JP2018130972A - Tire for construction vehicle - Google Patents

Tire for construction vehicle Download PDF

Info

Publication number
JP2018130972A
JP2018130972A JP2017023807A JP2017023807A JP2018130972A JP 2018130972 A JP2018130972 A JP 2018130972A JP 2017023807 A JP2017023807 A JP 2017023807A JP 2017023807 A JP2017023807 A JP 2017023807A JP 2018130972 A JP2018130972 A JP 2018130972A
Authority
JP
Japan
Prior art keywords
groove
width direction
tire
tread
narrow groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017023807A
Other languages
Japanese (ja)
Other versions
JP6847695B2 (en
Inventor
孝太 高木
Kota Takagi
孝太 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2017023807A priority Critical patent/JP6847695B2/en
Publication of JP2018130972A publication Critical patent/JP2018130972A/en
Application granted granted Critical
Publication of JP6847695B2 publication Critical patent/JP6847695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a tire for a construction vehicle that can cool the whole of a tread more efficiently while securing abrasion resistance.SOLUTION: Only one notch groove 110 of a tire 10 for a construction vehicle is formed in a prescribed range based on a position separated by a distance equal to one eighth of a tread width from a tire equator line CL. Notch grooves 210 and 220 are formed in a prescribed range based on a position separated by a distance equal to one sixteenth of the tread width from the tire equator line CL and in a prescribed range based on a position separated by a distance equal to one fourth of the tread width from the tire equator line CL, respectively. A tread 20 is constituted of a rubber composition which contains carbon black in which a nitrogen adsorption specific surface area is 100-160 m/g and dibutyl phthalate oil absorption mounts (DBP) are 80-130 ml/100 g and silica in which a nitrogen adsorption specific surface area is 210-260 m/g and oil absorption amounts are 200-260 ml/100 g, with respect to 100 pts/wt. of an isoprene rubber raw material.SELECTED DRAWING: Figure 1

Description

本発明は、スロープ状の切欠き溝が形成されたトレッドを備える建設車両用タイヤに関する。   The present invention relates to a tire for a construction vehicle including a tread in which a slope-shaped cutout groove is formed.

鉱山などの不整地を走行するダンプトラックなどに装着されるタイヤ、いわゆる建設車両用タイヤでは、トレッドの温度上昇を抑制することが重要である。そこで、タイヤ径方向内側に傾斜したスロープ状の切欠き溝をトレッドに形成することによって、トレッドを冷却する構造が知られている(例えば、特許文献1)。   In tires mounted on dump trucks traveling on rough terrain such as mines, so-called construction vehicle tires, it is important to suppress the temperature rise of the tread. Therefore, a structure in which the tread is cooled by forming a slope-shaped notch groove inclined inward in the tire radial direction is known (for example, Patent Document 1).

具体的には、タイヤの転動に伴ってスロープ状の切欠き溝に空気が流入し、トレッド表面の熱交換が促進されるため、トレッドの温度上昇を抑制できる。   Specifically, as the tire rolls, air flows into the slope-shaped notch groove and heat exchange on the tread surface is promoted, so that the temperature rise of the tread can be suppressed.

特許第5719935号公報Japanese Patent No. 5719935

近年、上述したような建設車両用タイヤでは、車両の高速化及び高荷重への対応が強く求められている。このため、トレッドの温度上昇がさらに問題となり易い。   In recent years, construction vehicle tires such as those described above are strongly required to increase the vehicle speed and handle high loads. For this reason, the temperature rise of the tread is more likely to be a problem.

トレッドの温度上昇の対策としては、耐熱性の高いゴムを用いることが容易である。しかしながら、一般的に、耐熱性の高いゴムは、耐摩耗性に劣るため、耐摩耗性の確保が難しくなるトレードオフの関係にある。   As a countermeasure against the temperature rise of the tread, it is easy to use rubber having high heat resistance. However, generally, rubber having high heat resistance is inferior in wear resistance, and therefore has a trade-off relationship that makes it difficult to ensure wear resistance.

そこで、本発明は、このような状況に鑑みてなされたものであり、耐摩耗性を確保しつつ、トレッド全体をさらに効率的に冷却し得る建設車両用タイヤの提供を目的とする。   Accordingly, the present invention has been made in view of such circumstances, and an object thereof is to provide a tire for a construction vehicle that can cool the entire tread more efficiently while ensuring wear resistance.

本発明の一態様に係る建設車両用タイヤ(建設車両用タイヤ10A)は、タイヤ幅方向に延びる幅方向細溝(幅方向細溝100)と、前記幅方向細溝に連通し、タイヤ赤道線を含む位置に形成される中央周方向溝(周方向溝30)と、前記幅方向細溝に連通し、前記幅方向細溝のタイヤ幅方向外側に形成される外側周方向溝(周方向溝40, 50)と、前記幅方向細溝に連通するスロープ状の切欠き溝(切欠き溝110)とが形成されたトレッド(トレッド20)を備える。前記トレッドには、前記幅方向細溝のタイヤ幅方向外側に形成され、前記外側周方向溝を介して前記幅方向細溝に連通するショルダーラグ溝(ショルダーラグ溝60)が形成され、前記切欠き溝は、タイヤ赤道線からトレッド幅の1/8の距離を隔てた位置を基準とした所定範囲に一つのみ形成される。また、前記トレッドは、イソプレン系ゴム原材料100重量部に対し、窒素吸着比表面積が100〜160m/gで、かつジブチルフタレート吸油量(DBP)が80〜130ml/100gであるカーボンブラックと、窒素吸着比表面積が210〜260m/gで、かつ吸油量が200〜260ml/100gであるシリカとを合計量で40〜70重量部含み、該合計量のうちシリカが3〜15重量部であるゴム組成物によって構成される。 A construction vehicle tire according to an aspect of the present invention (construction vehicle tire 10A) communicates with a widthwise narrow groove (widthwise narrow groove 100) extending in the tire width direction and the widthwise narrow groove, and a tire equator line. A central circumferential groove (circumferential groove 30) formed at a position including the outer circumferential groove (circumferential groove) that communicates with the narrow groove in the width direction and is formed on the outer side in the tire width direction of the narrow groove. 40, 50) and a tread (tread 20) in which a slope-shaped notch groove (notch groove 110) communicating with the widthwise narrow groove is formed. The tread is formed with a shoulder lug groove (shoulder lug groove 60) formed on the outer side in the tire width direction of the width direction narrow groove and communicating with the width direction narrow groove through the outer circumferential groove. Only one notch groove is formed in a predetermined range with a position at a distance of 1/8 of the tread width from the tire equator line as a reference. The tread has a nitrogen adsorption specific surface area of 100 to 160 m 2 / g and a dibutyl phthalate oil absorption (DBP) of 80 to 130 ml / 100 g with respect to 100 parts by weight of the isoprene-based rubber raw material, and nitrogen. It contains 40 to 70 parts by weight in total of silica having an adsorption specific surface area of 210 to 260 m 2 / g and an oil absorption of 200 to 260 ml / 100 g, of which 3 to 15 parts by weight of silica is included. It is constituted by a rubber composition.

