JP6848507B2 - Pressurized reaction device and leaching treatment method of valuable metal using it - Google Patents

Pressurized reaction device and leaching treatment method of valuable metal using it Download PDF

Info

Publication number
JP6848507B2
JP6848507B2 JP2017027488A JP2017027488A JP6848507B2 JP 6848507 B2 JP6848507 B2 JP 6848507B2 JP 2017027488 A JP2017027488 A JP 2017027488A JP 2017027488 A JP2017027488 A JP 2017027488A JP 6848507 B2 JP6848507 B2 JP 6848507B2
Authority
JP
Japan
Prior art keywords
stirring
blowing pipe
gas blowing
stirrer
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017027488A
Other languages
Japanese (ja)
Other versions
JP2018130690A (en
Inventor
剛秀 本間
剛秀 本間
大志 内藤
大志 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2017027488A priority Critical patent/JP6848507B2/en
Publication of JP2018130690A publication Critical patent/JP2018130690A/en
Application granted granted Critical
Publication of JP6848507B2 publication Critical patent/JP6848507B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、加圧反応装置、及びそれを用いた有価金属の浸出処理方法に関する。 The present invention relates to a pressure reaction apparatus and a method for leaching valuable metals using the same.

化学プラント等の反応装置として、撹拌しながら反応容器内の液体やスラリー等の液相に気体を導入して反応させ、化学処理を行うものが多く用いられている。 As a reaction device of a chemical plant or the like, a reaction device in which a gas is introduced into a liquid phase such as a liquid or a slurry in a reaction vessel to react with stirring is often used to perform a chemical treatment.

例えば特許文献1には、容器の長手方向軸のまわりに回転可能なシャフトと、そのシャフトに取り付けられ、軸方向に離間して配置された径方向に延びる第1及び第2のインペラとを備えた混合容器が開示されている。具体的に、この混合容器においては、第1のインペラは軸方向に第2のインペラに向けて流体を移動させるように動作可能な複数の湾曲したブレードを含み、第2のインペラは軸方向に第1のインペラに向けて流体を移動させるように動作可能な複数の湾曲したブレードを含み、また、容器底面にガス導入口が設けられている。このような構成とすることにより、混合容器の中央部において強い乱流領域を生成させて、容器内の液体の混合を容易に制御できるようにしている。 For example, Patent Document 1 includes a shaft that is rotatable around a longitudinal axis of a container, and first and second impellers that are attached to the shaft and are arranged apart in the axial direction and extend in the radial direction. The mixing container is disclosed. Specifically, in this mixing vessel, the first impeller includes a plurality of curved blades that can move the fluid axially toward the second impeller, and the second impeller is axial. It includes a plurality of curved blades capable of moving the fluid toward the first impeller, and is provided with a gas inlet on the bottom surface of the container. With such a configuration, a strong turbulent region is generated in the central portion of the mixing container, and the mixing of the liquid in the container can be easily controlled.

しかしながら、特許文献1に記載の混合容器では、中央に大きく設けられた気体導入口から大きな気泡が導入されると、混合容器内で気泡径が小さくならないうちに混合容器の上部の液面まで達してしまうという問題がある。そのため、このような混合容器を化学反応に用いる反応容器として適用したとしても、反応に寄与しない気体が多くなり、反応効率が低下してしまう。 However, in the mixing container described in Patent Document 1, when large bubbles are introduced from the gas introduction port provided in the center, the liquid level reaches the upper part of the mixing container before the bubble diameter becomes small in the mixing container. There is a problem that it will end up. Therefore, even if such a mixing vessel is applied as a reaction vessel used for a chemical reaction, the amount of gas that does not contribute to the reaction increases, and the reaction efficiency decreases.

このことは、反応容器内で化学反応に用いられる気体としては容器内の液相中でその気泡径を小さくすることが重要であり、小気泡にするほど、気液界面の面積が大きくなり、また気泡が液体内を循環滞留する時間が長くなること等から、気体成分が液相に溶け込む量が多くなり、その結果として液相中の気体濃度が高まって反応効率を向上させる効果が期待できるからである。つまり、反応容器においては、導入する気体を液相中で小気泡にして気泡量を最大化させることが重要となる。 This means that it is important for the gas used for the chemical reaction in the reaction vessel to have a smaller bubble diameter in the liquid phase in the vessel, and the smaller the bubbles, the larger the area of the gas-liquid interface. In addition, since the air bubbles circulate and stay in the liquid for a long time, the amount of the gas component dissolved in the liquid phase increases, and as a result, the gas concentration in the liquid phase increases, which is expected to have the effect of improving the reaction efficiency. Because. That is, in the reaction vessel, it is important to maximize the amount of bubbles by making the gas to be introduced into small bubbles in the liquid phase.

液相中での気泡径を小さくする技術として、スパージャー(散気管)を用いる方法や、撹拌翼下に気体を吹き込んで翼で気泡を分断させる方法等が知られている。例えば、気体の吹き込み量が多い場合には、フラッディング現象により撹拌翼が空回りして、気体が液中に溶け込む量が小さくなることが知られており、その対策として、特許文献2には、翼より大きな径のリングスパージャーを用いて、吹き出た気泡を装置内で循環する液体の流れに乗せる技術が開示されている。 As a technique for reducing the bubble diameter in the liquid phase, a method using a sparger (air diffuser), a method of blowing a gas under the stirring blade and dividing the bubble by the blade, and the like are known. For example, it is known that when the amount of gas blown is large, the stirring blade spins idle due to the flooding phenomenon, and the amount of gas dissolved in the liquid becomes small. A technique has been disclosed in which a ring sparger having a larger diameter is used to place blown air bubbles on a flow of liquid circulating in the apparatus.

しかしながら、スパージャーを、気体を導入する加圧反応装置に適用しようとしたとき、スパージャーから装置内に吹き込む気体の圧力を、反応容器の内圧とスパージャーの圧力損出とを加えた値を超えて加圧する必要がある。また、スパージャーは、気泡出口径が小さいために圧力損出が大きいため、加圧設備のコストが高くなる問題がある。さらに、反応によっては、中間物を含む反応生成物や反応後の残渣が付着物となってスパージャーの小さな気泡出口を塞ぐことがあり、付着物を取り除くために装置を停止させることで稼働率が低下するという問題もある。このような種々の問題点により、加圧反応装置にスパージャーを用いることは困難であった。 However, when the spurger is applied to a pressure reactor that introduces gas, the pressure of the gas blown into the device from the spurger is the sum of the internal pressure of the reaction vessel and the pressure loss of the spurger. It is necessary to pressurize beyond. Further, the spurger has a problem that the cost of the pressurizing equipment is high because the pressure loss is large because the bubble outlet diameter is small. Furthermore, depending on the reaction, reaction products containing intermediates and residues after the reaction may become deposits that block the small bubble outlets of the spudger, and the operating rate is increased by stopping the device to remove the deposits. There is also the problem that Due to these various problems, it has been difficult to use a spurger for the pressurizing reaction device.

気体を導入する加圧反応装置においては、圧力損出を最小化するために気体吹き込み管の管径や出口径を可能な限り大きくすることが好ましい。ところが、気体吹き込み管から放出される気泡の気泡径は、気体吹き込み管の出口径に依存することがよく知られており、圧力損出を最小化させようとすると気泡径は大きくなってしまう。そして、気泡径が大きくなることは、フラッディング現象を起こしやすくなることや気液界面の面積が小さくなることを意味し、好ましくない。このことから、圧力損出が小さい大きな出口径から放出された大きな径の気泡を、小さな気泡径にするための技術が望まれてきた。 In the pressure reactor that introduces gas, it is preferable to make the pipe diameter and the outlet diameter of the gas blowing pipe as large as possible in order to minimize the pressure loss. However, it is well known that the bubble diameter of the bubbles discharged from the gas blowing pipe depends on the outlet diameter of the gas blowing pipe, and the bubble diameter becomes large when trying to minimize the pressure loss. An increase in the bubble diameter means that a flooding phenomenon is likely to occur and the area of the gas-liquid interface is small, which is not preferable. For this reason, a technique for reducing a large diameter bubble discharged from a large outlet diameter having a small pressure loss to a small bubble diameter has been desired.

さらに、化学反応装置内で化学反応を促進させるために、気体の導入量を増やせば、上記説明した通りフラッディング現象が起きやすくなる。したがって、圧力損出が小さい大きな出口径から放出された大きな径の気泡を小さな気泡径にするとともに、気体の導入量が増えてもフラッディング現象を起きにくくする技術が望まれてきた。 Further, if the amount of gas introduced is increased in order to promote the chemical reaction in the chemical reaction apparatus, the flooding phenomenon is likely to occur as described above. Therefore, there has been a demand for a technique for reducing a large diameter bubble discharged from a large outlet diameter having a small pressure loss to a small bubble diameter and making the flooding phenomenon less likely to occur even if the amount of gas introduced increases.

特表2009−536095号公報Special Table 2009-536095 特開2014−113564号公報Japanese Unexamined Patent Publication No. 2014-11564

本発明は、このような実情を鑑みてなされたものであり、装置内に導入された気体の気泡を効率的に分断して小さな気泡径とすることができるとともに、気体の導入量が増えてもフラッディング現象の発生を抑制することができる加圧反応装置を提供することを目的とする。 The present invention has been made in view of such a situation, and it is possible to efficiently divide the gas bubbles introduced into the apparatus into a small bubble diameter and increase the amount of gas introduced. It is also an object of the present invention to provide a pressure reactor capable of suppressing the occurrence of a flooding phenomenon.

