JP6847695B2 - Tires for construction vehicles - Google Patents
Tires for construction vehicles Download PDFInfo
- Publication number
- JP6847695B2 JP6847695B2 JP2017023807A JP2017023807A JP6847695B2 JP 6847695 B2 JP6847695 B2 JP 6847695B2 JP 2017023807 A JP2017023807 A JP 2017023807A JP 2017023807 A JP2017023807 A JP 2017023807A JP 6847695 B2 JP6847695 B2 JP 6847695B2
- Authority
- JP
- Japan
- Prior art keywords
- groove
- tire
- width direction
- tread
- notch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000010276 construction Methods 0.000 title claims description 49
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 28
- 229920001971 elastomer Polymers 0.000 claims description 28
- 239000005060 rubber Substances 0.000 claims description 28
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 claims description 25
- 239000000377 silicon dioxide Substances 0.000 claims description 17
- 238000010521 absorption reaction Methods 0.000 claims description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims description 14
- 238000001179 sorption measurement Methods 0.000 claims description 14
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 claims description 12
- 239000006229 carbon black Substances 0.000 claims description 10
- 239000002994 raw material Substances 0.000 claims description 7
- 238000005299 abrasion Methods 0.000 description 3
- 229920003049 isoprene rubber Polymers 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920003052 natural elastomer Polymers 0.000 description 1
- 229920001194 natural rubber Polymers 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
Images
Landscapes
- Tires In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Description
本発明は、スロープ状の切欠き溝が形成されたトレッドを備える建設車両用タイヤに関する。 The present invention relates to a tire for a construction vehicle including a tread having a slope-shaped notch groove formed therein.
鉱山などの不整地を走行するダンプトラックなどに装着されるタイヤ、いわゆる建設車両用タイヤでは、トレッドの温度上昇を抑制することが重要である。そこで、タイヤ径方向内側に傾斜したスロープ状の切欠き溝をトレッドに形成することによって、トレッドを冷却する構造が知られている(例えば、特許文献1)。 For tires mounted on dump trucks traveling on rough terrain such as mines, so-called tires for construction vehicles, it is important to suppress the temperature rise of the tread. Therefore, a structure is known in which the tread is cooled by forming a slope-shaped notch groove inclined inward in the tire radial direction in the tread (for example, Patent Document 1).
具体的には、タイヤの転動に伴ってスロープ状の切欠き溝に空気が流入し、トレッド表面の熱交換が促進されるため、トレッドの温度上昇を抑制できる。 Specifically, as the tire rolls, air flows into the slope-shaped notch groove to promote heat exchange on the tread surface, so that the temperature rise of the tread can be suppressed.
近年、上述したような建設車両用タイヤでは、車両の高速化及び高荷重への対応が強く求められている。このため、トレッドの温度上昇がさらに問題となり易い。 In recent years, tires for construction vehicles as described above are strongly required to increase the speed of the vehicle and cope with a high load. Therefore, the temperature rise of the tread is more likely to be a problem.
トレッドの温度上昇の対策としては、耐熱性の高いゴムを用いることが容易である。しかしながら、一般的に、耐熱性の高いゴムは、耐摩耗性に劣るため、耐摩耗性の確保が難しくなるトレードオフの関係にある。 As a measure against the temperature rise of the tread, it is easy to use rubber having high heat resistance. However, in general, rubber having high heat resistance is inferior in wear resistance, so that there is a trade-off relationship in which it is difficult to secure wear resistance.
そこで、本発明は、このような状況に鑑みてなされたものであり、耐摩耗性を確保しつつ、トレッド全体をさらに効率的に冷却し得る建設車両用タイヤの提供を目的とする。 Therefore, the present invention has been made in view of such a situation, and an object of the present invention is to provide a tire for a construction vehicle capable of cooling the entire tread more efficiently while ensuring wear resistance.
本発明の一態様に係る建設車両用タイヤ(建設車両用タイヤ10A)は、タイヤ幅方向に延びる幅方向細溝(幅方向細溝100)と、前記幅方向細溝に連通し、タイヤ赤道線を含む位置に形成される中央周方向溝(周方向溝30)と、前記幅方向細溝に連通し、前記幅方向細溝のタイヤ幅方向外側に形成される外側周方向溝(周方向溝40, 50)と、前記幅方向細溝に連通するスロープ状の切欠き溝(切欠き溝110)とが形成されたトレッド(トレッド20)を備える。前記トレッドには、前記幅方向細溝のタイヤ幅方向外側に形成され、前記外側周方向溝を介して前記幅方向細溝に連通するショルダーラグ溝(ショルダーラグ溝60)が形成され、前記切欠き溝は、タイヤ赤道線からトレッド幅の1/8の距離を隔てた位置を基準とした所定範囲に一つのみ形成される。また、前記トレッドは、イソプレン系ゴム原材料100重量部に対し、窒素吸着比表面積が100〜160m2/gで、かつジブチルフタレート吸油量(DBP)が80〜130ml/100gであるカーボンブラックと、窒素吸着比表面積が210〜260m2/gで、かつ吸油量が200〜260ml/100gであるシリカとを合計量で40〜70重量部含み、該合計量のうちシリカが3〜15重量部であるゴム組成物によって構成される。
The construction vehicle tire (
本発明の一態様に係る建設車両用タイヤ(建設車両用タイヤ10B)は、タイヤ幅方向に延びる幅方向細溝(幅方向細溝200)と、前記幅方向細溝に連通し、タイヤ赤道線を含む位置に形成される中央周方向溝(周方向溝30)と、前記幅方向細溝に連通し、前記幅方向細溝のタイヤ幅方向外側に形成される外側周方向溝(周方向溝40, 50)と、前記幅方向細溝に連通するスロープ状の切欠き溝(切欠き溝210, 220)とが形成されたトレッド(トレッド20)を備える。前記切欠き溝は、タイヤ赤道線からトレッド幅の1/16の距離を隔てた位置を基準とした所定範囲、及びタイヤ赤道線からトレッド幅の1/4の距離を隔てた位置を基準とした所定範囲にそれぞれ形成される。また、前記トレッドは、イソプレン系ゴム原材料100重量部に対し、窒素吸着比表面積が100〜160m2/gで、かつジブチルフタレート吸油量(DBP)が80〜130ml/100gであるカーボンブラックと、窒素吸着比表面積が210〜260m2/gで、かつ吸油量が200〜260ml/100gであるシリカとを合計量で40〜70重量部含み、該合計量のうちシリカが3〜15重量部であるゴム組成物によって構成される。
The construction vehicle tire (
本発明の一態様に係る建設車両用タイヤ(建設車両用タイヤ10)は、タイヤ幅方向に延びる第1幅方向細溝(幅方向細溝100)と、タイヤ周方向において前記第1幅方向細溝に隣接し、タイヤ幅方向に延びる第2幅方向細溝(幅方向細溝200)と、前記第1幅方向細溝及び前記第2幅方向細溝に連通し、タイヤ赤道線を含む位置に形成される中央周方向溝(周方向溝30)と、前記第1幅方向細溝及び前記第2幅方向細溝に連通し、前記第1幅方向細溝及び前記第2幅方向細溝のタイヤ幅方向外側に形成される外側周方向溝(周方向溝40, 50)と、前記第1幅方向細溝に連通するスロープ状の第1切欠き溝(切欠き溝110)と、前記第2幅方向細溝に連通するスロープ状の第2切欠き溝(切欠き溝210, 220)とが形成されたトレッド(トレッド20)を備える。前記トレッドには、前記第1幅方向細溝のタイヤ幅方向外側に形成され、前記外側周方向溝を介して前記第1幅方向細溝に連通するショルダーラグ溝(ショルダーラグ溝60)が形成され、前記第1切欠き溝は、タイヤ赤道線からトレッド幅の1/8の距離を隔てた位置を基準とした所定範囲に一つのみ形成され、前記第2切欠き溝は、タイヤ赤道線からトレッド幅の1/16の距離を隔てた位置を基準とした所定範囲、及びタイヤ赤道線からトレッド幅の1/4の距離を隔てた位置を基準とした所定範囲にそれぞれ形成される。また、前記トレッドは、イソプレン系ゴム原材料100重量部に対し、窒素吸着比表面積が100〜160m2/gで、かつジブチルフタレート吸油量(DBP)が80〜130ml/100gであるカーボンブラックと、窒素吸着比表面積が210〜260m2/gで、かつ吸油量が200〜260ml/100gであるシリカとを合計量で40〜70重量部含み、該合計量のうちシリカが3〜15重量部であるゴム組成物によって構成される。
The construction vehicle tire (construction vehicle tire 10) according to one aspect of the present invention has a first width direction narrow groove (width direction fine groove 100) extending in the tire width direction and the first width direction fine groove in the tire circumferential direction. A position that is adjacent to the groove and communicates with the second width direction narrow groove (width direction fine groove 200) extending in the tire width direction, the first width direction fine groove, and the second width direction fine groove, and includes the tire equatorial line. The central circumferential groove (circumferential groove 30) formed in, communicates with the first width direction fine groove and the second width direction fine groove, and communicates with the first width direction fine groove and the second width direction fine groove. The outer circumferential groove (
本発明に係る建設車両用タイヤによれば、耐摩耗性を確保しつつ、トレッド全体をさらに効率的に冷却し得る。 According to the tire for a construction vehicle according to the present invention, the entire tread can be cooled more efficiently while ensuring wear resistance.
以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described with reference to the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
(1)建設車両用タイヤの概略構成
図1は、本実施形態に係る建設車両用タイヤ10の一部平面展開図である。建設車両用タイヤ10は、鉱山などの不整地を走行するダンプトラックなどに装着される空気入りタイヤである。
(1) Schematic configuration of tires for construction vehicles FIG. 1 is a partially developed view of
建設車両用タイヤ10のサイズは、特に限定されないが、49, 51, 57または63インチなどが広く用いられている。建設車両用タイヤ10は、ORR(オフ・ザ・ロード・ラジアル)タイヤなどと呼ばれる場合もある。但し、必ずしもラジアルタイヤに限定されるものではない。
The size of the
図1に示すように、建設車両用タイヤ10は、路面と接するトレッド20を備える。トレッド20には、タイヤ周方向に延びる複数の周方向溝30, 40, 50が形成されている。また、トレッドには、タイヤ幅方向に延びる複数の幅方向細溝100, 200が形成されている。
As shown in FIG. 1, the
建設車両用タイヤ10は、タイヤ赤道線CLを基準として、概ね対称の形状を有している。但し、幅方向細溝100, 200の位置は、タイヤ赤道線CLを基準とした一方側と他方側とで、多少タイヤ周方向においてオフセットしている。
The
周方向溝30は、幅方向細溝100及び幅方向細溝200に連通する。周方向溝30は、タイヤ赤道線CLを含む位置に形成される。本実施形態において、周方向溝30は、中央周方向溝を構成する。
The
周方向溝40も、幅方向細溝100に連通する。周方向溝40は、幅方向細溝100のタイヤ幅方向外側に形成される。また、周方向溝40は、幅方向細溝200に連通する。周方向溝40は、幅方向細溝200のタイヤ幅方向外側に形成される。
The
周方向溝50は、タイヤ赤道線CLを基準とした周方向溝40の逆側に形成され、周方向溝40と同様の形状を有する。本実施形態において、周方向溝40, 50は、外側周方向溝を構成する。以下、タイヤ赤道線CLを基準とした周方向溝40側の構成について説明する。
The
トレッド20には、ショルダーラグ溝60が形成される。ショルダーラグ溝60は、幅方向細溝100のタイヤ幅方向外側に形成され、周方向溝40を介して幅方向細溝100に連通する。ショルダーラグ溝60は、タイヤ幅方向に沿って延びる。
A
幅方向細溝100は、タイヤ幅方向に延びる細溝である。細溝とは、少なくとも溝幅が溝深さよりも小さい溝である。本実施形態において、幅方向細溝100は、第1幅方向細溝を構成する。
The
本実施形態では、幅方向細溝100の溝幅は10mm程度、溝深さは100mm程度(63インチの場合)である。なお、溝幅及び溝深さは、タイヤサイズまたはスペックに応じて適宜変更可能であり、建設車両用タイヤで用いられる49インチ〜63インチのタイヤの場合、概ね溝幅は3〜10mm、溝深さは40〜100mmである。また、本実施形態では、幅方向細溝100は、タイヤ幅方向に対して多少傾斜している。
In the present embodiment, the groove width of the
幅方向細溝200も、タイヤ幅方向に延びる細溝である。幅方向細溝200は、タイヤ周方向において幅方向細溝100に隣接する。本実施形態において、幅方向細溝200は、第2幅方向細溝を構成する。
The
また、トレッド20には、複数の切欠き溝110, 210, 220が形成される。切欠き溝110は、幅方向細溝100に連通するスロープ状である。また、図1に示すように、切欠き溝110, 210, 22は、トレッド面視において平行四辺形状である。本実施形態において、切欠き溝110は、第1切欠き溝を構成する。
Further, a plurality of
切欠き溝110は、タイヤ赤道線CLからトレッド20の幅(以下、トレッド幅)の1/8の距離を隔てた位置を基準とした所定範囲に一つのみ形成される。トレッド20の幅とは、正規リムホイールに組み付けられ、車両指定の標準内圧に設定された建設車両用タイヤ10に、正規荷重が付加された場合におけるトレッド20の接地幅である。
Only one
本実施形態では、当該距離は、200mm程度(切欠き溝110のタイヤ幅方向における中央位置)であり、切欠き溝110の幅は、50mm程度である。また、所定範囲とは、切欠き溝110一つずつ分程度(つまり、±50mm程度)を意味する。
In the present embodiment, the distance is about 200 mm (the center position of the
切欠き溝210, 220は、幅方向細溝200に連通するスロープ状である。本実施形態において、切欠き溝210, 220は、第2切欠き溝を構成する。切欠き溝210, 220は、切欠き溝110と同様の形状を有する。
The
切欠き溝210は、タイヤ赤道線CLからトレッド幅の1/16の距離を隔てた位置を基準とした所定範囲に形成される。また、切欠き溝220は、タイヤ赤道線CLからトレッド幅の1/4の距離を隔てた位置を基準とした所定範囲にそれぞれ形成される。
The
本実施形態では、切欠き溝210の当該距離は、100mm程度(切欠き溝210のタイヤ幅方向における中央位置)であり、切欠き溝220の当該距離は、400mm程度(切欠き溝220のタイヤ幅方向における中央位置)である。
In the present embodiment, the distance of the
切欠き溝210についても、所定範囲とは、当該中央位置を基準とした切欠き溝210一つ分ずつ程度(つまり、±50mm程度)を意味する。一方、切欠き溝220については、タイヤ幅方向外側に位置し、周方向溝40に近いため、当該中央位置を基準として、切欠き溝220二つ分程度内側(つまり、100mm程度)の位置までを含んでもよい。
As for the
(2)切欠き溝の形状
図2は、幅方向細溝100及び切欠き溝110のタイヤ周方向に沿った断面図である。図3は、切欠き溝110の斜視図である。
(2) Shape of Notch Groove FIG. 2 is a cross-sectional view of the
また、図4は、幅方向細溝200及び切欠き溝210, 220のタイヤ周方向に沿った断面図である。図5は、切欠き溝210, 220の斜視図である。
Further, FIG. 4 is a cross-sectional view of the
図2及び図3に示すように、切欠き溝110は、幅方向細溝100に連通する。具体的は、切欠き溝110は、スロープ部120を有し、スロープ部120は、幅方向細溝100に連通する。
As shown in FIGS. 2 and 3, the
スロープ部120は、タイヤ周方向に沿って延びるとともに、トレッド20の表面から幅方向細溝100に向かうに連れてタイヤ径方向内側に傾斜する。
The
上述したように、スロープ部120の幅W、つまり、切欠き溝110の幅は、50mm程度である。また、スロープ部120のトレッド20の表面に対する傾斜角度θは、20度程度である。
As described above, the width W of the
切欠き溝110は、スロープ部120を有するため、建設車両用タイヤ10が転動すると、スロープ部120を伝って幅方向細溝100に空気が流入する。具体的には、空気は、スロープ部120を伝って幅方向細溝100の溝壁130に衝突し、幅方向細溝100内に広がる。
Since the
図4及び図5に示すように、切欠き溝210, 220は、幅方向細溝200に連通する。具体的は、切欠き溝210, 220は、スロープ部230を有し、スロープ部230は、幅方向細溝200に連通する。切欠き溝210, 220は、切欠き溝110と同様の形状である。
As shown in FIGS. 4 and 5, the
スロープ部230は、タイヤ周方向に沿って延びるとともに、トレッド20の表面から幅方向細溝200に向かうに連れてタイヤ径方向内側に傾斜する。
The
スロープ部230の幅W、つまり、切欠き溝210, 220の幅は、50mm程度である。また、スロープ部230の傾斜角度θは、20度程度である。
The width W of the
切欠き溝110と同様に、建設車両用タイヤ10が転動すると、スロープ部230を伝って幅方向細溝200に空気が流入する。具体的には、空気は、スロープ部230を伝って幅方向細溝200の溝壁240に衝突し、幅方向細溝200内に広がる。
Similar to the
(3)トレッドに用いるゴム組成物
トレッド20には、建設車両用タイヤ用として広く用いられているゴム組成物を用いることができるが、特に、建設車両用タイヤ10では、次のようなゴム組成物を用いることが好ましい。
(3) Rubber Composition Used for Tread A rubber composition widely used for tires for construction vehicles can be used for the
具体的には、イソプレン系ゴム原材料100重量部に対し、窒素吸着比表面積が100〜160m2/gで、かつジブチルフタレート吸油量(DBP)が80〜130ml/100gであるカーボンブラックと、窒素吸着比表面積が210〜260m2/gで、かつ吸油量が200〜260ml/100gであるシリカとを合計量で40〜70重量部含み、該合計量のうちシリカが3〜15重量部である。 Specifically, carbon black having a specific surface area of 100 to 160 m 2 / g and a dibutyl phthalate oil absorption (DBP) of 80 to 130 ml / 100 g with respect to 100 parts by weight of isoprene-based rubber raw material and nitrogen adsorption. A total amount of 40 to 70 parts by weight of silica having a specific surface area of 210 to 260 m 2 / g and an oil absorption of 200 to 260 ml / 100 g is contained, and silica is 3 to 15 parts by weight of the total amount.
イソプレン系ゴムとしては、天然ゴムの他に、イソプレン合成ゴムが挙げられる。また、カーボンブラックとしては、窒素吸着比表面積が100〜160m2/gで、かつジブチルフタレート吸油量(DBP)が80〜130ml/100g、好ましくは窒素吸着比表面積が110〜150m2 /gで、かつDBPが85〜120ml/100gである。 Examples of the isoprene-based rubber include isoprene synthetic rubber in addition to natural rubber. The carbon black has a nitrogen adsorption specific surface area of 100 to 160 m 2 / g and a dibutyl phthalate oil absorption (DBP) of 80 to 130 ml / 100 g, preferably a nitrogen adsorption specific surface area of 110 to 150 m 2 / g. And the DBP is 85-120 ml / 100 g.
カーボンブラックの窒素吸着比表面積が100m2/g未満かまたはDBPが80ml/100g未満であると十分な耐摩耗性が得られず、一方窒素吸着比表面積が160m2/gを超えるかまたはDBPが130ml/100gを超えると耐熱性(低発熱性)が悪化する。 If the nitrogen adsorption specific surface area of carbon black is less than 100 m 2 / g or the DBP is less than 80 ml / 100 g, sufficient wear resistance cannot be obtained, while the nitrogen adsorption specific surface area exceeds 160 m 2 / g or the DBP is If it exceeds 130 ml / 100 g, the heat resistance (low heat generation) deteriorates.
シリカとしては、窒素吸着比表面積が210〜260m2/gで、かつ吸油量が200〜260ml/100g、好ましくは窒素吸着比表面積が210〜240m2/gで、かつ吸油量が220〜240ml/100gである。これにより、耐熱性と耐摩耗性とを両立し得る。 As silica, the nitrogen adsorption specific surface area is 210 to 260 m 2 / g and the oil absorption amount is 200 to 260 ml / 100 g, preferably the nitrogen adsorption specific surface area is 210 to 240 m 2 / g and the oil absorption amount is 220 to 240 ml / g. It is 100 g. As a result, both heat resistance and abrasion resistance can be achieved at the same time.
また、イソプレン系ゴム原材料100重量部に対し、カーボンブラックとシリカとの合計量が40〜70重量部の範囲内であるが、当該合計量が40重量部未満では耐摩耗性が不十分であり、一方70重量部を超えると耐熱性が悪化する。 Further, the total amount of carbon black and silica is in the range of 40 to 70 parts by weight with respect to 100 parts by weight of the isoprene-based rubber raw material, but if the total amount is less than 40 parts by weight, the abrasion resistance is insufficient. On the other hand, if it exceeds 70 parts by weight, the heat resistance deteriorates.
また、当該合計量のうちシリカが3〜15重量部、好ましくは5〜10重量部である。シリカの配合量が当該範囲から逸脱すると、耐熱性と耐摩耗性とのバランスを良好に維持することが困難となる。 Further, of the total amount, silica is 3 to 15 parts by weight, preferably 5 to 10 parts by weight. If the blending amount of silica deviates from the above range, it becomes difficult to maintain a good balance between heat resistance and abrasion resistance.
カーボンブラックの窒素吸着比表面積は、ASTM D4820−93、DBPは、ASTM D2414−93に各々準拠して測定した値である。また、シリカの窒素吸着比表面積は、乾燥条件300℃×1時間実施後同様に、ASTMD4820−93に準拠し、また吸油量はASTM D2414−93に準拠して測定した値である。 The nitrogen adsorption specific surface area of carbon black is a value measured according to ASTM D4820-93, and DBP is a value measured according to ASTM D2414-93, respectively. Further, the nitrogen adsorption specific surface area of silica is a value measured in accordance with ASTM D4820-93, and the oil absorption amount is a value measured in accordance with ASTM D2414-93, as in the case of drying conditions of 300 ° C. for 1 hour.
なお、トレッド20は、ベースゴムと、ベースゴムのタイヤ径方向外側に設けられるキャップゴムとによって構成されるが、キャップゴムに上述のゴム組成物が用いられる。
The
また、トレッド20を構成するキャップゴムの比率(ゴムゲージ全体に対する比率)を高くすることによって、耐摩耗性をさらに高めるようにしてもよい。例えば、通常6:4程度であるキャップゴム:ベースゴムの比率を8:2程度としてもよい。 Further, the wear resistance may be further enhanced by increasing the ratio of the cap rubber constituting the tread 20 (ratio to the entire rubber gauge). For example, the ratio of cap rubber: base rubber, which is usually about 6: 4, may be about 8: 2.
(4)作用・効果
表1は、建設車両用タイヤ10に関する評価試験結果を示す。
(4) Action / Effect Table 1 shows the evaluation test results for the
具体的には、表1は、幅方向細溝100及び幅方向細溝200近傍におけるトレッド20表面の温度低下の程度を示している。タイヤの諸元及び試験方法などは以下のとおりである。
Specifically, Table 1 shows the degree of temperature decrease on the surface of the
・ タイヤ諸元: 63インチ(トレッド幅:約1200mm)
・ 使用試験装置: ドラム試験機
・ 試験方法: ドラム試験機を用いて評価タイヤを所定時間転動させた後、幅方向細溝を構成する溝壁に沿ったトレッド表面の温度を複数の位置(1/4W, 3/16W, 1/8W, 1/16W, タイヤ赤道線CL)において測定し、平均温度を算出した。
・ Tire specifications: 63 inches (tread width: approx. 1200 mm)
・ Test equipment used: Drum tester ・ Test method: Evaluation After rolling the tire for a predetermined time using the drum tester, the temperature of the tread surface along the groove wall forming the narrow groove in the width direction is set at multiple positions ( The average temperature was calculated by measuring at 1 / 4W, 3 / 16W, 1 / 8W, 1 / 16W, tire equatorial line CL).
表1に示すように、幅方向細溝100の場合、つまり、ショルダーラグ溝60に連通し、トレッド幅の1/8の距離を隔てた位置(1/8W)を基準とした所定範囲内に切欠き溝(切欠き溝110)が形成されている場合、トレッド表面の温度は、切欠き溝が形成されていない幅方向細溝の場合と比較して、2.9°C低下している。また、切欠き溝が1/4Wの位置に一つのみ形成されている幅方向細溝の場合と比較して、0.9°C低下している。
As shown in Table 1, in the case of the
また、幅方向細溝200の場合、つまり、ショルダーラグ溝に連通せず、タイヤ幅方向外側の端部がトレッド20のブロック(陸部)内で終端し、トレッド幅の1/16及び1/4の距離を隔てた位置(1/16W, 1/4W)を基準とした所定範囲内に切欠き溝(切欠き溝210, 220)が形成されている場合、トレッド表面の温度は、切欠き溝が形成されていない幅方向細溝の場合と比較して、4.9°C低下している。また、切欠き溝が1/4Wの位置に一つのみ形成されている幅方向細溝の場合と比較して、2.3°C低下している。
Further, in the case of the
表2は、建設車両用タイヤ10のトレッド20(キャップゴム)に上述したゴム組成物を用いた場合におけるトレッド20表面の温度低下の程度を示している。
Table 2 shows the degree of temperature decrease on the surface of the
表2に示すように、同一のゴム組成物が用いられるため、切欠き溝の有無に関わらず耐摩耗性は同様である。一方、トレッド表面の温度は、切欠き溝が形成されていない幅方向細溝の場合と比較して、4°C〜8°C低下している。 As shown in Table 2, since the same rubber composition is used, the wear resistance is the same regardless of the presence or absence of the notch groove. On the other hand, the temperature of the tread surface is 4 ° C to 8 ° C lower than that of the widthwise narrow groove in which the notch groove is not formed.
上述したように、ショルダーラグ溝60に連通する幅方向細溝100では、1/8Wの位置付近に切欠き溝110を一つのみ形成することによって、幅方向細溝100内を空気がスムーズに流れ、周方向溝30及びショルダーラグ溝60及びに誘導されていくため、幅方向細溝100近傍のトレッド20の部分が均等に冷却される。
As described above, in the widthwise
つまり、幅方向細溝100の場合、切欠き溝の数を増やすよりも、切欠き溝を形成する位置を最適化することによって、トレッド20を効率的に冷却できることを見出したのである。
That is, in the case of the widthwise
一方、タイヤ幅方向外側の端部がトレッド20のブロック内で終端する幅方向細溝200では、1/16W, 1/4Wの位置付近に切欠き溝210, 220を形成することによって、幅方向細溝200内を空気がスムーズに流れるようにしつつ、幅方向細溝200内に取り込む空気の量を多くできるため、効率的に幅方向細溝100近傍のトレッド20の部分が冷却される。
On the other hand, in the width direction
つまり、幅方向細溝200の場合、2つの切欠き溝を形成して流入する空気の量を増やしつつ、切欠き溝を形成する位置を最適化することによって、トレッド20を効率的に冷却できることを見出したのである。
That is, in the case of the widthwise
なお、当該切欠き溝が上述した位置からずれて形成されると、空気のスムーズな流れが妨げられ、タイヤ幅方向におけるトレッド20を満遍なく冷却することが難しくなる。
If the notch groove is formed so as to deviate from the above-mentioned position, the smooth flow of air is hindered, and it becomes difficult to evenly cool the
また、建設車両用タイヤ10では、トレッド20に上述したゴム組成物を用いることによって、温度上昇を抑制しつつ、耐摩耗性を向上できる。
Further, in the
すなわち、建設車両用タイヤ10によれば、耐摩耗性を確保しつつ、トレッド全体をさらに効率的に冷却し得る。特に、建設車両用タイヤ10では、幅方向細溝100及び幅方向細溝200において、当該溝形状に応じてそれぞれ最適化された位置に切欠き溝が形成されるため、トレッド20全体をさらに効率的に冷却し得る。
That is, according to the
本実施形態では、切欠き溝110は、スロープ部120を有する。同様に、切欠き溝210, 220は、スロープ部230を有する。スロープ部120, 230は、当該幅方向細溝に向かうに連れてタイヤ径方向内側に傾斜しているため、当該幅方向細溝内へのスムーズな空気の流入を促進し得る。これにより、トレッド20全体をさらに効率的に冷却し得る。
In this embodiment, the
(5)その他の実施形態
以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the contents of the present invention have been described above according to the embodiments, the present invention is not limited to these descriptions, and various modifications and improvements are possible. It is self-evident to the trader.
例えば、上述した建設車両用タイヤ10は、次のように変更してもよい。図6は、変更例に係る建設車両用タイヤ10Aの一部平面展開図である。図6に示すように、建設車両用タイヤ10Aは、建設車両用タイヤ10と比較すると、切欠き溝110のみが形成されており、切欠き溝210, 220は形成されていない。
For example, the above-mentioned
また、図7は、他の変更例に係る建設車両用タイヤ10Bの一部平面展開図である。図7に示すように、建設車両用タイヤ10Bは、建設車両用タイヤ10と比較すると、切欠き溝210, 220のみが形成されており、切欠き溝110は形成されていない。
Further, FIG. 7 is a partially developed view of the
このような建設車両用タイヤ10A及び建設車両用タイヤ10Bによっても、建設車両用タイヤ10程ではないものの、他の性能への影響を抑制しつつ、トレッド20全体を効率的に冷却し得る。
Even with such a
また、上述した実施形態では、トレッド面視における切欠き溝110, 210, 220(スロープ部120, 230)の形状は、平行四辺形状であったが、当該切欠き溝の形状は、必ずしも平行四辺形状でなくてもよい。例えば、切欠き溝(スロープ部)の辺に相当する部分と、幅方向細溝の溝壁とが平行でなくてもよい。
Further, in the above-described embodiment, the shapes of the
上述した実施形態では、幅方向細溝100, 200は、タイヤ幅方向に対して多少傾斜していたが、当該幅方向細溝は、タイヤ幅方向に対して全く傾斜せずに平行に延びるような形状でも構わない。
In the above-described embodiment, the
上述した実施形態では、ショルダーラグ溝60は、トレッド20のタイヤ幅方向外側の端部まで延びていたが、ショルダーラグ溝60は、必ずしも当該端部まで延びていなくてもよい。
In the above-described embodiment, the
上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。 Although embodiments of the invention have been described above, the statements and drawings that form part of this disclosure should not be understood to limit the invention. Various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art from this disclosure.
10, 10A, 10B 建設車両用タイヤ
20 トレッド
30, 40, 50 周方向溝
60 ショルダーラグ溝
100 幅方向細溝
110 切欠き溝
120 スロープ部
130 溝壁
200 幅方向細溝
210, 220 切欠き溝
230 スロープ部
240 溝壁
10, 10A, 10B Construction vehicle tires
20 tread
30, 40, 50 Circumferential groove
60 Shoulder lug groove
100 width groove
110 Notch groove
120 slope part
130 groove wall
200 width groove
210, 220 Notch groove
230 slope part
240 groove wall
Claims (3)
前記幅方向細溝に連通し、タイヤ赤道線を含む位置に形成される中央周方向溝と、
前記幅方向細溝に連通し、前記幅方向細溝のタイヤ幅方向外側に形成される外側周方向溝と、
前記幅方向細溝に連通するスロープ状の切欠き溝と
が形成されたトレッドを備える建設車両用タイヤであって、
前記切欠き溝は、タイヤ赤道線からトレッド幅の1/16の距離を隔てた位置を基準とした所定範囲、及びタイヤ赤道線からトレッド幅の1/4の距離を隔てた位置を基準とした所定範囲にそれぞれ形成され、
前記トレッドは、イソプレン系ゴム原材料100重量部に対し、窒素吸着比表面積が100〜160m2/gで、かつジブチルフタレート吸油量(DBP)が80〜130ml/100gであるカーボンブラックと、窒素吸着比表面積が210〜260m2/gで、
かつ吸油量が200〜260ml/100gであるシリカとを合計量で40〜70重量部含み、該合計量のうちシリカが3〜15重量部であるゴム組成物によって構成される建設車両用タイヤ。 Width narrow grooves extending in the tire width direction and
A central circumferential groove that communicates with the widthwise narrow groove and is formed at a position that includes the tire equator line.
An outer circumferential groove that communicates with the widthwise narrow groove and is formed on the outer side of the widthwise narrow groove in the tire width direction.
A tire for a construction vehicle provided with a tread having a slope-shaped notch groove communicating with the widthwise narrow groove.
The notch groove is based on a predetermined range based on a position separated by a distance of 1/16 of the tread width from the tire equator line and a position separated by a distance of 1/4 of the tread width from the tire equatorial line. Formed in a predetermined range,
The tread contains carbon black having a specific surface area of 100 to 160 m 2 / g and a dibutyl phthalate oil absorption (DBP) of 80 to 130 ml / 100 g with respect to 100 parts by weight of an isoprene-based rubber raw material, and a nitrogen adsorption ratio. With a surface area of 210-260 m 2 / g,
A tire for a construction vehicle comprising a rubber composition containing 40 to 70 parts by weight of silica having an oil absorption amount of 200 to 260 ml / 100 g in total, and 3 to 15 parts by weight of silica in the total amount.
タイヤ周方向において前記第1幅方向細溝に隣接し、タイヤ幅方向に延びる第2幅方向細溝と、
前記第1幅方向細溝及び前記第2幅方向細溝に連通し、タイヤ赤道線を含む位置に形成される中央周方向溝と、
前記第1幅方向細溝及び前記第2幅方向細溝に連通し、前記第1幅方向細溝及び前記第2幅方向細溝のタイヤ幅方向外側に形成される外側周方向溝と、
前記第1幅方向細溝に連通するスロープ状の第1切欠き溝と、
前記第2幅方向細溝に連通するスロープ状の第2切欠き溝と
が形成されたトレッドを備える建設車両用タイヤであって、
前記トレッドには、前記第1幅方向細溝のタイヤ幅方向外側に形成され、前記外側周方向溝を介して前記第1幅方向細溝に連通するショルダーラグ溝が形成され、
前記第1切欠き溝は、タイヤ赤道線からトレッド幅の1/8の距離を隔てた位置を基準とした所定範囲に一つのみ形成され、
前記第2切欠き溝は、タイヤ赤道線からトレッド幅の1/16の距離を隔てた位置を基準とした所定範囲、及びタイヤ赤道線からトレッド幅の1/4の距離を隔てた位置を基準とした所定範囲にそれぞれ形成され、
前記トレッドは、イソプレン系ゴム原材料100重量部に対し、窒素吸着比表面積が100〜160m2/gで、かつジブチルフタレート吸油量(DBP)が80〜130ml/100gであるカーボンブラックと、窒素吸着比表面積が210〜260m2/gで、
かつ吸油量が200〜260ml/100gであるシリカとを合計量で40〜70重量部含み、該合計量のうちシリカが3〜15重量部であるゴム組成物によって構成される建設車両用タイヤ。 The first width direction groove extending in the tire width direction and
A second width direction groove adjacent to the first width direction groove in the tire circumferential direction and extending in the tire width direction,
A central circumferential groove that communicates with the first width direction groove and the second width direction groove and is formed at a position including the tire equator line.
An outer circumferential groove that communicates with the first width direction narrow groove and the second width direction fine groove and is formed on the outer side of the first width direction fine groove and the second width direction fine groove in the tire width direction.
A slope-shaped first notch groove communicating with the first width direction narrow groove and
A tire for a construction vehicle provided with a tread having a slope-shaped second notch groove communicating with the second width direction narrow groove.
The tread is formed with a shoulder lug groove formed on the outer side of the first width direction groove in the tire width direction and communicating with the first width direction fine groove via the outer circumferential groove.
Only one of the first notch grooves is formed in a predetermined range based on a position separated from the tire equatorial line by a distance of 1/8 of the tread width.
The second notch groove is based on a predetermined range based on a position separated by a distance of 1/16 of the tread width from the tire equator line and a position separated by a distance of 1/4 of the tread width from the tire equatorial line. It is formed in each predetermined range,
The tread contains carbon black having a specific surface area of 100 to 160 m 2 / g and a dibutyl phthalate oil absorption (DBP) of 80 to 130 ml / 100 g with respect to 100 parts by weight of an isoprene-based rubber raw material, and a nitrogen adsorption ratio. With a surface area of 210-260 m 2 / g,
A tire for a construction vehicle comprising a rubber composition containing 40 to 70 parts by weight of silica having an oil absorption amount of 200 to 260 ml / 100 g in total, and 3 to 15 parts by weight of silica in the total amount.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017023807A JP6847695B2 (en) | 2017-02-13 | 2017-02-13 | Tires for construction vehicles |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017023807A JP6847695B2 (en) | 2017-02-13 | 2017-02-13 | Tires for construction vehicles |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018130972A JP2018130972A (en) | 2018-08-23 |
JP6847695B2 true JP6847695B2 (en) | 2021-03-24 |
Family
ID=63247849
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017023807A Active JP6847695B2 (en) | 2017-02-13 | 2017-02-13 | Tires for construction vehicles |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6847695B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021205668A1 (en) * | 2021-06-04 | 2022-12-08 | Continental Reifen Deutschland Gmbh | Vehicle Pneumatic Tires |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3725274B2 (en) * | 1996-01-31 | 2005-12-07 | 株式会社ブリヂストン | Heavy duty pneumatic tire |
JP3992814B2 (en) * | 1998-01-30 | 2007-10-17 | 株式会社ブリヂストン | Heavy duty pneumatic tire |
JP4943717B2 (en) * | 2006-03-01 | 2012-05-30 | 株式会社ブリヂストン | Pneumatic tire |
JP5603670B2 (en) * | 2010-06-18 | 2014-10-08 | 株式会社ブリヂストン | tire |
JP5753404B2 (en) * | 2011-02-28 | 2015-07-22 | 株式会社ブリヂストン | Radial tires for construction vehicles |
ES2634004T3 (en) * | 2011-09-09 | 2017-09-26 | Bridgestone Corporation | Tire |
CA2864278C (en) * | 2012-02-24 | 2017-11-28 | Bridgestone Corporation | Pneumatic tire |
JP5695099B2 (en) * | 2013-01-30 | 2015-04-01 | 株式会社ブリヂストン | Pneumatic tires for construction vehicles |
JP5805123B2 (en) * | 2013-03-13 | 2015-11-04 | 株式会社ブリヂストン | Pneumatic tire |
JP5799043B2 (en) * | 2013-03-13 | 2015-10-21 | 株式会社ブリヂストン | Pneumatic tire |
-
2017
- 2017-02-13 JP JP2017023807A patent/JP6847695B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018130972A (en) | 2018-08-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9085201B2 (en) | Pneumatic tire | |
KR101824569B1 (en) | Pneumatic tyre | |
US8555939B2 (en) | Pneumatic tire with tread having crown circumferential grooves and middle circumferential grooves | |
US9174492B2 (en) | Pneumatic tire | |
JP7056150B2 (en) | tire | |
US10363781B2 (en) | Tire | |
US20130220499A1 (en) | Pneumatic tire | |
WO2014119325A1 (en) | Pneumatic tire | |
US8910682B2 (en) | Pneumatic tire | |
JP6657959B2 (en) | Pneumatic tire | |
JP6433760B2 (en) | Pneumatic tire | |
JP2018075929A (en) | tire | |
US20170129287A1 (en) | Pneumatic tire | |
JPWO2005068225A1 (en) | Pneumatic tire | |
JP6907758B2 (en) | tire | |
JP5635170B1 (en) | Pneumatic tire | |
JP6872923B2 (en) | Tires for construction vehicles | |
JP6847695B2 (en) | Tires for construction vehicles | |
WO2021054261A1 (en) | Tire | |
JP2007203970A (en) | Pneumatic tire | |
JP5685841B2 (en) | Pneumatic tire | |
JP2018111360A (en) | Pneumatic tire | |
JP4872066B2 (en) | Pneumatic tire | |
JP6854221B2 (en) | Tires for construction vehicles | |
JP2018008601A (en) | tire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191219 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201030 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210224 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210303 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6847695 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |