JP6849970B2 - Shaft member shape measurement method and shape measurement device - Google Patents

Shaft member shape measurement method and shape measurement device Download PDF

Info

Publication number
JP6849970B2
JP6849970B2 JP2017039486A JP2017039486A JP6849970B2 JP 6849970 B2 JP6849970 B2 JP 6849970B2 JP 2017039486 A JP2017039486 A JP 2017039486A JP 2017039486 A JP2017039486 A JP 2017039486A JP 6849970 B2 JP6849970 B2 JP 6849970B2
Authority
JP
Japan
Prior art keywords
outer peripheral
peripheral surface
measured
target point
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017039486A
Other languages
Japanese (ja)
Other versions
JP2018146296A (en
Inventor
加藤 実
実 加藤
大川 浩司
浩司 大川
幸雄 藤田
幸雄 藤田
真琴 小山
真琴 小山
博敬 久間
博敬 久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2017039486A priority Critical patent/JP6849970B2/en
Publication of JP2018146296A publication Critical patent/JP2018146296A/en
Application granted granted Critical
Publication of JP6849970B2 publication Critical patent/JP6849970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

本発明は、軸部材の形状測定方法及び形状測定装置に関する。 The present invention relates to a method for measuring the shape of a shaft member and a shape measuring device.

従来、例えば、ステアリング装置のラック軸に例示されるような径方向断面が不完全な円を有する長尺状の軸部材においては、その形状上、軸線方向において歪(変形)を生じやすい。このため、生じた歪を除去するための作業が必要となる場合がある。しかしながら、歪を除去するためには、まず、実際に生じている歪の状態を正確に把握する必要がある。これに対し、従来、接触式センサのひとつである公知の差動トランス式変位形を用いて、歪(変形)を検出する方法がある。 Conventionally, for example, in a long shaft member having a circle having an incomplete radial cross section as exemplified by a rack shaft of a steering device, distortion (deformation) is likely to occur in the axial direction due to its shape. Therefore, work for removing the generated distortion may be required. However, in order to remove the strain, it is first necessary to accurately grasp the state of the strain actually occurring. On the other hand, conventionally, there is a method of detecting distortion (deformation) by using a known differential transformer type displacement type which is one of the contact type sensors.

具体的には、差動トランス式変位形を用いて、まず、歪みの少ない長軸部、及び短軸部の外形形状をラック軸を軸線回りに回転させながら測定する。そして、長軸部、及び短軸部の外形形状の測定結果から、制御部が長軸部と短軸部と間の理想の軸線位置を推定する。また同様に径方向断面が不完全な円で形成されるラック歯形成部の円弧形状部の円弧形状を差動トランス式変位形によって測定する。そして、測定結果から円弧形状部の軸線位置を推定し、推定した円弧形状部の軸線位置と、上述した理想の軸線位置との差を演算し、演算した差をラック歯形成部の歪量(変形量)とする。 Specifically, using the differential transformer type displacement type, first, the outer shape of the long shaft portion and the short shaft portion with less distortion is measured while rotating the rack axis around the axis. Then, the control unit estimates the ideal axis position between the long axis portion and the short axis portion from the measurement results of the outer shapes of the long axis portion and the short axis portion. Similarly, the arc shape of the arc shape portion of the rack tooth forming portion formed by a circle having an incomplete radial cross section is measured by the differential transformer type displacement type. Then, the axis position of the arc-shaped portion is estimated from the measurement result, the difference between the estimated axis position of the arc-shaped portion and the above-mentioned ideal axis position is calculated, and the calculated difference is the strain amount of the rack tooth forming portion ( Deformation amount).

特開平5−123753号公報Japanese Unexamined Patent Publication No. 5-123753

しかしながら、前述したように円弧形状部はその径方向断面形状が完全な円ではなく円の一部で形成されている。このため、差動トランス式変位形を用いた円弧形状部の軸線位置の検出精度には限界がある。また、近年、ラック歯形成部の歯の形状が複雑になってきており、これに対応するため、ラック歯形成部が鍛造で形成される場合がある。この場合、鍛造後のラック軸素材におけるラック歯の両側にはラック歯の歯筋と平行な方向で、かつ外方に向って余肉が発生するため、例えば、フライスにより余肉を除去加工する。これにより、円弧で形成された円弧形状部の一部がさらに除去されるので、円弧の大きさは一層小さくなり、差動トランス式変位形による軸線位置の検出精度がさらに低下してしまう。なお、差動トランス式変位形を用いたラック軸の歪取りの別の例として特許文献1に開示される技術もある。特許文献1に開示される技術においても、同様の課題を有する。 However, as described above, the arcuate portion is not a perfect circle in its radial cross-sectional shape, but is formed by a part of a circle. Therefore, there is a limit to the accuracy of detecting the axial position of the arc-shaped portion using the differential transformer type displacement type. Further, in recent years, the shape of the teeth of the rack tooth forming portion has become complicated, and in order to cope with this, the rack tooth forming portion may be formed by forging. In this case, surplus meat is generated on both sides of the rack tooth in the forged rack shaft material in a direction parallel to the tooth muscle of the rack tooth and outward. Therefore, for example, the surplus meat is removed by milling. .. As a result, a part of the arc-shaped portion formed by the arc is further removed, so that the size of the arc is further reduced, and the detection accuracy of the axial position by the differential transformer type displacement type is further lowered. There is also a technique disclosed in Patent Document 1 as another example of strain removal of a rack shaft using a differential transformer type displacement type. The technique disclosed in Patent Document 1 also has a similar problem.

本発明は、このような課題に鑑みてなされたものであり、軸部材の形状に関わらず、精度よく歪の測定が可能な軸部材の形状測定方法及び形状測定装置を提供することを目的とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a shape measuring method and a shape measuring device for a shaft member capable of accurately measuring strain regardless of the shape of the shaft member. To do.

(1.軸部材の形状測定方法)
本発明に係る軸部材の形状測定方法は、径方向断面が円形に形成された基準外周面を有する第一軸部と、径方向断面が前記基準外周面と同径となる円弧形状に形成された被測定外周面を備える第二軸部と、を備える軸部材の形状測定方法である。形状測定方法は、接触式又は非接触式の第一センサによって、前記基準外周面において所定位相に位置し軸線方向位置が異なる複数の基準点の位置を測定する第一工程と、接触式又は非接触式の第二センサによって、前記被測定外周面において前記所定位相と同位相に位置する対象点の位置を測定する第二工程と、前記対象点を含む径方向断面において前記複数の基準点に対応する理想対象点を演算し、前記理想対象点と前記対象点とを比較することにより前記基準外周面に対する前記被測定外周面の変位量を演算する第三工程と、を備える。
(1. Method of measuring the shape of the shaft member)
The method for measuring the shape of a shaft member according to the present invention is formed in a first shaft portion having a reference outer peripheral surface having a circular radial cross section and an arc shape having a radial cross section having the same diameter as the reference outer peripheral surface. This is a method for measuring the shape of a shaft member including a second shaft portion having an outer peripheral surface to be measured. The shape measuring method includes a first step of measuring the positions of a plurality of reference points located in a predetermined phase on the reference outer peripheral surface and having different axial positions by a contact type or non-contact type first sensor, and a contact type or non-contact type. The second step of measuring the position of the target point located in the same phase as the predetermined phase on the outer peripheral surface of the measurement by the contact type second sensor, and the plurality of reference points in the radial cross section including the target point. A third step of calculating the corresponding ideal target point and calculating the displacement amount of the measured outer peripheral surface with respect to the reference outer peripheral surface by comparing the ideal target point with the target point is provided.

このように、本発明では、基準外周面(第一軸部)上の、周方向における所定位相において、軸線方向位置が異なる複数の基準点を実際に測定し、測定した複数の基準点から被測定外周面(第二軸部)上の理想対象点の位置を演算し推定する。また、基準点の所定位相と同位相に位置する被測定外周面上の対象点の位置を測定する。そして、対象点の位置と、理想対象点の位置とを比較して、同位相における基準外周面と被測定外周面との間の差分、即ち基準外周面に対する被測定外周面の変位量を求める。これにより、従来技術とは異なり、第二軸部の被測定外周面が大きな円弧を有さなくても、第二軸部の変位量(歪量)が精度よく測定できる。 As described above, in the present invention, a plurality of reference points having different axial positions in a predetermined phase in the circumferential direction on the reference outer peripheral surface (first axis portion) are actually measured, and the measured reference points are covered from the measured reference points. The position of the ideal target point on the outer peripheral surface (second axis) of the measurement is calculated and estimated. In addition, the position of the target point on the outer peripheral surface to be measured, which is located in the same phase as the predetermined phase of the reference point, is measured. Then, the position of the target point is compared with the position of the ideal target point to obtain the difference between the reference outer peripheral surface and the measured outer peripheral surface in the same phase, that is, the amount of displacement of the measured outer peripheral surface with respect to the reference outer peripheral surface. .. As a result, unlike the prior art, the displacement amount (strain amount) of the second shaft portion can be accurately measured even if the outer peripheral surface of the second shaft portion to be measured does not have a large arc.

(2.軸部材の形状測定装置)
本発明に係る軸部材の形状測定装置は、径方向断面が円形に形成された基準外周面を有する第一軸部と、径方向断面が前記基準外周面と同径となる円弧形状に形成された被測定外周面を備える第二軸部と、を備える。形状測定装置は、前記基準外周面において所定位相に位置し軸線方向位置が異なる複数の基準点の位置を測定する接触式又は非接触式の第一センサと、前記被測定外周面において前記所定位相と同位相に位置する対象点の位置を測定する接触式又は非接触式の第二センサと、前記対象点を含む径方向断面において前記複数の基準点に対応する理想対象点を演算し、前記理想対象点と前記対象点とを比較することにより前記基準外周面に対する前記被測定外周面の変位量を演算する制御部と、を備える。これにより、軸部材の形状測定装置による測定によって、上記、軸部材の形状測定方法と同様、被測定外周面が円弧を多く有さない形状であっても、基準外周面に対する被測定外周面の変位量(歪量)が精度よく検出できる。
(2. Shaft member shape measuring device)
The shaft member shape measuring device according to the present invention is formed into a first shaft portion having a reference outer peripheral surface having a circular radial cross section and an arc shape having a radial cross section having the same diameter as the reference outer peripheral surface. A second shaft portion having an outer peripheral surface to be measured is provided. The shape measuring device includes a contact type or non-contact type first sensor that measures the positions of a plurality of reference points that are located in a predetermined phase on the reference outer peripheral surface and have different axial positions, and the predetermined phase on the measured outer peripheral surface. A contact-type or non-contact-type second sensor that measures the position of the target point located in the same phase as the target point, and an ideal target point corresponding to the plurality of reference points in the radial cross section including the target point are calculated and described. A control unit for calculating the amount of displacement of the outer peripheral surface to be measured with respect to the reference outer peripheral surface by comparing the ideal target point with the target point is provided. As a result, by the measurement by the shape measuring device of the shaft member, even if the outer peripheral surface to be measured has a shape that does not have many arcs, the outer peripheral surface to be measured with respect to the reference outer peripheral surface is the same as the above-mentioned method for measuring the shape of the shaft member. The amount of displacement (amount of strain) can be detected accurately.

本実施形態に係るラック軸の側面図である。It is a side view of the rack shaft which concerns on this embodiment. 本実施形態に係るラック軸の上面図である。It is a top view of the rack shaft which concerns on this embodiment. 図1におけるIII-III矢視断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 図1におけるIV-IV矢視断面図である。FIG. 6 is a cross-sectional view taken along the line IV-IV in FIG. ラック歯形成部(第二軸部)と長軸部(第一軸部)とが相対変位した状態を説明するラック軸の軸方向から視た概要図である。It is a schematic diagram seen from the axial direction of the rack shaft explaining the state which the rack tooth forming part (second shaft part) and the long shaft part (first shaft part) are relative displacement. 形状測定装置の概要図である。It is a schematic diagram of a shape measuring apparatus. 第一センサによって、基準外周面の基準点の位置を測定する状態の説明図である。It is explanatory drawing of the state of measuring the position of the reference point of the reference outer peripheral surface by the 1st sensor. 第二センサによって、被測定外周面の対象点の位置を測定する状態の説明図である。It is explanatory drawing of the state of measuring the position of the target point of the outer peripheral surface to be measured by the 2nd sensor. 形状測定方法のフローチャートである。It is a flowchart of a shape measurement method.

<1.第一実施形態>
(1−1.概要)
以下、本発明の実施形態に係る軸部材の外周面形状を測定する形状測定装置について説明する。なお、本実施形態において、軸部材は、自動車用のステアリング装置に用いられるラック軸をその一例として説明する。このため、以下において、まず、測定対象となるラック軸10についての説明を行なう。なお、ステアリング装置のラック軸については、公知の製品であるので、必要な部分を除いて機能等の詳細な説明については省略する。
<1. First Embodiment>
(1-1. Overview)
Hereinafter, a shape measuring device for measuring the outer peripheral surface shape of the shaft member according to the embodiment of the present invention will be described. In the present embodiment, the shaft member will be described as an example of a rack shaft used in a steering device for automobiles. Therefore, in the following, first, the rack shaft 10 to be measured will be described. Since the rack shaft of the steering device is a known product, detailed description of the functions and the like is omitted except for necessary parts.

(1−2.ラック軸10)
図1の側面図に示すように、ラック軸10は、先端(図1において右側)から左に向かって順に、長軸部12(第一軸部に相当)、ラック歯形成部13(第二軸部に相当)、及び短軸部14を有している。なお、図1に示すラック軸10は、後述する形状測定装置20によって外周面形状が測定される際の姿勢で記載してある。長軸部12(第一軸部)は、径方向断面が円形に形成された基準面となる基準外周面12aを備える(図3参照)。基準外周面12aは、長軸部12(第一軸部)の軸線方向全長に亘って形成される。
(1-2. Rack shaft 10)
As shown in the side view of FIG. 1, the rack shaft 10 has a long shaft portion 12 (corresponding to the first shaft portion) and a rack tooth forming portion 13 (second) in order from the tip (right side in FIG. 1) to the left. It has a shaft portion) and a short shaft portion 14. The rack shaft 10 shown in FIG. 1 is described in a posture when the outer peripheral surface shape is measured by the shape measuring device 20 described later. The long shaft portion 12 (first shaft portion) includes a reference outer peripheral surface 12a which is a reference surface having a circular radial cross section (see FIG. 3). The reference outer peripheral surface 12a is formed over the entire length in the axial direction of the long shaft portion 12 (first shaft portion).

基準外周面12aは、データム面として使用する。このため、基準外周面12aは、例えば、周方向における輪郭線が、長軸部12の軸線を中心として所定の間隔(範囲)を有して形成された二つの理想の円筒の間に収まるよう形成される。即ち、円筒度(JIS B 0621参照)が所定の範囲内に収まるよう形成される。このとき、所定の間隔は、各製品毎に必要な形状精度を考慮して任意の値を設定すればよい。ただし、上記態様に限らず、基準外周面12aは、基準外周面12aの円周振れ、又は全振れ(ともにJIS B 0621参照)が所定の範囲に入るよう設定してもよい。 The reference outer peripheral surface 12a is used as a datum surface. Therefore, the reference outer peripheral surface 12a is such that, for example, the contour line in the circumferential direction fits between two ideal cylinders formed with a predetermined interval (range) about the axis line of the long axis portion 12. It is formed. That is, the cylindricity (see JIS B 0621) is formed so as to be within a predetermined range. At this time, the predetermined interval may be set to an arbitrary value in consideration of the shape accuracy required for each product. However, not limited to the above aspect, the reference outer peripheral surface 12a may be set so that the circumferential runout or the total runout (both refer to JIS B 0621) of the reference outer peripheral surface 12a falls within a predetermined range.

図2は、ラック軸10の上面図である。ラック軸10は、二点鎖線で図示するラック軸素材11の一部(余肉15、15)をフライス加工等により除去加工して得られる。余肉15、15は、ラック歯形成部13を上下の鍛造型をプレスして形成する際に、鍛造型の間で軸直交方向に突出して形成されたバリである。 FIG. 2 is a top view of the rack shaft 10. The rack shaft 10 is obtained by removing a part (remaining thicknesses 15 and 15) of the rack shaft material 11 shown by the alternate long and short dash line by milling or the like. The surplus thicknesses 15 and 15 are burrs formed so as to project in the direction orthogonal to the axis between the forging dies when the rack tooth forming portions 13 are formed by pressing the upper and lower forging dies.

図4の径方向断面に示すように、ラック歯形成部13(第二軸部)は、上述した基準外周面12aの外径(=φD)と同径となる円弧形状に形成された被測定外周面13aを備える。図1,図2に示すように、本実施形態においては、被測定外周面13aは基準外周面12aと同一面となるよう連続して形成される。図4に示すように、余肉15,15が除去された後の被測定外周面13aの円弧の大きさは、軸線回りに約140deg程度である。換言すれば、ラック歯形成部13(第二軸部)の被測定外周面13aは、周方向において軸線回りで180度未満の範囲に形成される。 As shown in the radial cross section of FIG. 4, the rack tooth forming portion 13 (second shaft portion) is formed in an arc shape having the same diameter as the outer diameter (= φD) of the reference outer peripheral surface 12a described above. An outer peripheral surface 13a is provided. As shown in FIGS. 1 and 2, in the present embodiment, the outer peripheral surface 13a to be measured is continuously formed so as to be the same surface as the reference outer peripheral surface 12a. As shown in FIG. 4, the size of the arc of the outer peripheral surface 13a to be measured after the surpluses 15 and 15 are removed is about 140 deg around the axis. In other words, the outer peripheral surface 13a to be measured of the rack tooth forming portion 13 (second shaft portion) is formed in a range of less than 180 degrees around the axis in the circumferential direction.

図1、図2に示すように、長軸部12及び短軸部14には、ラック歯が設けられていない。長軸部12は、短軸部14より長くなるよう形成される。なお、以降において、軸線方向とは、ラック軸10の伸長方向、即ちラック軸10の軸線方向をいうものとする。 As shown in FIGS. 1 and 2, the long shaft portion 12 and the short shaft portion 14 are not provided with rack teeth. The long shaft portion 12 is formed to be longer than the short shaft portion 14. In the following, the axial direction means the extension direction of the rack shaft 10, that is, the axial direction of the rack shaft 10.

図1におけるラック歯形成部13(第二軸部)の下面(図1においては下側、図2においては紙面奥側)には、複数のラック歯16が形成される。複数のラック歯16は、被測定外周面13aと背向する部分(非円弧外周面に相当する)に形成される。このように、ラック歯形成部13は、軸線回りの周方向において被測定外周面13aの円弧形状とは異なる非円弧形状で形成された非円弧外周面を備える不完全円柱である。 A plurality of rack teeth 16 are formed on the lower surface (lower side in FIG. 1 and the back side of the paper surface in FIG. 2) of the rack tooth forming portion 13 (second shaft portion) in FIG. The plurality of rack teeth 16 are formed on a portion (corresponding to a non-arc outer peripheral surface) that faces the outer peripheral surface 13a to be measured. As described above, the rack tooth forming portion 13 is an incomplete cylinder having a non-circular outer peripheral surface formed in a non-arc shape different from the arc shape of the outer peripheral surface 13a to be measured in the circumferential direction around the axis.

複数のラック歯16は、例えば、温間鍛造により塑性変形されて形成される。本実施形態に係るラック軸10の各ラック歯16は、軸線方向において、均一には形成されていない。即ち、各ラック歯16は、図略のピニオンとの噛合において、可変のギヤレシオ(つまり、バリアブルギヤレシオ(VGR))の出力特性が出力されるよう形成され配列されている。詳細な説明については省略する。 The plurality of rack teeth 16 are formed by being plastically deformed by, for example, warm forging. The rack teeth 16 of the rack shaft 10 according to the present embodiment are not uniformly formed in the axial direction. That is, each rack tooth 16 is formed and arranged so that the output characteristic of a variable gear ratio (that is, variable gear ratio (VGR)) is output in meshing with the pinion shown in the drawing. A detailed description will be omitted.

(1−2−1.基準外周面12a上の基準点について)
次に、後述する第一センサ21により測定する長軸部12(第一軸部)の基準外周面12aに設定される基準点(第一〜第三基準点RP1,RP2,RP3)について説明する。基準点を説明するにあたり、まず、長軸部12(第一軸部)の径方向断面を示す図3において、基準外周面12a上における最上点(頂点)位置を周方向における第一所定位相Ph1と定義する。また、図3に示すように、第一所定位相Ph1から、周方向において70deg、左方向に回転させた位置(90deg未満に相当)を周方向における第二所定位相Ph2とし、周方向において70deg、右方向に回転させた位置(90deg未満に相当)を周方向における第三所定位相Ph3と定義する。
(1-2-1. Reference point on the reference outer peripheral surface 12a)
Next, reference points (first to third reference points RP1, RP2, RP3) set on the reference outer peripheral surface 12a of the long shaft portion 12 (first shaft portion) measured by the first sensor 21 described later will be described. .. In explaining the reference point, first, in FIG. 3 showing the radial cross section of the long shaft portion 12 (first shaft portion), the highest point (vertex) position on the reference outer peripheral surface 12a is set to the first predetermined phase Ph1 in the circumferential direction. Is defined as. Further, as shown in FIG. 3, from the first predetermined phase Ph1, the position rotated to the left (corresponding to less than 90 deg) is set to 70 deg in the circumferential direction, and the second predetermined phase Ph2 in the circumferential direction is set to 70 deg in the circumferential direction. The position rotated to the right (corresponding to less than 90 deg) is defined as the third predetermined phase Ph3 in the circumferential direction.

そして、第一所定位相Ph1における基準外周面12a上の複数の点を第一基準点RP1と定義する。また、第二所定位相Ph2における基準外周面12a上の複数の点を第二基準点RP2と定義し、第三所定位相Ph3における基準外周面12a上の複数の点を第三基準点RP3と定義する。第一〜第三基準点RP1,RP2,RP3は、それぞれ長軸部12(第一軸部)の軸線方向において、軸線方向位置が異なる任意の二箇所(複数に相当する)である第一位置P1,及び第二位置P2に設定される(図1参照)。つまり、各第一基準点RP1,第二基準点RP2及び第三基準点RP3は、それぞれ軸線方向において同じ位置(同位相)に位置する。 Then, a plurality of points on the reference outer peripheral surface 12a in the first predetermined phase Ph1 are defined as the first reference point RP1. Further, a plurality of points on the reference outer peripheral surface 12a in the second predetermined phase Ph2 are defined as the second reference point RP2, and a plurality of points on the reference outer peripheral surface 12a in the third predetermined phase Ph3 are defined as the third reference point RP3. To do. The first to third reference points RP1, RP2, and RP3 are arbitrary two positions (corresponding to a plurality of points) having different axial positions in the axial direction of the long axis portion 12 (first axis portion), respectively. It is set at P1 and the second position P2 (see FIG. 1). That is, each of the first reference point RP1, the second reference point RP2, and the third reference point RP3 are located at the same position (in-phase) in the axial direction.

軸線方向において二箇所(第一位置P1,第二位置P2)に設定された各第一〜第三基準点RP1,RP2,RP3の各位置(座標)は、後述する第一センサ21によって測定される。後に詳述するが、第一センサ21は、三つのセンサによって構成される。 The positions (coordinates) of the first to third reference points RP1, RP2, and RP3 set at two points (first position P1, second position P2) in the axial direction are measured by the first sensor 21 described later. To. As will be described in detail later, the first sensor 21 is composed of three sensors.

なお、上記態様に限らず、第一〜第三基準点RP1,RP2,RP3は、長軸部12(第一軸部)の軸線方向において、軸線方向位置が異なる任意の三箇所以上にそれぞれ設定しても良い。これにより、演算する際の制御部の負荷、及び測定に要する時間は増加するが、演算によって求められる基準外周面12aの位置精度は向上する。 Not limited to the above embodiment, the first to third reference points RP1, RP2, and RP3 are set at any three or more locations having different axial positions in the axial direction of the long axis portion 12 (first axis portion). You may. As a result, the load on the control unit during the calculation and the time required for the measurement increase, but the position accuracy of the reference outer peripheral surface 12a obtained by the calculation is improved.

また、上記において第二所定位相Ph2及び第三所定位相Ph3を、第一所定位相Ph1から、軸周りで周方向両側にそれぞれ70deg回転させた位置としたのは、ラック歯形成部13(第二軸部)の被測定外周面13aの円弧(140deg)の端部の位相に一致させたものである。第二所定位相Ph2及び第三所定位相Ph3の位置は、被測定外周面13aの範囲内において任意の他の位置に変更しても良い。 Further, in the above, the position where the second predetermined phase Ph2 and the third predetermined phase Ph3 are rotated by 70 deg from the first predetermined phase Ph1 on both sides in the circumferential direction around the axis is the rack tooth forming portion 13 (second). The phase of the end of the arc (140 deg) of the outer peripheral surface 13a to be measured of the shaft portion) is matched. The positions of the second predetermined phase Ph2 and the third predetermined phase Ph3 may be changed to arbitrary other positions within the range of the outer peripheral surface 13a to be measured.

(1−2−2.被測定外周面上の対象点について)
次に、後述する第二センサ22により測定するラック歯形成部13(第二軸部)の被測定外周面13aの軸線方向において、それぞれ測定される軸線方向位置が異なる複数の各対象点(第一〜第三対象点TP1,TP2,TP3)について説明する。本実施形態では各対象点TP1,TP2,TP3は被測定外周面13aの周方向において、第一〜第三所定位相Ph1,Ph2,Ph3にそれぞれ対応する点である。
(1-2-2. Target points on the outer peripheral surface to be measured)
Next, a plurality of target points (third) having different axial positions to be measured in the axial direction of the outer peripheral surface 13a to be measured of the rack tooth forming portion 13 (second shaft portion) measured by the second sensor 22 described later. The first to third target points TP1, TP2, TP3) will be described. In the present embodiment, the target points TP1, TP2, and TP3 correspond to the first to third predetermined phases Ph1, Ph2, and Ph3 in the circumferential direction of the outer peripheral surface 13a to be measured, respectively.

被測定外周面13aにおいて、第一所定位相Ph1と同位相に位置する点を第一対象点TP1(対象点)と定義する。また、第二所定位相Ph2と同位相に位置する点を第二対象点TP2(対象点)と定義する。また、第三所定位相Ph3と同位相に位置する点を第三対象点TP3(対象点)と定義する。本実施形態においては、第一対象点TP1,第二対象点TP2,及び第三対象点TP3は、各位相の軸線方向位置が異なる位置にそれぞれ六箇所(複数に相当)ずつ設定されている(図1,図2参照)。 On the outer peripheral surface 13a to be measured, a point located in the same phase as the first predetermined phase Ph1 is defined as the first target point TP1 (target point). Further, a point located in the same phase as the second predetermined phase Ph2 is defined as a second target point TP2 (target point). Further, a point located in the same phase as the third predetermined phase Ph3 is defined as a third target point TP3 (target point). In the present embodiment, the first target point TP1, the second target point TP2, and the third target point TP3 are set at six positions (corresponding to a plurality of positions) at different positions in the axial direction of each phase (corresponding to a plurality of positions). (See FIGS. 1 and 2).

なお、本実施形態では、ラック歯形成部13(第二軸部)の被測定外周面13aは、図5に示すように、長軸部12(第一軸部)の基準外周面12aに対し若干変位(変形)しているものとして説明を進める。このとき、変位した原因等は問わない。図5では、ラック歯形成部13(第二軸部)の被測定外周面13aに対し、長軸部12(第一軸部)の基準外周面12aは二点鎖線で示す。このように、被測定外周面13aと基準外周面12aとの間には、相対変位が生じているものとする。 In the present embodiment, the measured outer peripheral surface 13a of the rack tooth forming portion 13 (second shaft portion) is relative to the reference outer peripheral surface 12a of the long shaft portion 12 (first shaft portion) as shown in FIG. The explanation will proceed assuming that it is slightly displaced (deformed). At this time, the cause of the displacement does not matter. In FIG. 5, the reference outer peripheral surface 12a of the long shaft portion 12 (first shaft portion) is indicated by a two-dot chain line with respect to the measured outer peripheral surface 13a of the rack tooth forming portion 13 (second shaft portion). In this way, it is assumed that a relative displacement occurs between the outer peripheral surface 13a to be measured and the reference outer peripheral surface 12a.

第一〜第三対象点TP1,TP2,TP3は、後述する第二センサ22によってそれぞれの位置(座標)が測定される。なお、本実施形態において、第二センサ22は、第一センサ21と全く同一の三つのセンサによって構成される。そして、第一〜第三対象点TP1,TP2,TP3の位置(座標)を三つの各センサがそれぞれ測定する。つまり、三つのセンサが第一〜第三基準点RP1,RP2,RP3及び第一〜第三対象点TP1,TP2,TP3の各位置を測定する。詳細については後に述べる。ただし、上記態様に限らず、第一センサ21と第二センサ22とが、それぞれ異なる三つのセンサによって構成されてもよい。 The positions (coordinates) of the first to third target points TP1, TP2, and TP3 are measured by the second sensor 22, which will be described later. In the present embodiment, the second sensor 22 is composed of three sensors that are exactly the same as the first sensor 21. Then, the positions (coordinates) of the first to third target points TP1, TP2, and TP3 are measured by each of the three sensors. That is, the three sensors measure the positions of the first to third reference points RP1, RP2, RP3 and the first to third target points TP1, TP2, TP3. Details will be described later. However, not limited to the above aspect, the first sensor 21 and the second sensor 22 may be configured by three different sensors.

上述したように、第一対象点TP1,第二対象点TP2及び第三対象点TP3は、それぞれの位相においてラック歯形成部13(第二軸部)の軸線方向における異なる軸線方向位置で複数点(複数箇所)測定される。このとき、測定される複数の点は所定の距離毎に測定しても良いし、任意に設定したランダムな距離毎に測定しても良い。 As described above, the first target point TP1, the second target point TP2, and the third target point TP3 are a plurality of points at different axial positions in the axial direction of the rack tooth forming portion 13 (second shaft portion) in each phase. (Multiple points) Measured. At this time, the plurality of points to be measured may be measured at predetermined distances or at random distances set arbitrarily.

(1−3.形状測定装置)
次に、形状測定装置20について説明する(図6参照)。形状測定装置20は、上述したラック軸10(軸部材)の基準外周面12a上及び被測定外周面13a上の各位置(第一〜第三基準点RP1,RP2,RP3、及び第一〜第三対象点TP1,TP2,TP3の各位置)を測定する。そして、形状測定装置20は、測定された基準外周面12a及び被測定外周面13aの各位置(座標)に基づき、基準外周面12aに対する被測定外周面13aの変形量を演算する。
(1-3. Shape measuring device)
Next, the shape measuring device 20 will be described (see FIG. 6). The shape measuring device 20 is used at each position (first to third reference points RP1, RP2, RP3, and first to third) on the reference outer peripheral surface 12a and the outer peripheral surface 13a of the rack shaft 10 (shaft member) described above. (3) Measure the target points (at each position of TP1, TP2, TP3). Then, the shape measuring device 20 calculates the amount of deformation of the measured outer peripheral surface 13a with respect to the reference outer peripheral surface 12a based on the respective positions (coordinates) of the measured reference outer peripheral surface 12a and the measured outer peripheral surface 13a.

なお、前述したように、形状測定装置20においてラック軸10(軸部材)は、図6に示すように、ラック歯16を下方に向けて支持される。ラック軸10が支持される位置A,Bは、長軸部12(第一軸部)の基準外周面12a上における軸線方向の任意の二点である。ただし、支持される位置は、二点に限らず、三点以上でもよい。また、支持の方法についても、限定されない。例えば、各支持位置において、三つのローラを基準外周面12aの周方向に等間隔に配置することによりラック軸10を軸線回りに回転可能に支持しても良い。また、ラック軸10を、軸線回りに回転不能に支持してもよい。 As described above, in the shape measuring device 20, the rack shaft 10 (shaft member) is supported with the rack teeth 16 facing downward as shown in FIG. The positions A and B where the rack shaft 10 is supported are arbitrary two points in the axial direction on the reference outer peripheral surface 12a of the long shaft portion 12 (first shaft portion). However, the supported positions are not limited to two points, and may be three or more points. Also, the method of support is not limited. For example, at each support position, the rack shaft 10 may be rotatably supported around the axis by arranging three rollers at equal intervals in the circumferential direction of the reference outer peripheral surface 12a. Further, the rack shaft 10 may be supported around the axis so as not to rotate.

図6に示すように、形状測定装置20は、主に第一センサ21(第二センサ22)と、センサレール30と、制御部40と、を備える。本実施形態においては、第一センサ21と第二センサ22とは同一のセンサであり、共用される。図7、図8に示すように、第一センサ21(第二センサ22)は、それぞれ第一所定位相Ph1用のレーザセンサ23_Ph1,第二所定位相Ph2用のレーザセンサ24_Ph2,及び第三所定位相Ph3用のレーザセンサ25_Ph3という三つのレーザセンサによって構成される。レーザセンサ23_Ph1,24_Ph2,25_Ph3は、何れも同様のセンサであるとともに非接触式のセンサである。 As shown in FIG. 6, the shape measuring device 20 mainly includes a first sensor 21 (second sensor 22), a sensor rail 30, and a control unit 40. In the present embodiment, the first sensor 21 and the second sensor 22 are the same sensor and are shared. As shown in FIGS. 7 and 8, the first sensor 21 (second sensor 22) is a laser sensor 23_Ph1 for the first predetermined phase Ph1, a laser sensor 24_Ph2 for the second predetermined phase Ph2, and a third predetermined phase, respectively. It is composed of three laser sensors called a laser sensor 25_Ph3 for Ph3. The laser sensors 23_Ph1,24_Ph2, 25_Ph3 are similar sensors and are non-contact type sensors.

なお、レーザセンサ23_Ph1,24_Ph2,25_Ph3は、公知のレーザセンサであり、レーザ照射面から測定対象部にレーザ光を照射し、測定対象物のうちのレーザ照射面から最も近くにある部位までの距離を計測可能なレーザセンサである。 The laser sensor 23_Ph1,24_Ph2, 25_Ph3 is a known laser sensor, which irradiates a measurement target portion with a laser beam from the laser irradiation surface, and is a distance from the laser irradiation surface to the nearest portion of the measurement target. It is a laser sensor that can measure.

センサレール30は、図6におけるラック軸10の上方において、ラック軸10の軸線と平行に配置される。センサレール30には、各レーザセンサ23_Ph1,24_Ph2,25_Ph3がセンサレール30に沿って移動可能に設けられる。センサレール30は、1本でもよいし、各レーザセンサ23_Ph1,24_Ph2,25_Ph3がそれぞれ設けられるよう3本であってもよい。センサレール30が1本の場合は、レーザセンサ23_Ph1,24_Ph2,25_Ph3は、一体的に構成される。 The sensor rail 30 is arranged above the rack shaft 10 in FIG. 6 and parallel to the axis of the rack shaft 10. Each laser sensor 23_Ph1,24_Ph2, 25_Ph3 is provided on the sensor rail 30 so as to be movable along the sensor rail 30. The number of sensor rails 30 may be one, or three so that each laser sensor 23_Ph1,24_Ph2, 25_Ph3 is provided. When there is only one sensor rail 30, the laser sensors 23_Ph1,24_Ph2, 25_Ph3 are integrally configured.

レーザセンサ23_Ph1,24_Ph2,25_Ph3は、制御部40の制御によって、センサレール30上を、所望の量だけ軸線方向に移動される。そして、図7に示すように、レーザセンサ23_Ph1,24_Ph2,25_Ph3(第一センサ21)は、制御部40の制御によって、それぞれラック軸10(軸部材)の軸線に直交する方向であって、且つ各基準点(第一〜第三基準点RP1,RP2,RP3)を通る方向である各測定方向DR1,DR2,DR3(所定の測定方向に相当)における各基準点(第一〜第三基準点RP1〜RP3)の位置(座標)を測定する。 The laser sensor 23_Ph1,24_Ph2, 25_Ph3 is moved in the axial direction on the sensor rail 30 by a desired amount under the control of the control unit 40. Then, as shown in FIG. 7, the laser sensors 23_Ph1,24_Ph2, 25_Ph3 (first sensor 21) are, respectively, in a direction orthogonal to the axis of the rack shaft 10 (shaft member) under the control of the control unit 40, and Each reference point (first to third reference points) in each measurement direction DR1, DR2, DR3 (corresponding to a predetermined measurement direction) in the direction passing through each reference point (first to third reference points RP1, RP2, RP3) Measure the position (coordinates) of RP1 to RP3).

なお、上記において、レーザセンサ23_Ph1,24_Ph2,25_Ph3(第一センサ21),第一〜第三基準点RP1,RP2,RP3及び測定方向DR1,DR2,DR3は、番号の若い順から順番にそれぞれ対応するものとする。例えば、レーザセンサ23_Ph1によって測定される基準点は、第一基準点RP1であり、レーザセンサ23_Ph1のレーザ光LB1が照射される測定方向は、測定方向DR1である。 In the above, the laser sensors 23_Ph1,24_Ph2, 25_Ph3 (first sensor 21), the first to third reference points RP1, RP2, RP3 and the measurement directions DR1, DR2, DR3 correspond in order from the youngest number. It shall be. For example, the reference point measured by the laser sensor 23_Ph1 is the first reference point RP1, and the measurement direction in which the laser beam LB1 of the laser sensor 23_Ph1 is irradiated is the measurement direction DR1.

レーザセンサ24_Ph2も同様であり、レーザセンサ24_Ph2によって測定される基準点は、第二基準点RP2であり、レーザセンサ24_Ph2のレーザ光LB2が照射される測定方向は、測定方向DR2である。レーザセンサ25_Ph3についても、同様である。また、以降で説明する各センサ基準面E1,E2,E3、各スポット径φD1,φD2,φD3、及び最短距離L1,L2,L3等についても同様である。 The same applies to the laser sensor 24_Ph2, the reference point measured by the laser sensor 24_Ph2 is the second reference point RP2, and the measurement direction in which the laser beam LB2 of the laser sensor 24_Ph2 is irradiated is the measurement direction DR2. The same applies to the laser sensor 25_Ph3. The same applies to the sensor reference planes E1, E2, E3, the spot diameters φD1, φD2, φD3, and the shortest distances L1, L2, L3, etc., which will be described later.

図7に示すように、各レーザセンサ23_Ph1,24_Ph2,25_Ph3(第一センサ21)は、制御部40の制御によって、各レーザ照射面である各センサ基準面E1,E2,E3から、それぞれ測定方向DR1,DR2,DR3(所定の測定方向に相当)の方向で、且つ第一〜第三基準点RP1,RP2,RP3に向けて、各スポット径φD1,φD2,φD3(所定のスポット径に相当)を有する各レーザ光LB1,LB2,LB3を照射する。 As shown in FIG. 7, each laser sensor 23_Ph1,24_Ph2, 25_Ph3 (first sensor 21) has a measurement direction from each sensor reference surface E1, E2, E3, which is each laser irradiation surface, under the control of the control unit 40. Each spot diameter φD1, φD2, φD3 (corresponding to a predetermined spot diameter) in the direction of DR1, DR2, DR3 (corresponding to a predetermined measurement direction) and toward the first to third reference points RP1, RP2, RP3. Each laser beam LB1, LB2, LB3 having the above is irradiated.

このとき、レーザ光LB1,LB2,LB3は、センサ基準面E1,E2,E3から第一〜第三基準点RP1,RP2,RP3に向けて円柱状に照射される。つまり、各レーザセンサ23_Ph1,24_Ph2,25_Ph3(第一センサ21)は、測定方向DR1,DR2,DR3と直交する方向に、照射した円柱状のレーザ光LB1,LB2,LB3の径方向断面の断面積に応じた測定範囲(所定の測定範囲に相当)を備える。なお、本実施形態において、各スポット径φD1,φD2,φD3は同一径とする。よって、各測定範囲も同一面積である。但し、これに限らず同一径でなくてもよい。 At this time, the laser beams LB1, LB2, and LB3 are irradiated in a columnar shape from the sensor reference planes E1, E2, and E3 toward the first to third reference points RP1, RP2, and RP3. That is, each laser sensor 23_Ph1,24_Ph2, 25_Ph3 (first sensor 21) has a cross-sectional area of the radial cross section of the cylindrical laser beam LB1, LB2, LB3 irradiated in the direction orthogonal to the measurement directions DR1, DR2, DR3. It is provided with a measurement range (corresponding to a predetermined measurement range) according to the above. In this embodiment, each spot diameter φD1, φD2, φD3 has the same diameter. Therefore, each measurement range has the same area. However, the diameter is not limited to this and does not have to be the same.

上記より、各センサ基準面E1,E2,E3も、それぞれ各測定範囲内において、各測定方向DR1,DR2,DR3と直交する。また、各センサ基準面E1,E2,E3と、第一〜第三基準点RP1,RP2,RP3(基準点)との間は所定の距離を有して配置される。 From the above, each sensor reference plane E1, E2, E3 is also orthogonal to each measurement direction DR1, DR2, DR3 within each measurement range. Further, the sensor reference planes E1, E2, E3 and the first to third reference points RP1, RP2, RP3 (reference points) are arranged with a predetermined distance.

このような構成により、各センサ基準面E1,E2,E3と第一〜第三基準点RP1,RP2,RP3(基準点)との間の距離を、センサ基準面E1,E2,E3と基準外周面12aにおける基準点以外の点との距離に対して最短距離L1,L2,L3にできるので、第一〜第三基準点RP1,RP2,RP3の位置(座標)が測定できる。 With such a configuration, the distance between each sensor reference surface E1, E2, E3 and the first to third reference points RP1, RP2, RP3 (reference point) is set to the sensor reference surface E1, E2, E3 and the reference outer circumference. Since the shortest distance L1, L2, L3 can be set with respect to the distance to a point other than the reference point on the surface 12a, the positions (coordinates) of the first to third reference points RP1, RP2, RP3 can be measured.

また、図8に示すように、第二センサ22(レーザセンサ23_Ph1,24_Ph2,25_Ph3)についても、上記第一センサ21と同様の作用によって各対象点(第一〜第三対象点TP1,TP2,TP3)の位置(座標)が測定可能となる。第二センサ22(レーザセンサ23_Ph1,24_Ph2,25_Ph3)においては、上記第一センサ21の説明に対し、第一センサ21を第二センサ22と読み替え、各基準点(第一〜第三基準点RP1,RP2,RP3)を各対象点(第一〜第三対象点TP1,TP2,TP3)と読み替え、さらに、基準外周面12aを被測定外周面13aと読み替えればよい。他は、上記第一センサ21に対する説明と同様である。 Further, as shown in FIG. 8, the second sensor 22 (laser sensor 23_Ph1,24_Ph2, 25_Ph3) also has the same operation as that of the first sensor 21, and each target point (first to third target points TP1, TP2). The position (coordinates) of TP3) can be measured. In the second sensor 22 (laser sensor 23_Ph1,24_Ph2, 25_Ph3), the first sensor 21 is read as the second sensor 22 in response to the explanation of the first sensor 21, and each reference point (first to third reference point RP1) is read. , RP2, RP3) may be read as each target point (first to third target points TP1, TP2, TP3), and the reference outer peripheral surface 12a may be read as the measured outer peripheral surface 13a. Others are the same as the description for the first sensor 21.

このような構成により、各センサ基準面E1,E2,E3と、第一〜第三対象点TP1,TP2,TP3(対象点)との間の距離を、センサ基準面E1,E2,E3と被測定外周面13aにおける対象点以外の点との距離に対して最短距離L4,L5,L6とすることができるので、第一〜第三対象点TP1,TP2,TP3の位置(座標)が測定可能となる。 With such a configuration, the distance between each sensor reference surface E1, E2, E3 and the first to third target points TP1, TP2, TP3 (target points) is set between the sensor reference surfaces E1, E2, E3. Since the shortest distances L4, L5, and L6 can be set with respect to the distance to a point other than the target point on the measurement outer peripheral surface 13a, the positions (coordinates) of the first to third target points TP1, TP2, and TP3 can be measured. It becomes.

上記より、第一〜第三基準点RP1,RP2,RP3及び第一〜第三対象点TP1,TP2,TP3が、基準外周面12a及び被測定外周面13a上において、その位置がばらついたり、移動したりしても、所定の測定範囲内においては、各レーザセンサ23_Ph1,24_Ph2,25_Ph3の第一〜第三レーザ光LB1,LB2,LB3が基準点(第一〜第三基準点RP1,RP2,RP3)及び対象点(第一〜第三対象点TP1,TP2,TP3)の位置を確実に検出することができる。 From the above, the positions of the first to third reference points RP1, RP2, RP3 and the first to third target points TP1, TP2, TP3 vary or move on the reference outer peripheral surface 12a and the measured outer peripheral surface 13a. Even so, within the predetermined measurement range, the first to third laser beams LB1, LB2, LB3 of each laser sensor 23_Ph1,24_Ph2, 25_Ph3 are reference points (first to third reference points RP1, RP2, The positions of the RP3) and the target points (first to third target points TP1, TP2, TP3) can be reliably detected.

(2.軸部材の形状測定方法)
次に、上記で説明したラック軸10の被測定外周面13aの形状測定方法について図9のフローチャートに基づき説明する。本発明に係るラック軸10(軸部材)の形状測定方法は、第一工程(ステップS10−S18)と、第二工程(ステップS20−S28)と、第三工程(ステップS30−S34)と、を備える。
(2. Shaft member shape measurement method)
Next, the method of measuring the shape of the outer peripheral surface 13a to be measured of the rack shaft 10 described above will be described with reference to the flowchart of FIG. The method for measuring the shape of the rack shaft 10 (shaft member) according to the present invention includes a first step (step S10-S18), a second step (step S20-S28), and a third step (step S30-S34). To be equipped.

(2−1.第一工程)
上述したように、第一工程は、非接触式の第一センサ21(レーザセンサ23_Ph1,24_Ph2,25_Ph3)によって、基準外周面12a上の周方向における所定位相(第一〜第三所定位相Ph1,Ph2,Ph3)にそれぞれ位置する3箇所の基準点(第一〜第三基準点RP1,RP2,RP3)の位置(座標)を軸線方向位置が異なる二点(複数)で測定する工程である。
(2-1. First step)
As described above, in the first step, a non-contact type first sensor 21 (laser sensor 23_Ph1,24_Ph2,25_Ph3) is used to perform a predetermined phase (first to third predetermined phases Ph1,) in the circumferential direction on the reference outer peripheral surface 12a. This is a step of measuring the positions (coordinates) of three reference points (first to third reference points RP1, RP2, RP3) located at Ph2, Ph3) at two points (plurality) having different axial positions.

ステップS10(第一工程)では、制御部40の制御により、レーザセンサ23_Ph1,24_Ph2,25_Ph3が、ラック軸10(軸部材)の上方に配置されたセンサレール30上において、軸線方向に移動され、予め設定された基準外周面12a(第一軸部)上の第一位置P1に到達する。なお、既にレーザセンサ23_Ph1,24_Ph2,25_Ph3が、第一位置P1に位置している場合には第二位置P2に移動する。 In step S10 (first step), the laser sensor 23_Ph1,24_Ph2, 25_Ph3 is moved in the axial direction on the sensor rail 30 arranged above the rack shaft 10 (shaft member) under the control of the control unit 40. It reaches the first position P1 on the preset reference outer peripheral surface 12a (first shaft portion). If the laser sensor 23_Ph1,24_Ph2, 25_Ph3 is already located at the first position P1, it moves to the second position P2.

次に、ステップS12(第一工程)では、制御部40の制御により、円柱形状の各レーザ光LB1,LB2,LB3をレーザセンサ23_Ph1,24_Ph2,25_Ph3の各レーザ照射面であるセンサ基準面E1,E2,E3から第一〜第三基準点RP1,RP2,RP3に向けて照射する(図7参照)。なお、各レーザ光LB1,LB2,LB3は、各スポット径φD1,φD2,φD3(φD1=φD2=φD3)を有し、各スポット径に応じた各測定範囲を有して照射される。 Next, in step S12 (first step), under the control of the control unit 40, the cylindrical laser beams LB1, LB2, LB3 are converted into the sensor reference planes E1, which are the laser irradiation surfaces of the laser sensors 23_Ph1,24_Ph2, 25_Ph3. Irradiation is performed from E2 and E3 toward the first to third reference points RP1, RP2 and RP3 (see FIG. 7). Each laser beam LB1, LB2, LB3 has each spot diameter φD1, φD2, φD3 (φD1 = φD2 = φD3), and is irradiated with each measurement range corresponding to each spot diameter.

次に、ステップS14(第一工程)において、第一〜第三基準点RP1,RP2,RP3の位置(座標)が測定される。上述したように、このとき、センサ基準面E1,E2,E3と第一〜第三基準点RP1,RP2,RP3との間の距離は、最短距離L1,L2,L3(図7参照)となるよう設定されているため、第一〜第三基準点RP1,RP2,RP3の位置(座標)が測定される。 Next, in step S14 (first step), the positions (coordinates) of the first to third reference points RP1, RP2, and RP3 are measured. As described above, at this time, the distance between the sensor reference planes E1, E2, E3 and the first to third reference points RP1, RP2, RP3 is the shortest distance L1, L2, L3 (see FIG. 7). Therefore, the positions (coordinates) of the first to third reference points RP1, RP2, and RP3 are measured.

なお、上記において、第一基準点RP1の位置(座標)は、上下方向(測定方向DR1)に沿って測定された位置である。また、第二基準点RP2の位置(座標)は、測定方向DR2に沿って測定された位置である。さらに、第三基準点RP3の位置(座標)は、測定方向DR3に沿って測定された位置である。そして、ステップS16(第一工程)において、各基準点の位置の測定結果が制御部40の記憶部41に送信される。 In the above, the position (coordinates) of the first reference point RP1 is a position measured along the vertical direction (measurement direction DR1). The position (coordinates) of the second reference point RP2 is a position measured along the measurement direction DR2. Further, the position (coordinates) of the third reference point RP3 is a position measured along the measurement direction DR3. Then, in step S16 (first step), the measurement result of the position of each reference point is transmitted to the storage unit 41 of the control unit 40.

次に、ステップS18(第一工程)において、ステップS14における第一〜第三基準点RP1,RP2,RP3の位置(座標)の測定が2回目か否かの確認を行なう。測定が1回目であれば、「N」(No)に従いステップS10に移動する。 Next, in step S18 (first step), it is confirmed whether or not the measurement of the positions (coordinates) of the first to third reference points RP1, RP2, and RP3 in step S14 is the second time. If the measurement is the first time, the process proceeds to step S10 according to "N" (No).

なお、2回目のステップS10では、制御部40の制御により、レーザセンサ23_Ph1,24_Ph2,25_Ph3が、センサレール30上を軸線方向に移動され、第一位置P1から第二位置P2に到達する。そしてステップS12、及びステップS14において第二位置P2における第一〜第三基準点RP1,RP2,RP3の位置(座標)がそれぞれ測定され、ステップS16において、測定結果が制御部40の記憶部41に送信される。 In the second step S10, the laser sensor 23_Ph1,24_Ph2, 25_Ph3 is moved in the axial direction on the sensor rail 30 under the control of the control unit 40, and reaches the second position P2 from the first position P1. Then, in steps S12 and S14, the positions (coordinates) of the first to third reference points RP1, RP2, and RP3 at the second position P2 are measured, and in step S16, the measurement result is stored in the storage unit 41 of the control unit 40. Will be sent.

このように、レーザセンサ23_Ph1,24_Ph2,25_Ph3が、ラック軸10(軸部材)の軸線方向に移動しながら、軸線方向位置が異なる二箇所(複数)の第一〜第三基準点RP1,RP2,RP3(基準点)の位置を測定する。そして、ステップS18の確認工程において、測定が2回目であるので、「Y」(Yes)に従いステップS20(第二工程)に移動する。 In this way, the laser sensors 23_Ph1,24_Ph2, 25_Ph3 move in the axial direction of the rack shaft 10 (shaft member), and the first to third reference points RP1, RP2, at two locations (plurality) having different axial positions. Measure the position of RP3 (reference point). Then, in the confirmation step of step S18, since the measurement is the second time, the process moves to step S20 (second step) according to “Y” (Yes).

(2−2.第二工程)
第二工程は、非接触式の第二センサ22(レーザセンサ23_Ph1,24_Ph2,25_Ph3)によって、被測定外周面13aにおいて基準外周面12a上の所定位相(第一〜第三所定位相Ph1,Ph2,Ph3)と同位相に位置する第一〜第三対象点TP1,TP2,TP3(対象点)の位置を測定する工程である。第二センサ22は第一センサ21と共用である。第二工程では、レーザセンサ23_Ph1,24_Ph2,25_Ph3(第二センサ22)が、ラック軸10(軸部材)の軸線方向に移動しながら、被測定外周面13aにおいて軸線方向位置が異なる複数の対象点の位置を測定する。
(2-2. Second step)
In the second step, a non-contact type second sensor 22 (laser sensor 23_Ph1,24_Ph2, 25_Ph3) is used to perform a predetermined phase (first to third predetermined phases Ph1, Ph2) on the reference outer peripheral surface 12a on the outer peripheral surface 13a to be measured. This is a step of measuring the positions of the first to third target points TP1, TP2, and TP3 (target points) located in the same phase as Ph3). The second sensor 22 is shared with the first sensor 21. In the second step, the laser sensor 23_Ph1,24_Ph2, 25_Ph3 (second sensor 22) moves in the axial direction of the rack shaft 10 (shaft member), and at the same time, a plurality of target points having different axial positions on the outer peripheral surface 13a to be measured. Measure the position of.

ステップS20(第二工程)では、制御部40の制御により、レーザセンサ23_Ph1,24_Ph2,25_Ph3が、センサレール30上を軸線方向に移動され、予め設定されたラック歯形成部13(第二軸部)の被測定外周面13a上の任意の位置P3(図6参照)まで移動する。 In step S20 (second step), the laser sensor 23_Ph1,24_Ph2, 25_Ph3 is moved in the axial direction on the sensor rail 30 under the control of the control unit 40, and the preset rack tooth forming unit 13 (second shaft unit) is moved. ) Moves to an arbitrary position P3 (see FIG. 6) on the outer peripheral surface 13a to be measured.

次に、ステップS12と同様、ステップS22(第二工程)において、制御部40の制御により、レーザセンサ23_Ph1,24_Ph2,25_Ph3が、円柱形状のレーザ光LB1,LB2,LB3をレーザ照射面であるセンサ基準面E1,E2,E3から被測定外周面13a上の第一〜第三対象点TP1,TP2,TP3(対象点)に向けて照射する。なお、各レーザ光LB1,LB2,LB3は、各スポット径φD1,φD2,φD3(φD1=φD2=φD3)を有し、各スポット径に応じた各測定範囲を有して照射される。 Next, as in step S12, in step S22 (second step), the laser sensor 23_Ph1,24_Ph2, 25_Ph3 is a sensor whose cylindrical laser light LB1, LB2, LB3 is the laser irradiation surface under the control of the control unit 40. Irradiation is performed from the reference surfaces E1, E2, E3 toward the first to third target points TP1, TP2, TP3 (target points) on the outer peripheral surface 13a to be measured. Each laser beam LB1, LB2, LB3 has each spot diameter φD1, φD2, φD3 (φD1 = φD2 = φD3), and is irradiated with each measurement range corresponding to each spot diameter.

このとき、各レーザ光LB1,LB2,LB3の光軸は、それぞれ各測定方向DR1,DR2,DR3と平行である。また、センサ基準面E1,E2,E3は、測定方向DR1,DR2,DR3と直交している。これにより、ステップS24(第二工程)でセンサ基準面E1,E2,E3との間が最短距離L4,L5,L6(図8参照)となる第一〜第三対象点TP1,TP2,TP3の位置(座標)が測定される。 At this time, the optical axes of the laser beams LB1, LB2, and LB3 are parallel to the measurement directions DR1, DR2, and DR3, respectively. Further, the sensor reference planes E1, E2, and E3 are orthogonal to the measurement directions DR1, DR2, and DR3. As a result, in step S24 (second step), the shortest distances between the sensor reference planes E1, E2, and E3 are L4, L5, and L6 (see FIG. 8). The position (coordinates) is measured.

なお、上記において、第一対象点TP1の位置(座標)は、上下方向(測定方向DR1)に沿って測定された位置である。また、第二対象点TP2の位置(座標)は、測定方向DR2に沿って測定された位置である。さらに、第三対象点TP3の位置(座標)は、測定方向DR3に沿って測定された位置である。そして、ステップS26(第二工程)で、各対象点の位置データ(測定結果)が制御部40の記憶部41に送信される。 In the above, the position (coordinates) of the first target point TP1 is a position measured along the vertical direction (measurement direction DR1). The position (coordinates) of the second target point TP2 is a position measured along the measurement direction DR2. Further, the position (coordinates) of the third target point TP3 is a position measured along the measurement direction DR3. Then, in step S26 (second step), the position data (measurement result) of each target point is transmitted to the storage unit 41 of the control unit 40.

次に、ステップS28(第二工程)において、ステップS24における第一〜第三対象点TP1,TP2,TP3の位置(座標)の測定が予め設定したN回目に到達したか否かの確認を行なう。測定回数がN回に到達していなければ、「N」(No)に従いステップS20に移動する。 Next, in step S28 (second step), it is confirmed whether or not the measurement of the positions (coordinates) of the first to third target points TP1, TP2, and TP3 in step S24 has reached the preset Nth time. .. If the number of measurements has not reached N times, the process proceeds to step S20 according to "N" (No).

そして、2回目以降のステップS20(第二工程)では、制御部40の制御により、レーザセンサ23_Ph1,24_Ph2,25_Ph3が、センサレール30上を軸線方向に移動され、予め設定されたラック歯形成部13(第二軸部)の被測定外周面13a上の任意の位置P4(図6参照)まで移動する。そして、ステップS20−ステップS24の処理によって任意の位置P4における第一〜第三対象点TP1,TP2,TP3の位置(座標)がそれぞれ測定され、ステップS26で位置データ(測定結果)が制御部40の記憶部41に送信される。 Then, in the second and subsequent steps S20 (second step), the laser sensor 23_Ph1,24_Ph2, 25_Ph3 is moved in the axial direction on the sensor rail 30 under the control of the control unit 40, and a preset rack tooth forming unit is formed. It moves to an arbitrary position P4 (see FIG. 6) on the outer peripheral surface 13a to be measured of 13 (second shaft portion). Then, the positions (coordinates) of the first to third target points TP1, TP2, and TP3 at the arbitrary position P4 are measured by the processing of step S20-step S24, and the position data (measurement result) is obtained by the control unit 40 in step S26. Is transmitted to the storage unit 41 of.

そして、ステップS28において、ステップS24での測定が予め設定されたN回(本実施形態では六回)実施されたことが確認されるまで、ステップS20−ステップS28の処理を繰り返し行なう。ステップS28において、測定がN回実施されたことが確認されたら、「Y」(Yes)に従いステップS30(第三工程)に移動する。なお、判定基準となる測定回数(N回)は、任意に設定すればよい。 Then, in step S28, the process of step S20-step S28 is repeated until it is confirmed that the measurement in step S24 has been performed N times (six times in this embodiment) preset. When it is confirmed that the measurement has been performed N times in step S28, the process proceeds to step S30 (third step) according to “Y” (Yes). The number of measurements (N times), which is the determination criterion, may be arbitrarily set.

このように第二工程では、レーザセンサ23_Ph1,24_Ph2,25_Ph3が、ラック軸10(軸部材)の軸線方向に移動しながら、複数個所の第一〜第三対象点TP1,TP2,TP3(対象点)の位置を測定する。 As described above, in the second step, the laser sensors 23_Ph1,24_Ph2, 25_Ph3 move in the axial direction of the rack shaft 10 (shaft member), and the first to third target points TP1, TP2, TP3 (target points) at a plurality of locations. ) Is measured.

(2−3.第三工程)
ステップS30(第三工程)では、制御部40が、第一〜第三対象点TP1,TP2,TP3(対象点)を含む径方向断面において、記憶部41に記憶された二箇所(複数)分の第一〜第三基準点RP1,RP2,RP3(基準点)の位置データを取り出す。そして、ステップS32(第三工程)で、取り出した位置データに基づき、第一〜第三基準点RP1,RP2,RP3にそれぞれ対応する第一〜第三理想対象点ITP1,ITP2,ITP3(理想対象点)を演算する。
(2-3. Third step)
In step S30 (third step), the control unit 40 has two (plurality) parts stored in the storage unit 41 in the radial cross section including the first to third target points TP1, TP2, TP3 (target points). The position data of the first to third reference points RP1, RP2, and RP3 (reference points) of the above are taken out. Then, based on the position data extracted in step S32 (third step), the first to third ideal target points ITP1, ITP2, ITP3 (ideal targets) corresponding to the first to third reference points RP1, RP2, and RP3, respectively. Point) is calculated.

具体的には、二箇所(複数)分の基準外周面12aにおける第一〜第三基準点RP1,RP2,RP3(基準点)データに基づき演算した外周面形状を理想の外周面形状とする。そして、演算した理想の外周面形状を軸線方向位置毎の各第一〜第三対象点TP1,TP2,TP3(対象点)を含む仮想の径方向断面まで延在させ、交わった点を、第一〜第三基準点RP1,RP2,RP3に対応する仮想の第一〜第三理想対象点ITP1,ITP2,ITP3(理想対象点)として演算する(図8参照)。なお、図8においては、第一〜第三基準点RP1,RP2,RP3(基準点)の位置と第一〜第三理想対象点ITP1,ITP2,ITP3(理想対象点)の位置とは一致している。 Specifically, the outer peripheral surface shape calculated based on the first to third reference point RP1, RP2, RP3 (reference point) data in the reference outer peripheral surface 12a for two locations (plurality) is set as the ideal outer peripheral surface shape. Then, the calculated ideal outer peripheral surface shape is extended to a virtual radial cross section including the first to third target points TP1, TP2, TP3 (target points) for each axial position, and the intersecting points are set to the third. It is calculated as virtual first to third ideal target points ITP1, ITP2, ITP3 (ideal target points) corresponding to the first to third reference points RP1, RP2, and RP3 (see FIG. 8). In FIG. 8, the positions of the first to third reference points RP1, RP2, RP3 (reference points) and the positions of the first to third ideal target points ITP1, ITP2, ITP3 (ideal target points) coincide with each other. ing.

そして、ステップS34(第三工程)では、記憶部41に記憶させた第一〜第三対象点TP1,TP2,TP3の位置データを取り出し、第一〜第三理想対象点ITP1,ITP2,ITP3と第一〜第三対象点TP1,TP2,TP3(対象点)とを比較する(図8参照)。これにより、各位相(第一〜第三所定位相Ph1,Ph2,Ph3)における基準外周面12aに対する被測定外周面13aの変位量(第一〜第三変位量Q1,Q2,Q3)を各々演算する。 Then, in step S34 (third step), the position data of the first to third target points TP1, TP2, TP3 stored in the storage unit 41 is taken out, and the first to third ideal target points ITP1, ITP2, ITP3 are obtained. The first to third target points TP1, TP2, and TP3 (target points) are compared (see FIG. 8). As a result, the displacement amount (first to third displacement amounts Q1, Q2, Q3) of the measured outer peripheral surface 13a with respect to the reference outer peripheral surface 12a in each phase (first to third predetermined phases Ph1, Ph2, Ph3) is calculated. To do.

なお、第一〜第三変位量Q1,Q2,Q3は、第一〜第三対象点TP1,TP2,TP3(対象点)に関する変位量である。よって、この変位量(第一〜第三変位量Q1,Q2,Q3)をもって、ラック歯形成部13(第二軸部)が基準外周面12a(第一軸部)に対して変位した大きさとする。これにより、演算した第一〜第三変位量Q1,Q2,Q3に基づき、ラック軸10に対して精度の良い歪取り作業が実行可能となる。 The first to third displacement amounts Q1, Q2, and Q3 are displacement amounts related to the first to third target points TP1, TP2, and TP3 (target points). Therefore, with this displacement amount (first to third displacement amounts Q1, Q2, Q3), the rack tooth forming portion 13 (second shaft portion) is displaced with respect to the reference outer peripheral surface 12a (first shaft portion). To do. As a result, it is possible to perform highly accurate strain removing work on the rack shaft 10 based on the calculated first to third displacement amounts Q1, Q2, and Q3.

(3.その他)
なお、上記実施形態では、基準点(RP1,RP2,RP3)、対象点(TP1,TP2,TP3)及び理想対象点(ITP1,ITP2,ITP3)を演算するための位相(Ph1,Ph2,Ph3)をラック軸10(軸部材)の周方向において140degの範囲内に三つ設定した。しかし、この態様には限らず、位相は二つでもよい。つまり、二つの位相に応じて、基準点(RP1,RP2)、対象点(TP1,TP2)及び理想対象点(ITP1,ITP2)を演算してもよい。この場合、二つの位相が形成する角度は90deg程度であることが好ましい。これによっても、相応の効果が得られる。
(3. Others)
In the above embodiment, the phase (Ph1, Ph2, Ph3) for calculating the reference point (RP1, RP2, RP3), the target point (TP1, TP2, TP3) and the ideal target point (ITP1, ITP2, ITP3) Was set within the range of 140 deg in the circumferential direction of the rack shaft 10 (shaft member). However, the present invention is not limited to this mode, and the number of phases may be two. That is, the reference point (RP1, RP2), the target point (TP1, TP2), and the ideal target point (ITP1, ITP2) may be calculated according to the two phases. In this case, the angle formed by the two phases is preferably about 90 deg. This also has a corresponding effect.

また、上記実施形態では、ラック歯形成部13(第二軸部)における被測定外周面13aの円弧の大きさを周方向において140degの範囲としたが、この態様には限らない。被測定外周面13aの円弧は、180deg未満であれば何度でもよい。円弧が180deg未満であることによって、差動トランス変位計を使用した従来技術による測定においては、精度よく被測定外周面13aの形状の測定はできないが、本発明にかかる測定方法によって、精度のよい測定結果が望める。 Further, in the above embodiment, the size of the arc of the outer peripheral surface 13a to be measured in the rack tooth forming portion 13 (second shaft portion) is set to the range of 140 deg in the circumferential direction, but the present invention is not limited to this embodiment. The arc of the outer peripheral surface 13a to be measured may be any number of times as long as it is less than 180 deg. Since the arc is less than 180 deg, the shape of the outer peripheral surface 13a to be measured cannot be accurately measured in the measurement by the conventional technique using the differential transformer displacement meter, but the measurement method according to the present invention provides good accuracy. You can expect the measurement result.

また、本実施形態では、軸部材をラック軸10として説明したが、この態様にはかぎらない。基準となる基準外周面(第一軸部)を備えていれば軸部材はどのようなものを適用しても良い。例えば、エンジン部品であるスロットルボデー等に使用されるバタフライバルブ用のシャフト等でもよい。 Further, in the present embodiment, the shaft member has been described as the rack shaft 10, but the present embodiment is not limited to this mode. Any shaft member may be applied as long as it has a reference outer peripheral surface (first shaft portion) as a reference. For example, a shaft for a butterfly valve used for a throttle body or the like which is an engine component may be used.

また、上記実施形態では、第二工程(ステップS20-S28)では、非接触式のレーザセンサ(レーザセンサ23_Ph1,24_Ph2,25_Ph3)が、ラック軸10(軸部材)の軸線方向に移動しながら、被測定外周面13aにおいて軸線方向位置が異なる複数の対象点(TP1,TP2,TP3)の位置を測定した。しかし、この態様には限らず、固定した複数のレーザセンサを用いて、軸線方向位置が異なる複数の対象点の位置を測定してもよい。なお、第一工程においても同様である。 Further, in the above embodiment, in the second step (steps S20-S28), the non-contact laser sensor (laser sensor 23_Ph1,24_Ph2, 25_Ph3) moves in the axial direction of the rack shaft 10 (shaft member) while moving. The positions of a plurality of target points (TP1, TP2, TP3) having different axial positions on the outer peripheral surface 13a to be measured were measured. However, the present invention is not limited to this mode, and the positions of a plurality of target points having different axial positions may be measured by using a plurality of fixed laser sensors. The same applies to the first step.

また、上記実施形態では、ラック軸10(軸部材)の外形形状を測定するため、非接触式のレーザセンサ(レーザセンサ23_Ph1,24_Ph2,25_Ph3)を用いた。しかし、この態様には限らない。非接触式のレーザセンサに替えて接触式のセンサを適用してもよい。この場合、適用できる接触式のセンサは、測定方向に移動可能な円筒状の接触子を備え、基準点(RP1,RP2,RP3)、及び対象点(TP1,TP2,TP3)と接触する接触子の端面が、測定方向と直交する平面を備えていればよい。これによっても、相応の効果が期待出来る。 Further, in the above embodiment, a non-contact laser sensor (laser sensor 23_Ph1,24_Ph2,25_Ph3) was used to measure the outer shape of the rack shaft 10 (shaft member). However, it is not limited to this aspect. A contact type sensor may be applied instead of the non-contact type laser sensor. In this case, the applicable contact sensor has a cylindrical contact that can move in the measurement direction and is in contact with a reference point (RP1, RP2, RP3) and a target point (TP1, TP2, TP3). It suffices if the end face of is provided with a plane orthogonal to the measurement direction. Even with this, a corresponding effect can be expected.

また、上記実施形態では、第一センサ21と第二センサ22とは同じセンサであるものとして説明した。しかし、この態様には限らない。第一センサ21と第二センサ22とを別々に設けても良い。この場合、第一センサ21による基準点(第一〜第三基準点RP1,RP2,RP3)の測定と、第二センサ22による対象点(第一〜第三対象点TP1,TP2,TP3)の測定とを同時に行なうことができるので、効率的である。 Further, in the above embodiment, the first sensor 21 and the second sensor 22 have been described as being the same sensor. However, it is not limited to this aspect. The first sensor 21 and the second sensor 22 may be provided separately. In this case, the measurement of the reference point (first to third reference points RP1, RP2, RP3) by the first sensor 21 and the target point (first to third target points TP1, TP2, TP3) by the second sensor 22. It is efficient because the measurement can be performed at the same time.

(4.実施形態による効果)
上記実施形態の軸部材の形状測定方法によれば、基準外周面12a(第一軸部)上の、周方向における所定位相(第一〜第三所定位相Ph1,Ph2,Ph3)のそれぞれにおいて、軸方向位置が異なる複数(二箇所)の基準点(第一〜第三基準点RP1,RP2,RP3)を実際に測定し、測定した複数(二箇所)の基準点(第一〜第三基準点RP1,RP2,RP3)から被測定外周面13a(第二軸部)上の理想対象点(第一〜第三理想対象点ITP1,ITP2,ITP3)の位置を演算し推定する。また、基準点(第一〜第三基準点RP1,RP2,RP3)の所定位相(第一〜第三所定位相Ph1,Ph2,Ph3)と同位相に位置する被測定外周面13a上の対象点(第一〜第三対象点TP1,TP2,TP3)の位置を測定する。そして、測定した対象点(第一〜第三対象点TP1,TP2,TP3)の位置と、測定した基準点(第一〜第三基準点RP1,RP2,RP3)に対応する理想対象点(第一〜第三理想対象点ITP1,ITP2,ITP3)の位置とを比較して、同位相における基準外周面12aと被測定外周面13aとの間の差分、即ち基準外周面12aに対する被測定外周面13aの変位量を求める。これにより、従来技術とは異なり、第二軸部の被測定外周面13aが大きな円弧を有さなくても、第二軸部の変位量(歪量)が精度よく測定できる。
(4. Effect of the embodiment)
According to the method for measuring the shape of the shaft member of the above embodiment, in each of the predetermined phases (first to third predetermined phases Ph1, Ph2, Ph3) in the circumferential direction on the reference outer peripheral surface 12a (first shaft portion). Multiple (two points) reference points (first to third reference points RP1, RP2, RP3) with different axial positions were actually measured, and multiple (two points) reference points (first to third reference points) were measured. The positions of the ideal target points (first to third ideal target points ITP1, ITP2, ITP3) on the outer peripheral surface 13a (second axis portion) to be measured are calculated and estimated from the points RP1, RP2, RP3). Further, the target point on the outer peripheral surface 13a to be measured is located in the same phase as the predetermined phase (first to third predetermined phases Ph1, Ph2, Ph3) of the reference points (first to third reference points RP1, RP2, RP3). The positions of (first to third target points TP1, TP2, TP3) are measured. Then, the positions of the measured target points (first to third target points TP1, TP2, TP3) and the ideal target points (third) corresponding to the measured reference points (first to third reference points RP1, RP2, RP3). By comparing the positions of the first to third ideal target points ITP1, ITP2, ITP3), the difference between the reference outer peripheral surface 12a and the measured outer peripheral surface 13a in the same phase, that is, the measured outer peripheral surface with respect to the reference outer peripheral surface 12a. The displacement amount of 13a is obtained. As a result, unlike the prior art, the displacement amount (strain amount) of the second shaft portion can be accurately measured even if the outer peripheral surface 13a to be measured of the second shaft portion does not have a large arc.

また、上記実施形態によれば、第二工程は、ラック軸10(軸部材)の軸線方向に移動しながら、被測定外周面13aにおいて軸線方向位置が異なる複数の対象点(第一〜第三対象点TP1,TP2,TP3)の位置を測定し、第三工程は、複数の対象点(第一〜第三対象点TP1,TP2,TP3)に関する変位量(第一〜第三変位量Q1,Q2,Q3)を演算する。このように、軸線方向で移動しながら被測定外周面13aの変位量が測定されるので、ラック軸10(軸部材)の歪(変形)が精度よく測定できる。 Further, according to the above embodiment, in the second step, a plurality of target points (first to third) having different axial positions on the outer peripheral surface 13a to be measured while moving in the axial direction of the rack shaft 10 (shaft member). The positions of the target points TP1, TP2, TP3) are measured, and in the third step, the displacement amount (first to third displacement amount Q1,) with respect to a plurality of target points (first to third target points TP1, TP2, TP3) is performed. Calculate Q2 and Q3). In this way, since the displacement amount of the outer peripheral surface 13a to be measured is measured while moving in the axial direction, the strain (deformation) of the rack shaft 10 (shaft member) can be measured accurately.

また、上記実施形態によれば、第一センサ(レーザセンサ23_Ph1,24_Ph2,25_Ph3)は、非接触式のセンサであり、第一工程は、ラック軸10(軸部材)の軸線方向に移動しながら、軸線方向位置が異なる複数の各基準点(第一〜第三基準点RP1,RP2,RP3)の位置を測定する。第二センサ(レーザセンサ23_Ph1,24_Ph2,25_Ph3)は、非接触式のセンサであり、第二工程は、ラック軸10(軸部材)の軸線方向に移動しながら、被測定外周面13aにおいて各対象点(第一〜第三対象点TP1,TP2,TP3)の位置を測定する。このように、軸線方向に移動しながら非接触式のセンサによって、被測定外周面13aの形状が測定されるので、ラック軸10(軸部材)の全長に亘って歪(変形)が短時間で精度よく測定できる。 Further, according to the above embodiment, the first sensor (laser sensor 23_Ph1,24_Ph2, 25_Ph3) is a non-contact type sensor, and the first step is performed while moving in the axial direction of the rack shaft 10 (shaft member). , Measure the positions of a plurality of reference points (first to third reference points RP1, RP2, RP3) having different axial positions. The second sensor (laser sensor 23_Ph1,24_Ph2, 25_Ph3) is a non-contact type sensor, and in the second step, each object is moved on the outer peripheral surface 13a to be measured while moving in the axial direction of the rack shaft 10 (shaft member). The positions of the points (first to third target points TP1, TP2, TP3) are measured. In this way, the shape of the outer peripheral surface 13a to be measured is measured by the non-contact sensor while moving in the axial direction, so that distortion (deformation) occurs in a short time over the entire length of the rack shaft 10 (shaft member). It can be measured accurately.

また、上記実施形態によれば、被測定外周面13a(第二軸部)は、周方向において被測定外周面13aの円弧形状とは異なる非円弧形状に形成された非円弧外周面を備える不完全円柱である。このような、不完全円柱で形成される第二軸部は歪みやすい上に、外周面形状の測定がしにくい。しかし、本発明に係る形状測定方法では、非円弧外周面を備える不完全円柱であっても、精度よく外周面形状の測定が出来る。 Further, according to the above embodiment, the outer peripheral surface 13a (second shaft portion) to be measured is not provided with a non-arc outer peripheral surface formed in a non-arc shape different from the arc shape of the outer peripheral surface 13a to be measured in the circumferential direction. It is a perfect cylinder. The second shaft portion formed of such an incomplete cylinder is easily distorted, and it is difficult to measure the outer peripheral surface shape. However, in the shape measuring method according to the present invention, even an incomplete cylinder provided with a non-arc outer peripheral surface can accurately measure the outer peripheral surface shape.

また、上記実施形態によれば、被測定外周面13a(第二軸部)は、被測定外周面13aと背向する部分にラック歯16が形成されている。このように、ラック軸10(軸部材)がラック歯16を有していても、ラック歯16と背向する部分の円弧形状で形成された被測定外周面13aを測定することで、精度よく外周面形状の測定が出来る。 Further, according to the above embodiment, the rack teeth 16 are formed on the outer peripheral surface 13a (second shaft portion) to be measured so as to face the outer peripheral surface 13a to be measured. In this way, even if the rack shaft 10 (shaft member) has the rack teeth 16, by measuring the outer peripheral surface 13a to be measured formed in the arc shape of the portion facing the rack teeth 16 with high accuracy. The shape of the outer peripheral surface can be measured.

また、上記実施形態によれば、第二軸部の被測定外周面13aは、周方向において軸線回りで180度未満の範囲に形成されている。このように、被測定外周面13aの円弧が周方向において180度未満で形成されており、従来技術による差動トランスによって円弧の軸線が精度よく検出できなくても、本発明に係る形状測定方法では、被測定外周面13aの歪が精度よく測定できる。 Further, according to the above embodiment, the outer peripheral surface 13a to be measured of the second shaft portion is formed in a range of less than 180 degrees around the axis in the circumferential direction. As described above, the arc of the outer peripheral surface 13a to be measured is formed at less than 180 degrees in the circumferential direction, and even if the axis of the arc cannot be accurately detected by the differential transformer according to the prior art, the shape measuring method according to the present invention. Then, the strain of the outer peripheral surface 13a to be measured can be measured with high accuracy.

また、上記実施形態によれば、第一工程は、基準外周面12aにおいて第一所定位相Ph1に位置し軸線方向位置が異なる複数の第一基準点RP1の位置、第一所定位相から90°未満である第二所定位相Ph2に位置し軸線方向位置が異なる複数の第二基準点RP2の位置を測定し、及び、第一所定位相Ph1から90°未満である第三所定位相Ph3に位置し軸線方向位置が異なる複数の第三基準点RP3の位置を測定する。第二工程は、被測定外周面13aにおいて第一所定位相Ph1と同位相に位置する第一対象点TP1の位置、第二所定位相Ph2と同位相に位置する第二対象点TP2の位置を測定し、及び、第三所定位相Ph3と同位相に位置する第三対象点TP3の位置を測定する。また、第三工程は、第一対象点TP1を含む径方向断面において複数の第一基準点RP1に対応する第一理想対象点ITP1を演算する。また、第二対象点TP2を含む径方向断面において複数の第二基準点RP2に対応する第二理想対象点ITP2を演算する。また、第三対象点TP3を含む径方向断面において複数の第三基準点RP3に対応する第三理想対象点ITP3を演算する。そして、第一理想対象点ITP1と第一対象点TP1とを比較することにより、第一所定位相Ph1における基準外周面12aに対する被測定外周面13aの変位量(第一変位量Q1)を演算する。また、第二理想対象点ITP2と第二対象点TP2とを比較することにより、第二所定位相Ph2における基準外周面12aに対する被測定外周面13aの変位量(第二変位量Q2)を演算する。さらに第三理想対象点ITP3と第三対象点TP3とを比較することにより、第三所定位相Ph3における基準外周面12aに対する被測定外周面13aの変位量(第二変位量Q3)を演算する。 Further, according to the above embodiment, in the first step, the positions of the plurality of first reference points RP1 located at the first predetermined phase Ph1 on the reference outer peripheral surface 12a and having different axial positions, less than 90 ° from the first predetermined phase. Measure the positions of a plurality of second reference points RP2 that are located in the second predetermined phase Ph2 and have different axial positions, and are located in the third predetermined phase Ph3 that is less than 90 ° from the first predetermined phase Ph1 and have an axis. The positions of a plurality of third reference points RP3 having different directional positions are measured. In the second step, the position of the first target point TP1 located in the same phase as the first predetermined phase Ph1 and the position of the second target point TP2 located in the same phase as the second predetermined phase Ph2 are measured on the outer peripheral surface 13a to be measured. Then, the position of the third target point TP3 located in the same phase as the third predetermined phase Ph3 is measured. Further, in the third step, the first ideal target point ITP1 corresponding to the plurality of first reference points RP1 is calculated in the radial cross section including the first target point TP1. Further, the second ideal target point ITP2 corresponding to the plurality of second reference points RP2 is calculated in the radial cross section including the second target point TP2. Further, the third ideal target point ITP3 corresponding to the plurality of third reference points RP3 is calculated in the radial cross section including the third target point TP3. Then, by comparing the first ideal target point ITP1 and the first target point TP1, the displacement amount (first displacement amount Q1) of the measured outer peripheral surface 13a with respect to the reference outer peripheral surface 12a in the first predetermined phase Ph1 is calculated. .. Further, by comparing the second ideal target point ITP2 and the second target point TP2, the displacement amount (second displacement amount Q2) of the measured outer peripheral surface 13a with respect to the reference outer peripheral surface 12a in the second predetermined phase Ph2 is calculated. .. Further, by comparing the third ideal target point ITP3 and the third target point TP3, the displacement amount (second displacement amount Q3) of the measured outer peripheral surface 13a with respect to the reference outer peripheral surface 12a in the third predetermined phase Ph3 is calculated.

このように、基準外周面12aにおいて周方向に三つの位相を設定し、三つの位相に対してそれぞれ、基準外周面12aに対する被測定外周面13aの変位量Q1−Q3が演算されるので、精度よく被測定外周面13aの歪(変形)が検出できる。 In this way, three phases are set in the circumferential direction on the reference outer peripheral surface 12a, and the displacement amount Q1-Q3 of the measured outer peripheral surface 13a with respect to the reference outer peripheral surface 12a is calculated for each of the three phases. Distortion (deformation) of the outer peripheral surface 13a to be measured can be detected well.

また、上記実施形態によれば、第一センサ21(レーザセンサ23_Ph1,24_Ph2,25_Ph3)は、ラック軸10(軸部材)の軸線に直交する方向であって、基準点(第一〜第三基準点RP1,RP2,RP3)を通る方向である所定の測定方向DR1,DR2,DR3における基準点(第一〜第三基準点RP1,RP2,RP3)の位置を測定するセンサである。第一センサ21(レーザセンサ23_Ph1,24_Ph2,25_Ph3)は、所定の測定方向DR1,DR2,DR3と直交する方向に所定の測定範囲を備える。また、所定の測定範囲内で所定の測定方向DR1,DR2,DR3と直交する基準外周面12aから離れたセンサ基準面E1,E2,E3を備える。そして、センサ基準面E1,E2,E3と基準点(第一〜第三基準点RP1,RP2,RP3)との距離が、センサ基準面E1,E2,E3と基準外周面12aにおける基準点以外の点との距離に対して最短距離L1,L2,L3となることにより、基準点(第一〜第三基準点RP1,RP2,RP3)の位置が測定可能となる。 Further, according to the above embodiment, the first sensor 21 (laser sensor 23_Ph1,24_Ph2, 25_Ph3) is in a direction orthogonal to the axis of the rack shaft 10 (shaft member), and is a reference point (first to third reference points). It is a sensor that measures the position of a reference point (first to third reference points RP1, RP2, RP3) in a predetermined measurement direction DR1, DR2, DR3 that passes through the points RP1, RP2, RP3). The first sensor 21 (laser sensor 23_Ph1,24_Ph2, 25_Ph3) has a predetermined measurement range in a direction orthogonal to a predetermined measurement direction DR1, DR2, DR3. Further, the sensor reference planes E1, E2, E3 separated from the reference outer peripheral surface 12a orthogonal to the predetermined measurement directions DR1, DR2, DR3 within a predetermined measurement range are provided. The distance between the sensor reference surfaces E1, E2, E3 and the reference points (first to third reference points RP1, RP2, RP3) is other than the reference points on the sensor reference surfaces E1, E2, E3 and the reference outer peripheral surface 12a. By setting the shortest distance L1, L2, L3 with respect to the distance from the point, the positions of the reference points (first to third reference points RP1, RP2, RP3) can be measured.

第二センサ22(レーザセンサ23_Ph1,24_Ph2,25_Ph3)は、ラック軸10(軸部材)の軸線に直交する方向であって対象点(第一〜第三対象点TP1,TP2,TP3)を通る方向である所定の測定方向DR1,DR2,DR3における対象点(第一〜第三対象点TP1,TP2,TP3)の位置を測定するセンサである。第二センサ22は、所定の測定方向DR1,DR2,DR3と直交する方向に所定の測定範囲を備える。また、所定の測定範囲内で所定の測定方向DR1,DR2,DR3と直交する被測定外周面13aから離れたセンサ基準面E1,E2,E3を備える。そして、センサ基準面E1,E2,E3と対象点(第一〜第三対象点TP1,TP2,TP3)との距離が、センサ基準面E1,E2,E3と被測定外周面13aにおける対象点以外の点との距離に対して最短距離L4,L5,L6となることにより、対象点(第一〜第三対象点TP1,TP2,TP3)の位置が測定可能となる。 The second sensor 22 (laser sensor 23_Ph1,24_Ph2, 25_Ph3) is in a direction orthogonal to the axis of the rack shaft 10 (shaft member) and passes through the target points (first to third target points TP1, TP2, TP3). It is a sensor that measures the position of a target point (first to third target points TP1, TP2, TP3) in a predetermined measurement direction DR1, DR2, DR3. The second sensor 22 has a predetermined measurement range in a direction orthogonal to the predetermined measurement directions DR1, DR2, and DR3. Further, the sensor reference planes E1, E2, and E3 separated from the outer peripheral surface 13a to be measured, which are orthogonal to the predetermined measurement directions DR1, DR2, and DR3 within a predetermined measurement range, are provided. The distance between the sensor reference surfaces E1, E2, E3 and the target points (first to third target points TP1, TP2, TP3) is other than the target points on the sensor reference surfaces E1, E2, E3 and the outer peripheral surface 13a to be measured. By setting the shortest distances L4, L5, and L6 with respect to the distance from the point, the positions of the target points (first to third target points TP1, TP2, TP3) can be measured.

このような構成によって、所定の測定範囲内では、第一、第二センサ21,22が、基準点(第一〜第三基準点RP1,RP2,RP3)及び対象点(第一〜第三対象点TP1,TP2,TP3)の位置を精度よく確実に測定することができる。つまり、被測定外周面13aの円弧が小さくても、基準点及び対象点の位置が精度よく求められ、延いては被測定外周面13aの変位量が精度よく求められる。 With such a configuration, within a predetermined measurement range, the first and second sensors 21 and 22 have a reference point (first to third reference points RP1, RP2, RP3) and a target point (first to third objects). The positions of points TP1, TP2, TP3) can be measured accurately and reliably. That is, even if the arc of the outer peripheral surface 13a to be measured is small, the positions of the reference point and the target point can be accurately obtained, and the displacement amount of the outer peripheral surface 13a to be measured can be accurately obtained.

また、上記実施形態によれば、第一及び第二センサ21,22はレーザセンサ(レーザセンサ23_Ph1,24_Ph2,25_Ph3)であり、レーザセンサ23_Ph1,24_Ph2,25_Ph3が所定のスポット径φD1,φD2,φD3で照射するレーザ光LB1,LB2,LB3の光軸の方向が所定の測定方向DR1,DR2,DR3と一致し、所定の測定範囲は所定のスポット径φD1,φD2,φD3と一致する。このように、レーザ光LB1,LB2,LB3のスポット径を大きくすることで、測定範囲が広く確保でき、基準点及び対象点が確実に測定できるので、低コストに対応できる。 Further, according to the above embodiment, the first and second sensors 21 and 22 are laser sensors (laser sensor 23_Ph1,24_Ph2, 25_Ph3), and the laser sensor 23_Ph1,24_Ph2, 25_Ph3 has a predetermined spot diameter φD1, φD2, φD3. The directions of the optical axes of the laser beams LB1, LB2, and LB3 irradiated with the above coincide with the predetermined measurement directions DR1, DR2, and DR3, and the predetermined measurement range coincides with the predetermined spot diameters φD1, φD2, φD3. By increasing the spot diameters of the laser beams LB1, LB2, and LB3 in this way, a wide measurement range can be secured, and the reference point and the target point can be reliably measured, so that low cost can be supported.

また、上記実施形態によれば、ラック軸10(軸部材)の形状測定装置20は、径方向断面が円形に形成された基準外周面12aを有する長軸部12(第一軸部)と、径方向断面が基準外周面12aと同径となる円弧形状に形成された被測定外周面13aを備えるラック歯形成部13(第二軸部)と、を備える。形状測定装置20は、基準外周面12aにおいて所定位相(第一〜第三所定位相Ph1,Ph2,Ph3)に位置し、軸線方向位置が異なる複数の基準点(第一〜第三基準点RP1,RP2,RP3)の位置を測定する非接触式の第一センサ21(レーザセンサ23_Ph1,24_Ph2,25_Ph3)と、被測定外周面において所定位相と同位相に位置する対象点(第一〜第三対象点TP1,TP2,TP3)の位置を測定する非接触式の第二センサ22(レーザセンサ23_Ph1,24_Ph2,25_Ph3)と、対象点を含む径方向断面において軸線方向位置が異なる複数の基準点に対応する理想対象点(第一〜第三理想対象点ITP1,ITP2,ITP3)を演算し、理想対象点と対象点とを比較することにより基準外周面12aに対する被測定外周面13aの変位量を演算する制御部40と、を備える。この形状測定装置20により、上記形状測定方法によって測定したのと同様、精度よく外周面の形状が測定できる。 Further, according to the above embodiment, the shape measuring device 20 of the rack shaft 10 (shaft member) includes a long shaft portion 12 (first shaft portion) having a reference outer peripheral surface 12a having a circular radial cross section. A rack tooth forming portion 13 (second shaft portion) having an outer peripheral surface 13a to be measured formed in an arc shape having a radial cross section having the same diameter as the reference outer peripheral surface 12a is provided. The shape measuring device 20 is located in a predetermined phase (first to third predetermined phases Ph1, Ph2, Ph3) on the reference outer peripheral surface 12a, and has a plurality of reference points (first to third reference points RP1, Ph3) having different axial positions. A non-contact type first sensor 21 (laser sensor 23_Ph1,24_Ph2, 25_Ph3) that measures the position of RP2, RP3) and a target point (first to third objects) located in the same phase as a predetermined phase on the outer peripheral surface to be measured. Corresponds to the non-contact type second sensor 22 (laser sensor 23_Ph1,24_Ph2, 25_Ph3) that measures the position of the points TP1, TP2, TP3) and a plurality of reference points having different axial positions in the radial cross section including the target point. The ideal target points (first to third ideal target points ITP1, ITP2, ITP3) to be measured are calculated, and the displacement amount of the measured outer peripheral surface 13a with respect to the reference outer peripheral surface 12a is calculated by comparing the ideal target point with the target point. The control unit 40 is provided. With this shape measuring device 20, the shape of the outer peripheral surface can be measured with high accuracy as in the case of the measurement by the above shape measuring method.

10;軸部材(ラック軸)、 12;第一軸部(長軸部)、 12a;基準外周面、 13;第二軸部(ラック歯形成部)、 13a;被測定外周面、 20;形状測定装置、 21;第一センサ、 22;第二センサ、 23_Ph1,24_Ph2,25_Ph3;レーザセンサ、 30;センサレール、 40;制御部、 41;記憶部、 DR1,DR2,DR3;測定方向、 E1,E2,E3;センサ基準面、 ITP1,ITP2,ITP3;理想対象点、 LB1,LB2,LB3;レーザ光、 L1,L2,L3,L4,L5,L6;最短距離、 P1;第一位置、 P2;第二位置、 Ph1,Ph2,Ph3;所定位相、 Q1,Q2,Q3;変位量、 RP1,RP2,RP3;基準点、 TP1,TP2,TP3;対象点、 φD1,φD2,φD3;スポット径。 10; Shaft member (rack shaft), 12; First shaft portion (long shaft portion), 12a; Reference outer peripheral surface, 13; Second shaft portion (rack tooth forming portion), 13a; Outer peripheral surface to be measured, 20; Shape Measuring device, 21; 1st sensor, 22; 2nd sensor, 23_Ph1,24_Ph2, 25_Ph3; Laser sensor, 30; Sensor rail, 40; Control unit, 41; Storage unit, DR1, DR2, DR3; Measurement direction, E1, E2, E3; sensor reference plane, ITP1, ITP2, ITP3; ideal target point, LB1, LB2, LB3; laser beam, L1, L2, L3, L4, L5, L6; shortest distance, P1; first position, P2; Second position, Ph1, Ph2, Ph3; predetermined phase, Q1, Q2, Q3; displacement amount, RP1, RP2, RP3; reference point, TP1, TP2, TP3; target point, φD1, φD2, φD3; spot diameter.

Claims (11)

径方向断面が円形に形成された基準外周面を有する第一軸部と、径方向断面が前記基準外周面と同径となる円弧形状に形成された被測定外周面を備える第二軸部と、を備える軸部材の形状測定方法であって、
接触式又は非接触式の第一センサによって、前記基準外周面において所定位相に位置し軸線方向位置が異なる複数の基準点の位置を測定する第一工程と、
接触式又は非接触式の第二センサによって、前記被測定外周面において前記所定位相と同位相に位置する対象点の位置を測定する第二工程と、
前記対象点を含む径方向断面において前記複数の基準点に対応する理想対象点を演算し、前記理想対象点と前記対象点とを比較することにより前記基準外周面に対する前記被測定外周面の変位量を演算する第三工程と、
を備え
前記第二工程は、前記軸部材の軸線方向に移動しながら、前記被測定外周面において軸線方向位置が異なる複数の前記対象点の位置を測定し、
前記第三工程は、前記複数の前記対象点に関する前記変位量を演算する、軸部材の形状測定方法。
A first shaft portion having a reference outer peripheral surface having a circular radial cross section, and a second shaft portion having an arc-shaped outer peripheral surface to be measured having a radial cross section having the same diameter as the reference outer peripheral surface. A method for measuring the shape of a shaft member provided with,
A first step of measuring the positions of a plurality of reference points located in a predetermined phase and different in axial positions on the reference outer peripheral surface by a contact type or non-contact type first sensor.
A second step of measuring the position of a target point located in the same phase as the predetermined phase on the outer peripheral surface to be measured by a contact type or non-contact type second sensor.
The displacement of the outer peripheral surface to be measured with respect to the reference outer peripheral surface by calculating the ideal target point corresponding to the plurality of reference points in the radial cross section including the target point and comparing the ideal target point with the target point. The third step to calculate the quantity and
Equipped with a,
In the second step, while moving in the axial direction of the shaft member, the positions of a plurality of target points having different axial positions on the outer peripheral surface to be measured are measured.
The third step is a method for measuring the shape of a shaft member, which calculates the amount of displacement with respect to the plurality of target points.
径方向断面が円形に形成された基準外周面を有する第一軸部と、径方向断面が前記基準外周面と同径となる円弧形状に形成された被測定外周面を備える第二軸部と、を備える軸部材の形状測定方法であって
接触式の第一センサによって、前記基準外周面において所定位相に位置し軸線方向位置が異なる複数の基準点の位置を測定する第一工程と
接触式の第二センサによって、前記被測定外周面において前記所定位相と同位相に位置する対象点の位置を測定する第二工程と、
前記対象点を含む径方向断面において前記複数の基準点に対応する理想対象点を演算し、前記理想対象点と前記対象点とを比較することにより前記基準外周面に対する前記被測定外周面の変位量を演算する第三工程と、
を備え、
前記第一工程は、前記軸部材の軸線方向に移動しながら、前記軸線方向位置が異なる前記複数の基準点の位置を測定し、
前記第二工程は、前記被測定外周面において前記対象点の位置を測定する、軸部材の形状測定方法。
A first shaft portion having a reference outer peripheral surface having a circular radial cross section, and a second shaft portion having an arc-shaped outer peripheral surface to be measured having a radial cross section having the same diameter as the reference outer peripheral surface. A method for measuring the shape of a shaft member provided with ,
The first step of measuring the positions of a plurality of reference points located in a predetermined phase on the reference outer peripheral surface and having different axial positions by a non- contact type first sensor.
A second step of measuring the position of a target point located in the same phase as the predetermined phase on the outer peripheral surface to be measured by a non-contact type second sensor.
The displacement of the outer peripheral surface to be measured with respect to the reference outer peripheral surface by calculating the ideal target point corresponding to the plurality of reference points in the radial cross section including the target point and comparing the ideal target point with the target point. The third step to calculate the quantity and
Bei to give a,
In the first step, the positions of the plurality of reference points having different axial positions are measured while moving in the axial direction of the shaft member.
The second step is a method for measuring the shape of a shaft member, which measures the position of the target point on the outer peripheral surface to be measured.
前記第二軸部は、周方向において前記被測定外周面の前記円弧形状とは異なる非円弧形状に形成された非円弧外周面を備える不完全円柱である、請求項1又は2に記載の軸部材の形状測定方法。 The shaft according to claim 1 or 2 , wherein the second shaft portion is an incomplete cylinder having a non-circular outer peripheral surface formed in a non-arc shape different from the arc shape of the outer peripheral surface to be measured in the circumferential direction. Method of measuring the shape of a member. 前記第二軸部の前記非円弧外周面は、前記被測定外周面と背向する部分にラック歯が形成されている、請求項に記載の軸部材の形状測定方法。 The method for measuring the shape of a shaft member according to claim 3 , wherein rack teeth are formed on the non-arc outer peripheral surface of the second shaft portion so as to face the outer peripheral surface to be measured. 前記第二軸部の前記被測定外周面は、前記周方向において軸線回りで180度未満の範囲に形成されている、請求項3又は4に記載の軸部材の形状測定方法。 The method for measuring the shape of a shaft member according to claim 3 or 4 , wherein the outer peripheral surface of the second shaft portion to be measured is formed in a range of less than 180 degrees around the axis in the circumferential direction. 前記第一工程は、前記基準外周面において第一所定位相に位置し前記軸線方向位置が異なる複数の第一基準点の位置、及び、第二所定位相に位置し前記軸線方向位置が異なる複数の第二基準点の位置を測定し、
前記第二工程は、前記被測定外周面において前記第一所定位相と同位相に位置する第一対象点の位置、及び、前記第二所定位相と同位相に位置する第二対象点の位置を測定し、
前記第三工程は、
前記第一対象点を含む径方向断面において前記複数の第一基準点に対応する第一理想対象点を演算し、
前記第二対象点を含む径方向断面において前記複数の第二基準点に対応する第二理想対象点を演算し、
前記第一理想対象点と前記第一対象点とを比較することにより、前記第一所定位相における前記基準外周面に対する前記被測定外周面の変位量を演算し、
前記第二理想対象点と前記第二対象点とを比較することにより、前記第二所定位相における前記基準外周面に対する前記被測定外周面の変位量を演算する、請求項1−5の何れか一項に記載の軸部材の形状測定方法。
In the first step, the positions of a plurality of first reference points located in the first predetermined phase and different from each other in the axial direction on the reference outer peripheral surface, and a plurality of positions located in the second predetermined phase and different in the axial direction. Measure the position of the second reference point and
In the second step, the position of the first target point located in the same phase as the first predetermined phase and the position of the second target point located in the same phase as the second predetermined phase on the outer peripheral surface to be measured are set. Measure and
The third step is
The first ideal target point corresponding to the plurality of first reference points is calculated in the radial cross section including the first target point.
The second ideal target point corresponding to the plurality of second reference points is calculated in the radial cross section including the second target point.
By comparing the first ideal target point with the first target point, the amount of displacement of the outer peripheral surface to be measured with respect to the reference outer peripheral surface in the first predetermined phase is calculated.
Any one of claims 1-5 , which calculates the amount of displacement of the outer peripheral surface to be measured with respect to the reference outer peripheral surface in the second predetermined phase by comparing the second ideal target point with the second target point. The method for measuring the shape of a shaft member according to item 1.
前記第一工程は、前記基準外周面において第一所定位相に位置し前記軸線方向位置が異なる複数の第一基準点の位置、前記第一所定位相から90°未満である第二所定位相に位置し前記軸線方向位置が異なる複数の第二基準点の位置を測定し、及び、前記第一所定位相から90°未満である第三所定位相に位置し前記軸線方向位置が異なる複数の第三基準点の位置を測定し、
前記第二工程は、前記被測定外周面において前記第一所定位相と同位相に位置する第一対象点の位置、前記第二所定位相と同位相に位置する第二対象点の位置を測定し、及び、前記第三所定位相と同位相に位置する第三対象点の位置を測定し、
前記第三工程は、
前記第一対象点を含む径方向断面において前記複数の第一基準点に対応する第一理想対象点を演算し、
前記第二対象点を含む径方向断面において前記複数の第二基準点に対応する第二理想対象点を演算し、
前記第三対象点を含む径方向断面において前記複数の第三基準点に対応する第三理想対象点を演算し、
前記第一理想対象点と前記第一対象点とを比較することにより、前記第一所定位相における前記基準外周面に対する前記被測定外周面の変位量を演算し、
前記第二理想対象点と前記第二対象点とを比較することにより、前記第二所定位相における前記基準外周面に対する前記被測定外周面の変位量を演算し、
前記第三理想対象点と前記第三対象点とを比較することにより、前記第三所定位相における前記基準外周面に対する前記被測定外周面の変位量を演算する、請求項1−5の何れか一項に記載の軸部材の形状測定方法。
In the first step, the positions of a plurality of first reference points that are located in the first predetermined phase on the reference outer peripheral surface and have different axial positions, and are located in the second predetermined phase that is less than 90 ° from the first predetermined phase. The positions of a plurality of second reference points having different axial positions are measured, and a plurality of third reference points located in a third predetermined phase less than 90 ° from the first predetermined phase and having different axial positions. Measure the position of the point and
In the second step, the position of the first target point located in the same phase as the first predetermined phase and the position of the second target point located in the same phase as the second predetermined phase are measured on the outer peripheral surface to be measured. , And the position of the third target point located in the same phase as the third predetermined phase is measured.
The third step is
The first ideal target point corresponding to the plurality of first reference points is calculated in the radial cross section including the first target point.
The second ideal target point corresponding to the plurality of second reference points is calculated in the radial cross section including the second target point.
The third ideal target point corresponding to the plurality of third reference points is calculated in the radial cross section including the third target point.
By comparing the first ideal target point with the first target point, the amount of displacement of the outer peripheral surface to be measured with respect to the reference outer peripheral surface in the first predetermined phase is calculated.
By comparing the second ideal target point with the second target point, the amount of displacement of the outer peripheral surface to be measured with respect to the reference outer peripheral surface in the second predetermined phase is calculated.
Any one of claims 1-5 , which calculates the amount of displacement of the outer peripheral surface to be measured with respect to the reference outer peripheral surface in the third predetermined phase by comparing the third ideal target point with the third target point. The method for measuring the shape of a shaft member according to item 1.
前記第一センサは、
前記軸部材の軸線に直交する方向であって前記基準点を通る方向である所定の測定方向における前記基準点の位置を測定するセンサであり、
前記所定の測定方向と直交する方向に所定の測定範囲を備え、
前記所定の測定範囲内で前記所定の測定方向と直交する前記基準外周面から離れたセンサ基準面を備え、
前記センサ基準面と前記基準点との距離が、前記センサ基準面と前記基準外周面における前記基準点以外の点との距離に対して最短距離となることにより、前記基準点の位置が測定可能となり、
前記第二センサは、
前記軸部材の軸線に直交する方向であって前記対象点を通る方向である所定の測定方向における前記対象点の位置を測定するセンサであり、
前記所定の測定方向と直交する方向に所定の測定範囲を備え、
前記所定の測定範囲内で前記所定の測定方向と直交する前記被測定外周面から離れたセンサ基準面を備え、
前記センサ基準面と前記対象点との距離が、前記センサ基準面と前記被測定外周面における前記対象点以外の点との距離に対して最短距離となることにより、前記対象点の位置が測定可能となる、請求項1−7の何れか一項に記載の軸部材の形状測定方法。
The first sensor is
A sensor that measures the position of the reference point in a predetermined measurement direction that is orthogonal to the axis of the shaft member and passes through the reference point.
A predetermined measurement range is provided in a direction orthogonal to the predetermined measurement direction.
A sensor reference plane away from the reference outer peripheral surface that is orthogonal to the predetermined measurement direction within the predetermined measurement range is provided.
The position of the reference point can be measured by making the distance between the sensor reference surface and the reference point the shortest distance with respect to the distance between the sensor reference surface and the point other than the reference point on the reference outer peripheral surface. Next,
The second sensor is
A sensor that measures the position of the target point in a predetermined measurement direction that is orthogonal to the axis of the shaft member and passes through the target point.
A predetermined measurement range is provided in a direction orthogonal to the predetermined measurement direction.
A sensor reference plane away from the outer peripheral surface to be measured, which is orthogonal to the predetermined measurement direction within the predetermined measurement range, is provided.
The position of the target point is measured by making the distance between the sensor reference surface and the target point the shortest distance with respect to the distance between the sensor reference surface and the outer peripheral surface to be measured other than the target point. The method for measuring the shape of a shaft member according to any one of claims 1 to 7, which is possible.
前記第一及び第二センサはレーザセンサであり、
前記レーザセンサが所定のスポット径で照射するレーザ光の光軸の方向が前記所定の測定方向と一致し、
前記所定の測定範囲は前記所定のスポット径と一致する、請求項に記載の軸部材の形状測定方法。
The first and second sensors are laser sensors.
The direction of the optical axis of the laser beam emitted by the laser sensor with a predetermined spot diameter coincides with the predetermined measurement direction.
The method for measuring the shape of a shaft member according to claim 8 , wherein the predetermined measurement range coincides with the predetermined spot diameter.
径方向断面が円形に形成された基準外周面を有する第一軸部と、径方向断面が前記基準外周面と同径となる円弧形状に形成された被測定外周面を備える第二軸部と、を備える軸部材の形状測定装置であって、
前記基準外周面において所定位相に位置し軸線方向位置が異なる複数の基準点の位置を測定する接触式又は非接触式の第一センサと、
前記被測定外周面において、前記軸部材の軸線方向に移動しながら、前記所定位相と同位相で、且つ軸線方向位置が異なる複数の対象点の位置を測定する接触式又は非接触式の第二センサと、
前記対象点を含む径方向断面において前記複数の基準点に対応する理想対象点を演算し、前記理想対象点と前記対象点とを比較することにより前記基準外周面に対する前記被測定外周面の前記複数の前記対象点に関する変位量を演算する制御部と、
を備える軸部材の形状測定装置。
A first shaft portion having a reference outer peripheral surface having a circular radial cross section, and a second shaft portion having an arc-shaped outer peripheral surface to be measured having a radial cross section having the same diameter as the reference outer peripheral surface. A shaft member shape measuring device provided with,
A contact-type or non-contact-type first sensor that measures the positions of a plurality of reference points that are located in a predetermined phase on the reference outer peripheral surface and have different axial positions.
A contact-type or non-contact-type second that measures the positions of a plurality of target points in the same phase as the predetermined phase and different in the axial direction while moving in the axial direction of the shaft member on the outer peripheral surface to be measured. With the sensor
It calculates the ideal target point corresponding to the plurality of reference points in radial cross-section that includes the target point, the said measured outer peripheral surface with respect to the reference outer peripheral surface by comparing the target point and the ideal target point A control unit that calculates the amount of displacement for a plurality of the target points,
A shaft member shape measuring device comprising.
径方向断面が円形に形成された基準外周面を有する第一軸部と、径方向断面が前記基準外周面と同径となる円弧形状に形成された被測定外周面を備える第二軸部と、を備える軸部材の形状測定装置であって、A first shaft portion having a reference outer peripheral surface having a circular radial cross section, and a second shaft portion having an arc-shaped outer peripheral surface to be measured having a radial cross section having the same diameter as the reference outer peripheral surface. A shaft member shape measuring device provided with,
前記基準外周面において、前記軸部材の軸線方向に移動しながら、所定位相に位置し軸線方向位置が異なる複数の基準点の位置を測定する非接触式の第一センサと、A non-contact type first sensor that measures the positions of a plurality of reference points that are located in a predetermined phase and have different axial positions while moving in the axial direction of the shaft member on the reference outer peripheral surface.
前記被測定外周面において、前記所定位相と同位相に位置する対象点の位置を測定する非接触式の第二センサと、A non-contact type second sensor that measures the position of a target point located in the same phase as the predetermined phase on the outer peripheral surface to be measured.
前記対象点を含む径方向断面において前記複数の基準点に対応する理想対象点を演算し、前記理想対象点と前記対象点とを比較することにより前記基準外周面に対する前記被測定外周面の前記対象点に関する変位量を演算する制御部と、By calculating the ideal target points corresponding to the plurality of reference points in the radial cross section including the target points and comparing the ideal target points with the target points, the said outer peripheral surface to be measured with respect to the reference outer peripheral surface. A control unit that calculates the amount of displacement related to the target point,
を備える軸部材の形状測定装置。A shaft member shape measuring device comprising.
JP2017039486A 2017-03-02 2017-03-02 Shaft member shape measurement method and shape measurement device Active JP6849970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017039486A JP6849970B2 (en) 2017-03-02 2017-03-02 Shaft member shape measurement method and shape measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017039486A JP6849970B2 (en) 2017-03-02 2017-03-02 Shaft member shape measurement method and shape measurement device

Publications (2)

Publication Number Publication Date
JP2018146296A JP2018146296A (en) 2018-09-20
JP6849970B2 true JP6849970B2 (en) 2021-03-31

Family

ID=63591031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017039486A Active JP6849970B2 (en) 2017-03-02 2017-03-02 Shaft member shape measurement method and shape measurement device

Country Status (1)

Country Link
JP (1) JP6849970B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940761A (en) * 1972-08-23 1974-04-16
JPS6251211U (en) * 1985-09-18 1987-03-30
JPH05123753A (en) * 1991-10-31 1993-05-21 Tokushin Denki Kogyo Kk Stress relief device for rack bar
JP2003262514A (en) * 2002-03-11 2003-09-19 Daido Steel Co Ltd Management system for round steel product

Also Published As

Publication number Publication date
JP2018146296A (en) 2018-09-20

Similar Documents

Publication Publication Date Title
CA2682635C (en) Method for measuring the roundness of round profiles
TWI680027B (en) Method and device for the machining of a tool
KR101721969B1 (en) Method for the location determination of the involutes in gears
JP5952269B2 (en) Method for measuring geometric parameters of coated screw joints
EP1154226B9 (en) Procedure and device for measuring of thickness and unroundness of elongated objects
JP5001762B2 (en) Attitude control method and attitude control device
US10189137B2 (en) Tool shape measuring apparatus
EP2549225B1 (en) Shape measurement method and shape measurement apparatus for tires
Wang et al. 3D measurement of crater wear by phase shifting method
KR102559309B1 (en) Method and device for measuring Changsung machining tools
EP3146293B1 (en) Device and method for geometrically measuring an object
EP2423639B1 (en) Method for determining gap dimensions and/or flushness of bodywork sections of a motor vehicle and control program
WO2017159626A1 (en) Device, system, and method for inspecting crankshaft shape
US9996075B2 (en) Inverse-contour machining to eliminate residual stress distortion
TW201616256A (en) Method and device for the determination of at least one model parameter of a virtual tool model of a tool
JP7010672B2 (en) Wheel shape measurement method
Fischer et al. Iterative learning control of single point incremental sheet forming process using digital image correlation
JP6849970B2 (en) Shaft member shape measurement method and shape measurement device
JP6710243B2 (en) Tool shape measuring device
JP2006266910A (en) Measuring method and measuring device for cylindrical shape
US20190204571A1 (en) Method and Device for Producing an Optical Component Having at Least Three Monolithically Arranged Optical Functional Surfaces and Optical Component
JP6362957B2 (en) Rolling roll measuring device and rolling roll grinding method
JP6751688B2 (en) Evaluation device and evaluation method
JP7245033B2 (en) Surface measuring device, surface measuring method, and surface measuring method for object having circular surface to be measured
JP2898108B2 (en) Non-contact free-form surface measuring device for measuring gear tooth profile

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200114

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200114

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20200114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210225

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210301

R150 Certificate of patent or registration of utility model

Ref document number: 6849970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250