016atom/cm以下とすることが好ましく、1×1015atom/cm以下とすることが更に好ましい。クロム原子の含有量を2×1015atom/cm以下とすることが好ましく、1×1015atom/cm以下とすることが更に好ましい。塩素原子の含有量を2×1014atom/cm以下とすることが好ましく、1×1014atom/cm以下とすることが更に好ましい。
また、13族元素窒化物結晶層における酸素原子、珪素原子、マンガン原子、炭素原子、マグネシウム原子、カルシウム原子、クロム原子、塩素原子の含有量をそれぞれ1×1012atom/cmよりも小さくすることは一般には難しく、現実的な観点からは、1×1012atom/cm以上とすることが好ましい。
13族元素窒化物結晶層に含まれる各原子の濃度測定はSIMS(二次イオン質量分析法)によって行う。
好適な実施形態においては、13族元素窒化物結晶層の上面において、高輝度発光部が連続相を形成しており、低輝度発光領域が高輝度発光部によって区画された不連続相を形成している。例えば、図2、図5の模式図では、線状の高輝度発光部5は連続相を形成しており、低輝度発光領域6が高輝度発光部5によって区画された不連続相を形成している。
ただし、連続相とは、上面において、高輝度発光部5が連続していることを意味するが、高輝度発光部5すべてが完全に連続していることを必須としているわけではなく、全体のパターンに影響しない範囲で少量の高輝度発光部5が他の高輝度発光部5に対して分離されていることは許容するものとする。
また、分散相とは、低輝度発光領域6が概ね高輝度発光部5によって区画されていて、互いにつながらない多数の領域に分かれていることを意味する。また、上面において、低輝度発光領域6が高輝度発光部5によって分離されていても、13族元素窒化物結晶層の内部において低輝度発光領域6が連続していることは許容される。
好適な実施形態においては、高輝度発光部が、13族元素窒化物結晶のm面に沿って延びる部分を含む。例えば、図2、図5の例においては、高輝度発光部5は細長い線状に延びており、m面に沿って伸びる部分5a、5b、5cを多く含んでいる。六方晶である13族元素窒化物結晶のm面に沿った方向とは、具体的には、[-2110]、[-12-10]、[11-20]、[2-1-10]、[1-210]、[-1-120]方向であり、高輝度発光部5は、六方晶を反映した略六角形の辺の一部を含む。また、線状の高輝度発光部がm面に沿って伸びているとは、高輝度発光部の長手方向が[-2110]、[-12-10]、[11-20]、[2-1-10]、[1-210]、[-1-120]方向のいずれかに沿って延びていることを意味している。具体的には、線状高輝度発光部の長手方向がm面に対して、好ましくは±1°以内、さらに好ましくは±0.3°以内である場合を含む。
高輝度発光部の全長に占めるm面に沿った方向に延びる部分の割合は、60%以上が好ましく、80%以上であることが更に好ましく、実質的に高輝度発光部の全体を占めていてもよい。
本発明の第一の態様においては、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(0002)面反射の半値幅が3000秒以下、20秒以上である。これは、上面において、表面チルト角が小さく、結晶方位が全体として単結晶のように高度に配向していることを示している。前述したようなカソードルミネッセンス分布を有している上で、このような全体として表面での結晶方位が高度に配向している微構造であると、13族元素窒化物結晶層の上面における特性分布が小さくでき、その上に設けられる各種機能素子の特性を均一に揃えることが可能であり、また機能素子の歩留りも改善する。
こうした観点からは、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(0002)面反射の半値幅が1000秒以下、20秒以上であることが好ましく、500秒以下、20秒以上であることがより一層好ましい。なお、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(0002)面反射の半値幅を20秒未満まで小さくすることは現実的には困難である。
ただし、X線ロッキングカーブ(0002)面反射は以下のように測定する。XRD装置(例えばBruker−AXS製D8−DISCOVER)を用いて、測定条件は管電圧40kV、管電流40mA、コリメータ径0.1mm、アンチスキャッタリングスリット3mmで、ω=ピーク位置角度±0.3°の範囲、ωステップ幅0.003°、及び計数時間1秒に設定して行えばよい。この測定ではGe(022)非対称反射モノクロメーターでCuKα線を平行単色光化(半値幅28秒)し、あおり角CHI=0°付近で軸立てた上で測定するのが好ましい。そして、X線ロッキングカーブ(0002)面反射の半値幅は、XRD解析ソフトウェア(Bruker−AXS製、LEPTOS4.03)を用いてピークサーチを行い算出する事ができる。ピークサーチ条件は、Noise Filter「10」、Threshold「0.30」、Points「10」とすることが好ましい。
13族元素窒化物結晶層の上面に略垂直な断面は、カソードルミネッセンスによって観測すると、図6に示すように、白っぽく発光する線状の高輝度発光部が観測されることがある。なお、図6において、低輝度発光領域が面状に、二次元的に広がっており、高輝度発光部は線状をなしており、隣り合う低輝度発光領域を区分する境界線のように伸びていることがわかる。こうした高輝度発光部および低輝度発光領域の観測方法は、上面における高輝度発光部および低輝度発光領域の観測方法と同じである。
13族元素窒化物結晶層の断面における低輝度発光領域の形状には特に制限はなく、通常は面状に、二次元的に伸びているものである。一方、高輝度発光部が形成する線は、細長いものである必要がある。こうした観点からは、高輝度発光部の幅は、50μm以下であることが好ましく、10μm以下であることが更に好ましい。
好適な実施形態においては、13族元素窒化物結晶層の上面と略垂直な前記断面において、線状の高輝度発光部が連続相を形成しており、低輝度発光領域が高輝度発光部によって区画された不連続相を形成している。例えば、図6のカソードルミネッセンス像では、線状の高輝度発光部は連続相を形成しており、低輝度発光領域が高輝度発光部によって区画された不連続相を形成している。
ただし、連続相とは、前記断面において、高輝度発光部が連続していることを意味するが、高輝度発光部すべてが完全に連続していることを必須としているわけではなく、全体のパターンに影響しない範囲で少量の高輝度発光部が他の高輝度発光部に対して分離されていることは許容するものとする。
また、分散相とは、低輝度発光領域が概ね高輝度発光部によって区画されていて、互いにつながらない多数の領域に分かれていることを意味する。
好適な実施形態においては、13族元素窒化物結晶層の上面に略垂直な断面においてボイドが観測されない。すなわち、図7に示す走査型電子顕微鏡写真において、ボイド(空隙)や13族元素窒化物結晶以外の異なる結晶相は観測されない。ただし、ボイドの観測は以下のようにして行う。
ボイドは、13族元素窒化物結晶層の上面に略垂直な断面を走査型電子顕微鏡(SEM)で観察した際に観察され、最大幅が1μm〜500μmの大きさの空隙を「ボイド」とする。このSEM観察には、例えば日立ハイテクノロジーズ製S−3400N走査電子顕微鏡を用いる。測定条件は、加速電圧15kV、プローブ電流「60」、ワーキングディスタンス(W.D.)6.5mm、倍率100倍で観察するのが好ましい。
また、好適な実施形態においては、13族元素窒化物結晶層の上面における転位密度が1×10/cm以上、1×10/cm以下である。この転位密度を1×10/cm以下とすることが機能素子の特性向上の観点から特に好ましい。この観点からは、この転位密度を1×10/cm以下とすることが更に好ましい。この転位密度は以下のようにして測定するものとする。
転位密度の測定には、カソードルミネッセンス検出器付きの走査電子顕微鏡(SEM)を用いることができる。例えばGatan製MiniCLシステム付きの日立ハイテクノロジーズ製S−3400N走査電子顕微鏡を用いた場合、転位箇所が発光せずに黒点(ダークスポット)として観察される。そのダークスポット密度を計測する事により、転位密度が算出される。測定条件は、CL検出器を試料と対物レンズの間に挿入した状態で、加速電圧10kV、プローブ電流「90」、ワーキングディスタンス(W.D.)22.5mm、倍率1200倍で観察するのが好ましい。
また、好適な実施形態においては、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(10−10)面反射の半値幅が10000秒以下、20秒以上である。これは上面における表面チルト角および表面ツイスト角が共に小さく、結晶方位が全体として単結晶のようにより高度に配向していることを示している。このような全体として表面での結晶方位がより高度に配向している微構造であると、13族元素窒化物結晶層の上面における特性分布が小さくでき、その上に設けられる各種機能素子の特性を均一に揃えることが可能であり、また機能素子の歩留りも改善する。
本発明の第二の態様においては、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(10−10)面反射の半値幅が10000秒以下、20秒以上である。これは、上面における表面ツイスト角度が非常に低いことを意味している。結晶方位が全体として単結晶のように高度に配向していることを示している。前述したようなカソードルミネッセンス分布を有している上で、このような全体として表面での結晶方位が高度に配向している微構造であると、13族元素窒化物結晶層の上面における特性分布が小さくでき、その上に設けられる各種機能素子の特性を均一に揃えることが可能であり、また機能素子の歩留りも改善する。
こうした観点からは、13族元素窒化物結晶層の上面におけるX線ロッキングカーブの(10−10)面反射の半値幅は、5000秒以下であることが好ましく、更には1000秒以下、更には20秒以上であることが一層好ましい。また、この半値幅を20秒未満まで低下させることは現実的には困難である。
ただし、X線ロッキングカーブ(10−10)面反射は以下のように測定する。XRD装置(例えばBruker−AXS製D8−DISCOVER)を用いて、測定条件は管電圧40kV、管電流40mA、コリメータなし、アンチスキャッタリングスリット3mmで、ω=ピーク位置角度±0.3°の範囲、ωステップ幅0.003°、及び計数時間4秒に設定して行えばよい。この測定ではGe(022)非対称反射モノクロメーターでCuKα線を平行単色光化(半値幅28秒)し、あおり角CHI=88°付近で軸立てた上で測定するのが好ましい。そして、X線ロッキングカーブ(10−10)面反射の半値幅は、XRD解析ソフトウェア(Bruker−AXS製、LEPTOS4.03)を用いてピークサーチを行い算出する事ができる。ピークサーチ条件は、Noise Filter「10」、Threshold「0.30」、Points「10」とすることが好ましい。
(好適な製法例)
以下、13族元素窒化物結晶層の好適な製法を例示する。
本発明の13族元素窒化物結晶層は、下地基板上に種結晶層を形成し、その上に13族元素窒化物結晶から構成される層を形成することにより製造することができる。
例えば図1に例示するように、下地基板は、単結晶基板1上にアルミナ層2を形成したものを用いることができる。単結晶基板1はサファイア、AlNテンプレート、GaNテンプレート、GaN自立基板、SiC単結晶、MgO単結晶、スピネル(MgAl)、LiAlO、LiGaO、LaAlO,LaGaO,NdGaO等のペロブスカイト型複合酸化物、SCAM(ScAlMgO)を例示できる。また組成式〔A1−y(Sr1−xBa〕〔(Al1−zGa1−u・D〕O(Aは、希土類元素である;Dは、ニオブおよびタンタルからなる群より選ばれた一種以上の元素である;y=0.3〜0.98;x=0〜1;z=0〜1;u=0.15〜0.49;x+z=0.1〜2)の立方晶系のペロブスカイト構造複合酸化物も使用できる。
アルミナ層2の形成方法は公知の技術を用いることができ、スパッタリング、MBE(分子線エピタキシー)法、蒸着、ミストCVD法、ゾルゲル法、エアロゾルデポジション(AD)法、或いはテープ成形等で作製したアルミナシートを上記単結晶基板に貼り合せる手法が例示され、特にスパッタリング法が好ましい。必要に応じてアルミナ層を形成後に熱処理やプラズマ処理、イオンビーム照射を加えたものを用いることができる。熱処理の方法は特に限定がないが、大気雰囲気、真空、或いは水素等の還元雰囲気、窒素・Ar等の不活性雰囲気で熱処理すればよく、ホットプレス(HP)炉、熱間静水圧プレス(HIP)炉等を用いて加圧下で熱処理を行っても良い。
次いで、例えば図1(a)に示すように、アルミナ層2上に種結晶層3を設ける。
種結晶層3を構成する材質は、IUPACで規定する13族元素の一種または二種以上の窒化物とする。この13族元素は、好ましくはガリウム、アルミニウム、インジウムである。また、13族元素窒化物結晶は、具体的には、GaN、AlN、InN、GaAl1−xN(1>x>0)、GaIn1−xN(1>x>0)、GaAlInN1―x−y(1>x>0、1>y>0)が好ましい。
種結晶層3の作製方法は特に限定されないが、MOCVD(有機金属気相成長法)、MBE(分子線エピタキシー法)、HVPE(ハイドライド気相成長法)、スパッタリング等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示される。
例えば、MOCVD法による種結晶層の形成は、450〜550℃にて低温成長緩衝GaN層を20〜50nm堆積させた後に、1000〜1200℃にて厚さ2〜4μmのGaN膜を積層させることにより行うのが好ましい。
13族元素窒化物結晶層13は、種結晶層3の結晶方位に概ね倣った結晶方位を有するように形成する。13族元素窒化物結晶層の形成方法は、種結晶膜の結晶方位に概ね倣った結晶方位を有する限り特に限定がなく、MOCVD、HVPE等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示されるが、Naフラックス法により行われるのが特に好ましい。
Naフラックス法による13族元素窒化物結晶層を形成する際には、融液を強く攪拌し、融液を充分に均一に混ぜることが好ましい。こうした攪拌方法として、揺動や回転、振動方式が挙げられるが、方法は限定されない。
Naフラックス法による13族元素窒化物結晶層の形成は、種結晶基板を設置した坩堝に13族金属、金属Na及び所望によりドーパント(例えばゲルマニウム(Ge)、シリコン(Si)、酸素(O)等のn型ドーパント、又はベリリウム(Be)、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、亜鉛(Zn)、カドミウム(Cd)等のp型ドーパント)を含む融液組成物を充填し、窒素雰囲気中で830〜910℃、3.5〜4.5MPaまで昇温加圧した後、温度及び圧力を保持しつつ回転することにより行うのが好ましい。保持時間は目的の膜厚によって異なるが、10〜100時間程度としてもよい。
また、こうしてNaフラックス法により得られた窒化ガリウム結晶を砥石で研削して板面を平坦にした後、ダイヤモンド砥粒を用いたラップ加工により板面を平滑化するのが好ましい。
(13族元素窒化物結晶層の分離方法)
次いで、13族元素窒化物結晶層を単結晶基板から分離することによって、13族元素窒化物結晶層を含む自立基板を得ることができる。
ここで、13族元素窒化物結晶層を単結晶基板から分離する方法は限定されない。好適な実施形態においては、13族元素窒化物結晶層を育成した後の降温工程において13族元素窒化物結晶層を単結晶基板から自然剥離させる。
あるいは、13族元素窒化物結晶層を単結晶基板からケミカルエッチングによって分離することができる。
ケミカルエッチングを行う際のエッチャントとしては、硫酸、塩酸等の強酸や硫酸とリン酸の混合液、もしくは水酸化ナトリウム水溶液、水酸化カリウム水溶液等の強アルカリが好ましい。また、ケミカルエッチングを行う際の温度は、70℃以上が好ましい。
あるいは、13族元素窒化物結晶層を単結晶基板からレーザーリフトオフ法によって剥離することができる。
あるいは、13族元素窒化物結晶層を単結晶基板から研削によって剥離することができる。
あるいは、13族元素窒化物結晶層を単結晶基板からワイヤーソーで剥離することができる。
(自立基板)
13族元素窒化物結晶層を単結晶基板から分離することで、自立基板を得ることができる。本発明において「自立基板」とは、取り扱う際に自重で変形又は破損せず、固形物として取り扱うことのできる基板を意味する。本発明の自立基板は発光素子等の各種半導体デバイスの基板として使用可能であるが、それ以外にも、電極(p型電極又はn型電極でありうる)、p型層、n型層等の基材以外の部材又は層として使用可能なものである。この自立基板には、一層以上の他の層が更に設けられていても良い。
13族元素窒化物結晶層が自立基板を構成する場合には、自立基板の厚さは基板に自立性を付与できる必要があり、20μm以上が好ましく、より好ましくは100μm以上であり、さらに好ましくは300μm以上である。自立基板の厚さに上限は規定されるべきではないが、製造コストの観点では3000μm以下が現実的である。
(複合基板)
単結晶基板上に13族元素窒化物結晶層を設けた状態で、13族元素窒化物結晶層を分離することなく、他の機能層を形成するためのテンプレート基板として用いることができる。
(機能素子)
本発明の13族元素窒化物結晶層上に設けられた機能素子構造は特に限定されないが、発光機能、整流機能または電力制御機能を例示できる。
本発明の13族元素窒化物結晶層を用いた発光素子の構造やその作製方法は特に限定されるものではない。典型的には、発光素子は、13族元素窒化物結晶層に発光機能層を設けることにより作製される。もっとも、13族元素窒化物結晶層を電極(p型電極又はn型電極でありうる)、p型層、n型層等の基材以外の部材又は層として利用して発光素子を作製してもよい。
図8に、本発明の一態様による発光素子の層構成を模式的に示す。図8に示される発光素子21は、自立基板13と、この基板上に形成される発光機能層18とを備えてなる。この発光機能層18は、電極等を適宜設けて電圧を印加することによりLED等の発光素子の原理に基づき発光をもたらすものである。
発光機能層18が基板13上に形成される。発光機能層18は、基板13上の全面又は一部に設けられてもよいし、後述するバッファ層が基板13上に形成される場合にはバッファ層上の全面又は一部に設けられてもよい。発光機能層18は、電極及び/又は蛍光体を適宜設けて電圧を印加することによりLEDに代表される発光素子の原理に基づき発光をもたらす公知の様々な層構成を採りうる。したがって、発光機能層18は青色、赤色等の可視光を放出するものであってもよいし、可視光を伴わずに又は可視光と共に紫外光を発光するものであってもよい。発光機能層18は、p−n接合を利用した発光素子の少なくとも一部を構成するのが好ましく、このp−n接合は、図8に示されるように、p型層18aとn型層18cの間に活性層18bを含んでいてもよい。このとき、活性層としてp型層及び/又はn型層よりもバンドギャップが小さい層を用いたダブルへテロ接合又はシングルへテロ接合(以下、ヘテロ接合と総称する)としてもよい。また、p型層−活性層−n型層の一形態として、活性層の厚みを薄くした量子井戸構造を採りうる。量子井戸を得るためには活性層のバンドギャップがp型層及びn型層よりも小さくしたダブルへテロ接合が採用されるべきことは言うまでもない。また、これらの量子井戸構造を多数積層した多重量子井戸構造(MQW)としてもよい。これらの構造をとることで、p−n接合と比べて発光効率を高めることができる。このように、発光機能層18は、発光機能を有するp−n接合及び/又はへテロ接合及び/又は量子井戸接合を備えたものであるのが好ましい。なお、20、22は電極の例である。
したがって、発光機能層18を構成する一以上の層は、n型ドーパントがドープされているn型層、p型ドーパントがドープされているp型層、及び活性層からなる群から選択される少なくとも一以上を含むものであることができる。n型層、p型層及び(存在する場合には)活性層は、主成分が同じ材料で構成されてもよいし、互いに主成分が異なる材料で構成されてもよい。
発光機能層18を構成する各層の材質は、13族元素窒化物結晶層の結晶方位に概ね倣って成長し且つ発光機能を有するものであれば特に限定されないが、窒化ガリウム(GaN)系材料、酸化亜鉛(ZnO)系材料及び窒化アルミニウム(AlN)系材料から選択される少なくとも1種以上を主成分とする材料で構成されるのが好ましく、p型ないしn型に制御するためのドーパントを適宜含むものであってよい。特に好ましい材料は、窒化ガリウム(GaN)系材料である。また、発光機能層18を構成する材料は、そのバンドギャップを制御するため、例えばGaNにAlN、InN等を固溶させた混晶としてもよい。また、直前の段落で述べたとおり、発光機能層18は複数種の材料系からなるヘテロ接合としてもよい。例えば、p型層に窒化ガリウム(GaN)系材料、n型層に酸化亜鉛(ZnO)系材料を用いてもよい。また、p型層に酸化亜鉛(ZnO)系材料、活性層とn型層に窒化ガリウム(GaN)系材料を用いてもよく、材料の組み合わせに特に限定はない。
発光機能層18及びバッファ層の成膜方法は、13族元素窒化物結晶層の結晶方位に概ね倣って成長する方法であれば特に限定されないが、MOCVD、MBE、HVPE、スパッタリング等の気相法、Naフラックス法、アモノサーマル法、水熱法、ゾルゲル法等の液相法、粉末の固相成長を利用した粉末法、及びこれらの組み合わせが好ましく例示される。
(実施例1)
(窒化ガリウム自立基板の作製)
径φ6インチのサファイア基板1上に、0.3μmのアルミナ膜2をスパッタリング法で成膜した後、MOCVD法で厚さ2μmの窒化ガリウムからなる種結晶膜3を成膜し、種結晶基板を得た。
この種結晶基板を、窒素雰囲気のグローブボックス内でアルミナ坩堝の中に配置した。次に、Ga/Ga+Na(mol%)=15mol%となるように金属ガリウムと金属ナトリウムを坩堝内に充填し、アルミナ板で蓋をした。その坩堝をステンレス製内容器に入れ、さらにそれを収納できるステンレス製外容器に入れて、窒素導入パイプの付いた容器蓋で閉じた。この外容器を、予め真空ベークしてある結晶製造装置内の加熱部に設置されている回転台の上に配置し、耐圧容器に蓋をして密閉した。
次いで、耐圧容器内を真空ポンプにて0.1Pa以下まで真空引きした。続いて、上段ヒータ、中段ヒータ及び下段ヒータを調節して加熱空間の温度を870℃になるように加熱しながら、4.0MPaまで窒素ガスボンベから窒素ガスを導入し、外容器を中心軸周りに20rpmの速度で一定周期の時計回りと反時計回りで回転させた。加速時間=12秒、保持時間=600秒、減速時間=12秒、停止時間=0.5秒とした。そして、この状態で40時間保持した。その後、室温まで自然冷却して大気圧にまで減圧した後、耐圧容器の蓋を開けて中から坩堝を取り出した。坩堝の中の固化した金属ナトリウムを除去し、種結晶基板から剥離したクラックのない窒化ガリウム自立基板を回収した。
(評価)
窒化ガリウム表面を研磨加工した窒化ガリウム自立基板13の上面13aをカソードルミネッセンス(CL)検出器付きの走査電子顕微鏡(SEM)でCL観察すると、図3〜図5に示すような高輝度発光部5および低輝度発光領域6が確認された。
また、窒化ガリウム自立基板の上面を、切断面を研磨加工してカソードルミネッセンス(CL)検出器付きの走査電子顕微鏡(SEM)で観察した。その結果、図3に示すように、CL像では窒化ガリウム結晶内部に、白っぽく発光する高輝度発光部が確認された。しかし、同時に、図9に示すように、同一視野を走査型電子顕微鏡で撮像確認したところ、ボイドが無く、均質な窒化ガリウム結晶が成長していることが確認された。
また、窒化ガリウム自立基板を、その上面に対して垂直な断面に切断し、切断面を研磨加工してカソードルミネッセンス(CL)検出器付きの走査電子顕微鏡(SEM)で観察した。その結果、図6に示すように、CL像では窒化ガリウム結晶内部に、白っぽく発光する高輝度発光部が確認された。しかし、同時に、図7に示すように、同一視野を走査型電子顕微鏡(SEM)で撮像確認したところ、ボイド等が確認されず、均質な窒化ガリウム結晶が成長していることが確認された。すなわち、13族元素窒化物結晶層の上面においても、断面と同様に、CL観察では高輝度発光部が存在しているが、SEMでは同じ視野にCL像で見られる高輝度発光部と同一形状、もしくはそれに類する微構造が存在していなかった。
(転位密度の測定)
ついで、13族元素窒化物結晶層の上面について転位密度を測定した。CL観察を行い、転位箇所であるダークスポットの密度を計測する事により、転位密度が算出した。80μm×105μm視野を5視野観察した結果、1.2×10/cm〜9.4×10/cmの範囲でばらつき、平均3.3×10/cmであった。
(表面チルト角の測定)
窒化ガリウム結晶層の上面におけるX線ロッキングカーブの(0002)面反射の半値幅を測定した結果、73秒であった。
(表面ツイスト角の測定)
窒化ガリウム結晶層の上面におけるX線ロッキングカーブの(10−10)面反射の半値幅を測定したところ、85秒であった。
(各原子の濃度)
SIMSによって各原子の濃度を測定した。具体的には、CAMECA社製IMS−7f装置を使用し、一次イオン種としてO またはCsを用い、加速電圧5kV〜15kVにて、20×20μmあるいはφ30μmの領域における表面から深さ3μmまでのSIMS測定を行った。結果は以下のとおりである。

酸素原子: 5×1016atom/cm
珪素原子: 3×1015atom/cm
マンガン原子: 2×1015atom/cm
炭素原子: 6×1015atom/cm
マグネシウム原子:3×1015atom/cm
カルシウム原子: 9×1013atom/cm
クロム原子: 8×1014atom/cm
塩素原子: 2×1014atom/cm
(MOCVD法による発光機能層の成膜)
MOCVD法を用いて、窒化ガリウム自立基板の上面にn型層として1050℃でSi原子濃度が5×1018/cmになるようにドーピングしたn−GaN層を1μm堆積した。次に発光層として750℃で多重量子井戸層を堆積した。具体的にはInGaNによる2.5nmの井戸層を5層、GaNによる10nmの障壁層を6層にて交互に積層した。次にp型層として950℃でMg原子濃度が1×1019/cmになるようにドーピングしたp−GaNを200nm堆積した。その後、MOCVD装置から取り出し、p型層のMgイオンの活性化処理として、窒素雰囲気中で800℃の熱処理を10分間行った。
(発光素子の作製)
フォトリソグラフィープロセスと真空蒸着法とを用いて、窒化ガリウム自立基板のn−GaN層及びp−GaN層とは反対側の面にカソード電極としてのTi/Al/Ni/Au膜をそれぞれ15nm、70nm、12nm、60nmの厚みでパターニングした。その後、オーム性接触特性を良好なものとするために、窒素雰囲気中での700℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、p型層に透光性アノード電極としてNi/Au膜をそれぞれ6nm、12nmの厚みにパターニングした。その後、オーム性接触特性を良好なものとするために窒素雰囲気中で500℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、透光性アノード電極としてのNi/Au膜の上面の一部領域に、アノード電極パッドとなるNi/Au膜をそれぞれ5nm、60nmの厚みにパターニングした。こうして得られた基板を切断してチップ化し、さらにリードフレームに実装して、縦型構造の発光素子を得た。
(発光素子の評価)
作製した素子から任意に選んだ100個の個体について、カソード電極とアノード電極間に通電し、I−V測定を行ったところ、90個について整流性が確認された。また、順方向の電流を流したところ、波長460nmの発光が確認された。
また、発光素子の発光面の全面にわたって均一な発光が確認された。
(原子比率の変更)
融液の条件を変更することによって、各原子比率を以下のように調節した。
酸素原子: 1×1012〜1×1017atom/cm
珪素原子: 1×1012〜1×1016atom/cm
マンガン原子: 1×1012〜1×1016atom/cm
炭素原子: 1×1012〜1×1016atom/cm
マグネシウム原子: 1×1012〜2×1016atom/cm
カルシウム原子: 1×1012〜2×1016atom/cm
クロム原子: 1×1012〜2×1015atom/cm
塩素原子: 1×1012〜2×1014atom/cm
そして、実施例1と同様にして発光素子を作製したが、発光面から均一な発光が確認された。
(整流機能素子の作成)
整流機能を有する機能素子を作製した。
すなわち、実施例で得られた前記自立基板の上面に、以下のようにして、ショットキーバリアダイオード構造を成膜し、電極を形成することで、ダイオードを得、特性を確認した。
(MOCVD法による整流機能層の成膜)
MOCVD(有機金属化学的気相成長)法を用いて、自立基板上にn型層として1050℃でSi原子濃度が1×1016/cmになるようにドーピングしたn−GaN層を5μm成膜した。
フォトリソグラフィープロセスと真空蒸着法とを用いて、自立基板上のn−GaN層とは反対側の面にオーミック電極としてTi/Al/Ni/Au膜をそれぞれ15nm、70nm、12nm、60nmの厚みでパターニングした。その後、オーム性接触特性を良好なものとするために、窒素雰囲気中での700℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、MOCVD法で成膜したn−GaN層にショットキー電極としてNi/Au膜をそれぞれ6nm、80nmの厚みでパターニングした。こうして得られた基板を切断してチップ化し、さらにリードフレーム(lead frame)に実装して、整流素子を得た。
(整流素子の評価)
I−V測定を行ったところ、整流特性が確認された。
(電力制御素子の作成)
電力制御機能を有する機能素子を作製した。
前記実施例と同様に自立基板を作製した。ただし、実施例1と異なり、Naフラックス法によって窒化ガリウム結晶を成膜する際に、不純物のドーピングは行わなかった。このようにして得られた自立基板の上面に、以下のようにして、MOCVD法でAl0.25Ga0.75N/GaN HEMT構造を成膜し、電極を形成し、トランジスタ特性を確認した。
MOCVD(有機金属化学的気相成長)法を用いて、自立基板上にi型層として1050℃で不純物ドーピングをしていないGaN層を3μm成膜した。次に機能層として同じ1050℃でAl0.25Ga0.75N層を25nm成膜した。これによりAl0.25Ga0.75N/GaN HEMT構造が得られた。
フォトリソグラフィープロセスと真空蒸着法とを用いて、ソース電極及びドレイン電極としてのTi/Al/Ni/Au膜をそれぞれ15nm、70nm、12nm、60nmの厚みでパターニングした。その後、オーム性接触特性を良好なものとするために、窒素雰囲気中での700℃の熱処理を30秒間行った。さらに、フォトリソグラフィープロセスと真空蒸着法とを用いて、ゲート電極としてNi/Au膜をそれぞれ6nm、80nmの厚みでショットキー接合にて形成し、パターニングした。こうして得られた基板を切断してチップ化し、さらにリードフレーム(lead frame)に実装して、電力制御素子を得た。
(電力制御素子の評価)
I−V特性を測定したところ、良好なピンチオフ特性が確認され、最大ドレイン電流は710mA/mm、最大相互コンダクタンス210mS/mm特性を得た。

Claims (27)

  1. 窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶から選択された13族元素窒化物結晶からなり、上面及び底面を有する13族元素窒化物結晶層であって、
    前記上面をカソードルミネッセンスによって観測したときに、線状高輝度発光部と、前記線状高輝度発光部に隣接する低輝度発光領域とを有しており、
    前記上面におけるX線ロッキングカーブの(0002)面反射の半値幅が3000秒以下、20秒以上であり、
    酸素原子の含有量が1×1018atom/cm以下であり、珪素原子、マンガン原子、炭素原子、マグネシウム原子およびカルシウム原子の含有量がそれぞれ1×1017atom/cm以下であり、クロム原子の含有量が1×1016atom/cm以下であり、塩素原子の含有量が1×1015atom/cm以下であることを特徴とする、13族元素窒化物結晶層。
  2. 前記13族元素窒化物結晶層の前記上面に略垂直な断面においてボイドが観測されないことを特徴とする、請求項1記載の13族元素窒化物結晶層。
  3. 前記13族元素窒化物結晶層の前記上面における転位密度が1×10/cm以下であることを特徴とする、請求項1または2記載の13族元素窒化物結晶層。
  4. 前記13族元素窒化物結晶層の前記上面における前記転位密度が1×10/cm以上、1×10/cm以下であることを特徴とする、請求項3記載の13族元素窒化物結晶層。
  5. 前記線状高輝度発光部が連続相を形成しており、前記低輝度発光領域が前記線状高輝度発光部によって区画された不連続相を形成していることを特徴とする、請求項1〜4のいずれか一つの請求項に記載の13族元素窒化物結晶層。
  6. 前記線状高輝度発光部が前記13族元素窒化物結晶のm面に沿って延びている部分を含むことを特徴とする、請求項1〜5のいずれか一つの請求項に記載の13族元素窒化物結晶層。
  7. 前記上面におけるX線ロッキングカーブの(10−10)面反射の半値幅が10000秒以下、20秒以上であることを特徴とする、請求項1〜6のいずれか一つの請求項に記載の13族元素窒化物結晶層。
  8. 前記13族元素窒化物が窒化ガリウム系窒化物である、請求項1〜7のいずれか一項に記載の13族元素窒化物結晶層。
  9. 請求項1〜8のいずれか一つの請求項に記載の13族元素窒化物結晶層からなることを特徴とする、自立基板。
  10. 請求項9記載の自立基板、および
    前記13族元素窒化物結晶層上に設けられた機能層を有することを特徴とする、機能素子。
  11. 前記機能層の機能が、発光機能、整流機能または電力制御機能であることを特徴とする、請求項10記載の機能素子。
  12. 支持基板、および
    前記支持基板上に設けられた請求項1〜8のいずれか一つの請求項に記載の13族元素窒化物結晶層
    を備えていることを特徴とする、複合基板。
  13. 請求項12記載の複合基板、および
    前記13族元素窒化物結晶層上に設けられた機能層を有することを特徴とする、機能素子。
  14. 前記機能層の機能が、発光機能、整流機能または電力制御機能であることを特徴とする、請求項13記載の機能素子。
  15. 窒化ガリウム、窒化アルミニウム、窒化インジウムまたはこれらの混晶から選択された13族元素窒化物結晶からなり、上面及び底面を有する13族元素窒化物結晶層であって、
    前記上面をカソードルミネッセンスによって観測したときに、線状高輝度発光部と、前記線状高輝度発光部に隣接する低輝度発光領域とを有しており、
    前記上面におけるX線ロッキングカーブの(10−10)面反射の半値幅が10000秒以下、20秒以上であり、
    酸素原子の含有量が1×1018atom/cm以下であり、珪素原子、マンガン原子、炭素原子、マグネシウム原子およびカルシウム原子の含有量がそれぞれ1×1017atom/cm以下であり、クロム原子の含有量が1×1016atom/cm以下であり、塩素原子の含有量が1×1015atom/cm以下であることを特徴とする、13族元素窒化物結晶層。
  16. 前記13族元素窒化物結晶層の前記上面に略垂直な断面においてボイドが観測されないことを特徴とする、請求項15記載の13族元素窒化物結晶層。
  17. 前記13族元素窒化物結晶層の前記上面における転位密度が1×10/cm以下であることを特徴とする、請求項15または16記載の13族元素窒化物結晶層。
  18. 前記13族元素窒化物結晶層の前記上面における前記転位密度が1×10/cm以上、1×10/cm以下であることを特徴とする、請求項17記載の13族元素窒化物結晶層。
  19. 前記線状高輝度発光部が連続相を形成しており、前記低輝度発光領域が前記線状高輝度発光部によって区画された不連続相を形成していることを特徴とする、請求項15〜18のいずれか一つの請求項に記載の13族元素窒化物結晶層。
  20. 前記線状高輝度発光部が前記13族元素窒化物結晶のm面に沿って延びている部分を含むことを特徴とする、請求項15〜19のいずれか一つの請求項に記載の13族元素窒化物結晶層。
  21. 前記13族元素窒化物が窒化ガリウム系窒化物である、請求項15〜20のいずれか一項に記載の13族元素窒化物結晶層。
  22. 請求項15〜21のいずれか一つの請求項に記載の13族元素窒化物結晶層からなることを特徴とする、自立基板。
  23. 請求項22載の自立基板、および
    前記13族元素窒化物結晶層上に設けられた機能層を有することを特徴とする、機能素子。
  24. 前記機能層の機能が、発光機能、整流機能または電力制御機能であることを特徴とする、請求項23記載の機能素子。
  25. 支持基板、および
    前記支持基板上に設けられた請求項15〜21のいずれか一つの請求項に記載の13族元素窒化物結晶層
    を備えていることを特徴とする、複合基板。
  26. 請求項25記載の複合基板、および
    前記13族元素窒化物結晶層上に設けられた機能層を有することを特徴とする、機能素子。
  27. 前記機能層の機能が、発光機能、整流機能または電力制御機能であることを特徴とする、請求項26記載の機能素子。
JP2019538018A 2017-08-24 2018-07-27 13族元素窒化物層、自立基板および機能素子 Active JP6851485B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JPPCT/JP2017/030373 2017-08-24
PCT/JP2017/030373 WO2019038892A1 (ja) 2017-08-24 2017-08-24 13族元素窒化物層、自立基板および機能素子
PCT/JP2017/034035 WO2019038933A1 (ja) 2017-08-24 2017-09-21 13族元素窒化物層、自立基板および機能素子
JPPCT/JP2017/034035 2017-09-21
JP2018061543 2018-03-28
JP2018061543 2018-03-28
PCT/JP2018/028207 WO2019039190A1 (ja) 2017-08-24 2018-07-27 13族元素窒化物層、自立基板および機能素子

Publications (2)

Publication Number Publication Date
JPWO2019039190A1 JPWO2019039190A1 (ja) 2020-10-01
JP6851485B2 true JP6851485B2 (ja) 2021-03-31

Family

ID=65438784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019538018A Active JP6851485B2 (ja) 2017-08-24 2018-07-27 13族元素窒化物層、自立基板および機能素子

Country Status (2)

Country Link
JP (1) JP6851485B2 (ja)
WO (1) WO2019039190A1 (ja)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580169B2 (ja) * 1999-03-24 2004-10-20 日亜化学工業株式会社 窒化物半導体素子
JP3670927B2 (ja) * 2000-03-31 2005-07-13 三洋電機株式会社 窒化物系半導体発光素子
JP4534631B2 (ja) * 2003-10-31 2010-09-01 住友電気工業株式会社 Iii族窒化物結晶の製造方法
JP5099763B2 (ja) * 2007-12-18 2012-12-19 国立大学法人東北大学 基板製造方法およびiii族窒化物半導体結晶
JP5434111B2 (ja) * 2009-02-06 2014-03-05 三菱化学株式会社 自立基板の製造方法
JP6408483B2 (ja) * 2013-11-07 2018-10-17 日本碍子株式会社 GaNテンプレート基板およびデバイス基板
JP6344987B2 (ja) * 2014-06-11 2018-06-20 日本碍子株式会社 13族元素窒化物結晶層および機能素子
US9653554B2 (en) * 2014-07-21 2017-05-16 Soraa, Inc. Reusable nitride wafer, method of making, and use thereof
CN107208312B (zh) * 2015-01-29 2019-10-01 日本碍子株式会社 自立基板、功能元件及其制造方法
JP6578570B2 (ja) * 2015-03-03 2019-09-25 国立大学法人大阪大学 Iii族窒化物半導体結晶基板の製造方法
JP6451563B2 (ja) * 2015-09-08 2019-01-16 株式会社豊田中央研究所 窒化ガリウム結晶及びその製造方法、並びに、結晶成長装置
WO2017077989A1 (ja) * 2015-11-02 2017-05-11 日本碍子株式会社 半導体素子用エピタキシャル基板、半導体素子、および、半導体素子用エピタキシャル基板の製造方法

Also Published As

Publication number Publication date
WO2019039190A1 (ja) 2019-02-28
JPWO2019039190A1 (ja) 2020-10-01

Similar Documents

Publication Publication Date Title
US11611017B2 (en) Group 13 element nitride layer, free-standing substrate and functional element
US11088299B2 (en) Group 13 element nitride layer, free-standing substrate and functional element
US11555257B2 (en) Group 13 element nitride layer, free-standing substrate and functional element
US11309455B2 (en) Group 13 element nitride layer, free-standing substrate and functional element
JP6764035B2 (ja) 13族元素窒化物層、自立基板および機能素子
JP6851485B2 (ja) 13族元素窒化物層、自立基板および機能素子
JP6851486B2 (ja) 13族元素窒化物層、自立基板および機能素子
JP6854902B2 (ja) 13族元素窒化物層、自立基板および機能素子
JP2020073438A (ja) 13族元素窒化物結晶層、自立基板および機能素子
JPWO2019039055A1 (ja) 13族元素窒化物層の製造方法
JPWO2019039342A1 (ja) 窒化ガリウム基板、自立基板および機能素子
WO2019039055A1 (ja) 13族元素窒化物層の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201013

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201013

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201013

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210309

R150 Certificate of patent or registration of utility model

Ref document number: 6851485

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150