本発明者は、上述した課題を解決するために鋭意検討を重ねた。その結果、撹拌機と、気体吹き込み管とを備えた加圧反応装置において、その気体吹き込み管の出口位置を撹拌機に対して特定に位置と方向で配置することにより、気体の気泡を効率的に分断させ、気体の導入量が増えてもフラッディング現象の発生を抑制することができることを見出し、本発明を完成させた。 The present inventor has made extensive studies to solve the above-mentioned problems. As a result, in the pressurizing reaction apparatus provided with the stirrer and the gas blowing pipe, the gas bubbles are efficiently arranged by arranging the outlet position of the gas blowing pipe in a specific position and direction with respect to the stirrer. The present invention was completed by finding that the occurrence of the flooding phenomenon can be suppressed even if the amount of gas introduced increases.

(1)本発明の第1の発明は、撹拌機と、気体吹き込み管とを備えた加圧反応装置であって、前記撹拌機は、当該加圧反応装置の上部より垂下した撹拌軸と、該撹拌軸に対して垂直に設けられた撹拌羽根とを有し、当該加圧反応装置を前記撹拌軸の軸方向に沿った断面で正面視して、前記撹拌軸から延長した線が当該加圧反応装置の内壁と交わる位置から前記撹拌羽根の高さ位置までをHとし、該撹拌軸の中心からの該撹拌羽根の最大長さをRとしたとき、前記気体吹き込み管の出口中心が、前記撹拌軸から延長した線が当該加圧反応装置の内壁と交わる位置からの高さをh、該撹拌軸の中心からの距離をrとし、前記撹拌軸に対して垂直な断面において、前記気体吹き込み管の出口中心線の延長方向が前記撹拌機により発生する撹拌流の正方向側に向けられ、前記気体吹き込み管の出口中心における、前記撹拌軸の中心からの距離rにより形成される円の接線方向と、該気体吹き込み管の出口中心線の延長方向とのなす角度を、前記接線から前記撹拌軸に向かう方向を正としてθとした場合に、以下の式を満足する位置に設けられている、加圧反応装置である。
0.45H≦h≦0.55
1.1R≦r≦1.4R
20°≦θ≦60°
(1) The first invention of the present invention is a pressure reaction device provided with a stirrer and a gas blowing pipe, wherein the stirrer includes a stirring shaft hanging from the upper part of the pressure reaction device. It has a stirring blade provided perpendicular to the stirring shaft, and the pressurizing reaction device is viewed from the front in a cross section along the axial direction of the stirring shaft, and a line extending from the stirring shaft is the addition. When H is defined as H from the position where it intersects the inner wall of the pressure reaction device to the height position of the stirring blade, and R is defined as the maximum length of the stirring blade from the center of the stirring shaft, the outlet center of the gas blowing pipe is located. The height from the position where the line extending from the stirring shaft intersects the inner wall of the pressure reactor is h, the distance from the center of the stirring shaft is r, and the gas is formed in a cross section perpendicular to the stirring shaft. The extension direction of the outlet center line of the blow pipe is directed to the positive side of the stirring flow generated by the stirrer, and the circle formed by the distance r from the center of the stirring shaft at the outlet center of the gas blow pipe. When the angle formed by the tangent direction and the extension direction of the outlet center line of the gas blowing pipe is θ with the direction from the tangent line toward the stirring axis as positive, the position is provided at a position satisfying the following equation. It is a pressurized reaction device.
0.45H ≤ h ≤ 0.55 H
1.1R ≤ r ≤ 1.4R
20 ° ≤ θ ≤ 60 °

(2)本発明の第2の発明は、第1の発明において、前記気体吹き込み管の出口径は、10mm〜150mmである、加圧反応装置である。 (2) The second invention of the present invention is the pressurizing reaction apparatus in the first invention, wherein the outlet diameter of the gas blowing pipe is 10 mm to 150 mm.

(3)本発明の第3の発明は、第1又は第2の発明において、オートクレーブ装置である、加圧反応装置である。 (3) The third invention of the present invention is a pressure reaction device, which is an autoclave device in the first or second invention.

(4)本発明の第4の発明は、第1乃至第3のいずれかの発明において、ニッケル及びコバルトの混合硫化物を含むスラリーに対して高温高圧下で酸を添加して浸出処理を施すために用いられる、加圧反応装置である。 (4) In the fourth invention of the present invention, in any one of the first to third inventions, an acid is added to a slurry containing a mixed sulfide of nickel and cobalt under high temperature and high pressure to perform a leaching treatment. It is a pressure reaction device used for this purpose.

(5)本発明の第5の発明は、第1乃至第4のいずれかの発明に係る加圧反応装置を用いて、スラリーに含まれる固形物から有価金属を浸出させる、有価金属の浸出処理方法である (5) In the fifth aspect of the present invention, the precious metal leaching treatment for leaching the valuable metal from the solid matter contained in the slurry by using the pressure reaction apparatus according to any one of the first to fourth inventions. Is the way

本発明によれば、装置内に導入された気体の気泡を効率的に分断して小さな気泡径とすることができるとともに、気体の導入量を増やしたとしても、フラッディング現象の発生を抑制できる加圧反応装置を提供することができる。 According to the present invention, the gas bubbles introduced into the apparatus can be efficiently divided into small bubble diameters, and even if the amount of gas introduced is increased, the occurrence of the flooding phenomenon can be suppressed. A pressure reactor can be provided.

また、このような加圧反応装置を用いてスラリー中の固形物に含まれ有価金属を浸出される浸出処理等を行うことで、液相内の気泡量の増大により反応効率が高まり、効果的に有価金属を液中に浸出させることができる。 Further, by performing a leaching treatment or the like in which valuable metals contained in the solid matter in the slurry are leached by using such a pressure reaction device, the reaction efficiency is enhanced by increasing the amount of bubbles in the liquid phase, which is effective. The valuable metal can be leached into the liquid.

オートクレーブ装置の構成を示す図であり、(a)はオートクレーブ装置を水平に切断して内部構造を模式的に示した横断平面図であり、(b)はオートクレーブ装置を垂直に切断して内部構造を模式的に示した縦断側面図である。It is a figure which shows the structure of an autoclave apparatus, (a) is a cross-sectional plan view which typically showed the internal structure by cutting the autoclave apparatus horizontally, (b) is the internal structure which cut | cut the autoclave apparatus vertically. Is a longitudinal side view schematically showing. 図1(a)におけるA−A断面を表す模式図であり、撹拌機による撹拌流について説明するための図である。It is a schematic diagram which shows the cross section AA in FIG. 1A, and is the figure for demonstrating the stirring flow by a stirrer. 図2におけるB−B断面を表す模式図であり、撹拌機による撹拌流について説明するための図である。It is a schematic diagram which shows the BB cross section in FIG. 2, and is the figure for demonstrating the stirring flow by a stirrer. 撹拌軸に垂直な断面を表す模式図であり、気体吹き込み管の出口位置の配置について説明するための図である。It is a schematic diagram which shows the cross section perpendicular to a stirring shaft, and is the figure for demonstrating the arrangement of the outlet position of a gas blowing pipe. 実施例1及び比較例1での処理における、撹拌動力相対値の結果を示すグラフである。It is a graph which shows the result of the stirring power relative value in the processing in Example 1 and Comparative Example 1. 角度θと、液中空気量との関係を示すグラフである。It is a graph which shows the relationship between the angle θ and the amount of air in a liquid. 角度θと撹拌動力相対値との関係を示すグラフである。It is a graph which shows the relationship between the angle θ and the relative value of agitation power.

以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲で種々の変更が可能である。また、本明細書において、「X〜Y」(X、Yは任意の数値)との表記は、「X以上Y以下」の意味である。 Hereinafter, a specific embodiment of the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiments, and various modifications can be made without changing the gist of the present invention. Further, in the present specification, the notation "X to Y" (X and Y are arbitrary numerical values) means "X or more and Y or less".

本実施の形態に係る加圧反応装置は、撹拌機と、気体吹き込み管とを備えたものであり、高圧下での反応を可能とするものである。この加圧反応装置は、例えば、内部を飽和蒸気によって高温高圧にする耐熱耐圧反応容器であるオートクレーブ装置として適用することができる。以下では、具体的にオートクレーブ装置とその装置内で行われる化学反応について説明するがこれに限られるものではなく、撹拌機と、気体吹き込み管とを備えた加圧反応装置内で液相を化学反応させる装置であれば、同様の効果を奏する。 The pressurizing reaction apparatus according to the present embodiment includes a stirrer and a gas blowing pipe, and enables a reaction under high pressure. This pressurization reaction device can be applied, for example, as an autoclave device which is a heat-resistant and pressure-resistant reaction vessel whose inside is heated to a high temperature and high pressure by saturated steam. In the following, the autoclave apparatus and the chemical reaction carried out in the apparatus will be specifically described, but the present invention is not limited to this, and the liquid phase is chemically synthesized in a pressurized reactor equipped with a stirrer and a gas blowing pipe. If it is a device that reacts, the same effect can be obtained.

