JP6844092B2 - Functional cotton-like resin fiber - Google Patents
Functional cotton-like resin fiber Download PDFInfo
- Publication number
- JP6844092B2 JP6844092B2 JP2018067992A JP2018067992A JP6844092B2 JP 6844092 B2 JP6844092 B2 JP 6844092B2 JP 2018067992 A JP2018067992 A JP 2018067992A JP 2018067992 A JP2018067992 A JP 2018067992A JP 6844092 B2 JP6844092 B2 JP 6844092B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- thermoplastic resin
- calcium hydroxide
- resin
- medical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000835 fiber Substances 0.000 title claims description 69
- 229920005989 resin Polymers 0.000 title claims description 31
- 239000011347 resin Substances 0.000 title claims description 31
- 239000000843 powder Substances 0.000 claims description 72
- 229920005992 thermoplastic resin Polymers 0.000 claims description 51
- 239000002734 clay mineral Substances 0.000 claims description 22
- 239000002245 particle Substances 0.000 description 40
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 32
- 239000000920 calcium hydroxide Substances 0.000 description 32
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 32
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 29
- 230000000844 anti-bacterial effect Effects 0.000 description 20
- 239000002781 deodorant agent Substances 0.000 description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 239000004743 Polypropylene Substances 0.000 description 6
- 235000013305 food Nutrition 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- -1 polyethylene Polymers 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 239000004094 surface-active agent Substances 0.000 description 6
- 210000000991 chicken egg Anatomy 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 230000001877 deodorizing effect Effects 0.000 description 4
- 238000004898 kneading Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 102000002322 Egg Proteins Human genes 0.000 description 3
- 108010000912 Egg Proteins Proteins 0.000 description 3
- 239000011358 absorbing material Substances 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 230000000887 hydrating effect Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 241000251468 Actinopterygii Species 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 235000012055 fruits and vegetables Nutrition 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 238000005065 mining Methods 0.000 description 2
- 239000005022 packaging material Substances 0.000 description 2
- 235000021067 refined food Nutrition 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 235000014653 Carica parviflora Nutrition 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000243321 Cnidaria Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- 241000237509 Patinopecten sp. Species 0.000 description 1
- 241000894431 Turbinidae Species 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 235000020637 scallop Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Agricultural Chemicals And Associated Chemicals (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Non-Insulated Conductors (AREA)
Description
本発明は、抗菌性、抗菌・防臭性、脱臭性、発熱性、保温性、導電性、非導電性、又は親水性などの機能を備えた機能性綿状樹脂ファイバに関する。 The present invention relates to a functional cotton-like resin fiber having functions such as antibacterial, antibacterial / deodorant, deodorant, heat-generating, heat-retaining, conductive, non-conductive, or hydrophilic.
特許文献1は、高圧ガス流で熱可塑性樹脂を延伸させた極細長繊維である樹脂ファイバの製造方法を提案している。 Patent Document 1 proposes a method for producing a resin fiber, which is an ultrafine elongated fiber obtained by stretching a thermoplastic resin with a high-pressure gas flow.
特許文献1によれば、ミクロンオーダーから数百ナノメートル程度の直径を有する綿状樹脂ファイバを製造できる。
このような極細長繊維による綿状樹脂ファイバは、医療分野、衣料分野、スポーツ分野、食品分野、鉱業分野、住宅分野などでの利用が期待される。
しかし、これらの分野で利用する上では、綿状樹脂ファイバに各種機能性を持たせることが有効である。
According to Patent Document 1, a cotton-like resin fiber having a diameter of about several hundred nanometers can be produced on the order of microns.
Cotton-like resin fibers made of such ultrafine elongated fibers are expected to be used in the medical field, clothing field, sports field, food field, mining field, housing field, and the like.
However, for use in these fields, it is effective to give the cotton-like resin fiber various functions.
本発明は、熱可塑性樹脂長繊維に各種機能を持たせた機能性綿状樹脂ファイバを提供することを目的とする。 An object of the present invention is to provide a functional cotton-like resin fiber in which a thermoplastic resin filament has various functions.
請求項1記載の本発明の機能性綿状樹脂ファイバは、平均ファイバ径が1μm〜50μmである熱可塑性樹脂長繊維に、粘土鉱物粉末が埋もれることなく、前記熱可塑性樹脂長繊維が前記粘土鉱物粉末を溶融付着により担持し、樹脂ファイバが綿状であることを特徴とする。 Functional flocculent resin fibers of the present invention according to claim 1, the thermoplastic resin long fiber average fiber diameter of 1 m to 50 m, without clay mineral powder is buried, the thermoplastic resin long fibers the clay mineral It is characterized in that the powder is supported by melt adhesion and the resin fiber is cotton-like.
本発明によれば、強アルカリ性による抗菌性、脱酸素による抗菌・防臭性、脱臭性、鉱物による発熱性や保温性、導電性、非導電性、親水性のいずれかの機能を持たせることができる。 According to the present invention, it is possible to have any of the functions of antibacterial property due to strong alkalinity, antibacterial / deodorant property due to deoxidation, deodorant property, heat generation and heat retention property due to minerals, conductivity, non-conductive property, and hydrophilicity. it can.
本発明の第1の実施の形態による機能性綿状樹脂ファイバは、平均ファイバ径が1μm〜50μmである熱可塑性樹脂長繊維に、粘土鉱物粉末が埋もれることなく、熱可塑性樹脂長繊維が粘土鉱物粉末を溶融付着により担持し、樹脂ファイバが綿状である。本実施の形態によれば、粘土鉱物粉末が熱可塑性樹脂長繊維に埋もれることなく、熱可塑性樹脂長繊維が粘土鉱物粉末を担持した状態となるため、高い脱臭性を持たせることができる。 First embodiment according functional flocculent resin fibers of the present invention, the thermoplastic resin long fiber average fiber diameter of 1 m to 50 m, without clay mineral powder is buried, the thermoplastic resin long fibers clay mineral The powder is supported by melt adhesion, and the resin fiber is cotton-like . According to the present embodiment, the clay mineral powder is not buried in the thermoplastic resin filaments, and the thermoplastic resin filaments are in a state of carrying the clay mineral powder, so that high deodorizing property can be provided.
以下に本発明の一実施例による機能性綿状樹脂ファイバについて説明する。
本実施例による機能性綿状樹脂ファイバは、平均ファイバ径が1μm〜50μmである熱可塑性樹脂長繊維に、水酸化カルシウム粉末、ナノシルバー粒子、粘土鉱物粉末、導電性粉末、カーボン粉末、及び界面活性剤の少なくともいずれかを溶融付着させ又は混練させたものである。
本実施例に用いる熱可塑性樹脂は、ポリエチレン(PE)やポリプロピレン(PP)が適している。
平均ファイバ径が1μm〜50μmである熱可塑性樹脂長繊維による機能性綿状樹脂ファイバは、例えばメルトブロー法によって得ることができる。
The functional cotton-like resin fiber according to an embodiment of the present invention will be described below.
The functional cotton-like resin fiber according to this example is a thermoplastic resin filament having an average fiber diameter of 1 μm to 50 μm, calcium hydroxide powder, nanosilver particles, clay mineral powder, conductive powder, carbon powder, and an interface. At least one of the activators is melt-adhered or kneaded.
As the thermoplastic resin used in this example, polyethylene (PE) or polypropylene (PP) is suitable.
A functional cotton-like resin fiber made of a thermoplastic resin filament having an average fiber diameter of 1 μm to 50 μm can be obtained by, for example, a melt blow method.
水酸化カルシウム粉末は、高温焼成した貝殻又は鶏卵の殻を水和して得られる。貝殻には、ホタテ貝殻が適しているが、アワビ貝殻、サザエ貝殻、ホッキ貝殻、ウニ貝殻又は珊瑚を用いることができる。
貝殻又は鶏卵の殻は、洗浄して異物を除去し、回転式の焼成炉にて、炉内温度500℃前後にて40〜60分焼成する。鶏卵の殻を用いる場合には、殻内部に付着しているタンパク質の皮を焼成前に除去しておく。焼成した貝殻は付着物を除去した後に、平均粒径30mm程度に粉砕する。焼成した鶏卵の殻は付着物を除去した後に、5〜10mm程度に粉砕する。粉砕した貝殻粉末又は鶏卵の殻粉末を更に900℃〜1000℃にて40〜90分再度焼成する。焼成後、水和化して微細化し、平均粒径が3.5μm〜300μm、より好ましくは20μm〜50μmでpH12〜13の水酸化カルシウム粉末とする。
Calcium hydroxide powder is obtained by hydrating high-temperature calcined shells or chicken egg shells. As the shell, scallop shell is suitable, but abalone shell, turban shell shell, hokki shell, sea urchin shell or coral can be used.
The shells or chicken egg shells are washed to remove foreign substances, and fired in a rotary baking oven at a temperature of about 500 ° C. for 40 to 60 minutes. When using a chicken egg shell, the protein skin adhering to the inside of the shell should be removed before baking. After removing the deposits, the calcined shell is crushed to an average particle size of about 30 mm. After removing the deposits, the baked chicken egg shell is crushed to about 5 to 10 mm. The crushed shell powder or chicken egg shell powder is further baked at 900 ° C. to 1000 ° C. for 40 to 90 minutes. After firing, it is hydrated and refined to obtain calcium hydroxide powder having an average particle size of 3.5 μm to 300 μm, more preferably 20 μm to 50 μm and a pH of 12 to 13.
ナノシルバー粒子は、平均粒径が0.001μm〜0.005μmであり、水溶液に分散させたものを用いる。
ナノシルバー粒子を付着させ又は混練させた場合には、脱酸素による抗菌・防臭性を持たせることができる。
ナノシルバー粒子は、水酸化カルシウム粉末に付着させて用いることが好ましい。すなわち、ナノシルバー粒子を付着させた水酸化カルシウム粉末を、熱可塑性樹脂長繊維に付着させ又は混練させる。
The nanosilver particles have an average particle size of 0.001 μm to 0.005 μm and are dispersed in an aqueous solution.
When nanosilver particles are attached or kneaded, antibacterial and deodorant properties can be provided by deoxidation.
The nanosilver particles are preferably used by adhering to calcium hydroxide powder. That is, the calcium hydroxide powder to which the nanosilver particles are attached is attached to or kneaded with the thermoplastic resin filaments.
水酸化カルシウム粉末の表面にナノシルバー粒子が付着することで、ナノシルバーを分散させることができるとともにナノシルバーの抗菌・防臭性が発揮しやすい。
ナノシルバー粒子を付着させた水酸化カルシウム粉末を、熱可塑性樹脂長繊維に付着させ又は混練させた場合には、水酸化カルシウム粉末による抗菌性と、ナノシルバー粒子による抗菌・防臭性とを発揮でき、特に、湿度が高いと水酸化カルシウム粉末による抗菌性が高く、乾燥状態や高温状態ではナノシルバー粒子による抗菌・防臭性が高いため、使用条件にかかわらず抗菌性を発揮することができる。
By adhering the nanosilver particles to the surface of the calcium hydroxide powder, the nanosilver can be dispersed and the antibacterial and deodorant properties of the nanosilver can be easily exhibited.
When the calcium hydroxide powder to which the nanosilver particles are attached is attached to or kneaded with the thermoplastic resin filaments, the antibacterial property of the calcium hydroxide powder and the antibacterial and deodorant properties of the nanosilver particles can be exhibited. In particular, when the humidity is high, the antibacterial property of the calcium hydroxide powder is high, and in the dry state or the high temperature state, the antibacterial and deodorant property of the nanosilver particles is high, so that the antibacterial property can be exhibited regardless of the usage conditions.
平均ファイバ径が1μm〜50μmである熱可塑性樹脂長繊維に対して、高温焼成した貝殻又は鶏卵の殻を水和して得られる水酸化カルシウム粉末の平均粒径を0.3μm〜100μmとし、ナノシルバー粒子の平均粒径を0.001μm〜0.005μmとすることで、水酸化カルシウム粉末による抗菌性と、ナノシルバー粒子による抗菌・防臭性とを発揮できる。
また、平均ファイバ径が1μm〜50μmである熱可塑性樹脂長繊維に対して、高温焼成した貝殻又は鶏卵の殻を水和して得られる水酸化カルシウム粉末の平均粒径を、熱可塑性樹脂長繊維の平均ファイバ径以上とすることで、水酸化カルシウム粉末が熱可塑性樹脂長繊維に埋もれることなく、熱可塑性樹脂長繊維が水酸化カルシウム粉末を担持した状態となるため、水酸化カルシウム粉末による抗菌性が高い。この場合にも、水酸化カルシウム粉末には、ナノシルバー粒子を付着させていることが好ましい。熱可塑性樹脂長繊維によって担持された状態にある水酸化カルシウム粉末の表面にナノシルバー粒子が付着しているため、ナノシルバー粒子による抗菌・防臭性が高い。
The average particle size of the calcium hydroxide powder obtained by hydrating the shells of shells or chicken eggs baked at high temperature with respect to the thermoplastic resin filaments having an average fiber diameter of 1 μm to 50 μm is set to 0.3 μm to 100 μm, and nano. By setting the average particle size of the silver particles to 0.001 μm to 0.005 μm, the antibacterial property of the calcium hydroxide powder and the antibacterial and deodorant property of the nanosilver particles can be exhibited.
Further, the average particle size of the calcium hydroxide powder obtained by hydrating the shells of shells or chicken eggs baked at a high temperature with respect to the thermoplastic resin filaments having an average fiber diameter of 1 μm to 50 μm is determined by the thermoplastic resin filaments. By setting the fiber diameter to be equal to or larger than the average fiber diameter of the above, the calcium hydroxide powder is not buried in the thermoplastic resin filaments, and the thermoplastic resin filaments carry the calcium hydroxide powder. Therefore, the antibacterial property of the calcium hydroxide powder is obtained. Is high. Also in this case, it is preferable that nanosilver particles are attached to the calcium hydroxide powder. Since the nanosilver particles are attached to the surface of the calcium hydroxide powder supported by the thermoplastic resin filaments, the nanosilver particles have high antibacterial and deodorant properties.
平均ファイバ径が1μm〜50μmである熱可塑性樹脂長繊維に、水酸化カルシウム粉末、ナノシルバー粒子、又は水酸化カルシウム粉末とナノシルバー粒子とを付着させ又は混練させた機能性綿状樹脂ファイバは、抗菌性や抗菌・防臭性を有することから、医療分野、衣料分野、スポーツ分野、及び食品分野において利用できる。医療分野では、医療用マスク、医療用手袋、医療用足袋、医療用シート、医療用シーツ、医療用作業衣、医療機器収納ケース、医療機器収納ボックス、医療用カバー、医療室壁材などに利用でき、衣料分野では、衣服、保温マット、シートなどに利用でき、スポーツ分野ではスポーツウェア、タオルなどに利用でき、食品分野では青果物、生花物、精肉、鮮魚、加工食品の包装材などに利用できる。 Functional cotton-like resin fibers obtained by adhering or kneading calcium hydroxide powder, nanosilver particles, or calcium hydroxide powder and nanosilver particles to thermoplastic resin filaments having an average fiber diameter of 1 μm to 50 μm. Since it has antibacterial and antibacterial / deodorant properties, it can be used in the medical field, clothing field, sports field, and food field. In the medical field, it is used for medical masks, medical gloves, medical foot bags, medical sheets, medical sheets, medical work clothes, medical equipment storage cases, medical equipment storage boxes, medical covers, medical room wall materials, etc. In the clothing field, it can be used for clothes, heat insulation mats, sheets, etc., in the sports field, it can be used for sportswear, towels, etc., and in the food field, it can be used for fruits and vegetables, fresh flowers, meat, fresh fish, packaging materials for processed foods, etc. ..
また、ゼオライト、ベントナイト、クレイミネラル泥、火山土などの粘土鉱物粉末を付着させ又は混練させた場合には、脱臭性を持たせたり、発熱性や保温性を持たせることができる。
平均ファイバ径が1μm〜50μmである熱可塑性樹脂長繊維に対して、平均粒径を6μm〜50μmの粘土鉱物を用いる場合には、発熱性や保温性を持たせることができる。
また、平均ファイバ径が1μm〜50μmである熱可塑性樹脂長繊維に対して、粘土鉱物粉末の平均粒径を、熱可塑性樹脂長繊維の平均ファイバ径以上とすることで、粘土鉱物粉末が熱可塑性樹脂長繊維に埋もれることなく、熱可塑性樹脂長繊維が粘土鉱物粉末を担持した状態となるため、高い脱臭性を持たせることができる。
Further, when clay mineral powders such as zeolite, bentonite, clay mineral mud, and volcanic soil are attached or kneaded, they can be given deodorizing property, heat generating property, and heat retaining property.
When a clay mineral having an average particle size of 6 μm to 50 μm is used for a thermoplastic resin long fiber having an average fiber diameter of 1 μm to 50 μm, heat generation and heat retention can be provided.
Further, by setting the average particle size of the clay mineral powder to be equal to or larger than the average fiber diameter of the thermoplastic resin long fibers with respect to the thermoplastic resin long fibers having an average fiber diameter of 1 μm to 50 μm, the clay mineral powder becomes thermoplastic. Since the thermoplastic resin filaments carry the clay mineral powder without being buried in the resin filaments, they can have high deodorizing properties.
平均ファイバ径が1μm〜50μmである熱可塑性樹脂長繊維に、水酸化カルシウム粉末、ナノシルバー粒子、又は水酸化カルシウム粉末とナノシルバー粒子とともに、粘土鉱物粉末を付着させ又は混練させた機能性綿状樹脂ファイバは、脱臭性、又は発熱性や保温性を有することから、医療分野、衣料分野、及びスポーツ分野、及び食品分野において利用できる。医療分野では、医療用マスク、医療用手袋、医療用足袋、医療用シート、医療用シーツ、医療用作業衣、医療機器収納ケース、医療機器収納ボックス、医療用カバー、医療室壁材などに利用でき、衣料分野では、衣服、保温マット、シートなどに利用でき、スポーツ分野ではスポーツウェア、タオルなどに利用でき、食品分野では青果物、生花物、精肉、鮮魚、加工食品の包装材などに利用できる。 Functional cotton-like powder obtained by adhering or kneading clay mineral powder together with calcium hydroxide powder, nanosilver particles, or calcium hydroxide powder and nanosilver particles to thermoplastic resin filaments having an average fiber diameter of 1 μm to 50 μm. Since the resin fiber has deodorizing property, heat generating property and heat retaining property, it can be used in the medical field, the clothing field, the sports field, and the food field. In the medical field, it is used for medical masks, medical gloves, medical foot bags, medical sheets, medical sheets, medical work clothes, medical equipment storage cases, medical equipment storage boxes, medical covers, medical room wall materials, etc. In the clothing field, it can be used for clothes, heat insulation mats, sheets, etc., in the sports field, it can be used for sportswear, towels, etc., and in the food field, it can be used for fruits and vegetables, fresh flowers, meat, fresh fish, packaging materials for processed foods, etc. ..
銅、鉄、アルミ、クロム、銀などの金属粉末からなる導電性粉末を付着させ又は混練させた場合には、導電性を持たせることができる。
また、平均ファイバ径が1μm〜50μmである熱可塑性樹脂長繊維に対して、導電性粉末の平均粒径を、熱可塑性樹脂長繊維の平均ファイバ径以上とすることで、導電性粉末が熱可塑性樹脂長繊維に埋もれることなく、熱可塑性樹脂長繊維が導電性粉末を担持した状態となるため、高い導電性を持たせることができる。
When a conductive powder made of a metal powder such as copper, iron, aluminum, chromium, or silver is attached or kneaded, it can be made conductive.
Further, by setting the average particle size of the conductive powder to be equal to or larger than the average fiber diameter of the thermoplastic resin long fibers with respect to the thermoplastic resin long fibers having an average fiber diameter of 1 μm to 50 μm, the conductive powder becomes thermoplastic. Since the thermoplastic resin filaments carry the conductive powder without being buried in the resin filaments, high conductivity can be provided.
カーボン粉末を付着させ又は混練させた場合には、繊維強度を高めたり、非導電性を高めることができる。
また、平均ファイバ径が1μm〜50μmである熱可塑性樹脂長繊維に対して、カーボン粉末の平均粒径を、熱可塑性樹脂長繊維の平均ファイバ径以上とすることで、カーボン粉末が熱可塑性樹脂長繊維に埋もれることなく、熱可塑性樹脂長繊維がカーボン粉末を担持した状態となるため、高い非導電性を持たせることができる。高い非導電性を持たせることで、精密機器の保管や搬送資材として利用できる。
カーボン粉末として、カーボンナノチューブを用いることで、電磁波遮断効果を持たせることができる。電磁波遮断効果を持たせることで、精密機器の保管や搬送資材として利用できる。
When the carbon powder is attached or kneaded, the fiber strength can be increased and the non-conductive property can be increased.
Further, by setting the average particle size of the carbon powder to be equal to or larger than the average fiber diameter of the thermoplastic resin long fibers with respect to the thermoplastic resin long fibers having an average fiber diameter of 1 μm to 50 μm, the carbon powder has a thermoplastic resin length. Since the thermoplastic resin filaments carry the carbon powder without being buried in the fibers, high non-conductive properties can be provided. By giving it high non-conductivity, it can be used as a storage or transportation material for precision equipment.
By using carbon nanotubes as the carbon powder, it is possible to have an electromagnetic wave blocking effect. By having an electromagnetic wave blocking effect, it can be used as a storage or transportation material for precision equipment.
界面活性剤を混練させた場合には、親水性を持たせることができる。ポリエチレン(PE)やポリプロピレン(PP)は、親油性で疎水性であることから、親水性を持たせることで、衣料分野やスポーツ分野においては、例えば衣類における吸湿性を高めることができ、土木分野では吸水材として利用できる。
また、疎水性の機能性綿状樹脂ファイバと親水性を持たせた機能性綿状樹脂ファイバとを組み合わせることで、海水面で用いる吸油材や吸水材として利用できる。
When the surfactant is kneaded, it can be made hydrophilic. Since polyethylene (PE) and polypropylene (PP) are lipophilic and hydrophobic, by making them hydrophilic, in the clothing field and sports field, for example, the hygroscopicity of clothing can be enhanced, and the civil engineering field. Can be used as a water absorbing material.
Further, by combining the hydrophobic functional cotton-like resin fiber and the hydrophilic functional cotton-like resin fiber, it can be used as an oil-absorbing material or a water-absorbing material used on the sea surface.
図1は本実施例及び比較例による機能性綿状樹脂ファイバの写真である。
図1(a)は粘鉱物粉末を付着させた実施例1による機能性綿状樹脂ファイバの写真、図1(b)は図1(a)の150倍顕微鏡写真、図1(c)は熱可塑性樹脂長繊維だけの比較例による綿状樹脂ファイバの写真、図1(d)は図1(c)の150倍顕微鏡写真、図1(e)は水酸化カルシウム粉末を混練した実施例2による機能性綿状樹脂ファイバの150倍顕微鏡写真、図1(f)は水酸化カルシウム粉末を混練した実施例3による機能性綿状樹脂ファイバの600倍顕微鏡写真である。
FIG. 1 is a photograph of a functional cotton-like resin fiber according to this example and a comparative example.
FIG. 1 (a) is a photograph of a functional cotton-like resin fiber according to Example 1 to which a viscous mineral powder is attached, FIG. 1 (b) is a 150-fold micrograph of FIG. 1 (a), and FIG. 1 (c) is heat. A photograph of a cotton-like resin fiber based on a comparative example of only plastic resin filaments, FIG. 1 (d) is a 150-fold micrograph of FIG. 1 (c), and FIG. 1 (e) is based on Example 2 in which calcium hydroxide powder is kneaded. A 150x micrograph of the functional cotton-like resin fiber, FIG. 1 (f) is a 600x micrograph of the functional cotton-like resin fiber according to Example 3 in which calcium hydroxide powder was kneaded.
実施例1、実施例2、実施例3、及び比較例における熱可塑性樹脂長繊維の平均ファイバ径は5μm、実施例1で付着させた粘土鉱物粉末の平均粒径は10μm、実施例2で混練させた水酸化カルシウム粉末の平均粒径は10μm、実施例3で混練させた水酸化カルシウム粉末の平均粒径は0.3μmである。
実施例1では、熱可塑性樹脂としてポリプロピレンを用い、全重量に対して粘土鉱物粉末を5重量%、界面活性剤を8重量%としている。粘土鉱物粉末は、全重量に対して3重量%〜15重量%の範囲とする。界面活性剤は、全重量に対して6重量%〜12重量%の範囲とする。
実施例2及び実施例3では、熱可塑性樹脂としてポリプロピレンを用い、全重量に対して水酸化カルシウム粉末を5〜10重量%としている。
図1(b)(e)に示すように、機能性粉末の平均粒径を、熱可塑性樹脂長繊維の平均ファイバ径以上とすることで、機能性粉末が熱可塑性樹脂長繊維に埋もれることなく、熱可塑性樹脂長繊維が機能性粉末を担持した状態となる。
また、図1(f)に示すように、機能性粉末の平均粒径を、熱可塑性樹脂長繊維の平均ファイバ径より小さくした場合でも、機能性粉末によって熱可塑性樹脂長繊維の径が不均一となることで、熱可塑性樹脂長繊維に撚れが多く生じ、機能性を高めることができる。
The average fiber diameter of the thermoplastic resin filaments in Example 1, Example 2, Example 3, and Comparative Example is 5 μm, the average particle size of the clay mineral powder attached in Example 1 is 10 μm, and kneading in Example 2. The average particle size of the slaked calcium hydroxide powder is 10 μm, and the average particle size of the slaked calcium hydroxide powder kneaded in Example 3 is 0.3 μm.
In Example 1, polypropylene is used as the thermoplastic resin, and the clay mineral powder is 5% by weight and the surfactant is 8% by weight based on the total weight. The clay mineral powder is in the range of 3% by weight to 15% by weight based on the total weight. The surfactant shall be in the range of 6% by weight to 12% by weight based on the total weight.
In Examples 2 and 3, polypropylene is used as the thermoplastic resin, and the calcium hydroxide powder is 5 to 10% by weight based on the total weight.
As shown in FIGS. 1 (b) and 1 (e), by setting the average particle size of the functional powder to be equal to or larger than the average fiber diameter of the thermoplastic resin filaments, the functional powder is not buried in the thermoplastic resin filaments. , The thermoplastic resin filaments carry the functional powder.
Further, as shown in FIG. 1 (f), even when the average particle size of the functional powder is smaller than the average fiber diameter of the thermoplastic resin long fibers, the diameter of the thermoplastic resin long fibers is non-uniform due to the functional powder. As a result, the thermoplastic resin long fibers are twisted a lot, and the functionality can be enhanced.
図2は本発明の一実施例による機能性綿状樹脂ファイバの製造方法を示す構成図である。
押出機1の一端側には原料となるペレット2を供給するホッパ3を、押出機1の他端にはノズルヘッド4を設けている。
ペレット2は、水酸化カルシウム粉末、ナノシルバー粒子、粘土鉱物粉末、導電性粉末、カーボン粉末、及び界面活性剤の少なくともいずれかを熱可塑性樹脂に混練している。熱可塑性樹脂に混練する、水酸化カルシウム粉末、ナノシルバー粒子、粘土鉱物粉末、導電性粉末、カーボン粉末、及び界面活性剤は、総重量に対して3重量%〜30重量%の範囲とし、混練時の溶融温度は、100℃〜280℃の範囲とする。
ペレット2は、押出機1によって加熱して溶融され、混練してノズルヘッド4に向けて搬送される。押出機1内で溶融状態にある熱可塑性樹脂は、ノズルヘッド4から吐出し、ノズルヘッド4から吐出させる熱可塑性樹脂を高圧ガス流で延伸させている。
FIG. 2 is a block diagram showing a method for manufacturing a functional cotton-like resin fiber according to an embodiment of the present invention.
A hopper 3 for supplying pellets 2 as a raw material is provided on one end side of the extruder 1, and a nozzle head 4 is provided on the other end of the extruder 1.
In the pellet 2, at least one of calcium hydroxide powder, nanosilver particles, clay mineral powder, conductive powder, carbon powder, and a surfactant is kneaded into a thermoplastic resin. The amount of calcium hydroxide powder, nanosilver particles, clay mineral powder, conductive powder, carbon powder, and surfactant to be kneaded into the thermoplastic resin shall be in the range of 3% by weight to 30% by weight based on the total weight, and kneaded. The melting temperature at the time is in the range of 100 ° C. to 280 ° C.
The pellet 2 is heated by the extruder 1 to be melted, kneaded and conveyed toward the nozzle head 4. The thermoplastic resin in the molten state in the extruder 1 is discharged from the nozzle head 4, and the thermoplastic resin discharged from the nozzle head 4 is stretched by a high-pressure gas flow.
水酸化カルシウム粉末、ナノシルバー粒子、粘土鉱物粉末、導電性粉末、カーボン粉末、及び界面活性剤の少なくともいずれかをあらかじめ熱可塑性樹脂に混練してペレット2としているため、水酸化カルシウム粉末、ナノシルバー粒子、粘土鉱物粉末、導電性粉末、カーボン粉末の平均粒径が、熱可塑性樹脂長繊維の平均ファイバ径以上の場合であっても、これらの粉末を熱可塑性樹脂長繊維が担持された状態で付着させることができる。
また、事前にナノシルバー粒子を付着させた水酸化カルシウム粉末を、熱可塑性樹脂に混練してペレット2を製造することで、水酸化カルシウム粉末の表面にナノシルバー粒子が付着するため、ナノシルバーを分散させることができるとともにナノシルバーの抗菌・防臭性が発揮しやすい。
Since at least one of calcium hydroxide powder, nanosilver particles, clay mineral powder, conductive powder, carbon powder, and surfactant is kneaded with a thermoplastic resin in advance to form pellets 2, calcium hydroxide powder and nanosilver Even when the average particle size of the particles, clay mineral powder, conductive powder, and carbon powder is equal to or larger than the average fiber diameter of the thermoplastic resin filaments, these powders are supported by the thermoplastic resin filaments. Can be attached.
Further, by kneading the calcium hydroxide powder to which the nanosilver particles are attached in advance with a thermoplastic resin to produce pellets 2, the nanosilver particles are attached to the surface of the calcium hydroxide powder, so that nanosilver is used. It can be dispersed and the antibacterial and deodorant properties of nanosilver are easily exhibited.
本発明による機能性綿状樹脂ファイバによれば、医療分野、衣料分野、スポーツ分野、食品分野、鉱業分野、住宅分野などで、抗菌性、抗菌・防臭性、脱臭性、発熱性、保温性、導電性、非導電性、又は親水性などの機能を発揮できる。 According to the functional cotton-like resin fiber according to the present invention, in the medical field, clothing field, sports field, food field, mining field, housing field, etc., antibacterial property, antibacterial / deodorant property, deodorant property, heat generation, heat retention property, It can exhibit functions such as conductivity, non-conductivity, and hydrophilicity.
1 押出機
2 ペレット
3 ホッパ
4 ノズルヘッド
1 extruder 2 pellets 3 hopper 4 nozzle head
Claims (1)
樹脂ファイバが綿状である
ことを特徴とする機能性綿状樹脂ファイバ。 The clay mineral powder is supported by the thermoplastic resin filaments by melt adhesion without being buried in the thermoplastic resin filaments having an average fiber diameter of 1 μm to 50 μm.
A functional cotton-like resin fiber characterized in that the resin fiber is cotton-like.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018067992A JP6844092B2 (en) | 2018-03-30 | 2018-03-30 | Functional cotton-like resin fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018067992A JP6844092B2 (en) | 2018-03-30 | 2018-03-30 | Functional cotton-like resin fiber |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020000680A Division JP2020073745A (en) | 2020-01-07 | 2020-01-07 | Functional flocculent resin fiber and method for producing functional flocculent resin fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019178451A JP2019178451A (en) | 2019-10-17 |
JP6844092B2 true JP6844092B2 (en) | 2021-03-17 |
Family
ID=68278036
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018067992A Active JP6844092B2 (en) | 2018-03-30 | 2018-03-30 | Functional cotton-like resin fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6844092B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022001358A (en) * | 2020-06-22 | 2022-01-06 | 一般財団法人Royal Nippon財団 | Egg-shell fine powder, method for producing egg-shell fine powder, method for using egg-shell fine powder, and product containing egg-shell fine powder |
KR102343516B1 (en) * | 2020-09-21 | 2021-12-24 | 김유정 | Antiviral and deodorant yarn manufacturing method |
CN112176480B (en) * | 2020-11-05 | 2021-12-24 | 浙江联合启华针织有限公司 | Warm-keeping light underwear fabric and preparation method thereof |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63211350A (en) * | 1987-02-26 | 1988-09-02 | 三井化学株式会社 | Production of hydrophilic nonwoven fabric |
JP3286998B2 (en) * | 1992-01-08 | 2002-05-27 | 東レ株式会社 | Antibacterial electret material |
JP3533748B2 (en) * | 1995-04-07 | 2004-05-31 | 東洋紡績株式会社 | Non-woven fabric for filter reinforcement |
JPH11222796A (en) * | 1998-02-02 | 1999-08-17 | Toyo Ink Mfg Co Ltd | Antimicrobial paper and packaging material |
JP2002020970A (en) * | 2000-07-11 | 2002-01-23 | Toochiraifu:Kk | Fiber product using seashell powder |
JP3084928U (en) * | 2001-09-28 | 2002-04-05 | 東洋科学株式会社 | Antibacterial hygiene sheet |
US20040116018A1 (en) * | 2002-12-17 | 2004-06-17 | Kimberly-Clark Worldwide, Inc. | Method of making fibers, nonwoven fabrics, porous films and foams that include skin treatment additives |
JP5277534B2 (en) * | 2005-11-22 | 2013-08-28 | 東レ株式会社 | Fiber sheet, method for producing the same, and air filter |
JP4900675B2 (en) * | 2006-07-05 | 2012-03-21 | 金星製紙株式会社 | Composite nonwoven fabric for air filter |
JP2008095266A (en) * | 2006-10-12 | 2008-04-24 | Hodai Lee | Conjugate fiber filter using nano material, production equipment of conjugate fiber filter using nano material and production method of conjugate fiber filter using nano material |
JP5515106B2 (en) * | 2008-08-12 | 2014-06-11 | 茂明 丸尾 | Antibacterial products and powder antibacterial agents |
US8951338B2 (en) * | 2009-07-08 | 2015-02-10 | Jnc Corporation | Air filter material using laminated electret nonwoven fabric |
CN102596393A (en) * | 2009-11-06 | 2012-07-18 | 巴斯夫欧洲公司 | Textiles comprising improved superabsorbers |
JP5757663B2 (en) * | 2011-10-24 | 2015-07-29 | 国立研究開発法人日本原子力研究開発機構 | Cesium removal water purification filter cartridge and method for producing the same |
KR102067567B1 (en) * | 2011-10-25 | 2020-01-17 | 이메리즈 미네랄즈 리미티드 | Particulate fillers |
JP6161285B2 (en) * | 2012-12-26 | 2017-07-12 | 株式会社クラレ | Antibacterial nanofiber sheet, manufacturing method thereof and filter |
JP2015010063A (en) * | 2013-06-28 | 2015-01-19 | 八千代工業株式会社 | Antimicrobial material |
US9476146B2 (en) * | 2014-09-11 | 2016-10-25 | Clopay Plastic Products Company, Inc. | Polymeric materials providing improved infrared emissivity |
-
2018
- 2018-03-30 JP JP2018067992A patent/JP6844092B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019178451A (en) | 2019-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6844092B2 (en) | Functional cotton-like resin fiber | |
CN106103346B (en) | Thermal conductivity composite oxides, its manufacturing method, the composition of the composite oxides containing thermal conductivity and its use | |
Laonapakul et al. | Optimum conditions for preparation of bio-calcium from blood cockle and golden apple snail shells and characterization | |
CN104086891A (en) | Polypropylene for 3D printing, polyethylene composite consumable and preparation method thereof | |
CN105040448A (en) | Easily-decomposed flame-resistant temperature-adjusting environmental-friendly non-woven fabric, and preparation method thereof | |
JP6722824B2 (en) | Method for producing silver nano-organic composite resin impregnated with silver nanoparticles and antibiotic water supply pipe produced by using the same | |
US20160271598A1 (en) | Functional air filter | |
JP2020073745A (en) | Functional flocculent resin fiber and method for producing functional flocculent resin fiber | |
JP2011241522A (en) | Fiber and fiber containing mineral radiating application products terahertz wave | |
US20200032035A1 (en) | Processing method and products produced thereby | |
KR20140120219A (en) | Sintered spherical body using volcanic by-products and the manufcturing method thereof | |
JP2019218518A (en) | Thermal storage material particle-containing resin pellet, and manufacturing method of thermal storage material particle-containing resin pellet | |
JP5552883B2 (en) | Low-conductivity zinc oxide particles, heat-dissipating filler, heat-dissipating resin composition, heat-dissipating grease, heat-dissipating coating composition, and method for producing low-conducting zinc oxide particles | |
Dahlan et al. | Characterization of calcium powders from Merauke Mangrove crab shells | |
JP6827027B2 (en) | Method for producing nanofibers | |
KR101589295B1 (en) | manufacturing method of kitchenware | |
KR20170053228A (en) | Synthetic resin composition for environment affinity, pellet using composition and manufacturing method thereof and manufacturing method of product | |
JP2005117971A (en) | Silkworm feed, silk produced through feeding silkworm with the feed, and silk product using the silk | |
JP6536973B2 (en) | Method of producing soil conditioner | |
Kumar et al. | Applications of waste egg shell and egg shell membrane: a review | |
TW201819059A (en) | Warming material structure made from recycled waste fishing net capable of solving environmental protection and ecology endangering problems caused by waste fishing net | |
Li et al. | Progress on fiber engineering for fabric innovation in ecological hydrophobic design and multifunctional applications | |
Lee et al. | Sintering and microstructure of BaTiO3 nano particles synthesized by molten salt method | |
JP2003013329A (en) | Animal bone fiber and method for producing the same | |
JP2018127735A (en) | Cross-connected long fiber assembly and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180330 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190423 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190618 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20191008 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200107 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20200107 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20200115 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20200121 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20200221 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20200303 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20200623 |
|
C13 | Notice of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: C13 Effective date: 20200728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200924 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20201124 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20210105 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20210105 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210202 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6844092 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |