JP6850804B2 - 高性能コンピューティング環境においてデュアルポート仮想ルータをサポートするためのシステムおよび方法 - Google Patents

高性能コンピューティング環境においてデュアルポート仮想ルータをサポートするためのシステムおよび方法 Download PDF

Info

Publication number
JP6850804B2
JP6850804B2 JP2018534080A JP2018534080A JP6850804B2 JP 6850804 B2 JP6850804 B2 JP 6850804B2 JP 2018534080 A JP2018534080 A JP 2018534080A JP 2018534080 A JP2018534080 A JP 2018534080A JP 6850804 B2 JP6850804 B2 JP 6850804B2
Authority
JP
Japan
Prior art keywords
subnet
port
switches
virtual
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018534080A
Other languages
English (en)
Other versions
JP2019507520A (ja
JP2019507520A5 (ja
Inventor
ヨンセン,ビョルン・ダグ
モクスネス,ダグ・ゲオルグ
ボグダンスキー,バルトシュ
ベンカテシュ,プラモド
ホレン,リネ
Original Assignee
オラクル・インターナショナル・コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オラクル・インターナショナル・コーポレイション filed Critical オラクル・インターナショナル・コーポレイション
Publication of JP2019507520A publication Critical patent/JP2019507520A/ja
Publication of JP2019507520A5 publication Critical patent/JP2019507520A5/ja
Application granted granted Critical
Publication of JP6850804B2 publication Critical patent/JP6850804B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/02Topology update or discovery
    • H04L45/04Interdomain routing, e.g. hierarchical routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/16Multipoint routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/18Loop-free operations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/48Routing tree calculation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/48Routing tree calculation
    • H04L45/484Routing tree calculation using multiple routing trees
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/54Organization of routing tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/58Association of routers
    • H04L45/586Association of routers of virtual routers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/74Address processing for routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/36Flow control; Congestion control by determining packet size, e.g. maximum transfer unit [MTU]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/15Interconnection of switching modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/20Support for services
    • H04L49/201Multicast operation; Broadcast operation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/25Routing or path finding in a switch fabric
    • H04L49/253Routing or path finding in a switch fabric using establishment or release of connections between ports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/25Routing or path finding in a switch fabric
    • H04L49/253Routing or path finding in a switch fabric using establishment or release of connections between ports
    • H04L49/254Centralised controller, i.e. arbitration or scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/30Peripheral units, e.g. input or output ports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/35Switches specially adapted for specific applications
    • H04L49/356Switches specially adapted for specific applications for storage area networks
    • H04L49/358Infiniband Switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L49/00Packet switching elements
    • H04L49/70Virtual switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

著作権に関する注意
本特許文献の開示の一部には、著作権保護の対象となるものが含まれている。著作権者は、この特許文献または特許開示の何者かによる複製が、特許商標庁の特許ファイルまたは記録にある限り、それに対して異議を唱えないが、そうでなければ、いかなる場合もすべての著作権を留保する。
発明の分野
本発明は、概してコンピュータシステムに関し、具体的には高性能コンピューティング環境においてデュアルポート仮想ルータをサポートすることに関する。
背景
導入されるクラウドコンピューティングアーキテクチャがより大規模になるのに応じて、従来のネットワークおよびストレージに関する性能および管理の障害が深刻な問題になってきている。クラウドコンピューティングファブリックのための基礎としてインフィニバンド(InfiniBand:IB)技術などの高性能な無損失相互接続を用いることへの関心がますます高まってきている。これは、本発明の実施形態が対応するように意図された一般領域である。
概要
本明細書に記載されているのは、高性能コンピューティング環境においてデュアルポート仮想ルータをサポートするためのシステムおよび方法である。例示される方法は、1つ以上のマイクロプロセッサを含む1つ以上のコンピュータに第1のサブネットを設けることができる。第1のサブネットは複数のスイッチを含み、当該複数のスイッチは少なくともリーフスイッチを含み、当該複数のスイッチの各々は複数のスイッチポートを含む。第1のサブネットはさらに、各々が少なくとも1つのホストチャネルアダプタポートを含む複数のホストチャネルアダプタと、各々が当該複数のホストチャネルアダプタのうちの少なくとも1つのホストチャネルアダプタに対応付けられている複数のエンドノードと、サブネットマネージャとを含み、サブネットマネージャは、当該複数のスイッチおよび当該複数のホストチャネルアダプタのうちの1つにおいて実行される。上記方法は、当該複数のスイッチのうちの1つのスイッチ上の当該複数のスイッチポートのうちの1つのスイッチポートを、ルータポートとして構成し得る。当該ルータポートとして構成したスイッチポートを、仮想ルータに論理的に接続することができ、仮想ルータは少なくとも2つの仮想ルータポートを含む。
一実施形態に従うと、ルータポートとして構成されたスイッチポートを、上記少なくとも2つの仮想ルータポートのうちの第1の仮想ルータポートに論理的に接続してもよい。
一実施形態に従うと、例示される方法は、第2のサブネットを設けることができる。第2のサブネットは、第2のサブネットの複数のスイッチを含み得る。第2のサブネットの複数のスイッチは、第2のサブネットの少なくともリーフスイッチを含み、第2のサブネットの複数のスイッチの各々は、第2のサブネットの複数のスイッチポートを含む。第2のサブネットはさらに、各々が少なくとも1つのホストチャネルアダプタポートを含む、第2のサブネットの複数のホストチャネルアダプタと、各々が当該複数のホストチャネルアダプタのうちの少なくとも1つのホストチャネルアダプタに対応付けられている、第2のサブネットの複数のエンドノードと、第2のサブネットのサブネットマネージャとを含み、第2のサブネットのサブネットマネージャは、第2のサブネットの当該複数のスイッチおよび第2のサブネットの当該複数のホストチャネルアダプタのうちの1つにおいて実行される。上記方法は、第2のサブネットの複数のスイッチのうちの1つのスイッチ上の第2のサブネットの複数のスイッチポートのうちの第2のサブネットの1つのスイッチポートを、第2のサブネットのルータポートとして構成し得る。第2のサブネットのルータポートとして構成した第2のサブネットのスイッチポートを、第2のサブネットの仮想ルータに論理的に接続することができ、第2のサブネットの仮想ルータは、第2のサブネットの少なくとも2つの仮想ルータポートを含む。最後に、第1のサブネットは、前記第2のサブネットと、物理リンクを介して相互に接続することができる。
一実施形態に従うと、(第1または第2のサブネットいずれかの)上記複数のホストチャネルアダプタのうちの1つ以上は、少なくとも1つの仮想機能と、少なくとも1つの仮想スイッチと、少なくとも1つの物理機能とを含み得る。(第1または第2のサブネットいずれかの)複数のエンドノードは、物理ホスト、仮想マシン、または物理ホストと仮想マシンとの組合わせを含み得る。仮想マシンは少なくとも1つの仮想機能に対応付けられている。
一実施形態に従うインフィニバンド環境の一例を示す図である。 一実施形態に従う分割されたクラスタ環境の一例を示す図である。 一実施形態に従うネットワーク環境におけるツリートポロジーの一例を示す図である。 一実施形態に従う例示的な共有ポートアーキテクチャを示す図である。 一実施形態に従う例示的なvSwitchアーキテクチャを示す図である。 一実施形態に従う例示的なvPortアーキテクチャを示す図である。 一実施形態に従うLIDが予めポピュレートされている例示的なvSwitchアーキテクチャを示す図である。 一実施形態に従う動的LID割当てがなされた例示的なvSwitchアーキテクチャを示す図である。 一実施形態に従う、vSwitchに動的LID割当てがなされかつLIDが予めポピュレートされている、例示的なvSwitchアーキテクチャを示す図である。 一実施形態に従う例示的なマルチサブネットインフィニバンドファブリックを示す図である。 一実施形態に従う、高性能コンピューティング環境における2つのサブネット間の相互接続を示す図である。 一実施形態に従う、高性能コンピューティング環境におけるデュアルポート仮想ルータ構成を介した2つのサブネット間の相互接続を示す図である。 一実施形態に従う、高性能コンピューティング環境においてデュアルポート仮想ルータをサポートする方法のフローチャートを示す図である。
詳細な説明
本発明は、同様の参照番号が同様の要素を指している添付図面の図において、限定のためではなく例示のために説明されている。なお、この開示における「ある」または「1つの」または「いくつかの」実施形態への参照は必ずしも同じ実施形態に対するものではなく、そのような参照は少なくとも1つを意味する。特定の実現例が説明されるが、これらの特定の実現例が例示的な目的のためにのみ提供されることが理解される。当業者であれば、他の構成要素および構成が、この発明の範囲および精神から逸脱することなく使用され得ることを認識するであろう。
図面および詳細な説明全体にわたって同様の要素を示すために、共通の参照番号が使用され得る。したがって、ある図で使用される参照番号は、要素が別のところで説明される場合、そのような図に特有の詳細な説明において参照される場合もあり、または参照されない場合もある。
本明細書に記載されているのは、高性能コンピューティング環境においてデュアルポート仮想ルータをサポートするためのシステムおよび方法である。
この発明の以下の説明は、高性能ネットワークの一例として、インフィニバンドTM(IB)ネットワークを使用する。以下の説明全体にわたり、インフィニバンドTMの仕様(インフィニバンド仕様、IB仕様、またはレガシーIB仕様など、さまざまな呼ばれ方がある)を引用することがある。このような引用は、2015年3月に発表され、http://www.inifinibandta.orgから入手可能な、本明細書にその全体を引用により援用するInfiniBand Trade Association Architecture Specification, Volume 1, Version 1.3を引用することであると理解される。他のタイプの高性能ネットワークが何ら限定されることなく使用され得ることが、当業者には明らかであるだろう。以下の説明ではまた、ファブリックトポロジーについての一例として、ファットツリートポロジーを使用する。他のタイプのファブリックトポロジーが何ら限定されることなく使用され得ることが当業者には明らかであるだろう。
今の時代(たとえばエクサスケール(exascale)時代)のクラウドの要求を満たすためには、仮想マシンが、リモートダイレクトメモリアクセス(Remote Direct Memory Access:RDMA)等の低オーバーヘッドのネットワーク通信パラダイムを利用できることが望ましい。RDMAはOSスタックをバイパスしハードウェアと直接通信するため、シングルルートI/O仮想化(SR−IOV)ネットワークアダプタのようなパス・スルー技術を使用することができる。一実施形態に従うと、仮想スイッチ(vSwitch)SR−IOVアーキテクチャを、高性能無損失相互接続ネットワークに適用することができる。ネットワーク再構成時間はライブマイグレーションを現実的な選択肢にするために重要なので、ネットワークアーキテクチャに加えて、スケーラブルでありトポロジーに依存しない動的再構成機構を提供することができる。
一実施形態に従い、さらに、vSwitchを使用する仮想化環境に対するルーティングストラテジーを提供することができ、ネットワークトポロジー(たとえばファットツリートポロジー)に対する効率的なルーティングアルゴリズムを提供することができる。動的再構成機構をさらに調整することにより、ファットツリーに課されるオーバーヘッドを最小にすることができる。
本発明の一実施形態に従うと、仮想化は、クラウドコンピューティングにおける効率的なリソースの利用および柔軟なリソースの割当てにとって有益になり得る。ライブマイグレーションは、アプリケーションにとってトランスペアレントになるように物理サーバ間で仮想マシン(VM)を移動させることでリソースの利用を最適化することを可能にする。このように、仮想化は、ライブマイグレーションにより、コンソリデーション、リソースのオンデマンドプロビジョニング、および柔軟性を可能にする。
インフィニバンドTM
インフィニバンドTM(IB)は、インフィニバンドTM・トレード・アソシエーション(InfiniBandTM Trade Association)によって開発されたオープン標準無損失ネットワーク技術である。この技術は、特に高性能コンピューティング(high-performance computing:HPC)アプリケーションおよびデータセンタを対象とする、高スループットおよび少ない待ち時間の通信を提供するシリアルポイントツーポイント全二重相互接続(serial point-to-point full-duplex interconnect)に基づいている。
インフィニバンドTM・アーキテクチャ(InfiniBand Architecture:IBA)は、2層トポロジー分割をサポートする。低層では、IBネットワークはサブネットと呼ばれ、1つのサブネットは、スイッチおよびポイントツーポイントリンクを使用して相互接続される一組のホストを含み得る。より高いレベルでは、1つのIBファブリックは、ルータを使用して相互接続され得る1つ以上のサブネットを構成する。
1つのサブネット内で、ホストは、スイッチおよびポイントツーポイントリンクを使用して接続され得る。加えて、サブネットにおける指定されたデバイス上に存在する、1つのマスター管理エンティティ、すなわちサブネットマネージャ(subnet manager:SM)があり得る。サブネットマネージャは、IBサブネットを構成し、起動し、維持する役割を果たす。加えて、サブネットマネージャ(SM)は、IBファブリックにおいてルーティングテーブル計算を行なう役割を果たし得る。ここで、たとえば、IBネットワークのルーティングは、ローカルサブネットにおけるすべての送信元と宛先とのペア間の適正な負荷バランシングを目標とする。
サブネット管理インターフェイスを通して、サブネットマネージャは、サブネット管理パケット(subnet management packet:SMP)と呼ばれる制御パケットを、サブネット管理エージェント(subnet management agent:SMA)と交換する。サブネット管理エージェントは、すべてのIBサブネットデバイス上に存在する。SMPを使用することにより、サブネットマネージャは、ファブリックを発見し、エンドノードおよびスイッチを構成し、SMAから通知を受信することができる。
一実施形態に従うと、IBネットワークにおけるサブネット内のルーティングは、スイッチに格納されたリニアフォワーディングテーブル(linear forwarding table)(LFT)に基づき得る。LFTは、使用中のルーティングメカニズムに従って、SMによって計算される。サブネットでは、エンドノード上のホストチャネルアダプタ(Host Channel Adapter:HCA)ポートおよびスイッチが、ローカル識別子(LID)を使用してアドレス指定される。LFTにおける各エントリは、宛先LID(destination LID:DLID)と出力ポートとからなる。テーブルにおけるLIDごとに1つのエントリのみがサポートされる。パケットがあるスイッチに到着すると、その出力ポートは、そのスイッチのフォワーディングテーブルにおいてDLIDを検索することによって判断される。所与の送信元−宛先ペア(LIDペア)間のネットワークにおいてパケットは同じ経路を通るため、ルーティングは決定論的である。
一般に、マスタサブネットマネージャを除く他のすべてのサブネットマネージャは、耐故障性のために待機モードで作動する。しかしながら、マスタサブネットマネージャが故障した状況では、待機中のサブネットマネージャによって、新しいマスタサブネットマネージャが取り決められる。マスタサブネットマネージャはまた、サブネットの周期的なスイープ(sweep)を行なってあらゆるトポロジー変化を検出し、それに応じてネットワークを再構成する。
さらに、サブネット内のホストおよびスイッチは、ローカル識別子(LID)を用いてアドレス指定され得るとともに、単一のサブネットは49151個のユニキャストLIDに制限され得る。サブネット内で有効なローカルアドレスであるLIDの他に、各IBデバイスは、64ビットのグローバル一意識別子(global unique identifier:GUID)を有し得る。GUIDは、IBレイヤー3(L3)アドレスであるグローバル識別子(global identifier:GID)を形成するために使用され得る。
SMは、ネットワーク初期化時間に、ルーティングテーブル(すなわち、サブネット内のノードの各ペア間の接続/ルート)を計算し得る。さらに、トポロジーが変化するたびに、ルーティングテーブルは、接続性および最適性能を確実にするために更新され得る。通常動作中、SMは、トポロジー変化をチェックするためにネットワークの周期的なライトスイープ(light sweep)を実行し得る。ライトスイープ中に変化が発見された場合、または、ネットワーク変化を信号で伝えるメッセージ(トラップ)をSMが受信した場合、SMは、発見された変化に従ってネットワークを再構成し得る。
たとえば、SMは、リンクがダウンした場合、デバイスが追加された場合、またはリンクが除去された場合など、ネットワークトポロジーが変化する場合に、ネットワークを再構成し得る。再構成ステップは、ネットワーク初期化中に行なわれるステップを含み得る。さらに、再構成は、ネットワーク変化が生じたサブネットに制限されるローカルスコープを有し得る。また、ルータを用いる大規模ファブリックのセグメント化は、再構成スコープを制限し得る。
一実施形態に従うインフィニバンド環境100の一例を示す図1に、インフィニバンドファブリックの一例を示す。図1に示す例では、ノードA101〜E105は、インフィニバンドファブリック120を使用して、それぞれのホストチャネルアダプタ111〜115を介して通信する。一実施形態に従うと、さまざまなノード(たとえばノードA101〜E105)はさまざまな物理デバイスによって表わすことができる。一実施形態に従うと、さまざまなノード(たとえばノードA101〜E105)は仮想マシンなどのさまざまな仮想デバイスによって表わすことができる。
インフィニバンドにおけるパーティショニング
一実施形態に従うと、IBネットワークは、ネットワークファブリックを共有するシステムの論理グループを分離するためのセキュリティメカニズムとしてのパーティショニングをサポートし得る。ファブリックにおけるノード上の各HCAポートは、1つ以上のパーティションのメンバである可能性がある。パーティションメンバーシップは、SMの一部であり得る集中型パーティションマネージャによって管理される。SMは、各ポートに関するパーティションメンバーシップ情報を、16ビットのパーティションキー(partition key:P_Key)のテーブルとして構成することができる。SMはまた、これらのポートを介してデータトラフィックを送信または受信するエンドノードに関連付けられたP_Key情報を含むパーティション実施テーブルを用いて、スイッチポートおよびルータポートを構成することができる。加えて、一般的な場合には、スイッチポートのパーティションメンバーシップは、(リンクに向かう)出口方向に向かってポートを介してルーティングされたLIDに間接的に関連付けられたすべてのメンバーシップの集合を表わし得る。
一実施形態に従うと、パーティションはポートの論理グループであり、あるグループのメンバは同じ論理グループの他のメンバとしか通信できない。ホストチャネルアダプタ(HCA)およびスイッチにおいて、パーティションメンバーシップ情報を用いてパケットをフィルタリングすることにより、分離を実施することができる。無効なパーティショニング情報を有するパケットは、当該パケットが入口ポートに達すると直ちにドロップすることができる。パーティショニングされたIBシステムにおいて、パーティションを用いることにより、テナントクラスタを作成できる。パーティションを適所で実施すると、ノードは異なるテナントクラスタに属する他のノードと通信することができない。このようにして、欠陥があるまたは悪意があるテナントノードが存在していても、システムのセキュリティを保証することができる。
一実施形態に従うと、ノード間の通信のために、マネージメントキューペア(QP0およびQP1)を除き、キューペア(Queue Pair:QP)およびエンドツーエンドコンテキスト(End-to-End context:EEC)を特定のパーティションに割当てることができる。次に、P_Key情報を、送信されたすべてのIBトランスポートパケットに追加することができる。パケットがHCAポートまたはスイッチに到着すると、そのP_Key値を、SMによって構成されたテーブルに対して確認することができる。無効のP_Key値が見つかった場合、そのパケットは直ちに廃棄される。このようにして、通信は、パーティションを共有するポート間でのみ許可される。
一実施形態に従い、パーティショニングされたクラスタ環境の一例を示す図2に、IBパーティションの一例が示される。図2に示す例では、ノードA101〜E105は、インフィニバンドファブリック120を使用して、それぞれのホストチャネルアダプタ111〜115を介して通信する。ノードA〜Eは、パーティション、すなわち、パーティション1 130、パーティション2 140、およびパーティション3 150に配置されている。パーティション1はノードA 101とノードD 104とを含む。パーティション2はノードA 101とノードB 102とノードC 103とを含む。パーティション3はノードC 103とノードE 105とを含む。パーティションのこの配置により、ノードD 104およびノードE 105は、1つのパーティションを共有していないので、通信することができない。一方、たとえばノードA 101およびノードC 103は、どちらもパーティション2 140のメンバなので、通信することができる。
インフィニバンドにおける仮想マシン
過去10年の間に、ハードウェア仮想化サポートによってCPUオーバーヘッドが実質的に排除され、メモリ管理ユニットを仮想化することによってメモリオーバーヘッドが著しく削減され、高速SANストレージまたは分散型ネットワークファイルシステムの利用によってストレージオーバーヘッドが削減され、シングルルートI/O仮想化(Single Root Input/Output Virtualization:SR−IOV)のようなデバイス・パススルー技術を使用することによってネットワークI/Oオーバーヘッドが削減されてきたことに応じて、仮想化された高性能コンピューティング(High Performance Computing:HPC)環境の将来の見通しが大幅に改善されてきた。現在では、クラウドが、高性能相互接続ソリューションを用いて仮想HPC(virtual HPC:vHPC)クラスタに対応し、必要な性能を提供することができる。
しかしながら、インフィニバンド(IB)などの無損失ネットワークと連結されたとき、仮想マシン(VM)のライブマイグレーションなどのいくつかのクラウド機能は、これらのソリューションにおいて用いられる複雑なアドレス指定およびルーティングスキームのせいで、依然として問題となる。IBは、高帯域および低レイテンシを提供する相互接続ネットワーク技術であり、このため、HPCおよび他の通信集約型の作業負荷に非常によく適している。
IBデバイスをVMに接続するための従来のアプローチは直接割当てされたSR−IOVを利用することによるものである。しかしながら、SR−IOVを用いてIBホストチャネルアダプタ(HCA)に割当てられたVMのライブマイグレーションを実現することは難易度の高いものであることが判明した。各々のIBが接続されているノードは、3つの異なるアドレス(すなわちLID、GUIDおよびGID)を有する。ライブマイグレーションが発生すると、これらのアドレスのうち1つ以上が変化する。マイグレーション中のVM(VM-in-migration)と通信する他のノードは接続性を失う可能性がある。これが発生すると、IBサブネットマネージャ(Subnet Manager:SM)にサブネット管理(Subnet Administration:SA)経路記録クエリを送信することによって、再接続すべき仮想マシンの新しいアドレスを突きとめることにより、失われた接続を回復させるように試みることができる。
IBは3つの異なるタイプのアドレスを用いる。第1のタイプのアドレスは16ビットのローカル識別子(LID)である。少なくとも1つの固有のLIDは、SMによって各々のHCAポートおよび各々のスイッチに割当てられる。LIDはサブネット内のトラフィックをルーティングために用いられる。LIDが16ビット長であるので、65536個の固有のアドレス組合せを構成することができ、そのうち49151個(0×0001−0×BFFF)だけをユニキャストアドレスとして用いることができる。結果として、入手可能なユニキャストアドレスの数は、IBサブネットの最大サイズを定義することとなる。第2のタイプのアドレスは、製造業者によって各々のデバイス(たとえば、HCAおよびスイッチ)ならびに各々のHCAポートに割当てられた64ビットのグローバル一意識別子(GUID)である。SMは、HCAポートに追加のサブネット固有GUIDを割当ててもよく、これは、SR−IOVが用いられる場合に有用となる。第3のタイプのアドレスは128ビットのグローバル識別子(GID)である。GIDは有効なIPv6ユニキャストアドレスであり、少なくとも1つが各々のHCAポートに割当てられている。GIDは、ファブリックアドミニストレータによって割当てられたグローバルに固有の64ビットプレフィックスと各々のHCAポートのGUIDアドレスとを組合わせることによって形成される。
ファットツリー(Fat Tree:FTree)トポロジーおよびルーティング
一実施形態に従うと、IBベースのHPCシステムのいくつかは、ファットツリートポロジーを採用して、ファットツリーが提供する有用な特性を利用する。これらの特性は、各送信元宛先ペア間の複数経路の利用可能性に起因する、フルバイセクション帯域幅および固有の耐故障性を含む。ファットツリーの背後にある初期の概念は、ツリーがトポロジーのルート(root)に近づくにつれて、より利用可能な帯域幅を用いて、ノード間のより太いリンクを採用することであった。より太いリンクは、上位レベルのスイッチにおける輻輳を回避するのに役立てることができ、バイセクション帯域幅が維持される。
図3は、一実施形態に従う、ネットワーク環境におけるツリートポロジーの例を示す。図3に示すように、ネットワークファブリック200において、1つ以上のエンドノード201〜204が接続され得る。ネットワークファブリック200は、複数のリーフスイッチ211〜214と複数のスパインスイッチまたはルート(root)スイッチ231〜234とを含むファットツリートポロジーに基づき得る。加えて、ネットワークファブリック200は、スイッチ221〜224などの1つ以上の中間スイッチを含み得る。
また、図3に示すように、エンドノード201〜204の各々は、マルチホームノード、すなわち、複数のポートを介してネットワークファブリック200のうち2つ以上の部分に接続される単一のノードであり得る。たとえば、ノード201はポートH1およびH2を含み、ノード202はポートH3およびH4を含み、ノード203はポートH5およびH6を含み、ノード204はポートH7およびH8を含み得る。
加えて、各スイッチは複数のスイッチポートを有し得る。たとえば、ルートスイッチ231はスイッチポート1〜2を有し、ルートスイッチ232はスイッチポート3〜4を有し、ルートスイッチ233はスイッチポート5〜6を有し、ルートスイッチ234はスイッチポート7〜8を有し得る。
実施形態に従うと、ファットツリールーティングメカニズムは、IBベースのファットツリートポロジーに関して最も人気のあるルーティングアルゴリズムのうちの1つである。ファットツリールーティングメカニズムはまた、OFED(Open Fabric Enterprise Distribution:IBベースのアプリケーションを構築しデプロイするための標準ソフトウェアスタック)サブネットマネージャ、すなわちOpenSMにおいて実現される。
ファットツリールーティングメカニズムの目的は、ネットワークファブリックにおけるリンクにわたって最短経路ルートを均一に広げるLFTを生成することである。このメカニズムは、索引付け順序でファブリックを横断し、エンドノードの目標LID、ひいては対応するルートを各スイッチポートに割当てる。同じリーフスイッチに接続されたエンドノードについては、索引付け順序は、エンドノードが接続されるスイッチポートに依存し得る(すなわち、ポートナンバリングシーケンス)。各ポートについては、メカニズムはポート使用カウンタを維持することができ、新しいルートが追加されるたびに、ポート使用カウンタを使用して使用頻度が最小のポートを選択することができる。
一実施形態に従うと、パーティショニングされたサブネットでは、共通のパーティションのメンバではないノードは通信することを許可されない。実際には、これは、ファットツリールーティングアルゴリズムによって割当てられたルートのうちのいくつかがユーザトラフィックのために使用されないことを意味する。ファットツリールーティングメカニズムが、それらのルートについてのLFTを、他の機能的経路と同じやり方で生成する場合、問題が生じる。この動作は、リンク上でバランシングを劣化させるおそれがある。なぜなら、ノードが索引付けの順序でルーティングされているからである。パーティションに気づかずにルーティングが行なわれるため、ファットツリーでルーティングされたサブネットにより、概して、パーティション間の分離が不良なものとなる。
一実施形態に従うと、ファットツリーは、利用可能なネットワークリソースでスケーリングすることができる階層ネットワークトポロジーである。さらに、ファットツリーは、さまざまなレベルの階層に配置された商品スイッチを用いて容易に構築される。さらに、k−ary−n−tree、拡張された一般化ファットツリー(Extended Generalized Fat-Tree:XGFT)、パラレルポート一般化ファットツリー(Parallel Ports Generalized Fat-Tree:PGFT)およびリアルライフファットツリー(Real Life Fat-Tree:RLFT)を含むファットツリーのさまざまな変形例が、一般に利用可能である。
また、k−ary−n−treeは、nレベルのファットツリーであって、kエンドノードと、n・kn−1スイッチとを備え、各々が2kポートを備えている。各々のスイッチは、ツリーにおいて上下方向に同数の接続を有している。XGFTファットツリーは、スイッチのための異なる数の上下方向の接続と、ツリーにおける各レベルでの異なる数の接続とをともに可能にすることによって、k−ary−n−treeを拡張させる。PGFT定義はさらに、XGFTトポロジーを拡張して、スイッチ間の複数の接続を可能にする。多種多様なトポロジーはXGFTおよびPGFTを用いて定義することができる。しかしながら、実用化するために、現代のHPCクラスタにおいて一般に見出されるファットツリーを定義するために、PGFTの制限バージョンであるRLFTが導入されている。RLFTは、ファットツリーにおけるすべてのレベルに同じポートカウントスイッチを用いている。
入出力(I/O)仮想化
一実施形態に従うと、I/O仮想化(I/O Virtualization:IOV)は、基礎をなす物理リソースに仮想マシン(VM)がアクセスすることを可能にすることによって、I/Oを利用可能にすることができる。ストレージトラフィックとサーバ間通信とを組合わせると、シングルサーバのI/Oリソースにとって抗し難い高い負荷が課され、結果として、データの待機中に、バックログが発生し、プロセッサがアイドル状態になる可能性がある。I/O要求の数が増えるにつれて、IOVにより利用可能性をもたらすことができ、最新のCPU仮想化において見られる性能レベルに匹敵するように、(仮想化された)I/Oリソースの性能、スケーラビリティおよび融通性を向上させることができる。
一実施形態に従うと、I/Oリソースの共有を可能にして、VMからリソースへのアクセスが保護されることを可能にし得るようなIOVが所望される。IOVは、VMにエクスポーズされる論理装置を、その物理的な実装から分離する。現在、エミュレーション、準仮想化、直接的な割当て(direct assignment:DA)、およびシングルルートI/O仮想化(SR−IOV)などのさまざまなタイプのIOV技術が存在し得る。
一実施形態に従うと、あるタイプのIOV技術としてソフトウェアエミュレーションがある。ソフトウェアエミュレーションは分離されたフロントエンド/バックエンド・ソフトウェアアーキテクチャを可能にし得る。フロントエンドはVMに配置されたデバイスドライバであり得、I/Oアクセスをもたらすためにハイパーバイザによって実現されるバックエンドと通信し得る。物理デバイス共有比率は高く、VMのライブマイグレーションはネットワークダウンタイムのわずか数ミリ秒で実現可能である。しかしながら、ソフトウェアエミュレーションはさらなる不所望な計算上のオーバーヘッドをもたらしてしまう。
一実施形態に従うと、別のタイプのIOV技術として直接的なデバイスの割当てがある。直接的なデバイスの割当てでは、I/OデバイスをVMに連結する必要があるが、デバイスはVM間では共有されない。直接的な割当てまたはデバイス・パススルーは、最小限のオーバーヘッドでほぼ固有の性能を提供する。物理デバイスはハイパーバイザをバイパスし、直接、VMに取付けられている。しかしながら、このような直接的なデバイスの割当ての欠点は、仮想マシン間で共有がなされないため、1枚の物理ネットワークカードが1つのVMと連結されるといったように、スケーラビリティが制限されてしまうことである。
一実施形態に従うと、シングルルートIOV(Single Root IOV:SR−IOV)は、ハードウェア仮想化によって、物理装置がその同じ装置の複数の独立した軽量のインスタンスとして現われることを可能にし得る。これらのインスタンスは、パス・スルー装置としてVMに割当てることができ、仮想機能(Virtual Function:VF)としてアクセスすることができる。ハイパーバイザは、(1つのデバイスごとに)固有の、十分な機能を有する物理機能(Physical Function:PF)によってデバイスにアクセスする。SR−IOVは、純粋に直接的に割当てする際のスケーラビリティの問題を軽減する。しかしながら、SR−IOVによって提示される問題は、それがVMマイグレーションを損なう可能性があることである。これらのIOV技術の中でも、SR−IOVは、ほぼ固有の性能を維持しながらも、複数のVMから単一の物理デバイスに直接アクセスすることを可能にする手段を用いてPCI Express(PCIe)規格を拡張することができる。これにより、SR−IOVは優れた性能およびスケーラビリティを提供することができる。
SR−IOVは、PCIeデバイスが、各々のゲストに1つの仮想デバイスを割当てることによって複数のゲスト間で共有することができる複数の仮想デバイスをエクスポーズすることを可能にする。各々のSR−IOVデバイスは、少なくとも1つの物理機能(PF)と、1つ以上の関連付けられた仮想機能(VF)とを有する。PFは、仮想マシンモニタ(virtual machine monitor:VMM)またはハイパーバイザによって制御される通常のPCIe機能であるのに対して、VFは軽量のPCIe機能である。各々のVFはそれ自体のベースアドレス(base address:BAR)を有しており、固有のリクエスタIDが割当てられている。固有のリクエスタIDは、I/Oメモリ管理ユニット(I/O memory management unit:IOMMU)がさまざまなVFへの/からのトラフィックストリームを区別することを可能にする。IOMMUはまた、メモリを適用して、PFとVFとの間の変換を中断する。
しかし、残念ながら、直接的デバイス割当て技術は、仮想マシンのトランスペアレントなライブマイグレーションがデータセンタ最適化のために所望されるような状況においては、クラウドプロバイダにとって障壁となる。ライブマイグレーションの本質は、VMのメモリ内容がリモートハイパーバイザにコピーされるという点である。さらに、VMがソースハイパーバイザにおいて中断され、VMの動作が宛先において再開される。ソフトウェアエミュレーション方法を用いる場合、ネットワークインターフェイスは、それらの内部状態がメモリに記憶され、さらにコピーされるように仮想的である。このため、ダウンタイムは数ミリ秒にまで減らされ得る。
しかしながら、SR−IOVなどの直接的デバイス割当て技術が用いられる場合、マイグレーションはより困難になる。このような状況においては、ネットワークインターフェイスの内部状態全体は、それがハードウェアに結び付けられているのでコピーすることができない。代わりに、VMに割当てられたSR−IOV VFが分離され、ライブマイグレーションが実行されることとなり、新しいVFが宛先において付与されることとなる。インフィニバンドおよびSR−IOVの場合、このプロセスがダウンタイムを数秒のオーダでもたらす可能性がある。さらに、SR−IOV共有型ポートモデルにおいては、VMのアドレスがマイグレーション後に変化することとなり、これにより、SMにオーバーヘッドが追加され、基礎をなすネットワークファブリックの性能に対して悪影響が及ぼされることとなる。
インフィニバンドSR−IOVアーキテクチャ−共有ポート
さまざまなタイプのSR−IOVモデル(たとえば共有ポートモデル、仮想スイッチモデルおよび仮想ポートモデル)があり得る。
図4は、一実施形態に従う例示的な共有ポートアーキテクチャを示す。図に示されるように、ホスト300(たとえばホストチャネルアダプタ)はハイパーバイザ310と対話し得る。ハイパーバイザ310は、さまざまな仮想機能330、340および350をいくつかの仮想マシンに割当て得る。同様に、物理機能はハイパーバイザ310によって処理することができる。
一実施形態に従うと、図4に示されるような共有ポートアーキテクチャを用いる場合、ホスト(たとえばHCA)は、物理機能320と仮想機能330、350、350との間において単一の共有LIDおよび共有キュー対(Queue Pair:QP)のスペースがあるネットワークにおいて単一のポートとして現われる。しかしながら、各々の機能(すなわち、物理機能および仮想機能)はそれら自体のGIDを有し得る。
図4に示されるように、一実施形態に従うと、さまざまなGIDを仮想機能および物理機能に割当てることができ、特別のキュー対であるQP0およびQP1(すなわちインフィニバンドTM管理パケットのために用いられる専用のキュー対)が物理機能によって所有される。これらのQPはVFにも同様にエクスポーズされるが、VFはQP0を使用することが許可されておらず(VFからQP0に向かって入来するすべてのSMPが廃棄され)、QP1は、PFが所有する実際のQP1のプロキシとして機能し得る。
一実施形態に従うと、共有ポートアーキテクチャは、(仮想機能に割当てられることによってネットワークに付随する)VMの数によって制限されることのない高度にスケーラブルなデータセンタを可能にし得る。なぜなら、ネットワークにおける物理的なマシンおよびスイッチによってLIDスペースが消費されるだけであるからである。
しかしながら、共有ポートアーキテクチャの欠点は、トランスペアレントなライブマイグレーションを提供することができない点であり、これにより、フレキシブルなVM配置についての可能性が妨害されてしまう。各々のLIDが特定のハイパーバイザに関連付けられており、かつハイパーバイザ上に常駐するすべてのVM間で共有されているので、マイグレートしているVM(すなわち、宛先ハイパーバイザにマイグレートする仮想マシン)は、そのLIDを宛先ハイパーバイザのLIDに変更させなければならない。さらに、QP0アクセスが制限された結果、サブネットマネージャはVMの内部で実行させることができなくなる。
インフィニバンドSR−IOVアーキテクチャモデル−仮想スイッチ(vSwitch)
図5は、一実施形態に従う例示的なvSwitchアーキテクチャを示す。図に示されるように、ホスト400(たとえばホストチャネルアダプタ)はハイパーバイザ410と対話することができ、当該ハイパーバイザ410は、さまざまな仮想機能430、440および450をいくつかの仮想マシンに割当てることができる。同様に、物理機能はハイパーバイザ410によって処理することができる。仮想スイッチ415もハイパーバイザ401によって処理することができる。
一実施形態に従うと、vSwitchアーキテクチャにおいては、各々の仮想機能430、440、450は完全な仮想ホストチャネルアダプタ(virtual Host Channel Adapter:vHCA)であり、これは、ハードウェアにおいて、VFに割当てられたVMに、IBアドレス一式(たとえばGID、GUID、LID)および専用のQPスペースが割当てられていることを意味する。残りのネットワークおよびSMについては、HCA400は、仮想スイッチ415を介して追加のノードが接続されているスイッチのように見えている。ハイパーバイザ410はPF420を用いることができ、(仮想機能に付与された)VMはVFを用いる。
一実施形態に従うと、vSwitchアーキテクチャは、トランスペアレントな仮想化を提供する。しかしながら、各々の仮想機能には固有のLIDが割当てられているので、利用可能な数のLIDが速やかに消費される。同様に、多くのLIDアドレスが(すなわち、各々の物理機能および各々の仮想機能ごとに1つずつ)使用されている場合、より多くの通信経路をSMによって演算しなければならず、それらのLFTを更新するために、より多くのサブネット管理パケット(SMP)をスイッチに送信しなければならない。たとえば、通信経路の演算は大規模ネットワークにおいては数分かかる可能性がある。LIDスペースが49151個のユニキャストLIDに制限されており、(VFを介する)各々のVMとして、物理ノードおよびスイッチがLIDを1つずつ占有するので、ネットワークにおける物理ノードおよびスイッチの数によってアクティブなVMの数が制限されてしまい、逆の場合も同様に制限される。
インフィニバンドSR−IOVアーキテクチャモデル−仮想ポート(vPort)
図6は、一実施形態に従う例示的なvPortの概念を示す。図に示されるように、ホスト300(たとえばホストチャネルアダプタ)は、さまざまな仮想機能330、340および350をいくつかの仮想マシンに割当てることができるハイパーバイザ410と対話することができる。同様に、物理機能はハイパーバイザ310によって処理することができる。
一実施形態に従うと、ベンダーに実装の自由を与えるためにvPort概念は緩やかに定義されており(たとえば、当該定義では、実装がSRIOV専用とすべきであるとは規定されていない)、vPortの目的は、VMがサブネットにおいて処理される方法を標準化することである。vPort概念であれば、空間ドメインおよび性能ドメインの両方においてよりスケーラブルであり得る、SR−IOV共有のポートのようなアーキテクチャおよびvSwitchのようなアーキテクチャの両方、または、これらのアーキテクチャの組合せが規定され得る。また、vPortはオプションのLIDをサポートするとともに、共有のポートとは異なり、SMは、vPortが専用のLIDを用いていなくても、サブネットにおいて利用可能なすべてのvPortを認識する。
インフィニバンドSR−IOVアーキテクチャモデル−LIDが予めポピュレートされたvSwitch
一実施形態に従うと、本開示は、LIDが予めポピュレートされたvSwitchアーキテクチャを提供するためのシステムおよび方法を提供する。
図7は、一実施形態に従う、LIDが予めポピュレートされた例示的なvSwitchアーキテクチャを示す。図に示されるように、いくつかのスイッチ501〜504は、ネットワーク切替環境600(たとえばIBサブネット)内においてインフィニバンドTMファブリックなどのファブリックのメンバ間で通信を確立することができる。ファブリックはホストチャネルアダプタ510、520、530などのいくつかのハードウェアデバイスを含み得る。さらに、ホストチャネルアダプタ510、520および530は、それぞれ、ハイパーバイザ511、521および531と対話することができる。各々のハイパーバイザは、さらに、ホストチャネルアダプタと共に、いくつかの仮想機能514、515、516、524、525、526、534、535および536と対話し、設定し、いくつかの仮想マシンに割当てることができる。たとえば、仮想マシン1 550はハイパーバイザ511によって仮想機能1 514に割当てることができる。ハイパーバイザ511は、加えて、仮想マシン2 551を仮想機能2 515に割当て、仮想マシン3 552を仮想機能3 516に割当てることができる。ハイパーバイザ531は、さらに、仮想マシン4 553を仮想機能1 534に割当てることができる。ハイパーバイザは、ホストチャネルアダプタの各々の上で十分な機能を有する物理機能513、523および533を介してホストチャネルアダプタにアクセスすることができる。
一実施形態に従うと、スイッチ501〜504の各々はいくつかのポート(図示せず)を含み得る。いくつかのポートは、ネットワーク切替環境600内においてトラフィックを方向付けるためにリニアフォワーディングテーブルを設定するのに用いられる。
一実施形態に従うと、仮想スイッチ512、522および532は、それぞれのハイパーバイザ511、521、531によって処理することができる。このようなvSwitchアーキテクチャにおいては、各々の仮想機能は完全な仮想ホストチャネルアダプタ(vHCA)であり、これは、ハードウェアにおいて、VFに割当てられたVMに、IBアドレス一式(たとえばGID、GUID、LID)および専用のQPスペースが割当てられていることを意味する。残りのネットワークおよびSM(図示せず)については、HCA510、520および530は、仮想スイッチを介して追加のノードが接続されているスイッチのように見えている。
一実施形態に従うと、本開示は、LIDが予めポピュレートされたvSwitchアーキテクチャを提供するためのシステムおよび方法を提供する。図7を参照すると、LIDは、さまざまな物理機能513、523および533に、さらには、仮想機能514〜516、524〜526、534〜536(その時点でアクティブな仮想マシンに関連付けられていない仮想機能であっても)にも、予めポピュレートされている。たとえば、物理機能513はLID1が予めポピュレートされており、仮想機能1 534はLID10が予めポピュレートされている。ネットワークがブートされているとき、LIDはSR−IOV vSwitch対応のサブネットにおいて予めポピュレートされている。VFのすべてがネットワークにおけるVMによって占有されていない場合であっても、ポピュレートされたVFには、図7に示されるようにLIDが割当てられている。
一実施形態に従うと、多くの同様の物理的なホストチャネルアダプタが2つ以上のポートを有することができ(冗長性のために2つのポートが共用となっている)、仮想HCAも2つのポートで表わされ、1つまたは2つ以上の仮想スイッチを介して外部IBサブネットに接続され得る。
一実施形態に従うと、LIDが予めポピュレートされたvSwitchアーキテクチャにおいては、各々のハイパーバイザは、それ自体のための1つのLIDをPFを介して消費し、各々の追加のVFごとに1つ以上のLIDを消費することができる。IBサブネットにおけるすべてのハイパーバイザにおいて利用可能なすべてのVFを合計すると、サブネットにおいて実行することが可能なVMの最大量が得られる。たとえば、サブネット内の1ハイパーバイザごとに16個の仮想機能を備えたIBサブネットにおいては、各々のハイパーバイザは、サブネットにおいて17個のLID(16個の仮想機能ごとに1つのLIDと、物理機能のために1つのLID)を消費する。このようなIBサブネットにおいては、単一のサブネットについて理論上のハイパーバイザ限度は利用可能なユニキャストLIDの数によって規定されており、(49151個の利用可能なLIDをハイパーバイザごとに17個のLIDで割って得られる)2891であり、VMの総数(すなわち限度)は(ハイパーバイザごとに2891個のハイパーバイザに16のVFを掛けて得られる)46256である(実質的には、IBサブネットにおける各々のスイッチ、ルータまたは専用のSMノードが同様にLIDを消費するので、実際これらの数はより小さくなる)。なお、vSwitchが、LIDをPFと共有することができるので、付加的なLIDを占有する必要がないことに留意されたい。
一実施形態に従うと、LIDが予めポピュレートされたvSwitchアーキテクチャにおいては、ネットワークが一旦ブートされると、すべてのLIDについて通信経路が計算される。新しいVMを始動させる必要がある場合、システムは、サブネットにおいて新しいLIDを追加する必要はない。それ以外の場合、経路の再計算を含め、ネットワークを完全に再構成させ得る動作は、最も時間を消費する要素となる。代わりに、VMのための利用可能なポートはハイパーバイザのうちの1つに位置し(すなわち利用可能な仮想機能)、仮想マシンは利用可能な仮想機能に付与されている。
一実施形態に従うと、LIDが予めポピュレートされたvSwitchアーキテクチャはまた、同じハイパーバイザによってホストされているさまざまなVMに達するために、さまざまな経路を計算して用いる能力を可能にする。本質的には、これは、LIDを連続的にすることを必要とするLMCの制約によって拘束されることなく、1つの物理的なマシンに向かう代替的な経路を設けるために、このようなサブネットおよびネットワークがLIDマスク制御ライク(LID-Mask-Control-like:LMCライク)な特徴を用いることを可能にする。VMをマイグレートしてその関連するLIDを宛先に送達する必要がある場合、不連続なLIDを自由に使用できることは特に有用となる。
一実施形態に従うと、LIDが予めポピュレートされたvSwitchアーキテクチャについての上述の利点と共に、いくつかの検討事項を考慮に入れることができる。たとえば、ネットワークがブートされているときに、SR−IOV vSwitch対応のサブネットにおいてLIDが予めポピュレートされているので、(たとえば起動時の)最初の経路演算はLIDが予めポピュレートされていなかった場合よりも時間が長くかかる可能性がある。
インフィニバンドSR−IOVアーキテクチャモデル−動的LID割当てがなされたvSwitch
一実施形態に従うと、本開示は、動的LID割当てがなされたvSwitchアーキテクチャを提供するためのシステムおよび方法を提供する。
図8は、一実施形態に従う、動的LID割当てがなされた例示的なvSwitchアーキテクチャを示す。図に示されるように、いくつかのスイッチ501〜504は、ネットワーク切替環境700(たとえばIBサブネット)内においてインフィニバンドTMファブリックなどのファブリックのメンバ間で通信を確立することができる。ファブリックは、ホストチャネルアダプタ510、520、530などのいくつかのハードウェアデバイスを含み得る。ホストチャネルアダプタ510、520および530は、さらに、ハイパーバイザ511、521および531とそれぞれ対話することができる。各々のハイパーバイザは、さらに、ホストチャネルアダプタと共に、いくつかの仮想機能514、515、516、524、525、526、534、535および536と対話し、設定し、いくつかの仮想マシンに割当てることができる。たとえば、仮想マシン1 550はハイパーバイザ511によって仮想機能1 514に割当てることができる。ハイパーバイザ511は、加えて、仮想マシン2 551を仮想機能2 515に割当て、仮想マシン3 552を仮想機能3 516に割当てることができる。ハイパーバイザ531はさらに、仮想マシン4 553を仮想機能1 534に割当てることができる。ハイパーバイザは、ホストチャネルアダプタの各々の上において十分な機能を有する物理機能513、523および533を介してホストチャネルアダプタにアクセスすることができる。
一実施形態に従うと、スイッチ501〜504の各々はいくつかのポート(図示せず)を含み得る。いくつかのポートは、ネットワーク切替環境700内においてトラフィックを方向付けるためにリニアフォワーディングテーブルを設定するのに用いられる。
一実施形態に従うと、仮想スイッチ512、522および532は、それぞれのハイパーバイザ511、521および531によって処理することができる。このようなvSwitchアーキテクチャにおいては、各々の仮想機能は完全な仮想ホストチャネルアダプタ(vHCA)であり、これは、ハードウェアにおいて、VFに割当てられたVMに、IBアドレス一式(たとえばGID、GUID、LID)および専用のQPスペースが割当てられていることを意味する。残りのネットワークおよびSM(図示せず)については、HCA510、520および530は、仮想スイッチを介して、追加のノードが接続されているスイッチのように見えている。
一実施形態に従うと、本開示は、動的LID割当てがなされたvSwitchアーキテクチャを提供するためのシステムおよび方法を提供する。図8を参照すると、LIDには、さまざまな物理機能513、523および533が動的に割当てられており、物理機能513がLID1を受取り、物理機能523がLID2を受取り、物理機能533がLID3を受取る。アクティブな仮想マシンに関連付けられたそれらの仮想機能はまた、動的に割当てられたLIDを受取ることもできる。たとえば、仮想マシン1 550がアクティブであり、仮想機能1 514に関連付けられているので、仮想機能514にはLID5が割当てられ得る。同様に、仮想機能2 515、仮想機能3 516および仮想機能1 534は、各々、アクティブな仮想機能に関連付けられている。このため、これらの仮想機能にLIDが割当てられ、LID7が仮想機能2 515に割当てられ、LID11が仮想機能3 516に割当てられ、LID9が仮想機能1 534に割当てられている。LIDが予めポピュレートされたvSwitchとは異なり、アクティブな仮想マシンにその時点で関連付けられていない仮想機能はLIDの割当てを受けない。
一実施形態に従うと、動的LID割当てがなされていれば、最初の経路演算を実質的に減らすことができる。ネットワークが初めてブートしており、VMが存在していない場合、比較的少数のLIDを最初の経路計算およびLFT分配のために用いることができる。
一実施形態に従うと、多くの同様の物理的なホストチャネルアダプタが2つ以上のポートを有することができ(冗長性のために2つのポートが共用となっている)、仮想HCAも2つのポートで表わされ、1つまたは2つ以上の仮想スイッチを介して外部IBサブネットに接続され得る。
一実施形態に従うと、動的LID割当てがなされたvSwitchを利用するシステムにおいて新しいVMが作成される場合、どのハイパーバイザ上で新しく追加されたVMをブートすべきであるかを決定するために、自由なVMスロットが発見され、固有の未使用のユニキャストLIDも同様に発見される。しかしながら、新しく追加されたLIDを処理するためのスイッチのLFTおよびネットワークに既知の経路が存在しない。新しく追加されたVMを処理するために新しいセットの経路を演算することは、いくつかのVMが毎分ごとにブートされ得る動的な環境においては望ましくない。大規模なIBサブネットにおいては、新しい1セットのルートの演算には数分かかる可能性があり、この手順は、新しいVMがブートされるたびに繰返されなければならないだろう。
有利には、一実施形態に従うと、ハイパーバイザにおけるすべてのVFがPFと同じアップリンクを共有しているので、新しいセットのルートを演算する必要はない。ネットワークにおけるすべての物理スイッチのLFTを繰返し、(VMが作成されている)ハイパーバイザのPFに属するLIDエントリから新しく追加されたLIDにフォワーディングポートをコピーし、かつ、特定のスイッチの対応するLFTブロックを更新するために単一のSMPを送信するだけでよい。これにより、当該システムおよび方法では、新しいセットのルートを演算する必要がなくなる。
一実施形態に従うと、動的LID割当てアーキテクチャを備えたvSwitchにおいて割当てられたLIDは連続的である必要はない。各々のハイパーバイザ上のVM上で割当てられたLIDをLIDが予めポピュレートされたvSwitchと動的LID割当てがなされたvSwitchとで比較すると、動的LID割当てアーキテクチャにおいて割当てられたLIDが不連続であり、そこに予めポピュレートされたLIDが本質的に連続的であることが分かるだろう。さらに、vSwitch動的LID割当てアーキテクチャにおいては、新しいVMが作成されると、次に利用可能なLIDが、VMの生存期間の間中ずっと用いられる。逆に、LIDが予めポピュレートされたvSwitchにおいては、各々のVMは、対応するVFに既に割当てられているLIDを引継ぎ、ライブマイグレーションのないネットワークにおいては、所与のVFに連続的に付与されたVMが同じLIDを得る。
一実施形態に従うと、動的LID割当てアーキテクチャを備えたvSwitchは、いくらかの追加のネットワークおよびランタイムSMオーバーヘッドを犠牲にして、予めポピュレートされたLIDアーキテクチャモデルを備えたvSwitchの欠点を解決することができる。VMが作成されるたびに、作成されたVMに関連付けられた、新しく追加されたLIDで、サブネットにおける物理スイッチのLFTが更新される。この動作のために、1スイッチごとに1つのサブネット管理パケット(SMP)が送信される必要がある。各々のVMがそのホストハイパーバイザと同じ経路を用いているので、LMCのような機能も利用できなくなる。しかしながら、すべてのハイパーバイザに存在するVFの合計に対する制限はなく、VFの数は、ユニキャストLIDの限度を上回る可能性もある。このような場合、当然、アクティブなVM上でVFのすべてが必ずしも同時に付与されることが可能になるわけではなく、より多くの予備のハイパーバイザおよびVFを備えることにより、ユニキャストLID限度付近で動作する際に、断片化されたネットワークの障害を回復および最適化させるための融通性が追加される。
インフィニバンドSR−IOVアーキテクチャモデル−動的LID割当てがなされかつLIDが予めポピュレートされたvSwitch
図9は、一実施形態に従う、動的LID割当てがなされてLIDが予めポピュレートされたvSwitchを備えた例示的なvSwitchアーキテクチャを示す。図に示されるように、いくつかのスイッチ501〜504は、ネットワーク切替環境800(たとえばIBサブネット)内においてインフィニバンドTMファブリックなどのファブリックのメンバ間で通信を確立することができる。ファブリックはホストチャネルアダプタ510、520、530などのいくつかのハードウェアデバイスを含み得る。ホストチャネルアダプタ510、520および530は、それぞれ、さらに、ハイパーバイザ511、521および531と対話することができる。各々のハイパーバイザは、さらに、ホストチャネルアダプタと共に、いくつかの仮想機能514、515、516、524、525、526、534、535および536と対話し、設定し、いくつかの仮想マシンに割当てることができる。たとえば、仮想マシン1 550は、ハイパーバイザ511によって仮想機能1 514に割当てることができる。ハイパーバイザ511は、加えて、仮想マシン2 551を仮想機能2 515に割当てることができる。ハイパーバイザ521は、仮想マシン3 552を仮想機能3 526に割当てることができる。ハイパーバイザ531は、さらに、仮想マシン4 553を仮想機能2 535に割当てることができる。ハイパーバイザは、ホストチャネルアダプタの各々の上において十分な機能を有する物理機能513、523および533を介してホストチャネルアダプタにアクセスすることができる。
一実施形態に従うと、スイッチ501〜504の各々はいくつかのポート(図示せず)を含み得る。これらいくつかのポートは、ネットワーク切替環境800内においてトラフィックを方向付けるためにリニアフォワーディングテーブルを設定するのに用いられる。
一実施形態に従うと、仮想スイッチ512、522および532は、それぞれのハイパーバイザ511、521、531によって処理することができる。このようなvSwitchアーキテクチャにおいては、各々の仮想機能は、完全な仮想ホストチャネルアダプタ(vHCA)であり、これは、ハードウェアにおいて、VFに割当てられたVMに、IBアドレス一式(たとえばGID、GUID、LID)および専用のQPスペースが割当てられていることを意味する。残りのネットワークおよびSM(図示せず)については、HCA510、520および530は、仮想スイッチを介して、追加のノードが接続されているスイッチのように見えている。
一実施形態に従うと、本開示は、動的LID割当てがなされLIDが予めポピュレートされたハイブリッドvSwitchアーキテクチャを提供するためのシステムおよび方法を提供する。図9を参照すると、ハイパーバイザ511には、予めポピュレートされたLIDアーキテクチャを備えたvSwitchが配置され得るとともに、ハイパーバイザ521には、LIDが予めポピュレートされて動的LID割当てがなされたvSwitchが配置され得る。ハイパーバイザ531には、動的LID割当てがなされたvSwitchが配置され得る。このため、物理機能513および仮想機能514〜516には、それらのLIDが予めポピュレートされている(すなわち、アクティブな仮想マシンに付与されていない仮想機能であってもLIDが割当てられている)。物理機能523および仮想機能1 524にはそれらのLIDが予めポピュレートされ得るとともに、仮想機能2 525および仮想機能3 526にはそれらのLIDが動的に割当てられている(すなわち、仮想機能2 525は動的LID割当てのために利用可能であり、仮想機能3 526は、仮想マシン3 552が付与されているので、11というLIDが動的に割当てられている)。最後に、ハイパーバイザ3 531に関連付けられた機能(物理機能および仮想機能)にはそれらのLIDを動的に割当てることができる。これにより、結果として、仮想機能1 534および仮想機能3 536が動的LID割当てのために利用可能となるとともに、仮想機能2 535には、仮想マシン4 553が付与されているので、9というLIDが動的に割当てられている。
LIDが予めポピュレートされたvSwitchおよび動的LID割当てがなされたvSwitchがともに(いずれかの所与のハイパーバイザ内で独立して、または組合わされて)利用されている、図9に示されるような一実施形態に従うと、ホストチャネルアダプタごとの予めポピュレートされたLIDの数はファブリックアドミニストレータによって定義することができ、(ホストチャネルアダプタごとに)0<=予めポピュレートされたVF<=総VFの範囲内になり得る。動的LID割当てのために利用可能なVFは、(ホストチャネルアダプタごとに)VFの総数から予めポピュレートされたVFの数を減じることによって見出すことができる。
一実施形態に従うと、多くの同様の物理的なホストチャネルアダプタが2つ以上のポートを有することができ(冗長性のために2つのポートが共用となっている)、仮想HCAも2つのポートで表わされ、1つまたは2つ以上の仮想スイッチを介して外部IBサブネットに接続され得る。
インフィニバンド−サブネット間通信(ファブリックマネージャ)
一実施形態に従うと、1つのサブネット内にインフィニバンドファブリックを提供することに加え、本開示の実施形態は、2つ以上のサブネットにまたがるインフィニバンドファブリックを提供することもできる。
図10は、一実施形態に従う例示的なマルチサブネットインフィニバンドファブリックを示す。この図に示されるように、サブネットA 1000の内部の多数のスイッチ1001〜1004は、サブネットA 1000(たとえばIBサブネット)内におけるインフィニバンドファブリックなどのファブリックのメンバ間の通信を提供することができる。このファブリックは、たとえばチャネルアダプタ1010などの多数のハードウェアデバイスを含み得る。ホストチャネルアダプタ1010は、ハイパーバイザ1011と対話することができる。ハイパーバイザは、対話の相手であるホストチャネルアダプタとともに、多数の仮想機能1014をセットアップすることができる。加えて、ハイパーバイザは、仮想マシンを仮想機能各々に割当てることができる。たとえば、仮想マシン1 1015は仮想機能1 1014に割当てられる。ハイパーバイザは、その対応付けられたホストチャネルアダプタに、各ホストチャネルアダプタ上の物理機能1013などの十分な機能を有する物理機能を通して、アクセスすることができる。多数のスイッチ1021〜1024は、サブネットB 1040(たとえばIBサブネット)内におけるインフィニバンドファブリックなどのファブリックのメンバ間の通信を提供することができる。このファブリックは、たとえばホストチャネルアダプタ1030などの多数のハードウェアデバイスを含み得る。ホストチャネルアダプタ1030は、ハイパーバイザ1031と対話することができる。ハイパーバイザは、対話の相手であるホストチャネルアダプタとともに、多数の仮想機能1034をセットアップすることができる。加えて、ハイパーバイザは、仮想マシンを仮想機能各々に割当てることができる。たとえば、仮想マシン2 1035は仮想機能2 1034に割当てられる。ハイパーバイザは、その対応付けられたホストチャネルアダプタに、各ホストチャネルアダプタ上の物理機能1033などの十分な機能を有する物理機能を通して、アクセスすることができる。なお、各サブネット(すなわちサブネットAおよびサブネットB)内に示されているホストチャネルアダプタは1つだけであるが、各サブネット内に複数のホストチャネルアダプタおよびそれらに対応するコンポーネントが含まれていてもよいことが、理解されるはずである。
一実施形態に従うと、各ホストチャネルアダプタはさらに、仮想スイッチ1012および仮想スイッチ1032などの仮想スイッチに対応付けられていてもよく、上記のように各HCAは異なるアーキテクチャモデルでセットアップされてもよい。図10のサブネットはどちらもLIDが予めポピュレートされているvSwitchのアーキテクチャモデルを使用するものとして示されているが、これは、このようなサブネット構成すべてが同様のアーキテクチャモデルに従う必要があることを示唆しようとしているのではない。
一実施形態に従うと、各サブネット内の少なくとも1つのスイッチがルータに対応付けられていてもよい。たとえば、サブネットA 1000内のスイッチ1002はルータ1005に対応付けられ、サブネットB 1040内のスイッチ1021はルータ1006に対応付けられている。
一実施形態に従うと、少なくとも1つのデバイス(たとえばスイッチ、ノード等)を、ファブリックマネージャ(図示せず)に対応付けることができる。ファブリックマネージャを使用して、たとえば、サブネット間ファブリックトポロジーを発見し、ファブリックプロファイル(たとえば仮想マシンファブリックプロファイル)を作成し、仮想マシンファブリックプロファイルを構築するための基礎を形成する仮想マシン関連データベースオブジェクトを構築することができる。加えて、ファブリックマネージャは、どのサブネットがどのルータポートを介しどのパーティション番号を用いて通信することを許可されるかについて、法的なサブネット間接続性を規定することができる。
一実施形態に従うと、サブネットA内の仮想マシン1などの発信ソースにおけるトラッフィックを、サブネットB内の仮想マシン2などの異なるサブネットを宛先としてそれに向ける場合、トラフィックは、サブネットA内のルータ、すなわち、ルータ1005に向ければよく、そうすると、ルータ1005はこのトラッフィックをルータ1006とのリンクを介してサブネットBに送ることができる。
仮想デュアルポートルータ
一実施形態に従うと、デュアルポートルータアブストラクション(dual port router abstraction)は、GRH(グローバルルートヘッダ(global route header))からLRH(ローカルルートヘッダ(local route header))への変換を、通常のLRHベースのスイッチングの実行に加えて行なう機能を有するスイッチハードウェア実装に基づいてサブネット間ルータ機能を規定することを可能にする簡単な方法を提供することができる。
一実施形態に従うと、仮想デュアルポートルータは、対応するスイッチポートの外部で論理的に接続することができる。この仮想デュアルポートルータは、サブネットマネージャ等の標準管理エンティティに対しインフィニバンド規格に準拠したビューを提供することができる。
一実施形態に従うと、デュアルポートルータモデルは、異なるサブネットを、各サブネットがサブネットへの進入(ingress)経路におけるパケット転送とアドレスマッピングとを完全に制御し、かつ、間違って接続されたサブネットのうちいずれのサブネット内のルーティングおよび論理的接続にも影響を与えないように、接続できることを、示している。
一実施形態に従うと、間違って接続されたファブリックを含む状況において、仮想デュアルポートルータアブストラクションを使用することにより、サブネットマネージャおよびIB診断ソフトウェア等の管理エンティティが、遠隔サブネットへの意図しない物理的接続の存在下で、正しく作用するようにすることもできる。
図11は、一実施形態に従う、高性能コンピューティング環境における2つのサブネット間の相互接続を示す。仮想デュアルポートルータを用いて構成する前に、サブネットA 1101内のスイッチ1120を、スイッチ1120のスイッチポート1121を通し、物理接続1110を介して、サブネットB 1102内のスイッチ1130に、スイッチ1130のスイッチポート1131を通して接続することができる。このような実施形態において、スイッチポート1121および1131の各々は、スイッチポートとしてもルータポートとしても機能することができる。
一実施形態に従うと、この構成の問題は、インフィニバンドサブネット内のサブネットマネージャ等の管理エンティティが、スイッチポートでもありルータポートでもある物理ポートを区別できないことである。このような状況において、SMは、スイッチポートを、このスイッチポートに接続されたルータポートを有するものとして扱うことができる。しかしながら、スイッチポートがたとえば物理リンクを介して別のサブネットマネージャを有する別のサブネットに接続されている場合、サブネットマネージャはディスカバリメッセージを物理リンクに送ることができる。しかしながら、このようなディスカバリメッセージは他方のサブネットでは許可されない。
図12は、一実施形態に従う、高性能コンピューティング環境におけるデュアルポート仮想ルータ構成を介した2つのサブネット間の相互接続を示す。
一実施形態に従うと、構成後に、デュアルポート仮想ルータ構成を、サブネットマネージャの責任であるサブネットの端部を示す適切なエンドノードが、サブネットマネージャにわかるように、提供することができる。
一実施形態に従うと、サブネットA 1201内のスイッチ1220におけるスイッチポートは、仮想リンク1223を介して仮想ルータ1210内のルータポート1211に接続(すなわち論理的に接続)することができる。仮想ルータ1210(たとえばデュアルポート仮想ルータ)は、実施形態ではスイッチ1220の外部にあるものとして示されているが、論理的にはスイッチ1220の中に含めることができ、第2のルータポートであるルータポートII 1212も含み得る。一実施形態に従うと、2つの端部を有し得る物理リンク1203は、サブネットA 1201を、サブネットB 1202に、物理リンクの第1の端部を介し、物理リンクの第2の端部を介し、ルータポートII 1212を介し、サブネットB 1202内の仮想ルータ1230に含まれるルータポートII 1232を介して、接続することができる。仮想ルータ1230はさらに、仮想リンク1233を介してスイッチ1240上のスイッチポート1241に接続(すなわち論理的に接続)することができるルータポート1231を含み得る。
一実施形態に従うと、サブネットA上のサブネットマネージャ(図示せず)は、仮想ルータ1210上のルータポート1211を、当該サブネットマネージャが制御するサブネットの終点として検出することができる。デュアルポート仮想ルータアブストラクションは、サブネットA上のサブネットマネージャが、サブネットAを通常のやり方で(たとえばインフィニバンド規格に規定されているように)扱うことを可能にする。サブネット管理エージェント(subnet management agent)レベルにおいて、デュアルポート仮想ルータアブストラクションを提供して通常のスイッチポートがSMにわかるようにし、その後、SMAレベルにおいて、当該アブストラクションを提供してこのスイッチポートに接続されている別のポートが存在しこのポートがデュアルポート仮想ルータ上のルータポートとなるようにすることができる。ローカルSMでは、従来のファブリックトポロジーを引続き使用することができ(このトポロジーにおいてSMはポートを標準スイッチポートとみなす)、したがって、SMはルータポートをエンドポートとみなす。物理的接続は、2つの異なるサブネット内のルータポートとしても構成されている2つのスイッチポート間で行なうことができる。
一実施形態に従うと、デュアルポート仮想ルータは、物理リンクが間違って同じサブネット内の他のいずれかのスイッチポートに接続される、または、別のサブネットへの接続を提供することを意図していないスイッチポートに接続される可能性があるという問題を、解決することもできる。したがって、本明細書に記載の方法およびシステムは、サブネットの外側にあるものも表現する。
一実施形態に従うと、サブネットA等のサブネット内のローカルSMは、スイッチポートを確定し、次に、このスイッチポートに接続されているルータポート(たとえば仮想リンク1223を介してスイッチポート1221に接続されているルータポート1211)を確定する。SMは、ルータポート1211を、当該SMが管理するサブネットの端部とみなすので、SMはディスカバリおよび/または管理メッセージをこのポイントよりも遠くに(たとえばルータポートII 1212に)送ることができない。
一実施形態に従うと、上記デュアルポート仮想ルータは、当該デュアルポート仮想ルータが属するサブネット内の管理エンティティ(たとえばSMまたはSMA)によってデュアルポート仮想ルータアブストラクションが完全に管理されるという利点を提供する。管理をローカル側のみにすることにより、システムは外部の独立した管理エンティティを提供する必要がない。すなわち、サブネット間接続の各側は自身のデュアルポート仮想ルータを構成する役割を担う。
一実施形態に従うと、遠隔の宛先(すなわちローカルサブネットの外部)に向けられたSMP等のパケットが、上記デュアルポート仮想ルータを介して構成されていないローカルターゲットポートに到着した場合、ローカルポートは、自身はルータポートではないことを示すメッセージを返すことができる。
本発明の多数の特徴は、ハードウェア、ソフトウェア、ファームウェア、またはこれらを組合わせたものにおいて、これを用いて、またはこれに支援されて、実施することができる。したがって、本発明の特徴は、処理システム(たとえば1つ以上のプロセッサを含む)を用いて実現し得る。
図13は、一実施形態に従う、高性能コンピューティング環境においてデュアルポート仮想ルータをサポートする方法を示す。ステップ1310において、この方法は第1のサブネットを設けることができる。第1のサブネットは複数のスイッチを含み、複数のスイッチは少なくともリーフスイッチを含み、複数のスイッチの各々は複数のスイッチポートを含む。第1のサブネットはさらに、各々が少なくとも1つのホストチャネルアダプタポートを含む複数のホストチャネルアダプタと、各々が複数のホストチャネルアダプタのうちの少なくとも1つのホストチャネルアダプタに対応付けられている複数のエンドノードと、サブネットマネージャとを含み、サブネットマネージャは、複数のスイッチのうちの1つのスイッチおよび複数のホストチャネルアダプタのうちの1つにおいて実行される。
ステップ1320において、この方法は、複数のスイッチのうちの1つのスイッチ上の複数のスイッチポートのうちの1つのスイッチポートを、ルータポートとして構成することができる。
スイッチ1330において、この方法は、ルータポートとして構成したスイッチポートを仮想ルータに論理的に接続することができ、この仮想ルータは少なくとも2つの仮想ルータポートを含む。
この発明の特徴は、ここに提示された特徴のうちのいずれかを行なうように処理システムをプログラミングするために使用可能な命令を格納した記憶媒体またはコンピュータ読取可能媒体であるコンピュータプログラムプロダクトにおいて、それを使用して、またはその助けを借りて実現され得る。記憶媒体は、フロッピー(登録商標)ディスク、光ディスク、DVD、CD−ROM、マイクロドライブ、および光磁気ディスクを含む任意のタイプのディスク、ROM、RAM、EPROM、EEPROM、DRAM、VRAM、フラッシュメモリ装置、磁気カードもしくは光カード、ナノシステム(分子メモリICを含む)、または、命令および/もしくはデータを格納するのに好適な任意のタイプの媒体もしくは装置を含み得るものの、それらに限定されない。
この発明の特徴は、機械読取可能媒体のうちのいずれかに格納された状態で、処理システムのハードウェアを制御するために、および処理システムがこの発明の結果を利用する他の機構とやり取りすることを可能にするために、ソフトウェアおよび/またはファームウェアに取込まれ得る。そのようなソフトウェアまたはファームウェアは、アプリケーションコード、装置ドライバ、オペレーティングシステム、および実行環境/コンテナを含み得るものの、それらに限定されない。
この発明の特徴はまた、たとえば、特定用途向け集積回路(application specific integrated circuit:ASIC)などのハードウェアコンポーネントを使用して、ハードウェアにおいて実現されてもよい。ここに説明された機能を行なうようにハードウェアステートマシンを実現することは、関連技術の当業者には明らかであろう。
加えて、この発明は、この開示の教示に従ってプログラミングされた1つ以上のプロセッサ、メモリおよび/またはコンピュータ読取可能記憶媒体を含む、1つ以上の従来の汎用または特殊デジタルコンピュータ、コンピューティング装置、マシン、またはマイクロプロセッサを使用して都合よく実現され得る。ソフトウェア技術の当業者には明らかであるように、この開示の教示に基づいて、適切なソフトウェアコーディングが、熟練したプログラマによって容易に準備され得る。
この発明のさまざまな実施形態が上述されてきたが、それらは限定のためではなく例示のために提示されたことが理解されるべきである。この発明の精神および範囲から逸脱することなく、形状および詳細のさまざまな変更を行なうことができることは、関連技術の当業者には明らかであろう。
この発明は、特定された機能およびそれらの関係の実行を示す機能的構築ブロックの助けを借りて上述されてきた。説明の便宜上、これらの機能的構築ブロックの境界は、この明細書中ではしばしば任意に規定されてきた。特定された機能およびそれらの関係が適切に実行される限り、代替的な境界を規定することができる。このため、そのようないかなる代替的な境界も、この発明の範囲および精神に含まれる。
この発明の前述の説明は、例示および説明のために提供されてきた。それは、網羅的であるよう、またはこの発明を開示された形態そのものに限定するよう意図されてはいない。この発明の幅および範囲は、上述の例示的な実施形態のいずれによっても限定されるべきでない。多くの変更および変形が、当業者には明らかになるだろう。これらの変更および変形は、開示された特徴の関連するあらゆる組合せを含む。実施形態は、この発明の原理およびその実用的応用を最良に説明するために選択され説明されたものであり、それにより、考えられる特定の使用に適したさまざまな実施形態についての、およびさまざまな変更例を有するこの発明を、当業者が理解できるようにする。この発明の範囲は、請求項およびそれらの同等例によって定義されるよう意図されている。

Claims (5)

  1. 高性能コンピューティング環境においてデュアルポート仮想ルータをサポートするためのシステムであって、
    1つ以上のマイクロプロセッサと、
    第1のサブネットとを備え、前記第1のサブネットは、
    複数のスイッチを含み、前記複数のスイッチは少なくともリーフスイッチを含み、前記複数のスイッチの各々は複数のスイッチポートを含み、前記第1のサブネットはさらに、
    各々が少なくとも1つのホストチャネルアダプタポートを含む複数のホストチャネルアダプタと、
    各々が前記複数のホストチャネルアダプタのうちの少なくとも1つのホストチャネルアダプタに対応付けられている複数のエンドノードと、
    サブネットマネージャとを含み、前記サブネットマネージャは、前記複数のスイッチのうちの1つのスイッチおよび前記複数のホストチャネルアダプタのうちの1つにおいて実行され、
    第2のサブネットをさらに備え、前記第2のサブネットは、
    前記第2のサブネットの複数のスイッチを含み、前記第2のサブネットの前記複数のスイッチは、前記第2のサブネットの少なくともリーフスイッチを含み、前記第2のサブネットの前記複数のスイッチの各々は、前記第2のサブネットの複数のスイッチポートを含み、前記第2のサブネットはさらに、
    各々が少なくとも1つのホストチャネルアダプタポートを含む、前記第2のサブネットの複数のホストチャネルアダプタと、
    各々が前記複数のホストチャネルアダプタのうちの少なくとも1つのホストチャネルアダプタに対応付けられている、前記第2のサブネットの複数のエンドノードと、
    前記第2のサブネットのサブネットマネージャとを含み、前記第2のサブネットのサブネットマネージャは、前記第2のサブネットの前記複数のスイッチおよび前記第2のサブネットの前記複数のホストチャネルアダプタのうちの1つにおいて実行され、
    前記第1のサブネットの前記複数のスイッチのうちの1つのスイッチ上の前記複数のスイッチポートのうちの1つのスイッチポートが、ルータポートとして構成され、
    前記第1のサブネットの前記ルータポートとして構成されたスイッチポートは、前記第1のサブネットの仮想ルータに含まれる少なくとも2つの仮想ルータポートのうちの第1の仮想ルータポートに論理的に接続され
    前記第2のサブネットの前記複数のスイッチのうちの1つのスイッチ上の前記第2のサブネットの複数のスイッチポートのうちの1つのスイッチポートが、前記第2のサブネットのルータポートとして構成され、
    前記第2のサブネットのルータポートとして構成されたスイッチポートは、前記第2のサブネットの仮想ルータに含まれる少なくとも2つの仮想ルータポートのうちの第1の仮想ルータポートに論理的に接続され、
    物理リンクの第1の端部が、前記第1のサブネットの仮想ルータの第2の仮想ルータポートに装着され、前記物理リンクの第2の端部が、前記第2のサブネットの仮想ルータの第2の仮想ルータポートに装着されることによって、前記第1のサブネットは、前記第2のサブネットと、前記物理リンクを介して相互に接続される、システム。
  2. 高性能コンピューティング環境においてデュアルポート仮想ルータをサポートする方法であって、
    1つ以上のマイクロプロセッサを含む1つ以上のコンピュータに、第1のサブネットを設けるステップを含み、前記第1のサブネットは、
    複数のスイッチを含み、前記複数のスイッチは少なくともリーフスイッチを含み、前記複数のスイッチの各々は複数のスイッチポートを含み、前記第1のサブネットはさらに、
    各々が少なくとも1つのホストチャネルアダプタポートを含む複数のホストチャネルアダプタと、
    各々が前記複数のホストチャネルアダプタのうちの少なくとも1つのホストチャネルアダプタに対応付けられている複数のエンドノードと、
    サブネットマネージャとを含み、前記サブネットマネージャは、前記複数のスイッチおよび前記複数のホストチャネルアダプタのうちの1つにおいて実行され、前記方法はさらに、
    前記1つ以上のマイクロプロセッサを含む前記1つ以上のコンピュータに、第2のサブネットを設けるステップを含み、前記第2のサブネットは、
    前記第2のサブネットの複数のスイッチを含み、前記第2のサブネットの前記複数のスイッチは、前記第2のサブネットの少なくともリーフスイッチを含み、前記第2のサブネットの前記複数のスイッチの各々は、前記第2のサブネットの複数のスイッチポートを含み、前記第2のサブネットはさらに、
    各々が少なくとも1つのホストチャネルアダプタポートを含む、前記第2のサブネットの複数のホストチャネルアダプタと、
    各々が前記複数のホストチャネルアダプタのうちの少なくとも1つのホストチャネルアダプタに対応付けられている、前記第2のサブネットの複数のエンドノードと、
    前記第2のサブネットのサブネットマネージャとを含み、前記第2のサブネットのサブネットマネージャは、前記第2のサブネットの前記複数のスイッチおよび前記第2のサブネットの前記複数のホストチャネルアダプタのうちの1つにおいて実行され、前記方法はさらに、
    前記第1のサブネットの前記複数のスイッチのうちの1つのスイッチ上の前記複数のスイッチポートのうちの1つのスイッチポートを、ルータポートとして構成するステップとを含み
    前記第1のサブネットのルータポートとして構成されたスイッチポートは、前記第1のサブネットの仮想ルータに含まれる少なくとも2つの仮想ルータポートのうちの第1の仮想ルータポートに論理的に接続され、前記方法はさらに、
    前記第2のサブネットの前記複数のスイッチのうちの1つのスイッチ上の前記第2のサブネットの複数のスイッチポートのうちの1つのスイッチポートを、前記第2のサブネットのルータポートとして構成するステップを含み、
    前記第2のサブネットのルータポートとして構成されたスイッチポートは、前記第2のサブネットの仮想ルータに含まれる少なくとも2つの仮想ルータポートのうちの第1の仮想ルータポートに論理的に接続され、
    物理リンクの第1の端部が、前記第1のサブネットの仮想ルータの第2の仮想ルータポートに装着され、前記物理リンクの第2の端部が、前記第2のサブネットの仮想ルータの第2の仮想ルータポートに装着されることによって、前記第1のサブネットは、前記第2のサブネットと、前記物理リンクを介して相互に接続される、方法。
  3. 前記第1のサブネットの前記サブネットマネージャが、前記第1のサブネットの仮想ルータに含まれる前記第1の仮想ルータポートを、前記第1のサブネットのエンドポイントとして検出するステップをさらに含む、請求項2に記載の方法。
  4. 前記第2のサブネットの前記サブネットマネージャが、前記第2のサブネットの仮想ルータに含まれる前記第1の仮想ルータポートを、前記第2のサブネットのエンドポイントとして検出するステップをさらに含む、請求項2または3に記載の方法。
  5. コンピュータシステムに請求項2〜のいずれかに記載の方法を実行させるためのコンピュータプログラム。
JP2018534080A 2016-03-04 2017-01-26 高性能コンピューティング環境においてデュアルポート仮想ルータをサポートするためのシステムおよび方法 Active JP6850804B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662303646P 2016-03-04 2016-03-04
US62/303,646 2016-03-04
US15/413,143 US10171353B2 (en) 2016-03-04 2017-01-23 System and method for supporting dual-port virtual router in a high performance computing environment
US15/413,143 2017-01-23
PCT/US2017/015167 WO2017151249A1 (en) 2016-03-04 2017-01-26 System and method for supporting dual-port virtual router in a high performance computing environment

Publications (3)

Publication Number Publication Date
JP2019507520A JP2019507520A (ja) 2019-03-14
JP2019507520A5 JP2019507520A5 (ja) 2019-11-07
JP6850804B2 true JP6850804B2 (ja) 2021-03-31

Family

ID=59723777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018534080A Active JP6850804B2 (ja) 2016-03-04 2017-01-26 高性能コンピューティング環境においてデュアルポート仮想ルータをサポートするためのシステムおよび方法

Country Status (6)

Country Link
US (9) US10171353B2 (ja)
EP (1) EP3424191B1 (ja)
JP (1) JP6850804B2 (ja)
KR (1) KR102637135B1 (ja)
CN (2) CN112565043B (ja)
WO (1) WO2017151249A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9479457B2 (en) 2014-03-31 2016-10-25 Juniper Networks, Inc. High-performance, scalable and drop-free data center switch fabric
US10178027B2 (en) 2016-01-27 2019-01-08 Oracle International Corporation System and method for supporting inter subnet partitions in a high performance computing environment
US10536334B2 (en) 2016-01-28 2020-01-14 Oracle International Corporation System and method for supporting subnet number aliasing in a high performance computing environment
US10581711B2 (en) 2016-01-28 2020-03-03 Oracle International Corporation System and method for policing network traffic flows using a ternary content addressable memory in a high performance computing environment
US10171353B2 (en) * 2016-03-04 2019-01-01 Oracle International Corporation System and method for supporting dual-port virtual router in a high performance computing environment
GB2566657B8 (en) 2016-06-30 2022-04-13 Sophos Ltd Proactive network security using a health heartbeat
US10057119B2 (en) * 2016-08-23 2018-08-21 Oracle International Corporation System and method for supporting fast hybrid reconfiguration in a high performance computing environment
US10243840B2 (en) * 2017-03-01 2019-03-26 Juniper Networks, Inc. Network interface card switching for virtual networks
US10425331B2 (en) * 2017-10-04 2019-09-24 Facebook, Inc. Pre-routing device for data centers
FR3072236B1 (fr) * 2017-10-10 2020-11-27 Bull Sas Dispositif et procede d'acquisition de valeurs de compteurs associes a une tache de calcul
US11140195B2 (en) 2018-04-04 2021-10-05 Sophos Limited Secure endpoint in a heterogenous enterprise network
US10972431B2 (en) 2018-04-04 2021-04-06 Sophos Limited Device management based on groups of network adapters
US11616758B2 (en) 2018-04-04 2023-03-28 Sophos Limited Network device for securing endpoints in a heterogeneous enterprise network
US11271950B2 (en) * 2018-04-04 2022-03-08 Sophos Limited Securing endpoints in a heterogenous enterprise network
US10862864B2 (en) 2018-04-04 2020-12-08 Sophos Limited Network device with transparent heartbeat processing
EP3595245B1 (en) * 2018-07-13 2021-06-16 Juniper Networks, Inc. Network as a service using virtual nodes
US11256655B2 (en) * 2019-11-19 2022-02-22 Oracle International Corporation System and method for providing bandwidth congestion control in a private fabric in a high performance computing environment
CN111464508A (zh) * 2020-03-17 2020-07-28 中国第一汽车股份有限公司 一种会员权限管理方法、装置、设备及存储介质
US12074760B2 (en) * 2021-09-16 2024-08-27 International Business Machines Corporation Path management
JP2023137886A (ja) 2022-03-18 2023-09-29 キオクシア株式会社 ストレージ装置
CN115665026A (zh) * 2022-09-26 2023-01-31 京东科技信息技术有限公司 一种集群组网的方法和装置

Family Cites Families (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006090A (en) 1993-04-28 1999-12-21 Proxim, Inc. Providing roaming capability for mobile computers in a standard network
US7653769B2 (en) * 2006-12-14 2010-01-26 International Business Machines Corporation Management of devices connected to infiniband ports
US7277956B2 (en) 2000-07-28 2007-10-02 Kasenna, Inc. System and method for improved utilization of bandwidth in a computer system serving multiple users
US7409432B1 (en) 2000-10-19 2008-08-05 International Business Machines Corporation Efficient process for handover between subnet managers
US7099955B1 (en) 2000-10-19 2006-08-29 International Business Machines Corporation End node partitioning using LMC for a system area network
US6851059B1 (en) 2000-10-19 2005-02-01 International Business Machines Corporation Method and system for choosing a queue protection key that is tamper-proof from an application
US7339903B2 (en) * 2001-06-14 2008-03-04 Qualcomm Incorporated Enabling foreign network multicasting for a roaming mobile node, in a foreign network, using a persistent address
US6944786B2 (en) * 2001-07-27 2005-09-13 International Business Machines Corporation Network node failover using multicast address or port
US20030208572A1 (en) * 2001-08-31 2003-11-06 Shah Rajesh R. Mechanism for reporting topology changes to clients in a cluster
US7043569B1 (en) 2001-09-07 2006-05-09 Chou Norman C Method and system for configuring an interconnect device
US7093024B2 (en) * 2001-09-27 2006-08-15 International Business Machines Corporation End node partitioning using virtualization
US7099337B2 (en) * 2001-11-30 2006-08-29 Intel Corporation Mechanism for implementing class redirection in a cluster
US7206314B2 (en) 2002-07-30 2007-04-17 Brocade Communications Systems, Inc. Method and apparatus for transparent communication between a fibre channel network and an infiniband network
US7221676B2 (en) 2002-07-30 2007-05-22 Brocade Communications Systems, Inc. Supporting local IB packet communication between separate subnets
US7401157B2 (en) 2002-07-30 2008-07-15 Brocade Communications Systems, Inc. Combining separate infiniband subnets into virtual subnets
US7307996B2 (en) * 2002-07-30 2007-12-11 Brocade Communications Systems, Inc. Infiniband router having an internal subnet architecture
US20040030763A1 (en) * 2002-08-08 2004-02-12 Manter Venitha L. Method for implementing vendor-specific mangement in an inifiniband device
US7313090B2 (en) * 2002-09-26 2007-12-25 Avago Technologies General Ip (Singapore) Pte. Ltd. Systems and methods for providing data packet flow control
US7702717B2 (en) 2003-03-27 2010-04-20 Oracle America, Inc. Method and apparatus for controlling management agents in a computer system on a packet-switched input/output network
US7373660B1 (en) 2003-08-26 2008-05-13 Cisco Technology, Inc. Methods and apparatus to distribute policy information
US7188198B2 (en) * 2003-09-11 2007-03-06 International Business Machines Corporation Method for implementing dynamic virtual lane buffer reconfiguration
US7185025B2 (en) 2003-09-30 2007-02-27 Motorola, Inc. Subnet replicated database elements
US20050071382A1 (en) 2003-09-30 2005-03-31 Rosenstock Harold N. Method of replicating database elements in an infiniband architecture subnet
US20050071709A1 (en) 2003-09-30 2005-03-31 Rosenstock Harold N. InfiniBand architecture subnet derived database elements
US7979548B2 (en) 2003-09-30 2011-07-12 International Business Machines Corporation Hardware enforcement of logical partitioning of a channel adapter's resources in a system area network
US7428598B2 (en) 2003-11-20 2008-09-23 International Business Machines Corporation Infiniband multicast operation in an LPAR environment
JP4231773B2 (ja) * 2003-12-01 2009-03-04 株式会社日立コミュニケーションテクノロジー Vrの機密性を維持したvrrp技術
US7483442B1 (en) * 2004-06-08 2009-01-27 Sun Microsystems, Inc. VCRC checking and generation
US20060056424A1 (en) 2004-09-15 2006-03-16 Yolin Lih Packet transmission using output buffer
US7581021B2 (en) * 2005-04-07 2009-08-25 International Business Machines Corporation System and method for providing multiple virtual host channel adapters using virtual switches
US7200704B2 (en) * 2005-04-07 2007-04-03 International Business Machines Corporation Virtualization of an I/O adapter port using enablement and activation functions
US8208463B2 (en) * 2006-10-24 2012-06-26 Cisco Technology, Inc. Subnet scoped multicast / broadcast packet distribution mechanism over a routed network
US8147759B2 (en) * 2007-08-29 2012-04-03 Cem Corporation Automated protein analyzer
US7936753B1 (en) 2007-11-30 2011-05-03 Qlogic, Corporation Method and system for reliable multicast
US8331381B2 (en) * 2007-12-04 2012-12-11 International Business Machines Corporation Providing visibility of Ethernet components to a subnet manager in a converged InfiniBand over Ethernet network
US7983265B1 (en) 2008-01-17 2011-07-19 Qlogic, Corporation Method and system for processing a network packet
US8009589B2 (en) 2008-02-25 2011-08-30 International Business Machines Corporation Subnet management in virtual host channel adapter topologies
US7949721B2 (en) 2008-02-25 2011-05-24 International Business Machines Corporation Subnet management discovery of point-to-point network topologies
EP2192721A1 (en) 2008-11-28 2010-06-02 Thomson Licensing A method of operating a network subnet manager
JP5013219B2 (ja) 2009-02-25 2012-08-29 ブラザー工業株式会社 画像処理装置
WO2010099232A2 (en) 2009-02-25 2010-09-02 Spidercloud Wireless, Inc. System and method for organizing a network
US20110103391A1 (en) 2009-10-30 2011-05-05 Smooth-Stone, Inc. C/O Barry Evans System and method for high-performance, low-power data center interconnect fabric
US8989187B2 (en) 2010-06-04 2015-03-24 Coraid, Inc. Method and system of scaling a cloud computing network
US8761044B2 (en) * 2010-06-11 2014-06-24 Juniper Networks, Inc. Selection of multicast router interfaces in an L2 switch connecting end hosts and routers, which is running IGMP and PIM snooping
WO2012037518A1 (en) * 2010-09-17 2012-03-22 Oracle International Corporation System and method for facilitating protection against run-away subnet manager instances in a middleware machine environment
JP2014505594A (ja) * 2011-02-07 2014-03-06 プレジデント アンド フェロウズ オブ ハーバード カレッジ 液滴を分裂させるためのシステムおよび方法
US8819233B2 (en) 2011-03-11 2014-08-26 Qualcomm Incorporated System and method using a web proxy-server to access a device having an assigned network address
US9935848B2 (en) 2011-06-03 2018-04-03 Oracle International Corporation System and method for supporting subnet manager (SM) level robust handling of unkown management key in an infiniband (IB) network
EP2716003B1 (en) 2011-06-03 2016-09-28 Oracle International Corporation System and method for authenticating components in a network
US8842671B2 (en) 2011-06-07 2014-09-23 Mellanox Technologies Ltd. Packet switching based on global identifier
US8862865B2 (en) 2011-08-30 2014-10-14 International Business Machines Corporation Rebooting infiniband clusters
US8879396B2 (en) * 2011-11-15 2014-11-04 Oracle International Corporation System and method for using dynamic allocation of virtual lanes to alleviate congestion in a fat-tree topology
US9325619B2 (en) 2011-11-15 2016-04-26 Oracle International Corporation System and method for using virtual lanes to alleviate congestion in a fat-tree topology
US8880932B2 (en) 2011-11-15 2014-11-04 Oracle International Corporation System and method for signaling dynamic reconfiguration events in a middleware machine environment
US8775713B2 (en) 2011-12-27 2014-07-08 Intel Corporation Multi-protocol tunneling over an I/O interconnect
US9397954B2 (en) 2012-03-26 2016-07-19 Oracle International Corporation System and method for supporting live migration of virtual machines in an infiniband network
US9311122B2 (en) * 2012-03-26 2016-04-12 Oracle International Corporation System and method for providing a scalable signaling mechanism for virtual machine migration in a middleware machine environment
US9594818B2 (en) 2012-05-10 2017-03-14 Oracle International Corporation System and method for supporting dry-run mode in a network environment
US9231888B2 (en) * 2012-05-11 2016-01-05 Oracle International Corporation System and method for routing traffic between distinct InfiniBand subnets based on source routing
US10451437B2 (en) 2012-05-21 2019-10-22 Amer Sports Digital Services Oy Method for determining a measurable target variable and corresponding system
US9385949B2 (en) 2012-12-20 2016-07-05 Mellanox Technologies Tlv Ltd. Routing controlled by subnet managers
US9331936B2 (en) * 2012-12-30 2016-05-03 Mellanox Technologies Ltd. Switch fabric support for overlay network features
US9160659B2 (en) 2013-02-26 2015-10-13 Red Hat Israel, Ltd. Paravirtualized IP over infiniband bridging
US10404621B2 (en) * 2013-03-15 2019-09-03 Oracle International Corporation Scalable InfiniBand packet-routing technique
US9990221B2 (en) * 2013-03-15 2018-06-05 Oracle International Corporation System and method for providing an infiniband SR-IOV vSwitch architecture for a high performance cloud computing environment
US9258254B2 (en) 2013-03-15 2016-02-09 Oracle International Corporation Virtual router and switch
US9251178B2 (en) 2013-04-26 2016-02-02 Oracle International Corporation System and method for connection labeling for use with connection pools
US9525597B2 (en) * 2013-06-06 2016-12-20 Dell Products, L.P. System and method for base topology selection
US9747341B2 (en) 2013-06-06 2017-08-29 Oracle International Corporation System and method for providing a shareable global cache for use with a database environment
US9785687B2 (en) 2013-06-06 2017-10-10 Oracle International Corporation System and method for transparent multi key-value weighted attributed connection using uni-tag connection pools
US9577956B2 (en) 2013-07-29 2017-02-21 Oracle International Corporation System and method for supporting multi-homed fat-tree routing in a middleware machine environment
CN103457844B (zh) 2013-08-12 2016-12-28 中国石油天然气股份有限公司 多Infiniband网关的vNIC绑定方法
US20150085868A1 (en) * 2013-09-25 2015-03-26 Cavium, Inc. Semiconductor with Virtualized Computation and Switch Resources
US9548960B2 (en) 2013-10-06 2017-01-17 Mellanox Technologies Ltd. Simplified packet routing
US20150098475A1 (en) 2013-10-09 2015-04-09 International Business Machines Corporation Host table management in software defined network (sdn) switch clusters having layer-3 distributed router functionality
US9548896B2 (en) * 2013-12-27 2017-01-17 Big Switch Networks, Inc. Systems and methods for performing network service insertion
US20150264116A1 (en) 2014-03-14 2015-09-17 Ira Weiny Scalable Address Resolution
US10454991B2 (en) * 2014-03-24 2019-10-22 Mellanox Technologies, Ltd. NIC with switching functionality between network ports
US9461914B2 (en) 2014-04-07 2016-10-04 Cisco Technology, Inc. Path maximum transmission unit handling for virtual private networks
US9519328B2 (en) 2014-05-21 2016-12-13 Intel Corporation Techniques for selectively reducing power levels of ports and core switch logic in infiniband switches
CN104079491B (zh) * 2014-07-07 2018-04-27 中国科学院计算技术研究所 一种面向高维度网络的路由器及路由方法
JP2016018387A (ja) 2014-07-08 2016-02-01 富士通株式会社 情報処理システム、制御方法及び制御プログラム
US9723008B2 (en) 2014-09-09 2017-08-01 Oracle International Corporation System and method for providing an integrated firewall for secure network communication in a multi-tenant environment
WO2016050270A1 (en) * 2014-09-29 2016-04-07 Hewlett-Packard Development Company L.P. Provisioning a service
CN107005483B (zh) 2014-12-27 2021-01-26 英特尔公司 用于高性能网络结构安全的技术
US10503442B2 (en) 2015-01-28 2019-12-10 Avago Technologies International Sales Pte. Limited Method and apparatus for registering and storing virtual machine unique information capabilities
US10116464B2 (en) * 2015-03-18 2018-10-30 Juniper Networks, Inc. EVPN inter-subnet multicast forwarding
US10498654B2 (en) * 2015-12-28 2019-12-03 Amazon Technologies, Inc. Multi-path transport design
US10178027B2 (en) * 2016-01-27 2019-01-08 Oracle International Corporation System and method for supporting inter subnet partitions in a high performance computing environment
US10171353B2 (en) * 2016-03-04 2019-01-01 Oracle International Corporation System and method for supporting dual-port virtual router in a high performance computing environment

Also Published As

Publication number Publication date
US10757019B2 (en) 2020-08-25
WO2017151249A1 (en) 2017-09-08
EP3424191B1 (en) 2020-09-30
US11223558B2 (en) 2022-01-11
US10958571B2 (en) 2021-03-23
US20170257326A1 (en) 2017-09-07
US20170257312A1 (en) 2017-09-07
CN112565043A (zh) 2021-03-26
CN108141415A (zh) 2018-06-08
US10560377B2 (en) 2020-02-11
EP3424191A1 (en) 2019-01-09
US20170257315A1 (en) 2017-09-07
US11178052B2 (en) 2021-11-16
CN112565043B (zh) 2022-08-19
US20200092205A1 (en) 2020-03-19
US10397104B2 (en) 2019-08-27
US20170257316A1 (en) 2017-09-07
US20190363997A1 (en) 2019-11-28
US11695691B2 (en) 2023-07-04
JP2019507520A (ja) 2019-03-14
US20200145330A1 (en) 2020-05-07
US20200389398A1 (en) 2020-12-10
US20180324092A1 (en) 2018-11-08
KR102637135B1 (ko) 2024-02-19
US10171353B2 (en) 2019-01-01
US10498646B2 (en) 2019-12-03
CN108141415B (zh) 2021-01-08
KR20180121505A (ko) 2018-11-07

Similar Documents

Publication Publication Date Title
JP6850804B2 (ja) 高性能コンピューティング環境においてデュアルポート仮想ルータをサポートするためのシステムおよび方法
JP7407164B2 (ja) 高性能コンピューティング環境における仮想ルータポートにわたるsmp接続性チェックのためのルータsma抽象化をサポートするためのシステムおよび方法
JP7109527B2 (ja) 無損失ネットワークにおける効率的な仮想化のためのシステムおよび方法
JP6957451B2 (ja) 高性能コンピューティング環境での線形転送テーブル(lft)探索のためにグローバルルートヘッダ(grh)におけるサブネットプレフィックス値を用いるためのシステムおよび方法
US11132216B2 (en) System and method for providing an InfiniBand SR-IOV vSwitch architecture for a high performance cloud computing environment
US10200308B2 (en) System and method for supporting a scalable representation of link stability and availability in a high performance computing environment
JP7297830B2 (ja) 高性能コンピューティング環境においてスケーラブルなビットマップに基づくP_Keyテーブルをサポートするためのシステムおよび方法
JP6902527B2 (ja) 高性能コンピューティング環境においてスイッチポートステータスのスケーラブルな表現をサポートするためのシステムおよび方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210308

R150 Certificate of patent or registration of utility model

Ref document number: 6850804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250