本発明の一態様に係る建設車両用タイヤ(建設車両用タイヤ10B)は、タイヤ幅方向に延びる幅方向細溝(幅方向細溝200)と、前記幅方向細溝に連通し、タイヤ赤道線を含む位置に形成される中央周方向溝(周方向溝30)と、前記幅方向細溝に連通し、前記幅方向細溝のタイヤ幅方向外側に形成される外側周方向溝(周方向溝40, 50)と、前記幅方向細溝に連通するスロープ状の切欠き溝(切欠き溝210, 220)とが形成されたトレッド(トレッド20)を備える。前記切欠き溝は、タイヤ赤道線からトレッド幅の1/16の距離を隔てた位置を基準とした所定範囲、及びタイヤ赤道線からトレッド幅の1/4の距離を隔てた位置を基準とした所定範囲にそれぞれ形成される。また、前記トレッドは、イソプレン系ゴム原材料100重量部に対し、窒素吸着比表面積が100〜160m/gで、かつジブチルフタレート吸油量(DBP)が80〜130ml/100gであるカーボンブラックと、窒素吸着比表面積が210〜260m/gで、かつ吸油量が200〜260ml/100gであるシリカとを合計量で40〜70重量部含み、該合計量のうちシリカが3〜15重量部であるゴム組成物によって構成される。 A construction vehicle tire (construction vehicle tire 10B) according to one aspect of the present invention communicates with a widthwise narrow groove (widthwise narrow groove 200) extending in the tire width direction and the widthwise narrow groove, and a tire equator line. A central circumferential groove (circumferential groove 30) formed at a position including the outer circumferential groove (circumferential groove) that communicates with the narrow groove in the width direction and is formed on the outer side in the tire width direction of the narrow groove. 40, 50) and a tread (tread 20) formed with slope-shaped notch grooves (notch grooves 210, 220) communicating with the narrow grooves in the width direction. The notch groove is based on a predetermined range based on a position that is 1/16 of the tread width from the tire equator line, and a position that is a distance of 1/4 of the tread width from the tire equator line. Each is formed in a predetermined range. The tread has a nitrogen adsorption specific surface area of 100 to 160 m 2 / g and a dibutyl phthalate oil absorption (DBP) of 80 to 130 ml / 100 g with respect to 100 parts by weight of the isoprene-based rubber raw material, and nitrogen. It contains 40 to 70 parts by weight in total of silica having an adsorption specific surface area of 210 to 260 m 2 / g and an oil absorption of 200 to 260 ml / 100 g, of which 3 to 15 parts by weight of silica is included. It is constituted by a rubber composition.

本発明の一態様に係る建設車両用タイヤ(建設車両用タイヤ10)は、タイヤ幅方向に延びる第1幅方向細溝(幅方向細溝100)と、タイヤ周方向において前記第1幅方向細溝に隣接し、タイヤ幅方向に延びる第2幅方向細溝(幅方向細溝200)と、前記第1幅方向細溝及び前記第2幅方向細溝に連通し、タイヤ赤道線を含む位置に形成される中央周方向溝(周方向溝30)と、前記第1幅方向細溝及び前記第2幅方向細溝に連通し、前記第1幅方向細溝及び前記第2幅方向細溝のタイヤ幅方向外側に形成される外側周方向溝(周方向溝40, 50)と、前記第1幅方向細溝に連通するスロープ状の第1切欠き溝(切欠き溝110)と、前記第2幅方向細溝に連通するスロープ状の第2切欠き溝(切欠き溝210, 220)とが形成されたトレッド(トレッド20)を備える。前記トレッドには、前記第1幅方向細溝のタイヤ幅方向外側に形成され、前記外側周方向溝を介して前記第1幅方向細溝に連通するショルダーラグ溝(ショルダーラグ溝60)が形成され、前記第1切欠き溝は、タイヤ赤道線からトレッド幅の1/8の距離を隔てた位置を基準とした所定範囲に一つのみ形成され、前記第2切欠き溝は、タイヤ赤道線からトレッド幅の1/16の距離を隔てた位置を基準とした所定範囲、及びタイヤ赤道線からトレッド幅の1/4の距離を隔てた位置を基準とした所定範囲にそれぞれ形成される。また、前記トレッドは、イソプレン系ゴム原材料100重量部に対し、窒素吸着比表面積が100〜160m/gで、かつジブチルフタレート吸油量(DBP)が80〜130ml/100gであるカーボンブラックと、窒素吸着比表面積が210〜260m/gで、かつ吸油量が200〜260ml/100gであるシリカとを合計量で40〜70重量部含み、該合計量のうちシリカが3〜15重量部であるゴム組成物によって構成される。 A construction vehicle tire (construction vehicle tire 10) according to an aspect of the present invention includes a first width direction narrow groove (width direction narrow groove 100) extending in the tire width direction and the first width direction narrow groove in the tire circumferential direction. A position adjacent to the groove and extending in the tire width direction, communicating with the second width direction narrow groove (width direction narrow groove 200), the first width direction narrow groove and the second width direction narrow groove, and including the tire equator line A central circumferential groove (circumferential groove 30) formed in the first width direction narrow groove and the second width direction narrow groove, and the first width direction narrow groove and the second width direction narrow groove. An outer circumferential groove (circumferential grooves 40, 50) formed on the outer side in the tire width direction, a slope-shaped first notch groove (notch groove 110) communicating with the first width-direction narrow groove, A tread (tread 20) formed with a slope-shaped second notch groove (notch grooves 210, 220) communicating with the second widthwise narrow groove is provided. The tread has a shoulder lug groove (shoulder lug groove 60) formed on the outer side in the tire width direction of the first width direction narrow groove and communicating with the first width direction narrow groove through the outer circumferential groove. The first notch groove is formed only in a predetermined range based on a position separated from the tire equator line by a distance of 1/8 of the tread width, and the second notch groove is a tire equator line. And a predetermined range based on a position separated by a distance of 1/4 of the tread width from the tire equator line. The tread has a nitrogen adsorption specific surface area of 100 to 160 m 2 / g and a dibutyl phthalate oil absorption (DBP) of 80 to 130 ml / 100 g with respect to 100 parts by weight of the isoprene-based rubber raw material, and nitrogen. It contains 40 to 70 parts by weight in total of silica having an adsorption specific surface area of 210 to 260 m 2 / g and an oil absorption of 200 to 260 ml / 100 g, of which 3 to 15 parts by weight of silica is included. It is constituted by a rubber composition.

本発明に係る建設車両用タイヤによれば、耐摩耗性を確保しつつ、トレッド全体をさらに効率的に冷却し得る。   According to the tire for a construction vehicle according to the present invention, the entire tread can be more efficiently cooled while ensuring the wear resistance.

図1は、建設車両用タイヤ10の一部平面展開図である。FIG. 1 is a partial plan view of a construction vehicle tire 10. 図2は、幅方向細溝100及び切欠き溝110のタイヤ周方向に沿った断面図である。FIG. 2 is a cross-sectional view of the width direction narrow groove 100 and the notch groove 110 along the tire circumferential direction. 図3は、切欠き溝110の斜視図である。FIG. 3 is a perspective view of the notch groove 110. 図4は、幅方向細溝200及び切欠き溝210, 220のタイヤ周方向に沿った断面図である。FIG. 4 is a cross-sectional view of the width direction narrow groove 200 and the notch grooves 210 and 220 along the tire circumferential direction. 図5は、切欠き溝210, 220の斜視図である。FIG. 5 is a perspective view of the notch grooves 210 and 220. 図6は、変更例に係る建設車両用タイヤ10Aの一部平面展開図である。FIG. 6 is a partial plan development view of a construction vehicle tire 10A according to a modified example. 図7は、変更例に係る建設車両用タイヤ10Bの一部平面展開図である。FIG. 7 is a partial plan development view of a construction vehicle tire 10B according to a modified example.

以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。   Hereinafter, embodiments will be described with reference to the drawings. The same functions and configurations are denoted by the same or similar reference numerals, and description thereof is omitted as appropriate.

(1)建設車両用タイヤの概略構成
図1は、本実施形態に係る建設車両用タイヤ10の一部平面展開図である。建設車両用タイヤ10は、鉱山などの不整地を走行するダンプトラックなどに装着される空気入りタイヤである。
(1) Schematic Configuration of Construction Vehicle Tire FIG. 1 is a partial plan development view of a construction vehicle tire 10 according to the present embodiment. The construction vehicle tire 10 is a pneumatic tire mounted on a dump truck or the like traveling on rough terrain such as a mine.

建設車両用タイヤ10のサイズは、特に限定されないが、49, 51, 57または63インチなどが広く用いられている。建設車両用タイヤ10は、ORR(オフ・ザ・ロード・ラジアル)タイヤなどと呼ばれる場合もある。但し、必ずしもラジアルタイヤに限定されるものではない。   The size of the construction vehicle tire 10 is not particularly limited, but 49, 51, 57, 63 inches, and the like are widely used. The construction vehicle tire 10 may be called an ORR (off-the-road radial) tire or the like. However, it is not necessarily limited to radial tires.

図1に示すように、建設車両用タイヤ10は、路面と接するトレッド20を備える。トレッド20には、タイヤ周方向に延びる複数の周方向溝30, 40, 50が形成されている。また、トレッドには、タイヤ幅方向に延びる複数の幅方向細溝100, 200が形成されている。   As shown in FIG. 1, the construction vehicle tire 10 includes a tread 20 in contact with a road surface. A plurality of circumferential grooves 30, 40, 50 extending in the tire circumferential direction are formed in the tread 20. The tread is formed with a plurality of widthwise narrow grooves 100, 200 extending in the tire width direction.

建設車両用タイヤ10は、タイヤ赤道線CLを基準として、概ね対称の形状を有している。但し、幅方向細溝100, 200の位置は、タイヤ赤道線CLを基準とした一方側と他方側とで、多少タイヤ周方向においてオフセットしている。   The construction vehicle tire 10 has a generally symmetric shape with respect to the tire equator line CL. However, the positions of the narrow grooves 100 and 200 in the width direction are slightly offset in the tire circumferential direction on one side and the other side with respect to the tire equator line CL.

周方向溝30は、幅方向細溝100及び幅方向細溝200に連通する。周方向溝30は、タイヤ赤道線CLを含む位置に形成される。本実施形態において、周方向溝30は、中央周方向溝を構成する。   The circumferential groove 30 communicates with the widthwise narrow groove 100 and the widthwise narrow groove 200. The circumferential groove 30 is formed at a position including the tire equator line CL. In the present embodiment, the circumferential groove 30 constitutes a central circumferential groove.

周方向溝40も、幅方向細溝100に連通する。周方向溝40は、幅方向細溝100のタイヤ幅方向外側に形成される。また、周方向溝40は、幅方向細溝200に連通する。周方向溝40は、幅方向細溝200のタイヤ幅方向外側に形成される。   The circumferential groove 40 also communicates with the widthwise narrow groove 100. The circumferential groove 40 is formed outside the width direction narrow groove 100 in the tire width direction. Further, the circumferential groove 40 communicates with the width direction narrow groove 200. The circumferential groove 40 is formed outside the width direction narrow groove 200 in the tire width direction.

周方向溝50は、タイヤ赤道線CLを基準とした周方向溝40の逆側に形成され、周方向溝40と同様の形状を有する。本実施形態において、周方向溝40, 50は、外側周方向溝を構成する。以下、タイヤ赤道線CLを基準とした周方向溝40側の構成について説明する。   The circumferential groove 50 is formed on the opposite side of the circumferential groove 40 with respect to the tire equator line CL, and has the same shape as the circumferential groove 40. In the present embodiment, the circumferential grooves 40 and 50 constitute outer circumferential grooves. Hereinafter, the configuration on the circumferential groove 40 side with reference to the tire equator line CL will be described.

トレッド20には、ショルダーラグ溝60が形成される。ショルダーラグ溝60は、幅方向細溝100のタイヤ幅方向外側に形成され、周方向溝40を介して幅方向細溝100に連通する。ショルダーラグ溝60は、タイヤ幅方向に沿って延びる。   A shoulder lug groove 60 is formed in the tread 20. The shoulder lug groove 60 is formed on the outer side in the tire width direction of the width direction narrow groove 100 and communicates with the width direction narrow groove 100 via the circumferential direction groove 40. The shoulder lug groove 60 extends along the tire width direction.

幅方向細溝100は、タイヤ幅方向に延びる細溝である。細溝とは、少なくとも溝幅が溝深さよりも小さい溝である。本実施形態において、幅方向細溝100は、第1幅方向細溝を構成する。   The width direction narrow groove 100 is a narrow groove extending in the tire width direction. A narrow groove is a groove whose groove width is smaller than the groove depth. In this embodiment, the width direction narrow groove 100 constitutes a first width direction narrow groove.

本実施形態では、幅方向細溝100の溝幅は10mm程度、溝深さは100mm程度(63インチの場合)である。なお、溝幅及び溝深さは、タイヤサイズまたはスペックに応じて適宜変更可能であり、建設車両用タイヤで用いられる49インチ〜63インチのタイヤの場合、概ね溝幅は3〜10mm、溝深さは40〜100mmである。また、本実施形態では、幅方向細溝100は、タイヤ幅方向に対して多少傾斜している。   In the present embodiment, the width direction narrow groove 100 has a groove width of about 10 mm and a groove depth of about 100 mm (in the case of 63 inches). The groove width and groove depth can be appropriately changed according to the tire size or specifications. In the case of a 49-inch to 63-inch tire used in construction vehicle tires, the groove width is generally 3-10 mm, and the groove depth. The length is 40-100 mm. Further, in the present embodiment, the width direction narrow groove 100 is slightly inclined with respect to the tire width direction.

幅方向細溝200も、タイヤ幅方向に延びる細溝である。幅方向細溝200は、タイヤ周方向において幅方向細溝100に隣接する。本実施形態において、幅方向細溝200は、第2幅方向細溝を構成する。   The width direction narrow groove 200 is also a narrow groove extending in the tire width direction. The width direction narrow groove 200 is adjacent to the width direction narrow groove 100 in the tire circumferential direction. In the present embodiment, the width direction narrow groove 200 constitutes a second width direction narrow groove.

また、トレッド20には、複数の切欠き溝110, 210, 220が形成される。切欠き溝110は、幅方向細溝100に連通するスロープ状である。また、図1に示すように、切欠き溝110, 210, 22は、トレッド面視において平行四辺形状である。本実施形態において、切欠き溝110は、第1切欠き溝を構成する。   The tread 20 is formed with a plurality of notch grooves 110, 210, and 220. The notch groove 110 has a slope shape communicating with the narrow groove 100 in the width direction. Moreover, as shown in FIG. 1, the notch grooves 110, 210, and 22 have a parallelogram shape in the tread surface view. In the present embodiment, the notch groove 110 constitutes a first notch groove.

切欠き溝110は、タイヤ赤道線CLからトレッド20の幅(以下、トレッド幅)の1/8の距離を隔てた位置を基準とした所定範囲に一つのみ形成される。トレッド20の幅とは、正規リムホイールに組み付けられ、車両指定の標準内圧に設定された建設車両用タイヤ10に、正規荷重が付加された場合におけるトレッド20の接地幅である。   Only one notch groove 110 is formed in a predetermined range based on a position at a distance of 1/8 of the width of the tread 20 (hereinafter, tread width) from the tire equator line CL. The width of the tread 20 is a contact width of the tread 20 when a normal load is applied to the construction vehicle tire 10 that is assembled to the normal rim wheel and set to the standard internal pressure specified by the vehicle.

本実施形態では、当該距離は、200mm程度(切欠き溝110のタイヤ幅方向における中央位置)であり、切欠き溝110の幅は、50mm程度である。また、所定範囲とは、切欠き溝110一つずつ分程度(つまり、±50mm程度)を意味する。   In this embodiment, the distance is about 200 mm (the center position of the notch groove 110 in the tire width direction), and the width of the notch groove 110 is about 50 mm. Further, the predetermined range means about one notch groove 110 (that is, about ± 50 mm).

切欠き溝210, 220は、幅方向細溝200に連通するスロープ状である。本実施形態において、切欠き溝210, 220は、第2切欠き溝を構成する。切欠き溝210, 220は、切欠き溝110と同様の形状を有する。   The notch grooves 210 and 220 have a slope shape communicating with the narrow groove 200 in the width direction. In the present embodiment, the notch grooves 210 and 220 constitute a second notch groove. The notch grooves 210 and 220 have the same shape as the notch groove 110.

切欠き溝210は、タイヤ赤道線CLからトレッド幅の1/16の距離を隔てた位置を基準とした所定範囲に形成される。また、切欠き溝220は、タイヤ赤道線CLからトレッド幅の1/4の距離を隔てた位置を基準とした所定範囲にそれぞれ形成される。   The notch groove 210 is formed in a predetermined range with a position at a distance of 1/16 of the tread width from the tire equator line CL as a reference. Further, the notch groove 220 is formed in a predetermined range based on a position separated from the tire equator line CL by a distance of 1/4 of the tread width.

本実施形態では、切欠き溝210の当該距離は、100mm程度(切欠き溝210のタイヤ幅方向における中央位置)であり、切欠き溝220の当該距離は、400mm程度(切欠き溝220のタイヤ幅方向における中央位置)である。   In the present embodiment, the distance of the notch groove 210 is about 100 mm (the center position of the notch groove 210 in the tire width direction), and the distance of the notch groove 220 is about 400 mm (the tire of the notch groove 220). Center position in the width direction).

切欠き溝210についても、所定範囲とは、当該中央位置を基準とした切欠き溝210一つ分ずつ程度(つまり、±50mm程度)を意味する。一方、切欠き溝220については、タイヤ幅方向外側に位置し、周方向溝40に近いため、当該中央位置を基準として、切欠き溝220二つ分程度内側(つまり、100mm程度)の位置までを含んでもよい。   As for the notch groove 210, the predetermined range means about one notch groove 210 based on the center position (that is, about ± 50 mm). On the other hand, since the notch groove 220 is located on the outer side in the tire width direction and is close to the circumferential groove 40, the notch groove 220 is located about two notch grooves 220 (ie, about 100 mm) from the center position. May be included.

(2)切欠き溝の形状
図2は、幅方向細溝100及び切欠き溝110のタイヤ周方向に沿った断面図である。図3は、切欠き溝110の斜視図である。
(2) Shape of Notch Groove FIG. 2 is a cross-sectional view of the width direction narrow groove 100 and the notch groove 110 along the tire circumferential direction. FIG. 3 is a perspective view of the notch groove 110.

また、図4は、幅方向細溝200及び切欠き溝210, 220のタイヤ周方向に沿った断面図である。図5は、切欠き溝210, 220の斜視図である。   FIG. 4 is a cross-sectional view of the width direction narrow groove 200 and the notch grooves 210 and 220 along the tire circumferential direction. FIG. 5 is a perspective view of the notch grooves 210 and 220.

図2及び図3に示すように、切欠き溝110は、幅方向細溝100に連通する。具体的は、切欠き溝110は、スロープ部120を有し、スロープ部120は、幅方向細溝100に連通する。   As shown in FIGS. 2 and 3, the notch groove 110 communicates with the widthwise narrow groove 100. Specifically, the notch groove 110 includes a slope portion 120, and the slope portion 120 communicates with the width direction narrow groove 100.

スロープ部120は、タイヤ周方向に沿って延びるとともに、トレッド20の表面から幅方向細溝100に向かうに連れてタイヤ径方向内側に傾斜する。   The slope portion 120 extends along the tire circumferential direction, and inclines inward in the tire radial direction from the surface of the tread 20 toward the narrow groove 100 in the width direction.

上述したように、スロープ部120の幅W、つまり、切欠き溝110の幅は、50mm程度である。また、スロープ部120のトレッド20の表面に対する傾斜角度θは、20度程度である。   As described above, the width W of the slope portion 120, that is, the width of the notch groove 110 is about 50 mm. Further, the inclination angle θ of the slope portion 120 with respect to the surface of the tread 20 is about 20 degrees.

切欠き溝110は、スロープ部120を有するため、建設車両用タイヤ10が転動すると、スロープ部120を伝って幅方向細溝100に空気が流入する。具体的には、空気は、スロープ部120を伝って幅方向細溝100の溝壁130に衝突し、幅方向細溝100内に広がる。   Since the notch groove 110 has the slope portion 120, when the construction vehicle tire 10 rolls, air flows into the width direction narrow groove 100 through the slope portion 120. Specifically, the air travels along the slope portion 120 and collides with the groove wall 130 of the width direction narrow groove 100 and spreads in the width direction narrow groove 100.

図4及び図5に示すように、切欠き溝210, 220は、幅方向細溝200に連通する。具体的は、切欠き溝210, 220は、スロープ部230を有し、スロープ部230は、幅方向細溝200に連通する。切欠き溝210, 220は、切欠き溝110と同様の形状である。   As shown in FIGS. 4 and 5, the notch grooves 210 and 220 communicate with the width direction narrow groove 200. Specifically, the notch grooves 210 and 220 have a slope portion 230, and the slope portion 230 communicates with the width direction narrow groove 200. The notch grooves 210 and 220 have the same shape as the notch groove 110.

スロープ部230は、タイヤ周方向に沿って延びるとともに、トレッド20の表面から幅方向細溝200に向かうに連れてタイヤ径方向内側に傾斜する。   The slope portion 230 extends along the tire circumferential direction and is inclined inward in the tire radial direction from the surface of the tread 20 toward the narrow groove 200 in the width direction.

スロープ部230の幅W、つまり、切欠き溝210, 220の幅は、50mm程度である。また、スロープ部230の傾斜角度θは、20度程度である。   The width W of the slope portion 230, that is, the width of the notch grooves 210 and 220 is about 50 mm. Further, the inclination angle θ of the slope portion 230 is about 20 degrees.

切欠き溝110と同様に、建設車両用タイヤ10が転動すると、スロープ部230を伝って幅方向細溝200に空気が流入する。具体的には、空気は、スロープ部230を伝って幅方向細溝200の溝壁240に衝突し、幅方向細溝200内に広がる。   Similarly to the notch groove 110, when the construction vehicle tire 10 rolls, air flows into the width direction narrow groove 200 through the slope portion 230. Specifically, the air travels along the slope portion 230 and collides with the groove wall 240 of the width direction narrow groove 200 and spreads in the width direction narrow groove 200.

(3)トレッドに用いるゴム組成物
トレッド20には、建設車両用タイヤ用として広く用いられているゴム組成物を用いることができるが、特に、建設車両用タイヤ10では、次のようなゴム組成物を用いることが好ましい。
(3) Rubber composition used for tread The rubber composition widely used for construction vehicle tires can be used for the tread 20, and in particular for the construction vehicle tire 10, the following rubber composition is used. It is preferable to use a product.

具体的には、イソプレン系ゴム原材料100重量部に対し、窒素吸着比表面積が100〜160m2/gで、かつジブチルフタレート吸油量(DBP)が80〜130ml/100gであるカーボンブラックと、窒素吸着比表面積が210〜260m/gで、かつ吸油量が200〜260ml/100gであるシリカとを合計量で40〜70重量部含み、該合計量のうちシリカが3〜15重量部である。 Specifically, carbon black having a nitrogen adsorption specific surface area of 100 to 160 m 2 / g and a dibutyl phthalate oil absorption (DBP) of 80 to 130 ml / 100 g with respect to 100 parts by weight of isoprene-based rubber raw material, and nitrogen adsorption It contains 40 to 70 parts by weight of the total amount of silica having a specific surface area of 210 to 260 m 2 / g and an oil absorption of 200 to 260 ml / 100 g, of which 3 to 15 parts by weight of silica.

イソプレン系ゴムとしては、天然ゴムの他に、イソプレン合成ゴムが挙げられる。また、カーボンブラックとしては、窒素吸着比表面積が100〜160m/gで、かつジブチルフタレート吸油量(DBP)が80〜130ml/100g、好ましくは窒素吸着比表面積が110〜150m2 /gで、かつDBPが85〜120ml/100gである。 Examples of the isoprene rubber include isoprene synthetic rubber in addition to natural rubber. The carbon black has a nitrogen adsorption specific surface area of 100 to 160 m 2 / g and a dibutyl phthalate oil absorption (DBP) of 80 to 130 ml / 100 g, preferably a nitrogen adsorption specific surface area of 110 to 150 m 2 / g. And DBP is 85-120 ml / 100g.

カーボンブラックの窒素吸着比表面積が100m/g未満かまたはDBPが80ml/100g未満であると十分な耐摩耗性が得られず、一方窒素吸着比表面積が160m/gを超えるかまたはDBPが130ml/100gを超えると耐熱性(低発熱性)が悪化する。 If the nitrogen adsorption specific surface area of the carbon black is less than 100 m 2 / g or the DBP is less than 80 ml / 100 g, sufficient wear resistance cannot be obtained, while the nitrogen adsorption specific surface area exceeds 160 m 2 / g or the DBP When it exceeds 130 ml / 100 g, heat resistance (low heat build-up) deteriorates.

シリカとしては、窒素吸着比表面積が210〜260m/gで、かつ吸油量が200〜260ml/100g、好ましくは窒素吸着比表面積が210〜240m/gで、かつ吸油量が220〜240ml/100gである。これにより、耐熱性と耐摩耗性とを両立し得る。 Silica has a nitrogen adsorption specific surface area of 210 to 260 m 2 / g and an oil absorption of 200 to 260 ml / 100 g, preferably a nitrogen adsorption specific surface area of 210 to 240 m 2 / g and an oil absorption of 220 to 240 ml / g. 100 g. Thereby, both heat resistance and wear resistance can be achieved.

また、イソプレン系ゴム原材料100重量部に対し、カーボンブラックとシリカとの合計量が40〜70重量部の範囲内であるが、当該合計量が40重量部未満では耐摩耗性が不十分であり、一方70重量部を超えると耐熱性が悪化する。   Further, the total amount of carbon black and silica is in the range of 40 to 70 parts by weight with respect to 100 parts by weight of the isoprene-based rubber raw material, but if the total amount is less than 40 parts by weight, the wear resistance is insufficient. On the other hand, if it exceeds 70 parts by weight, the heat resistance deteriorates.

また、当該合計量のうちシリカが3〜15重量部、好ましくは5〜10重量部である。シリカの配合量が当該範囲から逸脱すると、耐熱性と耐摩耗性とのバランスを良好に維持することが困難となる。   Moreover, 3-15 weight part of silica is preferable among the said total amount, Preferably it is 5-10 weight part. When the blending amount of silica deviates from the range, it becomes difficult to maintain a good balance between heat resistance and wear resistance.

カーボンブラックの窒素吸着比表面積は、ASTM D4820−93、DBPは、ASTM D2414−93に各々準拠して測定した値である。また、シリカの窒素吸着比表面積は、乾燥条件300℃×1時間実施後同様に、ASTMD4820−93に準拠し、また吸油量はASTM D2414−93に準拠して測定した値である。   The nitrogen adsorption specific surface area of carbon black is a value measured according to ASTM D4820-93, and DBP is a value measured according to ASTM D2414-93. Moreover, the nitrogen adsorption specific surface area of a silica is based on ASTMD4820-93 similarly after implementing dry conditions 300 degreeC * 1 hour, and oil absorption is the value measured based on ASTMD2414-93.

なお、トレッド20は、ベースゴムと、ベースゴムのタイヤ径方向外側に設けられるキャップゴムとによって構成されるが、キャップゴムに上述のゴム組成物が用いられる。   The tread 20 is composed of a base rubber and a cap rubber provided on the outer side in the tire radial direction of the base rubber, and the above rubber composition is used for the cap rubber.

また、トレッド20を構成するキャップゴムの比率(ゴムゲージ全体に対する比率)を高くすることによって、耐摩耗性をさらに高めるようにしてもよい。例えば、通常6:4程度であるキャップゴム:ベースゴムの比率を8:2程度としてもよい。   Further, the wear resistance may be further increased by increasing the ratio of the cap rubber constituting the tread 20 (ratio to the entire rubber gauge). For example, the ratio of cap rubber to base rubber, which is usually about 6: 4, may be about 8: 2.

(4)作用・効果
表1は、建設車両用タイヤ10に関する評価試験結果を示す。
(4) Actions / Effects Table 1 shows the results of evaluation tests on the construction vehicle tire 10.

Figure 2018130972
Figure 2018130972

具体的には、表1は、幅方向細溝100及び幅方向細溝200近傍におけるトレッド20表面の温度低下の程度を示している。タイヤの諸元及び試験方法などは以下のとおりである。   Specifically, Table 1 shows the degree of temperature drop on the surface of the tread 20 in the vicinity of the widthwise narrow groove 100 and the widthwise narrow groove 200. The specifications and test methods of the tire are as follows.

・ タイヤ諸元: 63インチ(トレッド幅:約1200mm)
・ 使用試験装置: ドラム試験機
・ 試験方法: ドラム試験機を用いて評価タイヤを所定時間転動させた後、幅方向細溝を構成する溝壁に沿ったトレッド表面の温度を複数の位置(1/4W, 3/16W, 1/8W, 1/16W, タイヤ赤道線CL)において測定し、平均温度を算出した。
・ Tire specifications: 63 inches (tread width: about 1200mm)
・ Test equipment used: Drum tester ・ Test method: After rolling the evaluation tire for a predetermined time using the drum tester, the temperature of the tread surface along the groove wall constituting the narrow groove in the width direction is set at a plurality of positions ( 1 / 4W, 3 / 16W, 1 / 8W, 1 / 16W, tire equator line CL), and the average temperature was calculated.

表1に示すように、幅方向細溝100の場合、つまり、ショルダーラグ溝60に連通し、トレッド幅の1/8の距離を隔てた位置(1/8W)を基準とした所定範囲内に切欠き溝(切欠き溝110)が形成されている場合、トレッド表面の温度は、切欠き溝が形成されていない幅方向細溝の場合と比較して、2.9°C低下している。また、切欠き溝が1/4Wの位置に一つのみ形成されている幅方向細溝の場合と比較して、0.9°C低下している。   As shown in Table 1, in the case of the width direction narrow groove 100, that is, within the predetermined range based on the position (1 / 8W) that communicates with the shoulder lug groove 60 and is separated by 1/8 of the tread width. When the notched groove (notched groove 110) is formed, the temperature of the tread surface is reduced by 2.9 ° C. compared to the case of the widthwise narrow groove where the notched groove is not formed. Further, it is 0.9 ° C. lower than that in the case of the narrow groove in the width direction in which only one notch groove is formed at a position of 1/4 W.

また、幅方向細溝200の場合、つまり、ショルダーラグ溝に連通せず、タイヤ幅方向外側の端部がトレッド20のブロック(陸部)内で終端し、トレッド幅の1/16及び1/4の距離を隔てた位置(1/16W, 1/4W)を基準とした所定範囲内に切欠き溝(切欠き溝210, 220)が形成されている場合、トレッド表面の温度は、切欠き溝が形成されていない幅方向細溝の場合と比較して、4.9°C低下している。また、切欠き溝が1/4Wの位置に一つのみ形成されている幅方向細溝の場合と比較して、2.3°C低下している。   Further, in the case of the width direction narrow groove 200, that is, it does not communicate with the shoulder lug groove, the outer end portion in the tire width direction terminates in the block (land portion) of the tread 20, and 1/16 and 1/1 of the tread width. If notched grooves (notched grooves 210, 220) are formed within a specified range with reference to positions 4 apart from each other (1 / 16W, 1 / 4W), the tread surface temperature will be Compared to the case of the widthwise narrow groove in which no groove is formed, the temperature is lowered by 4.9 ° C. Further, it is 2.3 ° C. lower than the width direction narrow groove in which only one notch groove is formed at a position of 1/4 W.

表2は、建設車両用タイヤ10のトレッド20(キャップゴム)に上述したゴム組成物を用いた場合におけるトレッド20表面の温度低下の程度を示している。   Table 2 shows the degree of temperature decrease on the surface of the tread 20 when the above rubber composition is used for the tread 20 (cap rubber) of the tire 10 for construction vehicles.

Figure 2018130972
Figure 2018130972

表2に示すように、同一のゴム組成物が用いられるため、切欠き溝の有無に関わらず耐摩耗性は同様である。一方、トレッド表面の温度は、切欠き溝が形成されていない幅方向細溝の場合と比較して、4°C〜8°C低下している。   As shown in Table 2, since the same rubber composition is used, the wear resistance is the same regardless of the presence or absence of a notch groove. On the other hand, the temperature of the tread surface is lowered by 4 ° C. to 8 ° C. as compared with the case of the width direction narrow groove in which the notched groove is not formed.

上述したように、ショルダーラグ溝60に連通する幅方向細溝100では、1/8Wの位置付近に切欠き溝110を一つのみ形成することによって、幅方向細溝100内を空気がスムーズに流れ、周方向溝30及びショルダーラグ溝60及びに誘導されていくため、幅方向細溝100近傍のトレッド20の部分が均等に冷却される。   As described above, in the width direction narrow groove 100 communicating with the shoulder lug groove 60, air is smoothly passed through the width direction narrow groove 100 by forming only one notch groove 110 near the position of 1/8 W. Since the flow is guided to the circumferential groove 30 and the shoulder lug groove 60, the portion of the tread 20 in the vicinity of the width direction narrow groove 100 is evenly cooled.

つまり、幅方向細溝100の場合、切欠き溝の数を増やすよりも、切欠き溝を形成する位置を最適化することによって、トレッド20を効率的に冷却できることを見出したのである。   That is, it has been found that in the case of the width direction narrow groove 100, the tread 20 can be efficiently cooled by optimizing the position where the notch grooves are formed rather than increasing the number of the notch grooves.

一方、タイヤ幅方向外側の端部がトレッド20のブロック内で終端する幅方向細溝200では、1/16W, 1/4Wの位置付近に切欠き溝210, 220を形成することによって、幅方向細溝200内を空気がスムーズに流れるようにしつつ、幅方向細溝200内に取り込む空気の量を多くできるため、効率的に幅方向細溝100近傍のトレッド20の部分が冷却される。   On the other hand, in the width direction narrow groove 200 whose end on the outer side in the tire width direction ends in the block of the tread 20, by forming the notch grooves 210 and 220 near the positions of 1 / 16W and 1 / 4W, the width direction Since the amount of air taken into the widthwise narrow groove 200 can be increased while allowing the air to smoothly flow through the narrow groove 200, the portion of the tread 20 near the widthwise narrow groove 100 is efficiently cooled.

つまり、幅方向細溝200の場合、2つの切欠き溝を形成して流入する空気の量を増やしつつ、切欠き溝を形成する位置を最適化することによって、トレッド20を効率的に冷却できることを見出したのである。   In other words, in the case of the width direction narrow groove 200, the tread 20 can be efficiently cooled by optimizing the position where the notch groove is formed while increasing the amount of air flowing in by forming two notch grooves. Was found.

なお、当該切欠き溝が上述した位置からずれて形成されると、空気のスムーズな流れが妨げられ、タイヤ幅方向におけるトレッド20を満遍なく冷却することが難しくなる。   If the notch groove is formed so as to deviate from the above-described position, the smooth flow of air is hindered, and it becomes difficult to cool the tread 20 in the tire width direction evenly.

また、建設車両用タイヤ10では、トレッド20に上述したゴム組成物を用いることによって、温度上昇を抑制しつつ、耐摩耗性を向上できる。   Further, in the construction vehicle tire 10, by using the rubber composition described above for the tread 20, the wear resistance can be improved while suppressing the temperature rise.

すなわち、建設車両用タイヤ10によれば、耐摩耗性を確保しつつ、トレッド全体をさらに効率的に冷却し得る。特に、建設車両用タイヤ10では、幅方向細溝100及び幅方向細溝200において、当該溝形状に応じてそれぞれ最適化された位置に切欠き溝が形成されるため、トレッド20全体をさらに効率的に冷却し得る。   That is, according to the construction vehicle tire 10, the entire tread can be more efficiently cooled while ensuring wear resistance. In particular, in the tire 10 for construction vehicles, the widthwise narrow groove 100 and the widthwise narrow groove 200 are formed with notched grooves at positions optimized according to the groove shape, so that the entire tread 20 is more efficient. Can be cooled.

本実施形態では、切欠き溝110は、スロープ部120を有する。同様に、切欠き溝210, 220は、スロープ部230を有する。スロープ部120, 230は、当該幅方向細溝に向かうに連れてタイヤ径方向内側に傾斜しているため、当該幅方向細溝内へのスムーズな空気の流入を促進し得る。これにより、トレッド20全体をさらに効率的に冷却し得る。   In the present embodiment, the notch groove 110 has a slope portion 120. Similarly, the notch grooves 210 and 220 have a slope portion 230. Since the slope portions 120 and 230 are inclined inward in the tire radial direction toward the width direction narrow groove, it is possible to promote smooth air inflow into the width direction narrow groove. Thereby, the whole tread 20 can be cooled more efficiently.

(5)その他の実施形態
以上、実施形態に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the contents of the present invention have been described above according to the embodiments, the present invention is not limited to these descriptions, and various modifications and improvements are possible. It is obvious to the contractor.

例えば、上述した建設車両用タイヤ10は、次のように変更してもよい。図6は、変更例に係る建設車両用タイヤ10Aの一部平面展開図である。図6に示すように、建設車両用タイヤ10Aは、建設車両用タイヤ10と比較すると、切欠き溝110のみが形成されており、切欠き溝210, 220は形成されていない。   For example, the construction vehicle tire 10 described above may be modified as follows. FIG. 6 is a partial plan development view of a construction vehicle tire 10A according to a modified example. As shown in FIG. 6, the construction vehicle tire 10 </ b> A is formed with only the notch grooves 110, and not with the notch grooves 210 and 220, as compared with the construction vehicle tire 10.

また、図7は、他の変更例に係る建設車両用タイヤ10Bの一部平面展開図である。図7に示すように、建設車両用タイヤ10Bは、建設車両用タイヤ10と比較すると、切欠き溝210, 220のみが形成されており、切欠き溝110は形成されていない。   FIG. 7 is a partial plan view of a construction vehicle tire 10B according to another modification. As shown in FIG. 7, the construction vehicle tire 10 </ b> B has only the notch grooves 210 and 220, and the notch groove 110 is not formed, as compared with the construction vehicle tire 10.

このような建設車両用タイヤ10A及び建設車両用タイヤ10Bによっても、建設車両用タイヤ10程ではないものの、他の性能への影響を抑制しつつ、トレッド20全体を効率的に冷却し得る。   Although the construction vehicle tire 10A and the construction vehicle tire 10B are not as large as the construction vehicle tire 10, the entire tread 20 can be efficiently cooled while suppressing the influence on other performances.

また、上述した実施形態では、トレッド面視における切欠き溝110, 210, 220(スロープ部120, 230)の形状は、平行四辺形状であったが、当該切欠き溝の形状は、必ずしも平行四辺形状でなくてもよい。例えば、切欠き溝(スロープ部)の辺に相当する部分と、幅方向細溝の溝壁とが平行でなくてもよい。   In the embodiment described above, the shape of the notch grooves 110, 210, 220 (slope portions 120, 230) in the tread surface view is a parallelogram shape. However, the shape of the notch groove is not necessarily a parallelogram shape. It does not have to be a shape. For example, the portion corresponding to the side of the notch groove (slope portion) and the groove wall of the width direction narrow groove may not be parallel.

上述した実施形態では、幅方向細溝100, 200は、タイヤ幅方向に対して多少傾斜していたが、当該幅方向細溝は、タイヤ幅方向に対して全く傾斜せずに平行に延びるような形状でも構わない。   In the embodiment described above, the widthwise narrow grooves 100, 200 are slightly inclined with respect to the tire width direction, but the widthwise narrow grooves extend in parallel without being inclined at all with respect to the tire width direction. Any shape is acceptable.

上述した実施形態では、ショルダーラグ溝60は、トレッド20のタイヤ幅方向外側の端部まで延びていたが、ショルダーラグ溝60は、必ずしも当該端部まで延びていなくてもよい。   In the embodiment described above, the shoulder lug groove 60 extends to the end of the tread 20 on the outer side in the tire width direction, but the shoulder lug groove 60 does not necessarily extend to the end.

上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。   Although the embodiments of the present invention have been described as described above, it should not be understood that the descriptions and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.

10, 10A, 10B 建設車両用タイヤ
20 トレッド
30, 40, 50 周方向溝
60 ショルダーラグ溝
100 幅方向細溝
110 切欠き溝
120 スロープ部
130 溝壁
200 幅方向細溝
210, 220 切欠き溝
230 スロープ部
240 溝壁
10, 10A, 10B Construction vehicle tires
20 tread
30, 40, 50 Circumferential groove
60 shoulder lug groove
100 Width direction narrow groove
110 Notch groove
120 slope
130 groove wall
200 Width direction narrow groove
210, 220 Notch groove
230 Slope section
240 groove wall

Claims (4)

タイヤ幅方向に延びる幅方向細溝と、
前記幅方向細溝に連通し、タイヤ赤道線を含む位置に形成される中央周方向溝と、
前記幅方向細溝に連通し、前記幅方向細溝のタイヤ幅方向外側に形成される外側周方向溝と、
前記幅方向細溝に連通するスロープ状の切欠き溝と
が形成されたトレッドを備える建設車両用タイヤであって、
前記トレッドには、前記幅方向細溝のタイヤ幅方向外側に形成され、前記外側周方向溝を介して前記幅方向細溝に連通するショルダーラグ溝が形成され、
前記切欠き溝は、タイヤ赤道線からトレッド幅の1/8の距離を隔てた位置を基準とした所定範囲に一つのみ形成され、
前記トレッドは、イソプレン系ゴム原材料100重量部に対し、窒素吸着比表面積が100〜160m/gで、かつジブチルフタレート吸油量(DBP)が80〜130ml/100gであるカーボンブラックと、窒素吸着比表面積が210〜260m/gで、かつ吸油量が200〜260ml/100gであるシリカとを合計量で40〜70重量部含み、該合計量のうちシリカが3〜15重量部であるゴム組成物によって構成される建設車両用タイヤ。
A widthwise narrow groove extending in the tire width direction;
A central circumferential groove formed at a position including the tire equator line, communicating with the narrow groove in the width direction,
An outer circumferential groove formed on the outer side in the tire width direction of the width direction narrow groove;
A tire for a construction vehicle including a tread formed with a slope-shaped cutout groove communicating with the narrow groove in the width direction,
The tread is formed on the tire width direction outer side of the width direction narrow groove, and a shoulder lug groove communicating with the width direction narrow groove via the outer circumferential groove is formed.
The notch groove is formed only in a predetermined range based on a position separated from the tire equator line by a distance of 1/8 of the tread width,
The tread has a nitrogen adsorption specific surface area of 100 to 160 m 2 / g and a dibutyl phthalate oil absorption (DBP) of 80 to 130 ml / 100 g with respect to 100 parts by weight of the isoprene-based rubber raw material, and a nitrogen adsorption ratio. A rubber composition comprising a total surface area of 40 to 70 parts by weight of silica having a surface area of 210 to 260 m 2 / g and an oil absorption of 200 to 260 ml / 100 g, and of which the silica is 3 to 15 parts by weight. Construction vehicle tires composed of objects.
タイヤ幅方向に延びる幅方向細溝と、
前記幅方向細溝に連通し、タイヤ赤道線を含む位置に形成される中央周方向溝と、
前記幅方向細溝に連通し、前記幅方向細溝のタイヤ幅方向外側に形成される外側周方向溝と、
前記幅方向細溝に連通するスロープ状の切欠き溝と
が形成されたトレッドを備える建設車両用タイヤであって、
前記切欠き溝は、タイヤ赤道線からトレッド幅の1/16の距離を隔てた位置を基準とした所定範囲、及びタイヤ赤道線からトレッド幅の1/4の距離を隔てた位置を基準とした所定範囲にそれぞれ形成され、
前記トレッドは、イソプレン系ゴム原材料100重量部に対し、窒素吸着比表面積が100〜160m/gで、かつジブチルフタレート吸油量(DBP)が80〜130ml/100gであるカーボンブラックと、窒素吸着比表面積が210〜260m/gで、かつ吸油量が200〜260ml/100gであるシリカとを合計量で40〜70重量部含み、該合計量のうちシリカが3〜15重量部であるゴム組成物によって構成される建設車両用タイヤ。
A widthwise narrow groove extending in the tire width direction;
A central circumferential groove formed at a position including the tire equator line, communicating with the narrow groove in the width direction,
An outer circumferential groove formed on the outer side in the tire width direction of the width direction narrow groove;
A tire for a construction vehicle including a tread formed with a slope-shaped cutout groove communicating with the narrow groove in the width direction,
The notch groove is based on a predetermined range based on a position that is 1/16 of the tread width from the tire equator line, and a position that is a distance of 1/4 of the tread width from the tire equator line. Each is formed in a predetermined range,
The tread has a nitrogen adsorption specific surface area of 100 to 160 m 2 / g and a dibutyl phthalate oil absorption (DBP) of 80 to 130 ml / 100 g with respect to 100 parts by weight of the isoprene-based rubber raw material, and a nitrogen adsorption ratio. A rubber composition comprising a total surface area of 40 to 70 parts by weight of silica having a surface area of 210 to 260 m 2 / g and an oil absorption of 200 to 260 ml / 100 g, and of which the silica is 3 to 15 parts by weight. Construction vehicle tires composed of objects.
前記切欠き溝は、タイヤ周方向に沿って延びるとともに、前記トレッドの表面から前記幅方向細溝に向かうに連れてタイヤ径方向内側に傾斜するスロープ部を有する請求項1または2に記載の建設車両用タイヤ。   The construction according to claim 1, wherein the notch groove has a slope portion that extends along a tire circumferential direction and inclines inward in the tire radial direction from the surface of the tread toward the narrow groove in the width direction. Tires for vehicles. タイヤ幅方向に延びる第1幅方向細溝と、
タイヤ周方向において前記第1幅方向細溝に隣接し、タイヤ幅方向に延びる第2幅方向細溝と、
前記第1幅方向細溝及び前記第2幅方向細溝に連通し、タイヤ赤道線を含む位置に形成される中央周方向溝と、
前記第1幅方向細溝及び前記第2幅方向細溝に連通し、前記第1幅方向細溝及び前記第2幅方向細溝のタイヤ幅方向外側に形成される外側周方向溝と、
前記第1幅方向細溝に連通するスロープ状の第1切欠き溝と、
前記第2幅方向細溝に連通するスロープ状の第2切欠き溝と
が形成されたトレッドを備える建設車両用タイヤであって、
前記トレッドには、前記第1幅方向細溝のタイヤ幅方向外側に形成され、前記外側周方向溝を介して前記第1幅方向細溝に連通するショルダーラグ溝が形成され、
前記第1切欠き溝は、タイヤ赤道線からトレッド幅の1/8の距離を隔てた位置を基準とした所定範囲に一つのみ形成され、
前記第2切欠き溝は、タイヤ赤道線からトレッド幅の1/16の距離を隔てた位置を基準とした所定範囲、及びタイヤ赤道線からトレッド幅の1/4の距離を隔てた位置を基準とした所定範囲にそれぞれ形成され、
前記トレッドは、イソプレン系ゴム原材料100重量部に対し、窒素吸着比表面積が100〜160m/gで、かつジブチルフタレート吸油量(DBP)が80〜130ml/100gであるカーボンブラックと、窒素吸着比表面積が210〜260m/gで、かつ吸油量が200〜260ml/100gであるシリカとを合計量で40〜70重量部含み、該合計量のうちシリカが3〜15重量部であるゴム組成物によって構成される建設車両用タイヤ。
A first widthwise narrow groove extending in the tire width direction;
A second widthwise narrow groove extending in the tire width direction adjacent to the first widthwise narrow groove in the tire circumferential direction;
A central circumferential groove formed at a position including the tire equator line, communicating with the first widthwise narrow groove and the second widthwise narrow groove;
An outer circumferential groove formed on the outer side in the tire width direction of the first width direction narrow groove and the second width direction narrow groove, in communication with the first width direction narrow groove and the second width direction narrow groove;
A slope-shaped first notch groove communicating with the first widthwise narrow groove;
A tire for a construction vehicle including a tread formed with a slope-shaped second notch groove communicating with the second width direction narrow groove,
In the tread, a shoulder lug groove formed on the tire width direction outer side of the first width direction narrow groove and communicating with the first width direction narrow groove through the outer circumferential groove is formed.
The first cutout groove is formed only in a predetermined range based on a position separated from the tire equator by a distance of 1/8 of the tread width,
The second notch groove is based on a predetermined range based on a position that is 1/16 of the tread width from the tire equator line, and a position that is a distance of 1/4 of the tread width from the tire equator line. Are formed in a predetermined range,
The tread has a nitrogen adsorption specific surface area of 100 to 160 m 2 / g and a dibutyl phthalate oil absorption (DBP) of 80 to 130 ml / 100 g with respect to 100 parts by weight of the isoprene-based rubber raw material, and a nitrogen adsorption ratio. A rubber composition comprising a total surface area of 40 to 70 parts by weight of silica having a surface area of 210 to 260 m 2 / g and an oil absorption of 200 to 260 ml / 100 g, and of which the silica is 3 to 15 parts by weight. Construction vehicle tires composed of objects.
JP2017023807A 2017-02-13 2017-02-13 Tires for construction vehicles Active JP6847695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017023807A JP6847695B2 (en) 2017-02-13 2017-02-13 Tires for construction vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017023807A JP6847695B2 (en) 2017-02-13 2017-02-13 Tires for construction vehicles