図1は、オートクレーブ装置の構成を示す図である。図1の(a)は、オートクレーブ装置1を水平に切断して内部構造を模式的に示した横断平面図であり、(b)は、オートクレーブ装置1を垂直に切断して内部構造を模式的に示した縦断側面図である。オートクレーブ装置1は、図1のように、例えば円筒形状の容器が横型に設置されたものである。 FIG. 1 is a diagram showing a configuration of an autoclave device. FIG. 1A is a cross-sectional plan view schematically showing the internal structure by horizontally cutting the autoclave device 1, and FIG. 1B is a schematic view of the internal structure schematically shown by cutting the autoclave device 1 vertically. It is a vertical sectional side view shown in. As shown in FIG. 1, the autoclave device 1 is, for example, a cylindrical container installed horizontally.

オートクレーブ装置1は、例えば、液相として少なくともニッケル及びコバルトを含む混合硫化物(固形物)を含有する原料スラリー(原料となる固形物と浸出液との懸濁液、以下では単に「スラリー」ともいう)を、硫酸物等の溶解液とする浸出処理に用いられる。より具体的に、オートクレーブ装置1では、加熱、加圧されたスラリーを収容し、硫酸等の酸を添加して撹拌することによって、高温高圧下でスラリー中の固形物に含まれる有価金属を高温加圧浸出する。 The autoclave apparatus 1 is, for example, a raw material slurry (suspension of a raw material solid and a leachate, hereinafter simply referred to as “slurry”) containing a mixed sulfide (solid) containing at least nickel and cobalt as a liquid phase. ) Is used for leaching treatment as a solution of sulfate or the like. More specifically, in the autoclave apparatus 1, the heated and pressurized slurry is housed, and by adding an acid such as sulfuric acid and stirring, the valuable metal contained in the solid matter in the slurry is heated to a high temperature under high temperature and high pressure. Pressurized leaching.

浸出される有価金属としては、特に限定されず、原料固形物としてニッケル及びコバルトの混合硫化物を用いた場合には、ニッケル、コバルトが有価金属として浸出される。 The valuable metal to be leached is not particularly limited, and when a mixed sulfide of nickel and cobalt is used as the raw material solid, nickel and cobalt are leached as valuable metals.

また、オートクレーブ装置1内における処理条件については、例えば、装置内圧力としては3気圧以上に加圧し、また温度は100℃以上とする。 Regarding the processing conditions in the autoclave device 1, for example, the pressure inside the device is pressurized to 3 atm or more, and the temperature is 100 ° C. or more.

図1に示すように、オートクレーブ装置1は、複数の区画室10を備えている。各区画室10は、オートクレーブ装置1においてスラリーに対する浸出処理等の処理を施す反応場となる空間である。具体的に、区画室10は、オートクレーブ装置1内に設けられた隔壁40によって複数に区画されている。図1に示すオートクレーブ装置1の例では、4つの隔壁40(40A,40B,40C,40D)によって5区画に区画された5つの区画室10(10A,10B,10C,10D,10E)が設けられている。なお、オートクレーブ装置における区画室の数は、原料や浸出条件等に応じて適宜設定することができるものである。 As shown in FIG. 1, the autoclave device 1 includes a plurality of compartments 10. Each compartment 10 is a space that serves as a reaction field for performing a treatment such as leaching treatment on the slurry in the autoclave device 1. Specifically, the partition chamber 10 is partitioned by a partition wall 40 provided in the autoclave device 1. In the example of the autoclave device 1 shown in FIG. 1, five compartments 10 (10A, 10B, 10C, 10D, 10E) divided into five compartments by four partition walls 40 (40A, 40B, 40C, 40D) are provided. ing. The number of compartments in the autoclave device can be appropriately set according to the raw materials, leaching conditions, and the like.

各区画室10は、少なくとも、スラリーを撹拌するための撹拌機20と、スラリーに空気等の気体を供給するための気体吹き込み管30と、が設けられている。具体的に、各区画室10A〜10E内には、それぞれ、撹拌機20(20A,20B,20C,20D,20E)と、気体吹き込み管30(30A,30B,30C,30D,30E)とが設けられている。 Each compartment 10 is provided with at least a stirrer 20 for stirring the slurry and a gas blowing pipe 30 for supplying a gas such as air to the slurry. Specifically, a stirrer 20 (20A, 20B, 20C, 20D, 20E) and a gas blowing pipe 30 (30A, 30B, 30C, 30D, 30E) are provided in each of the compartments 10A to 10E, respectively. ing.

[区画室での浸出処理]
区画室10は、上流側(図1の左側)から順に、第1の区画室10A、第2の区画室10B・・・と続き、最下流側(図1の右側)が最終の第5の区画室10Eで構成されている。オートクレーブ装置1においては、最上流の第1の区画室10Aに原料となるスラリーが装入され、また、第1の区画室10Aの上部から垂下された配管を介して硫酸等の溶液がスラリーに供給される。そして、第1の区画室10Aでは、後述する撹拌機20Aによる撹拌と気体吹き込み管30Aにより供給された酸素によって、スラリー中の固形物に含まれる有価金属が溶液中に浸出される。
[Leaching in the compartment]
The compartment 10 is followed by the first compartment 10A, the second compartment 10B, and the like in order from the upstream side (left side in FIG. 1), and the most downstream side (right side in FIG. 1) is the final fifth. It is composed of a compartment 10E. In the autoclave device 1, the slurry as a raw material is charged into the first compartment 10A, which is the most upstream, and a solution such as sulfuric acid is added to the slurry through a pipe hanging from the upper part of the first compartment 10A. Supplied. Then, in the first compartment 10A, the valuable metal contained in the solid matter in the slurry is leached into the solution by the stirring by the stirrer 20A described later and the oxygen supplied by the gas blowing pipe 30A.

第1の区画室10Aにてスラリーの撹拌が施されると同時に、そのスラリーの一部は、第1の区画室10Aと第2の区画室10Bとを区画する隔壁40Aの上部をオーバーフローして、第2の区画室10Bへと移送される。第2の区画室10Bでは、第1の区画室10Aにおける処理と同様に、撹拌機20Bによる撹拌によって順次浸出処理が進行する。なお、このとき、第2の区画室10Bにおいても、その上部から配管を垂下させて、浸出に用いる硫酸等の溶液やスラリー等を供給することもできる。 At the same time that the slurry is agitated in the first compartment 10A, a part of the slurry overflows the upper part of the partition wall 40A that partitions the first compartment 10A and the second compartment 10B. , Transferred to the second compartment 10B. In the second compartment 10B, the leaching treatment proceeds sequentially by stirring with the stirrer 20B, as in the treatment in the first compartment 10A. At this time, also in the second compartment 10B, a pipe can be hung from the upper part thereof to supply a solution such as sulfuric acid or a slurry used for leaching.

以降順次、第3の区画室10C、第4の区画室10Dへとスラリーが主としてオーバーフローにより移送され、各区画室10において浸出処理が進行していく。そして、最下流の第5の区画室10Eにおいても同様にして、スラリーに対する浸出処理が施されると、その第5の区画室10Eに設けられた浸出液排出管(図示しない)を介して、有価金属が浸出されて得られた浸出液を含むスラリーが排出される。 After that, the slurry is sequentially transferred to the third compartment 10C and the fourth compartment 10D mainly by overflow, and the leaching process proceeds in each compartment 10. Then, when the slurry is leached in the same manner in the 5th compartment 10E at the most downstream, it is valuable through the leachate discharge pipe (not shown) provided in the 5th compartment 10E. The slurry containing the leachate obtained by leaching the metal is discharged.

[区画室の構成]
区画室10においては、上述したように、内部のスラリーを撹拌するための撹拌機20と、反応に必要な酸素等の気体を供給するための気体吹き込み管30と、が設けられている(図2、図4参照)。また、区画室10のうち、少なくとも第1の区画室10Aには、原料となるスラリーを装入するための原料スラリー装入管(図示しない)が付設されており、その原料スラリー装入管を介して固形物を含むスラリーが装入される。
[Composition of compartment]
As described above, the partition chamber 10 is provided with a stirrer 20 for stirring the internal slurry and a gas blowing pipe 30 for supplying a gas such as oxygen required for the reaction (FIG. 6). 2. See FIG. 4). Further, in at least the first compartment 10A of the compartments 10, a raw material slurry charging pipe (not shown) for charging the raw material slurry is provided, and the raw material slurry charging pipe is provided. A slurry containing a solid substance is charged through the slurry.

また、区画室10には、例えばその上部から垂下されるようにして、硫酸等の酸溶液やスラリー、蒸気等を供給するための種々の供給配管も付設されている。 Further, the partition chamber 10 is also provided with various supply pipes for supplying an acid solution such as sulfuric acid, a slurry, steam, etc. so as to hang down from the upper portion thereof, for example.

(撹拌機)
撹拌機20は、第1の区画室10A〜第5の区画室10Eのそれぞれに設置されており、各区画室10の内部に装入、移送されたスラリーを撹拌する。
(mixer)
The stirrer 20 is installed in each of the first compartment 10A to the fifth compartment 10E, and stirs the slurry charged and transferred into each compartment 10.

撹拌機20としては、例えば図1(a)における区画室10BのA−A断面を表す図2、及び図4の模式図に示すように、上部より垂下した撹拌軸21と、撹拌軸21の下端位置にその撹拌軸21に対して垂直に設けられた複数の撹拌羽根22と、を有するプロペラ形状のものを用いることができる。このように撹拌機20は、各区画室10の上部天井から垂下され、オートクレーブ装置1を上部から視たとき(図1(a)参照)、各区画室10の中央部分に撹拌軸21が位置するように設けることができる。なお、撹拌軸に対して複数の撹拌羽根を備えたプロペラ形状のものを上下に複数組備えた撹拌機としてもよい。 As the stirrer 20, for example, as shown in FIG. 2 showing the AA cross section of the compartment 10B in FIG. 1A and the schematic view of FIG. 4, the stirring shaft 21 hanging from the upper part and the stirring shaft 21 A propeller-shaped one having a plurality of stirring blades 22 provided at the lower end position perpendicular to the stirring shaft 21 can be used. In this way, the stirrer 20 is hung from the upper ceiling of each compartment 10, and when the autoclave device 1 is viewed from above (see FIG. 1A), the stirring shaft 21 is located in the central portion of each compartment 10. Can be provided in. It should be noted that the stirrer may be provided with a plurality of sets of propellers having a plurality of stirrer blades on the stirring shaft.

撹拌機20は、例えば時計回りに所定の速度で撹拌軸21を回転させ、撹拌羽根22によってスラリーを撹拌する。この撹拌機20による撹拌によって、区画室10内のスラリーには所定の方向への液流が発生する。なお、区画室10内の全体にわたってスラリーが流動されるように、通常は、撹拌羽根22から下向きの方向(撹拌軸21の軸方向において液面とは反対の方向)に向かって液流が発生するように撹拌される。 The agitator 20 rotates the agitation shaft 21 clockwise at a predetermined speed, for example, and agitates the slurry by the agitation blade 22. By stirring with the stirrer 20, a liquid flow in a predetermined direction is generated in the slurry in the partition chamber 10. Normally, a liquid flow is generated from the stirring blade 22 in the downward direction (the direction opposite to the liquid level in the axial direction of the stirring shaft 21) so that the slurry flows throughout the partition chamber 10. It is stirred as it does.

(気体吹き込み管)
気体吹き込み管30は、第1の区画室10A〜第5の区画室10Eのそれぞれに設置されており、各区画室10の内部にあるスラリーの反応に必要な気体成分を供給する。
(Gas blowing pipe)
The gas blowing pipe 30 is installed in each of the first compartment 10A to the fifth compartment 10E, and supplies the gas component necessary for the reaction of the slurry inside each compartment 10.

ここで、少なくともニッケルとコバルトとの混合硫化物を含むスラリーに対する浸出処理に当該オートクレーブ装置1を用いる場合、各区画室10内における、ニッケル硫化物やコバルト硫化物の浸出処理時の反応は、下記式(1)及び式(2)となる。
NiS+2O→NiSO ・・・(1)
CoS+2O→CoSO ・・・(2)
Here, when the autoclave device 1 is used for the leaching treatment of a slurry containing at least a mixed sulfide of nickel and cobalt, the reaction during the leaching treatment of nickel sulfide and cobalt sulfide in each compartment 10 is described by the following formula. (1) and equation (2).
NiS + 2O 2 → NiSO 4 ... (1)
CoS + 2O 2 → CoSO 4 ... (2)

上記反応式に示すように、高温高圧下での浸出処理においては、反応に必要な酸素(O)をスラリー中に供給する必要がある。スラリーに酸素を供給するにあたっては、空気を供給することが通例であり、気体吹き込み管30を介して空気が供給される。 As shown in the above reaction formula, in the leaching treatment under high temperature and high pressure, it is necessary to supply oxygen (O 2 ) required for the reaction into the slurry. When supplying oxygen to the slurry, it is customary to supply air, and air is supplied through the gas blowing pipe 30.

気体吹き込み管30としては、図2及び図4に示すようにそれぞれの区画室10内に1本のみ設けられている態様に限られず、例えば2本等の複数設けられていてもよい。 As shown in FIGS. 2 and 4, the gas blowing pipe 30 is not limited to the mode in which only one is provided in each of the compartments 10, and a plurality of gas blowing pipes 30, for example, may be provided.

なお、オートクレーブ装置1では、気体吹き込み管30以外に、高温高圧状態を維持するための蒸気や、硫酸等の酸を供給して硫酸酸性の浸出液とするための硫酸、濃度調節等の目的で水やスラリー等を供給するための配管等も必要に応じて付設されることもあるが、本実施の形態においては、反応に必要な気体を供給する管を気体吹き込み管30とし、他の供給物の供給を目的とした配管とは区別している。 In the autoclave device 1, in addition to the gas blowing pipe 30, steam for maintaining a high temperature and high pressure state, sulfuric acid for supplying an acid such as sulfuric acid to form a sulfuric acid acidic leachate, and water for the purpose of adjusting the concentration and the like. And pipes for supplying slurry and the like may be attached as needed, but in the present embodiment, the pipe for supplying the gas required for the reaction is the gas blowing pipe 30, and other supplies. It is distinguished from the piping for the purpose of supplying.

[区画室内の液流]
ここで、図2は、図1(a)のA−A断面における模式図であり、撹拌機20により区画室10内で発生する撹拌流について、撹拌軸21の軸方向、つまり液面までの高さ方向での流れを示したものである。なお、撹拌流を見やすくするため、図2中、気体吹き込み管30は破線で表している。図3は、図2のB−B断面における模式図であり、撹拌機20により区画室10内で発生する撹拌流について、気体吹き込み管出口30aの方向と、主要な撹拌領域Sとを示したものである。
[Liquid flow in the compartment]
Here, FIG. 2 is a schematic view in the AA cross section of FIG. 1A, and the stirring flow generated in the partition chamber 10 by the stirrer 20 is in the axial direction of the stirring shaft 21, that is, to the liquid level. It shows the flow in the height direction. In addition, in order to make the stirring flow easy to see, the gas blowing pipe 30 is represented by a broken line in FIG. FIG. 3 is a schematic view of a cross section taken along the line BB of FIG. 2, showing the direction of the gas blowing pipe outlet 30a and the main stirring region S for the stirring flow generated in the compartment 10 by the stirrer 20. It is a thing.

上述したように、通常、区画室10内では、撹拌羽根22から液面とは逆の下向きの方向に向かって撹拌流が発生するように撹拌されるため、撹拌軸21からオートクレーブ装置1の内壁面1wに向かって斜め下方向への撹拌流となる。そして、図2の矢印で示すように、主要な撹拌流は、オートクレーブ装置1の内壁面1wにぶつかった後、その内壁面1wに沿って上方に向かう流れとなり、一部の撹拌流は、内壁面1wに沿って下方に向かう流れとなる。 As described above, normally, in the partition chamber 10, stirring is performed so that a stirring flow is generated from the stirring blade 22 in the downward direction opposite to the liquid level, so that the stirring shaft 21 is inside the autoclave device 1. The stirring flow is diagonally downward toward the wall surface 1w. Then, as shown by the arrow in FIG. 2, the main stirring flow hits the inner wall surface 1w of the autoclave device 1 and then flows upward along the inner wall surface 1w, and some of the stirring flows are inside. The flow is downward along the wall surface 1w.

したがって、撹拌機20によって図2上の斜め右方向に推進された撹拌流は、撹拌機20から液面、オートクレーブ装置1の内壁面1wにわたって広がり、流速も速い大きな反時計回りの流れ(図2中の太線矢印X)と、撹拌機20の右下に発生する流速が遅く小さな時計回りの流れ(図2中の細線矢印Y)となる。撹拌機20により発生した主要な撹拌流である大きな反時計回りの流れは、液面と平行な水平方向の流れと合わせて、渦を巻きながら上方へと向かう流れとなる。 Therefore, the stirring flow propelled diagonally to the right on FIG. 2 by the stirrer 20 spreads from the stirrer 20 to the liquid level and the inner wall surface 1w of the autoclave device 1, and is a large counterclockwise flow having a high flow velocity (FIG. 2). The thick line arrow X) in the middle and the slow and small clockwise flow generated in the lower right of the stirrer 20 (thin line arrow Y in FIG. 2). The large counterclockwise flow, which is the main stirring flow generated by the stirrer 20, becomes an upward flow while swirling together with the horizontal flow parallel to the liquid level.

このような撹拌流を、図2中B―B線に沿って、内壁面1wから撹拌軸21に向かう方向でみていくと、太線矢印Xで示すように速い流速で撹拌流が流動する領域があって、この領域を超えると、細線矢印Yで示すように遅い流速で撹拌流が流動する領域が存在していることになる。このような撹拌流を撹拌軸に垂直な断面からみると、図3に示すように、撹拌流が速い流速で流動する領域(以下、「主要な撹拌領域S」という)は、ドーナツ状に形成されていることになる。そして、この主要な撹拌領域Sでの撹拌流の方向は、図中矢印Zで示すように、反時計回りに外側に向かう渦巻状になっている。 Looking at such a stirring flow in the direction from the inner wall surface 1w toward the stirring shaft 21 along the line BB in FIG. 2, there is a region where the stirring flow flows at a high flow velocity as shown by the thick line arrow X. If this region is exceeded, there is a region in which the stirring flow flows at a slow flow velocity as indicated by the thin line arrow Y. When such a stirring flow is viewed from a cross section perpendicular to the stirring axis, as shown in FIG. 3, a region in which the stirring flow flows at a high flow velocity (hereinafter, referred to as “main stirring region S”) is formed in a donut shape. It will be done. The direction of the stirring flow in the main stirring region S is a spiral shape that goes outward in a counterclockwise direction, as shown by an arrow Z in the figure.

[気体吹き込み管の配置]
気体吹き込み管30においては、撹拌機20による撹拌流によって、気体吹き込み管30から供給される気体の気泡が分断されて小径化し、また、その撹拌流に気泡をのせて液相内の気泡量を増大させることができるようにすることが好ましい。
[Arrangement of gas blowing pipe]
In the gas blowing pipe 30, the gas bubbles supplied from the gas blowing pipe 30 are divided and reduced in diameter by the stirring flow by the stirrer 20, and the bubbles are placed on the stirring flow to reduce the amount of bubbles in the liquid phase. It is preferable to be able to increase it.

撹拌流に気泡をのせて液相内を流動させることにより液相内の気泡量が増大する理由としては、上述したように、主要な撹拌領域Sでは、撹拌流が渦を巻きながら上方へと向かう流れになるため、気泡がその撹拌流とともに移動して、相対的に液面に到達する時間が長くなるためと考えられる。一方で、撹拌流が弱い箇所に位置する気泡は、浮力により液面に向かって上昇する速度が勝り、相対的に液面に到達する時間が短くなる。また、撹拌流が弱い位置では、気泡の合体により気泡が大径化し、気泡径に依存して浮力による上昇速度は増すことから、大径化した気泡は一段と液面に到達するまでの時間が短くなってしまう。 The reason why the amount of bubbles in the liquid phase increases by placing bubbles on the stirring flow and flowing in the liquid phase is that, as described above, in the main stirring region S, the stirring flow swirls upward. This is thought to be because the air bubbles move along with the agitated flow and reach the liquid surface for a relatively long time because the flow is directed toward the liquid surface. On the other hand, the air bubbles located in a place where the stirring flow is weak have a higher speed of rising toward the liquid surface due to buoyancy, and the time to reach the liquid surface is relatively short. In addition, at a position where the stirring flow is weak, the diameter of the bubbles increases due to the coalescence of the bubbles, and the ascending speed due to the buoyancy increases depending on the diameter of the bubbles. It gets shorter.

一方、気体吹き込み管30から供給される気体は、その供給量に応じて流速(以下、「初期の運動エネルギー」という)を持っている。よって、気体吹き込み管30から供給された気泡は、気体吹き込み管出口30aが向いている方向に進もうとし、実際に撹拌流にのって液相内を流動するのは、初期の運動エネルギーが撹拌流による抵抗を相殺してから後となる。気泡の初期の運動エネルギーも考慮すると、気泡は気体吹き込み管出口30aから撹拌機20に向かってある程度の距離を進んでから撹拌流にのって液相内を流動することになる。このある程度の距離は、気体の供給量が増えるにしたがって長くなる。そのため、気体吹き込み管出口30aが撹拌軸21に向かう方向に設置されている場合には、気体吹き込み管30からの気体の供給量が増えるほど、気泡は主要な撹拌領域Sを通り過ぎ矢印Y方向に示す撹拌流が遅い流速で流動する領域に達する量が増える。その結果、気泡が撹拌軸21の下部(撹拌羽根22の下部)に溜まりやすくなり、フラッディング現象を起こしやすくなる。 On the other hand, the gas supplied from the gas blowing pipe 30 has a flow velocity (hereinafter, referred to as "initial kinetic energy") according to the supply amount. Therefore, the bubbles supplied from the gas blowing pipe 30 try to move in the direction in which the gas blowing pipe outlet 30a is facing, and the initial kinetic energy actually flows in the liquid phase along the stirring flow. It will be later after the resistance due to the stirring flow is offset. Considering the initial kinetic energy of the bubbles, the bubbles travel a certain distance from the gas blowing pipe outlet 30a toward the stirrer 20 and then flow in the liquid phase along the stirring flow. This distance increases as the gas supply increases. Therefore, when the gas blowing pipe outlet 30a is installed in the direction toward the stirring shaft 21, as the amount of gas supplied from the gas blowing pipe 30 increases, the bubbles pass through the main stirring region S and in the direction of the arrow Y. The amount of the agitated flow shown reaches the region where it flows at a slow flow rate increases. As a result, air bubbles are likely to accumulate in the lower part of the stirring shaft 21 (lower part of the stirring blade 22), and a flooding phenomenon is likely to occur.

そこで、本実施の形態に係るオートクレーブ装置1においては、図3及び図4に示すように、気体吹き込み管出口30aを特定の位置に配置し、かつ、気体吹き込み管30の出口中心線の延長方向Dが、撹拌軸21の方向ではなく、撹拌機20により発生する撹拌流の正方向側(Z方向)に向けられている。 Therefore, in the autoclave device 1 according to the present embodiment, as shown in FIGS. 3 and 4, the gas blowing pipe outlet 30a is arranged at a specific position, and the extension direction of the outlet center line of the gas blowing pipe 30 D is not directed in the direction of the stirring shaft 21, but in the positive direction (Z direction) of the stirring flow generated by the stirring machine 20.

これにより、気体吹き込み管出口30aから供給された気体の気泡は、気体吹き込み管出口30aの出口中心線の延長方向Dが撹拌軸21と交差する場合に比べ、主要な撹拌領域Sを通過する距離が長くなり、主要な撹拌領域Sにのった気泡は、渦を巻きながら上方に向かう流れに乗って流動する。したがって、気体の供給量が増えても、気泡の多くが主要な撹拌領域Sにのることになり、フラッディング現象を有効に抑制することができる。 As a result, the gas bubbles supplied from the gas blowing pipe outlet 30a pass through the main stirring region S as compared with the case where the extension direction D of the outlet center line of the gas blowing pipe outlet 30a intersects the stirring shaft 21. Is lengthened, and the bubbles in the main stirring region S flow along the upward flow while swirling. Therefore, even if the amount of gas supplied increases, most of the bubbles will be in the main stirring region S, and the flooding phenomenon can be effectively suppressed.

以下、気体吹き込み管出口30aの設置位置と設置方向について具体的に説明する。図4に示すように、当該オートクレーブ装置1を撹拌軸21の軸方向に沿った断面で正面視して、撹拌軸21から延長した線が当該オートクレーブ装置1の内壁面1wと交わる位置から撹拌羽根22の高さ位置までをHとし、その撹拌軸21の中心からの撹拌羽根22の最大長さをRとしたとき、気体吹き込み管出口30aの中心は、撹拌軸21から延長した線が当該オートクレーブ装置1の内壁面1wと交わる位置からの高さをh、撹拌軸21の中心からの距離をrとした場合に、以下の式(i)及び(ii)を満足する位置に設けられている。
0.45H≦h≦0.55H ・・・(i)
1.1R≦r≦1.4R ・・・(ii)
Hereinafter, the installation position and installation direction of the gas blowing pipe outlet 30a will be specifically described. As shown in FIG. 4, when the autoclave device 1 is viewed from the front in a cross section along the axial direction of the stirring shaft 21, the stirring blade is viewed from a position where the line extending from the stirring shaft 21 intersects the inner wall surface 1w of the autoclaving device 1. When H is set up to the height position of 22 and R is the maximum length of the stirring blade 22 from the center of the stirring shaft 21, the line extending from the stirring shaft 21 is the autoclave at the center of the gas blowing pipe outlet 30a. When the height from the position where the inner wall surface 1w of the device 1 intersects is h and the distance from the center of the stirring shaft 21 is r, the devices 1 are provided at positions that satisfy the following equations (i) and (ii). ..
0.45H ≤ h ≤ 0.55 H ... (i)
1.1R ≤ r ≤ 1.4R ... (ii)

ここで、撹拌羽根22の高さ位置のHとは、撹拌軸21の軸方向に対して垂直に設けられた撹拌羽根22の中心軸の高さをいい、その撹拌羽根22の中心軸とは、図4中の線C1で表される軸をいう。また、撹拌軸21の中心から撹拌羽根22の最大長さRに関して、撹拌軸21の中心とは、図4中の線C2で表される軸の中心をいい、最大長さRとは、その撹拌軸21の中心から撹拌羽根22の軸線(線C1)上における撹拌羽根22の先端位置までの長さをいう。 Here, H at the height position of the stirring blade 22 means the height of the central axis of the stirring blade 22 provided perpendicular to the axial direction of the stirring shaft 21, and is the central axis of the stirring blade 22. , Refers to the axis represented by the line C1 in FIG. Further, regarding the maximum length R of the stirring blade 22 from the center of the stirring shaft 21, the center of the stirring shaft 21 means the center of the shaft represented by the line C2 in FIG. 4, and the maximum length R is the center thereof. The length from the center of the stirring shaft 21 to the tip position of the stirring blade 22 on the axis (line C1) of the stirring blade 22.

気体吹き込み管出口30aの位置に関しては、その高さhが0.45H未満(0.45H>h)、又は、0.55Hを超える(0.55H<h)と、気体吹き込み管出口30aから供給された気体の気泡は、主要な撹拌領域Sを外れてしまうか、流動する距離が短くなる。その結果、気泡を分断する効果が低下し、小径の気泡が得られにくくなる。上述したように、気泡の大きさは浮力による上昇速度に影響するため、気泡を分断する効果が低下すると、その気泡が液面に達するまでの時間を短くなることを意味し、液相内の気泡量は減少する。 Regarding the position of the gas injection pipe outlet 30a, the height h is less than 0.45H (0.45H> h), or, and more than 0.55 H (0.55 H <h) , the gas blowing tube outlet 30a The gas bubbles supplied from the main stirring region S are out of the main stirring region S, or the flow distance is shortened. As a result, the effect of dividing the bubbles is reduced, and it becomes difficult to obtain bubbles having a small diameter. As described above, the size of the bubbles affects the rate of rise due to buoyancy, so if the effect of dividing the bubbles is reduced, it means that the time until the bubbles reach the liquid surface is shortened, which means that the time required for the bubbles to reach the liquid surface is shortened. The amount of bubbles decreases.

また、気体吹き込み管出口30aの位置に関して、その出口の中心と撹拌軸21の中心との距離rが1.4Rを超える(1.4R<r)と、気泡が主要な撹拌領域Sの撹拌流にのって液相内を流動して液面まで達する距離が短くなるため、相対的に液相内の気泡量が減少する。一方で、その距離rが1.1R未満(1.1R>r)になると、図2〜図4からも分かるように、撹拌機20の下に発生する弱い時計回りの流れ(図2中の細線矢印Y)にのる気泡が増加することになる。この弱い流れにのった気泡は、撹拌機20の下部(撹拌羽根22の下部)に溜まりやすく、かつ流速も遅いため合体して大径化しやすいため、大きな気泡となって液面に向かって上昇しフラッディング現象が発生しやすく、相対的に液相内の気泡量は減少してしまう。 Further, regarding the position of the gas blowing pipe outlet 30a, when the distance r between the center of the outlet and the center of the stirring shaft 21 exceeds 1.4R (1.4R <r), the stirring flow in the stirring region S where bubbles are the main. As a result, the distance that flows in the liquid phase and reaches the liquid surface is shortened, so that the amount of bubbles in the liquid phase is relatively reduced. On the other hand, when the distance r is less than 1.1R (1.1R> r), as can be seen from FIGS. 2 to 4, a weak clockwise flow generated under the stirrer 20 (in FIG. 2). The number of bubbles on the thin line arrow Y) will increase. The bubbles in this weak flow tend to accumulate in the lower part of the stirrer 20 (lower part of the stirring blade 22), and since the flow velocity is slow, they tend to coalesce and increase in diameter, so that they become large bubbles toward the liquid surface. It rises and a flooding phenomenon is likely to occur, and the amount of bubbles in the liquid phase decreases relatively.

また、上述したオートクレーブ装置1においては、気体吹き込み管出口30aの方向が、以下の条件を満足するように設けられている。すなわち、気体吹き込み管出口30aは、撹拌軸21と垂直な断面において、気体吹き込み管出口30aの出口中心における撹拌軸21の中心からの距離rにより形成される円の接線Lと、気体吹き込み管出口30aの出口中心線の延長方向Dとのなす角度θが、以下の式(iii)を満足するような方向で配置されている。
20°≦θ≦60° ・・・(iii)
Further, in the above-mentioned autoclave device 1, the direction of the gas blowing pipe outlet 30a is provided so as to satisfy the following conditions. That is, the gas blowing pipe outlet 30a has a circular tangent line L formed by a distance r from the center of the stirring shaft 21 at the outlet center of the gas blowing pipe outlet 30a in a cross section perpendicular to the stirring shaft 21, and the gas blowing pipe outlet. The angle θ formed by the extension direction D of the exit center line of 30a is arranged in a direction that satisfies the following equation (iii).
20 ° ≤ θ ≤ 60 ° ... (iii)

ここで、気体吹き込み管出口30aの出口中心における円の接線Lと、気体吹き込み管出口30aの出口中心線の延長方向Dとのなす角度θは、両者により形成される角度のうち鋭角である方の角度を指す。気体吹き込み管出口30a及びその近傍は、直線状になっている場合もあれば曲線状の場合もある。気体吹き込み管出口30aの出口中心線の延長方向Dとは、直線状に形成される場合はその直線の延長方向であり、曲線状に形成される場合はその接線の方向である。 Here, the angle θ formed by the tangent line L of the circle at the outlet center of the gas blowing pipe outlet 30a and the extension direction D of the outlet center line of the gas blowing pipe outlet 30a is the acute angle of the angles formed by both. Refers to the angle of. The gas blowing pipe outlet 30a and its vicinity may be linear or curved. The extension direction D of the outlet center line of the gas blowing pipe outlet 30a is the extension direction of the straight line when it is formed in a straight line, and the tangential direction when it is formed in a curved line.

気体吹き込み管出口30aの方向に関して、撹拌軸21を中心とした円の接線Lと出口中心線の延長方向Dとのなす角度θが20°未満であると、気体吹き込み管出口30aから供給された気体の気泡は、主要な撹拌領域Sを外れてしまうか、主要な撹拌領域Sを流動する距離が短くなる。その結果、気泡を分断する効果が低下し、小径の気泡が得られにくくなる。一方、その角度θが60°を超えると、上述したように気体の供給量が増えた場合に、気体吹き込み管出口30aから供給される気体の気泡が、主要な撹拌領域Sを超えて撹拌機20の下に発生する弱い時計回りの流れにのる気泡が増加し、撹拌軸21の下部に溜まりやすくなるため、フラッディング現象が発生しやすくなる。 When the angle θ formed by the tangent line L of the circle centered on the stirring shaft 21 and the extension direction D of the outlet center line is less than 20 ° with respect to the direction of the gas blowing pipe outlet 30a, the gas blowing pipe outlet 30a is supplied. The gas bubbles either deviate from the main stirring region S or the distance flowing through the main stirring region S becomes short. As a result, the effect of dividing the bubbles is reduced, and it becomes difficult to obtain bubbles having a small diameter. On the other hand, when the angle θ exceeds 60 °, when the gas supply amount increases as described above, the gas bubbles supplied from the gas blowing pipe outlet 30a exceed the main stirring region S and the stirrer. The number of bubbles in the weak clockwise flow generated below 20 increases, and the bubbles tend to accumulate in the lower part of the stirring shaft 21, so that the flooding phenomenon is likely to occur.

このように気体吹き込み管出口30の位置を特定の位置に配置したオートクレーブ装置1によれば、装置内に導入された気体の気泡を効率的に分断して小さな気泡径とすることができ、液相内に存在する気泡量を増大させることができる。また、気体吹き込み管出口30aを特定の方向に向けたオートクレーブ装置1によれば、気体の供給量が増えても気泡が主要な撹拌領域Sを流動する時間が長くなり、撹拌機20の下部に溜まりにくいため、フラッディング現象が発生しにくく、気体の供給量を増やしやすい。また、このようなオートクレーブ装置1を用いてスラリー中の固形物に含まれる有価金属を浸出させる浸出処理等を行うことで、液相内の気泡量の増大又は気体の供給量の増大により反応効率が高まり、効果的に有価金属を液中に浸出させることができる。 According to the autoclave device 1 in which the position of the gas blowing pipe outlet 30 is arranged at a specific position in this way, the gas bubbles introduced into the device can be efficiently divided into small bubble diameters, and the liquid can be made small. The amount of air bubbles present in the phase can be increased. Further, according to the autoclave device 1 in which the gas blowing pipe outlet 30a is directed in a specific direction, even if the amount of gas supplied increases, the time for the bubbles to flow in the main stirring region S becomes longer, and the lower part of the stirrer 20 Since it is difficult to accumulate, the flooding phenomenon is unlikely to occur, and it is easy to increase the amount of gas supplied. Further, by using such an autoclave apparatus 1 to perform a leaching treatment or the like for leaching valuable metals contained in solids in a slurry, the reaction efficiency is increased by increasing the amount of bubbles in the liquid phase or the amount of gas supplied. Can be effectively leached into the liquid.

本実施の形態においては、上述したように気体吹き込み管出口30aを特定の位置と方向で配置するようにしているため、撹拌機20により発生した撹拌流により気泡を効率的に分断させて小径化することができ、気体の供給量が増えてもフラッディング現象が発生しにくい。よって、その気体吹き込み管30の管径や出口径を所定の割合で絞る必要はなく、圧力損出を抑えることができる。したがって、気体吹き込み管30の出口径としては、特に限定されず、反応で必要とされる加圧下での気体の流量を出口面積で除した値(出口流速)に応じて適宜調整すればよい。 In the present embodiment, since the gas blowing pipe outlet 30a is arranged at a specific position and direction as described above, the air bubbles are efficiently divided by the stirring flow generated by the stirrer 20 to reduce the diameter. This can be done, and the flooding phenomenon is unlikely to occur even if the amount of gas supplied increases. Therefore, it is not necessary to narrow down the pipe diameter and the outlet diameter of the gas blowing pipe 30 at a predetermined ratio, and pressure loss can be suppressed. Therefore, the outlet diameter of the gas blowing pipe 30 is not particularly limited, and may be appropriately adjusted according to a value (outlet flow velocity) obtained by dividing the flow rate of the gas under pressure required for the reaction by the outlet area.

ただし、その中でも、工業規模の例えば5m程度の反応装置では、気体吹き込み管30の出口径を10mm〜150mmとすることが好ましい。気体吹き込み管30の出口径が10mm未満であると、必要な空気流量(例えば300Nm/h)以上での圧力損失が高くなることがあり、送風する気体の加圧設備にコストがかかるだけでなく、反応生成物や反応後の残渣が付着して出口が閉塞することがある。また、気体吹き込み管30の出口径が150mmを超えると、その配管自体によって撹拌流の流れを変えてしまう可能性があり好ましくない。 However, among them, in an industrial scale reaction device of, for example, about 5 m 3 , the outlet diameter of the gas blowing pipe 30 is preferably 10 mm to 150 mm. If the outlet diameter of the gas blowing pipe 30 is less than 10 mm , the pressure loss at the required air flow rate (for example, 300 Nm 3 / h) or more may increase, which only increases the cost of the gas pressurizing equipment to be blown. Instead, reaction products and post-reaction residues may adhere and block the outlet. Further, if the outlet diameter of the gas blowing pipe 30 exceeds 150 mm, the flow of the stirring flow may be changed by the pipe itself, which is not preferable.

以下、本発明の実施例を示してより具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, examples of the present invention will be described in more detail, but the present invention is not limited to the following examples.

オートクレーブ装置の1区画室内で、液相となるニッケル及びコバルトを含む混合硫化物(固形物)を硫酸に添加したスラリーに、撹拌しながら空気(酸素)を吹き込むことによって、スラリー中の固形物に含まれる有価金属を高温加圧浸出処理する処理を行った。具体的には、図3及び図4に示す模式図のように、撹拌機と、気体吹き込み管とを備えたオートクレーブ装置を用い、気体吹き込み管の出口位置を所定の位置に配置させたものを用いた。 By blowing air (oxygen) into a slurry in which mixed sulfide (solid matter) containing nickel and cobalt as a liquid phase is added to sulfuric acid in one compartment of an autoclave device while stirring, the solid matter in the slurry is formed. A treatment was performed in which the contained valuable metal was leached under high temperature and pressure. Specifically, as shown in the schematic views shown in FIGS. 3 and 4, an autoclave device equipped with a stirrer and a gas blowing pipe is used, and the outlet position of the gas blowing pipe is arranged at a predetermined position. Using.

この処理において、オイラー・オイラー座標系で分散相における合体、分裂を考慮したMUSIG(Multiple Size Group Model)とした連続相−分散相の混相流でモデル化を行い、液相中の気泡の体積分率を解析して、その区画室内の積分値から液相中の空気総量を計算した。このモデルにおいては、連続相は液相のスラリーであり、分散相は気泡(空気)となる。 In this process, modeling is performed with a multiphase flow of continuous phase-dispersed phase as MUSIG (Multiple Size Group Model) considering coalescence and splitting in the dispersed phase in the Euler-Euler coordinate system, and the body integral of bubbles in the liquid phase. The rate was analyzed and the total amount of air in the liquid phase was calculated from the integrated value in the compartment. In this model, the continuous phase is a liquid phase slurry and the dispersed phase is bubbles (air).

境界条件としては、連続相であるスラリーの密度:1275kg/m、分散相である空気の密度:11kg/m、気体吹き込み管内の空気吹き込み面から放出された直後の気泡径:5mm、撹拌回転数:159rpmとした。また、相対空気吹き込み量を0.018min−1、0.157min−1とした。なお、相対空気吹き込み量とは、区画室内に収容されるスラリー(連続相)の量(m)に対する空気(分散相)吹き込み量(m/min)の比率である。 The boundary conditions, the density of the slurry is the continuous phase: 1275kg / m 3, density of air is the dispersed phase: 11 kg / m 3, cell diameter immediately after being discharged from the air blowing surface of the gas injection tube: 5 mm, stirring The number of rotations was 159 rpm. The relative air blowing amount was set to 0.018 min -1 and 0.157 min -1 . The relative air blowing amount is the ratio of the air (dispersed phase) blowing amount (m 3 / min) to the amount (m 3 ) of the slurry (continuous phase) housed in the compartment.

ここで、図4を参照して、実施例1では、気体吹き込み管30の出口位置の高さh、撹拌軸の中心からの距離r、気体吹き込み管30の出口中心における、撹拌軸の中心からの距離rにより形成される円の接線方向Lと、該気体吹き込み管の出口中心線の延長方向Dとのなす角度θが、(h,r,θ)=(0.55H,1.27R,40°)、となるように制御した装置を用いて処理した。 Here, with reference to FIG. 4, in the first embodiment, the height h of the outlet position of the gas blowing pipe 30, the distance r from the center of the stirring shaft, and the center of the outlet of the gas blowing pipe 30 from the center of the stirring shaft. The angle θ formed by the tangential direction L of the circle formed by the distance r and the extension direction D of the outlet center line of the gas blowing pipe is (h, r, θ) = (0.55H, 1.27R, 40 °)), and the treatment was performed using a device controlled to be.

一方、比較例1では、(h,r、θ)=(0.50H,1.38R,90°)となるように制御した装置を用いて処理した。 On the other hand, in Comparative Example 1, processing was performed using an apparatus controlled so that (h, r, θ) = (0.50H, 1.38R, 90 °).

図5に、実施例1及び比較例1での処理における、撹拌機の撹拌動力相対値の結果を示す。撹拌機の撹拌動力相対値は、空気を吹き込まない時の撹拌機の撹拌動力Pに対する、空気吹き込み時の撹拌機の撹拌動力Pの値である。図5に示すように、実施例1では、空気吹き込み量が多くなっても、撹拌動力相対値が高く維持されているのに対し、比較例1では、空気吹き込み量が多くなると撹拌動力相対値が低下していることが分かった。実施例1では、気体吹き込み管30の出口位置を特定の位置と方向で配置したことにより、空気吹き込み量が増えても、気泡が撹拌機の下部に溜まりにくく、フラッディング現象が発生しにくいためであると考えられる。一方、比較例1では、気体吹き込み管30の出口が撹拌軸に向かっているため、空気吹き込み量が多くなると、撹拌軸の下方に気泡が溜まってフラッディング現象が発生していると考えられる。 FIG. 5 shows the results of the relative values of the stirring power of the stirrer in the treatments of Example 1 and Comparative Example 1. The relative value of the stirring power of the stirrer is the value of the stirring power P g of the stirrer when air is blown with respect to the stirring power P 0 of the stirrer when air is not blown. As shown in FIG. 5, in Example 1, the relative value of the stirring power is maintained high even when the amount of air blown is large, whereas in Comparative Example 1, the relative value of the stirring power is maintained when the amount of air blown is large. Was found to be decreasing. In the first embodiment, since the outlet position of the gas blowing pipe 30 is arranged at a specific position and direction, even if the amount of air blown increases, bubbles are less likely to accumulate in the lower part of the agitator and the flooding phenomenon is less likely to occur. It is believed that there is. On the other hand, in Comparative Example 1, since the outlet of the gas blowing pipe 30 is directed toward the stirring shaft, it is considered that when the amount of air blown increases, air bubbles accumulate below the stirring shaft and a flooding phenomenon occurs.

以下、気体吹き込み管30の角度θを詳細に検討した。図6に、角度θと液中空気量との関係を示す。図7に角度θと撹拌動力相対値との関係を示す。なお、図6、7中における各条件(h,r,θ)は、以下の通りであり、相対空気吹き込み量は0.157min−1とした。
(h,r,θ)=(0.55H,1.25R,0°)
(h,r,θ)=(0.55H,1.30R,0°)
(h,r,θ)=(0.55H,1.27R,20°)
(h,r,θ)=(0.55H,1.27R,35°)
(h,r,θ)=(0.55H,1.27R,40°)
(h,r,θ)=(0.55H,1.32R,60°)
(h,r,θ)=(0.47H,1.30R,90°)
Hereinafter, the angle θ of the gas blowing pipe 30 was examined in detail. FIG. 6 shows the relationship between the angle θ and the amount of air in the liquid. FIG. 7 shows the relationship between the angle θ and the relative value of the stirring power. The conditions (h, r, θ) in FIGS. 6 and 7 are as follows, and the relative air blowing amount is 0.157 min -1 .
(H, r, θ) = (0.55H, 1.25R, 0 °)
(H, r, θ) = (0.55H, 1.30R, 0 °)
(H, r, θ) = (0.55H, 1.27R, 20 °)
(H, r, θ) = (0.55H, 1.27R, 35 °)
(H, r, θ) = (0.55H, 1.27R, 40 °)
(H, r, θ) = (0.55H, 1.32R, 60 °)
(H, r, θ) = (0.47H, 1.30R, 90 °)

図6に示すように、角度θが大きくなるにつれ液中空気量が増え、角度θが20°を超えると、液中空気量が浸出処理に好ましい液中空気量である0.05mを超えていることが分かる。角度θが20°未満であると、気体吹き込み管30から供給された気泡が主要な撹拌領域Sを外れてしまうか、主要な撹拌領域Sを流動する距離が短いためであると考えられる。一方、図7に示すように、角度θが60°を超えると、撹拌動力相対値が低下し始めてしまう。角度θが60°を超えると、フラッディング現象が生じやすくなるためであると考えられる。気体吹き込み管30から供給された空気を効率的に分断して小さな気泡径とするとともに、空気の供給量を増やしたとしても、フラッディング現象の発生を抑制する点から、角度θは、20°から60°が好ましい。 As shown in FIG. 6, the amount of air in the liquid increases as the angle θ increases, and when the angle θ exceeds 20 °, the amount of air in the liquid exceeds 0.05 m 3 which is the preferable amount of air in the liquid for leaching treatment. You can see that. If the angle θ is less than 20 °, it is considered that the bubbles supplied from the gas blowing pipe 30 deviate from the main stirring region S or the distance flowing through the main stirring region S is short. On the other hand, as shown in FIG. 7, when the angle θ exceeds 60 °, the relative value of the stirring power starts to decrease. It is considered that this is because when the angle θ exceeds 60 °, the flooding phenomenon is likely to occur. The angle θ is from 20 ° from the viewpoint of efficiently dividing the air supplied from the gas blowing pipe 30 to a small bubble diameter and suppressing the occurrence of the flooding phenomenon even if the amount of air supplied is increased. 60 ° is preferable.

1 オートクレーブ装置
1w オートクレーブ装置の内壁面
10,10A〜10E 区画室
20,20A〜20E 撹拌機
21 撹拌軸
22 撹拌羽根
30 気体吹き込み管
30a 気体吹き込み管出口中心
1 Autoclave device 1w Inner wall surface of autoclave device 10,10A-10E Partition room 20,20A-20E Stirrer 21 Stirring shaft 22 Stirring blade 30 Gas blowing pipe 30a Gas blowing pipe outlet center

Claims (4)

スパージャー(散気管)を備えず、撹拌機と、気体吹き込み管とを備えた加圧反応装置であって、
前記加圧反応装置は、円筒容器が横型に設置された、高温高圧下での反応を行うオートクレーブ装置であり、
前記撹拌機は、当該加圧反応装置の上部より垂下した撹拌軸と、該撹拌軸に対して垂直に設けられた撹拌羽根とを有し、
前記撹拌機は、前記撹拌羽根から下向きの方向に向かって撹拌流を発生させ、前記撹拌軸から前記加圧反応装置の内壁面に向かう斜め下方向への撹拌流とし、前記内壁面に衝突後、その内壁面に沿って上方に向かう撹拌流を形成するように構成され、
当該加圧反応装置を前記撹拌軸の軸方向に沿った断面で正面視して、
前記撹拌軸から延長した線が当該加圧反応装置の内壁と交わる位置から前記撹拌羽根の高さ位置までをHとし、該撹拌軸の中心からの該撹拌羽根の最大長さをRとしたとき、
前記気体吹き込み管の出口中心が、
前記撹拌軸から延長した線が当該加圧反応装置の内壁と交わる位置からの高さをh、該撹拌軸の中心からの距離をrとし、
前記撹拌軸に対して垂直な断面において、前記気体吹き込み管の出口中心線の延長方向が前記撹拌機により発生する撹拌流の正方向側に向けられ、
前記気体吹き込み管の出口中心における、前記撹拌軸の中心からの距離rにより形成される円の接線方向と、該気体吹き込み管の出口中心線の延長方向とのなす角度を、前記接線から前記撹拌軸に向かう方向を正としてθとした場合に、
以下の式を満足する位置に設けられている、
加圧反応装置。
0.45H≦h≦0.55
1.1R≦r≦1.4R
20°≦θ≦60°
It is a pressurizing reactor equipped with a stirrer and a gas blowing pipe without a spudger (air diffuser).
The pressurization reaction device is an autoclave device in which a cylindrical container is installed horizontally to perform a reaction under high temperature and high pressure.
The stirrer has a stirrer shaft hanging from the upper part of the pressurizing reaction device and a stirrer blade provided perpendicular to the stirrer shaft.
The stirrer generates a stirring flow downward from the stirring blade, and makes the stirring flow diagonally downward from the stirring shaft toward the inner wall surface of the pressurizing reactor, and after colliding with the inner wall surface. , Constructed to form an upward agitation stream along its inner wall,
The pressurizing reactor is viewed from the front in a cross section along the axial direction of the stirring shaft.
When H is defined as the position where the line extending from the stirring shaft intersects the inner wall of the pressure reaction device to the height position of the stirring blade, and R is defined as the maximum length of the stirring blade from the center of the stirring shaft. ,
The center of the outlet of the gas blowing pipe is
The height from the position where the line extending from the stirring shaft intersects the inner wall of the pressurizing reactor is h, and the distance from the center of the stirring shaft is r.
In the cross section perpendicular to the stirring axis, the extension direction of the outlet center line of the gas blowing pipe is directed to the positive side of the stirring flow generated by the stirring machine.
The angle between the tangential direction of the circle formed by the distance r from the center of the stirring shaft at the outlet center of the gas blowing pipe and the extension direction of the outlet center line of the gas blowing pipe is determined from the tangent line to the stirring. When the direction toward the axis is positive and θ is set,
It is provided at a position that satisfies the following formula,
Pressurized reactor.
0.45H ≤ h ≤ 0.55 H
1.1R ≤ r ≤ 1.4R
20 ° ≤ θ ≤ 60 °
前記気体吹き込み管の出口径は、10mm〜150mmである
請求項1に記載の加圧反応装置。
The pressurizing reaction apparatus according to claim 1, wherein the outlet diameter of the gas blowing pipe is 10 mm to 150 mm.
ニッケル及びコバルトの混合硫化物を含むスラリーに対して高温高圧下で酸を添加して浸出処理を施すために用いられる
請求項1又は2に記載の加圧反応装置。
The pressurizing reaction apparatus according to claim 1 or 2 , which is used for adding an acid to a slurry containing a mixed sulfide of nickel and cobalt under high temperature and high pressure to perform an leaching treatment.
請求項1乃至のいずれかに1項に記載の加圧反応装置を用いて、スラリーに含まれる固形物から有価金属を浸出させる
有価金属の浸出処理方法。
A method for leaching a valuable metal by leaching the valuable metal from a solid substance contained in the slurry by using the pressurizing reaction apparatus according to any one of claims 1 to 3.
JP2017027488A 2017-02-17 2017-02-17 Pressurized reaction device and leaching treatment method of valuable metal using it Active JP6848507B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017027488A JP6848507B2 (en) 2017-02-17 2017-02-17 Pressurized reaction device and leaching treatment method of valuable metal using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017027488A JP6848507B2 (en) 2017-02-17 2017-02-17 Pressurized reaction device and leaching treatment method of valuable metal using it

Publications (2)

Publication Number Publication Date
JP2018130690A JP2018130690A (en) 2018-08-23
JP6848507B2 true JP6848507B2 (en) 2021-03-24

Family

ID=63249042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017027488A Active JP6848507B2 (en) 2017-02-17 2017-02-17 Pressurized reaction device and leaching treatment method of valuable metal using it

Country Status (1)

Country Link
JP (1) JP6848507B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7447471B2 (en) 2019-12-19 2024-03-12 住友金属鉱山株式会社 stirring device
CN111346573B (en) * 2020-03-27 2022-04-26 东莞东阳光科研发有限公司 Reaction kettle for preparing ternary precursor

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104637A (en) * 1986-10-22 1988-05-10 Hitachi Ltd Gas-liquid agitation device
US4882098A (en) * 1988-06-20 1989-11-21 General Signal Corporation Mass transfer mixing system especially for gas dispersion in liquids or liquid suspensions
US6368381B1 (en) * 1998-03-11 2002-04-09 Placer Dome Technical Services, Ltd. Autoclave using agitator and sparge tube to provide high oxygen transfer rate to metal-containing solutions
KR100374785B1 (en) * 2000-06-29 2003-03-04 학교법인 포항공과대학교 Liquid phase oxidation reactor
JP2004255291A (en) * 2003-02-26 2004-09-16 Toray Ind Inc Stirring apparatus
US7153480B2 (en) * 2003-05-22 2006-12-26 David Robert Bickham Apparatus for and method of producing aromatic carboxylic acids
DE102007001711A1 (en) * 2007-01-11 2008-07-17 EKATO Rühr- und Mischtechnik GmbH Stirring arrangement with a stirrer and a gassing device
KR100988684B1 (en) * 2008-04-16 2010-10-18 삼남석유화학 주식회사 Oxidation reactor for manufacturing of crude terephtalic acid
JP5942830B2 (en) * 2012-12-11 2016-06-29 住友金属鉱山株式会社 Stirred reactor
JP6238344B2 (en) * 2013-09-25 2017-11-29 国立研究開発法人産業技術総合研究所 Large solid angle gamma ray and beta ray simultaneous detection device
JP6189202B2 (en) * 2013-12-17 2017-08-30 佐竹化学機械工業株式会社 Stirrer
JP6135609B2 (en) * 2014-06-30 2017-05-31 住友金属鉱山株式会社 How to blow gas into the autoclave

Also Published As

Publication number Publication date
JP2018130690A (en) 2018-08-23

Similar Documents

Publication Publication Date Title
JP2009530077A (en) Autoclave with bottom flow divider
US3792848A (en) Device for improving reactions between two components of a metallurgical melt
JP7180087B2 (en) Pressurized reactor and method for leaching valuable metals using the same
JP5387755B2 (en) Method of adding raw slurry and sulfuric acid to autoclave in high pressure acid leaching process and autoclave
JP6848507B2 (en) Pressurized reaction device and leaching treatment method of valuable metal using it
JP5942830B2 (en) Stirred reactor
JP5306187B2 (en) Gas-liquid mixing and circulation device
JP2002500273A5 (en)
JP6836151B2 (en) Pressurized reactor and method of leaching valuable metal using it
JP2019188317A (en) Reaction device and agent addition method
JP2021154254A (en) Gas-liquid mixing device and gas-liquid mixing method
CN214514423U (en) High pressure autoclave
JP7341389B2 (en) Reactor and chemical treatment method using the reactor
JP2021084077A (en) Stirring device and gas-liquid mixing method
JP7105446B2 (en) Reactor
JP7447471B2 (en) stirring device
JP7090287B2 (en) Reactor
JP7299591B2 (en) Method of operating the reactor
RU2614717C1 (en) Carbonizer
CN110697853B (en) Multiphase separation device and multiphase separation system
EP3944891B1 (en) A mixing apparatus
JP6790626B2 (en) Autoclave device
JP2022178938A (en) Autoclave device
EA043718B1 (en) AUTOCLAVE AND METHOD OF OXIDATION UNDER PRESSURE
JP2007268370A (en) Reaction method and reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6848507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150