Publications (2)

Publication Number Publication Date
JP2018130972A true JP2018130972A (en) 2018-08-23
JP6847695B2 JP6847695B2 (en) 2021-03-24

Family

ID=63247849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017023807A Active JP6847695B2 (en) 2017-02-13 2017-02-13 Tires for construction vehicles

Country Status (1)

Country Link
JP (1) JP6847695B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022253376A1 (en) * 2021-06-04 2022-12-08 Continental Reifen Deutschland Gmbh Pneumatic vehicle tyre

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268237A (en) * 1996-01-31 1997-10-14 Bridgestone Corp Pneumatic tire for heavy duty use
JPH11209515A (en) * 1998-01-30 1999-08-03 Bridgestone Corp Pneumatic tire for heavy load
JP2007230399A (en) * 2006-03-01 2007-09-13 Bridgestone Corp Pneumatic tire
JP2012001154A (en) * 2010-06-18 2012-01-05 Bridgestone Corp Tire
JP2012179948A (en) * 2011-02-28 2012-09-20 Bridgestone Corp Radial tire for construction vehicle
WO2013035889A1 (en) * 2011-09-09 2013-03-14 株式会社ブリヂストン Pneumatic tire
WO2013125246A1 (en) * 2012-02-24 2013-08-29 株式会社ブリヂストン Pneumatic tire
JP2014144763A (en) * 2013-01-30 2014-08-14 Bridgestone Corp Pneumatic tire
JP2014172599A (en) * 2013-03-13 2014-09-22 Bridgestone Corp Pneumatic tire
JP2014184736A (en) * 2013-03-13 2014-10-02 Bridgestone Corp Pneumatic tire

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268237A (en) * 1996-01-31 1997-10-14 Bridgestone Corp Pneumatic tire for heavy duty use
JPH11209515A (en) * 1998-01-30 1999-08-03 Bridgestone Corp Pneumatic tire for heavy load
JP2007230399A (en) * 2006-03-01 2007-09-13 Bridgestone Corp Pneumatic tire
JP2012001154A (en) * 2010-06-18 2012-01-05 Bridgestone Corp Tire
JP2012179948A (en) * 2011-02-28 2012-09-20 Bridgestone Corp Radial tire for construction vehicle
WO2013035889A1 (en) * 2011-09-09 2013-03-14 株式会社ブリヂストン Pneumatic tire
WO2013125246A1 (en) * 2012-02-24 2013-08-29 株式会社ブリヂストン Pneumatic tire
JP2014144763A (en) * 2013-01-30 2014-08-14 Bridgestone Corp Pneumatic tire
JP2014172599A (en) * 2013-03-13 2014-09-22 Bridgestone Corp Pneumatic tire
JP2014184736A (en) * 2013-03-13 2014-10-02 Bridgestone Corp Pneumatic tire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022253376A1 (en) * 2021-06-04 2022-12-08 Continental Reifen Deutschland Gmbh Pneumatic vehicle tyre

Also Published As

Publication number Publication date
JP6847695B2 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
US9085201B2 (en) Pneumatic tire
KR101824569B1 (en) Pneumatic tyre
US9174492B2 (en) Pneumatic tire
US10427467B2 (en) Pneumatic tire
US8925599B2 (en) Heavy duty tire
JP2009029176A (en) Pneumatic tire for motorcycle
US9796216B2 (en) Heavy duty tire
JP5711691B2 (en) Motorcycle tires
WO2014119325A1 (en) Pneumatic tire
JP6433760B2 (en) Pneumatic tire
JPWO2005068225A1 (en) Pneumatic tire
WO2018147459A1 (en) Construction vehicle tire
US9505270B2 (en) Pneumatic radial tire
JP6847695B2 (en) Tires for construction vehicles
JP4687342B2 (en) Pneumatic tire
JP2015137015A (en) pneumatic tire
JP5685841B2 (en) Pneumatic tire
JP2010120479A (en) Pneumatic tire
JP2016055723A (en) Pneumatic tire
JP6173907B2 (en) Heavy duty pneumatic tire
JP6854221B2 (en) Tires for construction vehicles
JP2018008601A (en) tire
WO2023223573A1 (en) Tire for construction vehicle
JP2017024666A (en) Pneumatic tire
JP2011143795A (en) Pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210303

R150 Certificate of patent or registration of utility model

Ref document number: 6847695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250