JP2008095266A - Conjugate fiber filter using nano material, production equipment of conjugate fiber filter using nano material and production method of conjugate fiber filter using nano material - Google Patents

Conjugate fiber filter using nano material, production equipment of conjugate fiber filter using nano material and production method of conjugate fiber filter using nano material Download PDF

Info

Publication number
JP2008095266A
JP2008095266A JP2007216255A JP2007216255A JP2008095266A JP 2008095266 A JP2008095266 A JP 2008095266A JP 2007216255 A JP2007216255 A JP 2007216255A JP 2007216255 A JP2007216255 A JP 2007216255A JP 2008095266 A JP2008095266 A JP 2008095266A
Authority
JP
Japan
Prior art keywords
nanofiber
fiber filter
composite fiber
microfiber
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007216255A
Other languages
Japanese (ja)
Inventor
Hodai Lee
鳳大 李
Inn Kyu Kang
仁圭 姜
Oh Hyeong Kwon
五亨 權
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020060099493A external-priority patent/KR100714219B1/en
Application filed by Individual filed Critical Individual
Publication of JP2008095266A publication Critical patent/JP2008095266A/en
Pending legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1607Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous
    • B01D39/1623Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres the material being fibrous of synthetic origin
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0061Electro-spinning characterised by the electro-spinning apparatus
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/28Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/38Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising unsaturated nitriles as the major constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/60Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/43Acrylonitrile series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4374Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/07Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments otherwise than in a plane, e.g. in a tubular way
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/025Types of fibres, filaments or particles, self-supporting or supported materials comprising nanofibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/02Types of fibres, filaments or particles, self-supporting or supported materials
    • B01D2239/0258Types of fibres, filaments or particles, self-supporting or supported materials comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/04Additives and treatments of the filtering material
    • B01D2239/0442Antimicrobial, antibacterial, antifungal additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/10Filtering material manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1002Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina
    • Y10T156/1051Methods of surface bonding and/or assembly therefor with permanent bending or reshaping or surface deformation of self sustaining lamina by folding

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production equipment and production method of a conjugate fiber filter having high efficiency, high functionality and antibacterial property. <P>SOLUTION: The conjugate fiber filter is produced by forming a microfiber layer comprising microfiber threads on a molding rod by melt-spinning with a melt spinning machine, which molding rod comprises an electroconductive material and is grounded at one end thereof and driven to rotate, then laminating to form a nanofiber layer on the microfiber layer to produce a highly efficient and highly functional conjugate fiber filter, which nanofiber layer comprises nanofiber obtained by electric field spinning with an electric field spinning machine a polymer resin solution having certain dielectric constant capable of being spun by electric field spinning, and further, antibacterial function is imparted by adding a silver nanocomponent to the microfiber of the microfiber layer and the nanofiber of the nanofiber layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ナノ素材を用いた複合繊維フィルター、ナノ素材を用いた複合繊維フィルターの製造装置及びナノ素材を用いた複合繊維フィルターの製造方法に係り、特に、ナノ繊維とマイクロ繊維を複合させて高効率、高機能性及び抗菌性を有する複合繊維フィルターを製造する装置及び方法に関する。   The present invention relates to a composite fiber filter using a nanomaterial, a manufacturing apparatus for a composite fiber filter using a nanomaterial, and a method for manufacturing a composite fiber filter using a nanomaterial, in particular, by combining nanofibers and microfibers. The present invention relates to an apparatus and method for producing a composite fiber filter having high efficiency, high functionality and antibacterial properties.

通常製造されているほとんどのマイクロ繊維は、溶融紡糸(melt spinning)、乾式紡糸(dry spinning)、湿式紡糸(wet spinning)などのような紡糸方式、つまり高分子溶液を機械的な力で微細孔を通して強制圧出紡糸させることで、製造される。しかし、このような方式で製造されるマイクロ繊維の直径は、約5〜500μmであり、直径が1μm以下であるナノオーダーの繊維を製造することは容易ではない。そのため、このようなマイクロ繊維からなるフィルターは、マイクロサイズの汚染粒子をろ過(filtering)することはできるが、ナノサイズの微細汚染粒子をろ過することは事実上不可能である。   Most of the microfibers that are usually manufactured are made by spinning methods such as melt spinning, dry spinning, wet spinning, etc., that is, polymer solution is microporous by mechanical force. Manufactured by forced extrusion spinning through. However, the diameter of the microfiber manufactured by such a method is about 5 to 500 μm, and it is not easy to manufacture a nano-order fiber having a diameter of 1 μm or less. Therefore, such a microfiber filter can filter micro-size contaminant particles, but it is virtually impossible to filter nano-size fine contaminant particles.

このため、ナノサイズの繊維(不織布)を製造するための多様な方式が、開発使用されているのが現状である。有機ナノ繊維を形成する方法としては、例えば、ブロックセグメントによるナノ構造の物質形成、自己組織化(self−assembly)によるナノ構造の物質形成、シリカ触媒下で重合によるナノ繊維形成、溶融紡糸後炭化工程によるナノ繊維形成、高分子溶液または溶融体の電界紡糸によるナノ繊維形成などを挙げることができる。   For this reason, various methods for producing nano-sized fibers (nonwoven fabrics) are currently being developed and used. Examples of methods for forming organic nanofibers include nanostructured material formation by block segments, nanostructured material formation by self-assembly, nanofiber formation by polymerization under a silica catalyst, and carbonization after melt spinning. Examples thereof include nanofiber formation by a process and nanofiber formation by electrospinning of a polymer solution or a melt.

このように製造されるナノ繊維を用いてナノ繊維フィルターを実現する場合、マイクロ繊維フィルターに比べて、非ターゲット(non−target)が極めて大きく、表面官能基(Surface Functional Groups)に対する柔軟性に優れ、ナノレベルの気孔を有するため、有害な粒子やガスなどを効率的に除去することができる。   When a nanofiber filter is realized using nanofibers manufactured in this manner, the non-target is extremely large and the flexibility with respect to the surface functional groups is superior to the microfiber filter. Since it has nano-level pores, harmful particles and gases can be efficiently removed.

しかし、ナノ繊維を用いたフィルターは、生産コストが極めて高く、生産のための様々な条件などを合わせるのが難しいため、相対的に低いコストで生産普及することができないという欠点がある。   However, a filter using nanofibers has a disadvantage that production costs are extremely high, and it is difficult to match various conditions for production, so that production and diffusion cannot be performed at a relatively low cost.

ナノ繊維を用いたフィルターを実現する際には、上述した高いコストはもとより、差圧とろ過効率に関する問題が発生する可能性もある。よって、従来のマイクロ繊維製造技術とナノ繊維製造技術を融合することにより、コスト競争力はもとより差圧とろ過効率に関する問題を解決し、さらに高効率及び高機能が保障できる機能性フィルターが希求されている。かかる機能性フィルターは、産業分野全般に極めて有効に利用できると考えられる。   When realizing a filter using nanofibers, not only the high cost described above, but also problems relating to differential pressure and filtration efficiency may occur. Therefore, by combining conventional microfiber manufacturing technology and nanofiber manufacturing technology, there is a need for a functional filter that can solve problems related to differential pressure and filtration efficiency as well as cost competitiveness, and can guarantee high efficiency and high functionality. ing. Such a functional filter is considered to be extremely effective in the entire industrial field.

そこで、本発明は、このような問題に鑑みてなされたもので、その目的は、ナノ繊維とマイクロ繊維を複合させ、高効率、高機能性及び抗菌性を実現することが可能な、新規かつ改良されたナノ素材を用いた複合繊維フィルター、ナノ素材を用いた複合繊維フィルターの製造装置及びナノ素材を用いた複合繊維フィルターの製造方法を提供することにある。   Therefore, the present invention has been made in view of such a problem, and the object thereof is a novel and capable of combining nanofibers and microfibers to achieve high efficiency, high functionality and antibacterial properties. An object of the present invention is to provide a composite fiber filter using the improved nanomaterial, a composite fiber filter manufacturing apparatus using the nanomaterial, and a composite fiber filter manufacturing method using the nanomaterial.

以上説明したように、本発明の目的は、ナノ繊維とマイクロ繊維を複合させて高効率、高機能性及び抗菌性を有する複合繊維フィルター及びその製造装置及び方法を提供することにある。   As described above, an object of the present invention is to provide a composite fiber filter having a high efficiency, a high functionality, and an antibacterial property by combining nanofibers and microfibers, and a manufacturing apparatus and method therefor.

また、本発明の他の目的は、ナノ繊維とマイクロ繊維を複合させた複合繊維フィルターを高い生産性で製造できる複合繊維フィルターの製造装置及び方法を提供することにある。   Another object of the present invention is to provide a composite fiber filter manufacturing apparatus and method capable of manufacturing a composite fiber filter in which nanofibers and microfibers are combined with high productivity.

本発明の更に別の目的は、浄水フィルター用として高効率、高機能性及び抗菌性を有する複合繊維フィルター及びその製造装置及び方法を提供することにある。   Still another object of the present invention is to provide a composite fiber filter having high efficiency, high functionality, and antibacterial properties, and an apparatus and method for producing the same for a water purification filter.

そこで、上記課題を解決するために、本発明のある観点によれば、複合繊維フィルターの製造方法において、一端が接地されて回転駆動される導電性材質の成形棒上に、溶融紡糸機で溶融紡糸してマイクロ繊維糸からなるマイクロ繊維層を形成し、前記マイクロ繊維層上に、電界紡糸(electrospinning)可能な所定の誘電率を有する高分子樹脂溶液を電界紡糸機で電界紡糸して、ナノ繊維糸からなるナノ繊維層を積層形成することを特徴とする、ナノ繊維を用いた複合繊維フィルターの製造方法が提供される。   Accordingly, in order to solve the above-described problems, according to one aspect of the present invention, in a method for manufacturing a composite fiber filter, a melt spinning machine melts a conductive rod formed on a conductive rod that is rotationally driven with one end grounded. A microfiber layer made of microfiber yarn is formed by spinning, and a polymer resin solution having a predetermined dielectric constant capable of electrospinning is electrospun on the microfiber layer by an electrospinning machine, There is provided a method for producing a composite fiber filter using nanofibers, characterized by laminating and forming nanofiber layers made of fiber yarns.

前記溶融紡糸機及び電界紡糸機を用いて前記マイクロ繊維層と前記ナノ繊維層とを交互に連続的に積層形成して、多層化してもよい。   The microfiber layer and the nanofiber layer may be alternately and continuously laminated using the melt spinning machine and the electrospinning machine to form a multilayer.

前記高分子樹脂溶液には、前記高分子樹脂の質量に対して、0.1mass%〜1.0mass%の分散剤含有銀ナノ粒子が混合されてもよい。   In the polymer resin solution, 0.1 mass% to 1.0 mass% of dispersant-containing silver nanoparticles may be mixed with respect to the mass of the polymer resin.

前記ナノ繊維層の気孔率を、30〜70%とし、前記ナノ繊維層の純粋密度を、0.1〜0.22g/cmとしてもよい。 The nanofiber layer may have a porosity of 30 to 70%, and the nanofiber layer may have a pure density of 0.1 to 0.22 g / cm 3 .

前記ナノ繊維糸に含まれる高分子樹脂は、ポリアクリロニトリル樹脂又はポリアミド樹脂(ナイロン6等のナイロン樹脂)のいずれか一方から形成されてもよい。   The polymer resin contained in the nanofiber yarn may be formed from either a polyacrylonitrile resin or a polyamide resin (nylon resin such as nylon 6).

前記ナノ繊維糸に含まれる高分子樹脂は、ポリビニルアルコール、ポリスチレン、ポリカプロラクトン、ポリエチレンテレフタレート、ポリフッ化ビニリデン、ナイロン、ポリ酢酸ビニル、ポリメタクリル酸メチル、ポリアクリロニトリル、ポリウレタン、ポリブチレンテレフタレート、ポリビニルブチラール、ポリ塩化ビニル、ポリエチレンイミン、ポリスルホン及びニトロセルロースからなる群より選択されたいずれか1種から形成されてもよい。   The polymer resin contained in the nanofiber yarn is polyvinyl alcohol, polystyrene, polycaprolactone, polyethylene terephthalate, polyvinylidene fluoride, nylon, polyvinyl acetate, polymethyl methacrylate, polyacrylonitrile, polyurethane, polybutylene terephthalate, polyvinyl butyral, It may be formed from any one selected from the group consisting of polyvinyl chloride, polyethyleneimine, polysulfone and nitrocellulose.

前記溶融紡糸されるマイクロ繊維糸は、ポリプロピレン成分を含み、前記ポリプロピレンの質量に対して、0.1mass%〜1.0mass%の自体分散剤含有銀ナノ粒子が混合されてもよい。   The microfiber yarn to be melt-spun may include a polypropylene component, and 0.1 mass% to 1.0 mass% of a self-dispersing agent-containing silver nanoparticle may be mixed with respect to the mass of the polypropylene.

前記成形棒は、30〜50rpmで回転駆動してもよい。   The forming rod may be rotationally driven at 30 to 50 rpm.

前記溶融紡糸機の溶融紡糸条件において、紡糸ノズル直径は0.1〜0.3mmであり、
紡糸距離は80〜230mmであってもよい。
In the melt spinning conditions of the melt spinning machine, the spinning nozzle diameter is 0.1 to 0.3 mm,
The spinning distance may be 80 to 230 mm.

前記電界紡糸機の電界紡糸条件のパラメーターには、高分子樹脂溶液における高分子樹脂濃度、高分子樹脂溶液の紡糸速度、印加電圧、紡糸距離が含まれてもよい。   The electrospinning parameter of the electrospinning machine may include a polymer resin concentration in the polymer resin solution, a spinning speed of the polymer resin solution, an applied voltage, and a spinning distance.

前記電界紡糸機の電界紡糸条件のパラメーターには、銀濃度がさらに含まれてもよい。   The electrospinning parameter of the electrospinning machine may further include silver concentration.

上記課題を解決するために、本発明の別の観点によれば、上述の製造方法によって製造される複合繊維フィルターが提供される。   In order to solve the above problems, according to another aspect of the present invention, a composite fiber filter manufactured by the above-described manufacturing method is provided.

上記課題を解決するために、本発明の更に別の観点によれば、複合繊維フィルターの製造方法において、一端が接地されて回転駆動される導電性材質の成形棒上に、第1溶融紡糸機で溶融紡糸して第1マイクロ繊維糸からなる第1マイクロ繊維層を形成し、前記第1マイクロ繊維層上に、電界紡糸可能な一定の誘電率を有する高分子樹脂溶液を電界紡糸機で電界紡糸して、ナノ繊維糸からなるナノ繊維層を積層形成し、前記ナノ繊維層上に、第2溶融紡糸機で溶融紡糸して第1マイクロ繊維糸とは異なる直径を有する第2マイクロ繊維糸からなる第2マイクロ繊維層を形成し、前記各繊維層は、前記成形棒上に連続的に積層形成されることを特徴とする、ナノ繊維を用いた複合繊維フィルターの製造方法が提供される。   In order to solve the above-mentioned problem, according to another aspect of the present invention, in a method for manufacturing a composite fiber filter, a first melt spinning machine is formed on a forming rod made of a conductive material that is grounded at one end and is driven to rotate. A first microfiber layer composed of the first microfiber yarn is formed by melt spinning with a polymer resin solution having a constant dielectric constant that can be electrospun on the first microfiber layer using an electric field spinning machine. Spinning to form a nanofiber layer composed of nanofiber yarns, and melt spinning on the nanofiber layer with a second melt spinning machine to have a second microfiber yarn having a diameter different from that of the first microfiber yarn A method for producing a composite fiber filter using nanofibers is provided, wherein a second microfiber layer is formed, and each of the fiber layers is continuously laminated on the forming rod. .

上記課題を解決するために、本発明の更に別の観点によれば、複合繊維フィルターの製造装置において、一端が接地された導電性材質の成形棒を、駆動部によって回転駆動可能に構成し、前記成形棒近傍に一つ以上の溶融紡糸機と電界紡糸機を設置して、前記溶融紡糸機の溶融紡糸と電界紡糸機の電界紡糸とにより、前記成形棒上に、マイクロ繊維糸からなるマイクロ繊維層とナノ繊維糸からなるナノ繊維層とを交互に連続的に積層形成することを特徴とする、ナノ繊維を用いた複合繊維フィルターの製造装置が提供される。   In order to solve the above-described problem, according to another aspect of the present invention, in the composite fiber filter manufacturing apparatus, a conductive material formed rod having one end grounded is configured to be rotationally driven by a drive unit, One or more melt spinning machines and an electrospinning machine are installed in the vicinity of the forming rod, and a microfiber made of microfiber yarn is formed on the forming rod by melt spinning of the melt spinning machine and electrospinning of the electrospinning machine. An apparatus for producing a composite fiber filter using nanofibers is provided, wherein the fiber layers and nanofiber layers made of nanofiber yarns are alternately and continuously laminated.

第1溶融紡糸機及び電界紡糸機のそれぞれの対応位置には、前記成形棒と圧着回転可能な冷間圧延ロールがそれぞれ設けられてもよい。   A cold rolling roll that can be pressed and rotated with the forming rod may be provided at each corresponding position of the first melt spinning machine and the electrospinning machine.

前記ナノ繊維を用いた複合繊維フィルターの製造装置は、前記交互に連続的に積層形成された円筒状繊維層を所定の有効長さに切断する切断機をさらに備えてもよい。   The apparatus for producing a composite fiber filter using the nanofibers may further include a cutting machine that cuts the cylindrical fiber layers that are alternately and continuously laminated to a predetermined effective length.

上記課題を解決するために、本発明の更に別の観点によれば、複合繊維フィルターの製造方法において、回転駆動される成形棒上に、第1溶融紡糸機で溶融紡糸して第1マイクロ繊維糸からなる第1マイクロ繊維層を形成し、前記第1マイクロ繊維層上に、高分子樹脂の質量に対して、0.1mass%〜1.0mass%の自体分散剤含有銀ナノ粒子を混合したナノ繊維糸からなる平面状ナノ繊維不織布を一定の厚さに巻いたナノ繊維層を積層形成し、前記ナノ繊維層上に、第2溶融紡糸機で溶融紡糸して第1マイクロ繊維糸とは異なる直径を有する第2マイクロ繊維糸からなる第2マイクロ繊維層を積層形成し、前記各繊維層は、前記成形棒上に連続的に積層形成されることを特徴とする、ナノ繊維を用いた複合繊維フィルターの製造方法が提供される。   In order to solve the above problems, according to still another aspect of the present invention, in a method for producing a composite fiber filter, a first microfiber is obtained by melt spinning on a rotationally driven forming rod with a first melt spinning machine. A first microfiber layer made of yarn was formed, and 0.1 mass% to 1.0 mass% of the self-dispersing agent-containing silver nanoparticles were mixed on the first microfiber layer with respect to the mass of the polymer resin. A nanofiber layer in which a planar nanofiber nonwoven fabric made of nanofiber yarn is wound to a certain thickness is laminated, and melt spinning is performed on the nanofiber layer by a second melt spinning machine. A second microfiber layer composed of second microfiber yarns having different diameters is laminated and each fiber layer is continuously laminated on the forming rod, and nanofibers are used. How to make composite fiber filters There is provided.

上記課題を解決するために、本発明の更に別の観点によれば、マイクロ繊維不織布上に電界紡糸方式によりナノ繊維不織布を形成して積層(lamination)した後、前記マイクロ繊維不織布及び前記ナノ繊維不織布を一定の厚さになるまで円筒状に巻いてナノ複合浄水フィルターを製造し、前記ナノ繊維不織布を構成するナノ繊維は、高分子樹脂の質量に対して、0.1mass%〜1.0mass%の自体分散剤含有銀ナノ粒子を混合した繊維であり、前記ナノ繊維不織布の気孔率を30〜70%とし、前記ナノ繊維不織布の純粋密度を0.1〜0.22g/cmとすることを特徴とする、ナノ繊維を用いた複合繊維フィルターの製造方法が提供される。 In order to solve the above problems, according to still another aspect of the present invention, a nanofiber nonwoven fabric is formed on a microfiber nonwoven fabric by an electrospinning method and laminated, and then the microfiber nonwoven fabric and the nanofiber are formed. A nanocomposite water purification filter is manufactured by winding a nonwoven fabric into a cylindrical shape until a certain thickness is obtained, and the nanofiber constituting the nanofiber nonwoven fabric is 0.1 mass% to 1.0 mass relative to the mass of the polymer resin. % Of the self-dispersing agent-containing silver nanoparticles, the porosity of the nanofiber nonwoven fabric is 30 to 70%, and the pure density of the nanofiber nonwoven fabric is 0.1 to 0.22 g / cm 3 . A method for producing a composite fiber filter using nanofibers is provided.

上記課題を解決するために、本発明の更に別の観点によれば、高分子樹脂の質量に対して、0.1mass%〜1.0mass%の自体分散剤含有銀ナノ粒子を混合したナノ繊維からなり、気孔率が30〜70%であり、純粋密度が0.1〜0.22g/cmである平面状ナノ繊維不織布を、平面状マイクロ繊維不織布と交互に重ねて多層化した後、折り曲げて円筒状のナノ複合繊維フィルターを製造することを特徴とする、複合繊維フィルターの製造方法が提供される。 In order to solve the above-mentioned problem, according to still another aspect of the present invention, nanofibers in which 0.1 mass% to 1.0 mass% of self-dispersing agent-containing silver nanoparticles are mixed with respect to the mass of the polymer resin. After the planar nanofiber nonwoven fabric having a porosity of 30 to 70% and a pure density of 0.1 to 0.22 g / cm 3 is alternately stacked with the planar microfiber nonwoven fabric, A method for producing a composite fiber filter is provided, which is produced by bending to produce a cylindrical nanocomposite fiber filter.

本発明によれば、ナノ繊維とマイクロ繊維を複合させて高効率、高機能性及び抗菌性を有する複合繊維フィルターを実現することができ、かかる複合繊維フィルターは、浄水用フィルターとしての用途やその他の用途にも用いることができる。   According to the present invention, a composite fiber filter having high efficiency, high functionality, and antibacterial properties can be realized by combining nanofibers and microfibers, and the composite fiber filter can be used as a filter for water purification and others. It can also be used for other applications.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.

本発明では、ナノ繊維不織布とマイクロ繊維をハイブリッド化して、微細な気孔を持ちながらも圧力の増加をもたらさない、新しい形態の高効率・高機能性複合繊維フィルターを実現する。   In the present invention, a nanofiber nonwoven fabric and microfiber are hybridized to realize a new type of highly efficient and highly functional composite fiber filter that has fine pores but does not increase pressure.

図1は、本発明の一実施形態に係る複合繊維フィルターの製造装置100の構成図であり、図2は、同実施形態に係る複合繊維フィルターの製造装置100によって製造される円筒状複合繊維フィルター200の斜視図である。   FIG. 1 is a configuration diagram of a composite fiber filter manufacturing apparatus 100 according to an embodiment of the present invention, and FIG. 2 is a cylindrical composite fiber filter manufactured by the composite fiber filter manufacturing apparatus 100 according to the embodiment. FIG.

本実施形態に係る複合繊維フィルターの製造装置100は、図1に示すように、成形棒2を有する駆動部4、第1及び第2溶融紡糸機6、10、電界紡糸機8、冷間圧延ロール12a、12b及び切断機14を備え、自動化工程による連続的製造が可能である。   The composite fiber filter manufacturing apparatus 100 according to the present embodiment includes a drive unit 4 having a forming rod 2, first and second melt spinning machines 6, 10, an electrospinning machine 8, cold rolling as shown in FIG. The rolls 12a and 12b and the cutting machine 14 are provided, and continuous production by an automated process is possible.

駆動部4は、複合繊維フィルターの製造装置100内の制御部の制御下で、成形棒2を回転駆動させる。また、駆動部4は、成形棒2に既に形成された繊維層に対する水平移送が必要とされるとき、制御部の制御下で成形棒2内の凹片(recessed piece)を突出させて、冷間圧延ロール12aからの送風力作用により、成形棒2上に形成された繊維層を一側に徐々に水平移送させる。   The drive unit 4 rotates the forming rod 2 under the control of the control unit in the composite fiber filter manufacturing apparatus 100. In addition, when the horizontal transfer with respect to the fiber layer already formed on the forming rod 2 is required, the driving unit 4 projects a recessed piece (recessed piece) in the forming rod 2 under the control of the control unit, and The fiber layer formed on the forming rod 2 is gradually and horizontally transferred to one side by the action of the blowing force from the intermediate rolling roll 12a.

成形棒2は、第1及び第2溶融紡糸機6、10のコレクターとしての役割と、電界紡糸機8のコレクターとしての役割とを担当する。このために、棒体が導電性材質からなり、一端が接地される。また、成形棒2は、成形棒2上に形成された繊維層が一側に水平移送可能となるように、表面がスムーズになっている。   The forming rod 2 takes a role as a collector of the first and second melt spinning machines 6 and 10 and a role as a collector of the electrospinning machine 8. For this purpose, the rod is made of a conductive material and one end is grounded. Moreover, the surface of the forming rod 2 is smooth so that the fiber layer formed on the forming rod 2 can be horizontally transferred to one side.

前記成形棒2は、駆動部4の制御下で第1及び第2溶融紡糸機6、10による溶融紡糸と電界紡糸機8による電界紡糸とを両方とも収容できるようにする回転速度、好ましくは30〜50rpmで低速回転する。また、フィルターの生産速度をさらに高める必要がある場合は、第1及び第2溶融紡糸機6、10の作動時の成形棒2の回転速度を、電界紡糸機8の作動時の成形棒2の回転速度に比べて、相対的に上げる。   The forming rod 2 has a rotational speed, preferably 30 so that both the melt spinning by the first and second melt spinning machines 6 and 10 and the electrospinning by the electrospinning machine 8 can be accommodated under the control of the drive unit 4. Rotate at a low speed of ~ 50 rpm. Further, when it is necessary to further increase the production speed of the filter, the rotational speed of the forming rod 2 when the first and second melt spinning machines 6 and 10 are operated is set to the rotational speed of the forming rod 2 when the electrospinning machine 8 is operated. Compared to the rotational speed, increase it relatively.

第1及び第2溶融紡糸機6、10は、マイクロメートル単位(マイクロメートルオーダーの)繊維糸をエアブロン(air blown)方式で溶融紡糸する装置であり、電界紡糸機8は、ナノメートル単位(ナノメートルオーダーの)繊維糸を電界紡糸する装置である。第2溶融紡糸機10は、第1溶融紡糸機6と同様にマイクロメートル単位の繊維糸を溶融紡糸するが、第1溶融紡糸機6よりも相対的に大きな径の繊維糸を溶融紡糸するように構成することが好ましい。   The first and second melt spinning machines 6 and 10 are apparatuses for melt spinning fiber yarns in micrometer units (micrometer order) by an air blow method, and the electrospinning machine 8 is a nanometer unit (nanometer). This is an apparatus for electrospinning fiber yarns (on the order of meters). The second melt-spinning machine 10 melt-spins the fiber yarn in the micrometer unit similarly to the first melt-spinning machine 6, but melt-spins the fiber yarn having a relatively larger diameter than the first melt-spinning machine 6. It is preferable to configure.

電界紡糸機8は、金属注射針紡糸口を有する注射器(syringe)を含む注射器ポンプと、一端が接地された、成形棒2としてのコレクター部と、0〜40kVの高圧電場を注射器ポンプ及びコレクター部に印加する高圧電源装置とで構成される。電界紡糸機8から、正(+)に帯電した高分子溶液が、注射器の金属注射針紡糸口とコレクター部の成形棒2との間にかけられた高圧電場により延伸紡糸されることで、ナノ繊維が成形棒2上に形成される。   The electrospinning machine 8 includes a syringe pump including a syringe having a metal needle spinneret, a collector portion as a forming rod 2 having one end grounded, and a high piezoelectric field of 0 to 40 kV. It is comprised with the high voltage power supply device applied to. The nanofiber is obtained by drawing and spinning a positive (+) charged polymer solution from the electrospinning machine 8 with a high piezoelectric field applied between the metal injection needle spinning port of the syringe and the forming rod 2 of the collector part. Is formed on the forming rod 2.

第1溶融紡糸機6及び電界紡糸機8のそれぞれの対応位置には、成形棒2と圧着回転(接触回転)可能な冷間圧延ロール12a、12bがそれぞれ設けられる。これらの冷間圧延ロール12a、12bは、成形棒2に形成された繊維層の表面を所定の圧力で加圧して、密度を密にかつ均一にする機能と、送風冷却させる機能とを備える。特に、両冷間圧延ロール12a、12bのうち第1溶融紡糸機6に対応した冷間圧延ロール12aは、テーパ部を有するボビンで構成し、成形棒2に形成された繊維層が成形棒2内の凹片の突出によって浮き上がるときに傾斜送風することで、その繊維層を押し出して、徐々に水平移送させる。冷間圧延ロール12bは、円柱状のロールである。   At the corresponding positions of the first melt spinning machine 6 and the electrospinning machine 8, cold rolling rolls 12a and 12b that can be pressed and rotated (contact rotation) with the forming rod 2 are provided. These cold rolling rolls 12a and 12b have a function of pressurizing the surface of the fiber layer formed on the forming rod 2 with a predetermined pressure to make the density dense and uniform, and a function of cooling by blowing. In particular, among the cold rolling rolls 12a and 12b, the cold rolling roll 12a corresponding to the first melt spinning machine 6 is constituted by a bobbin having a tapered portion, and the fiber layer formed on the forming rod 2 is formed by the forming rod 2. The fiber layer is pushed out by being inclined and blown when it is lifted by the protrusion of the inner concave piece, and gradually transferred horizontally. The cold rolling roll 12b is a cylindrical roll.

切断機14は、成形棒2上に積層形成され、押し出され続けて移送された繊維フィルター層を、内部カッターによって所定の有効長さに切断し、図2に示す円筒状複合繊維フィルター200を完成させる。   The cutting machine 14 is laminated on the forming rod 2 and cuts the fiber filter layer, which is continuously pushed and transferred, into a predetermined effective length by an internal cutter, thereby completing the cylindrical composite fiber filter 200 shown in FIG. Let

複合繊維フィルターの製造装置100の制御部は、駆動部4を制御して成形棒2を30〜50rpmの範囲で所定の回転速度で回転させ、先ず第1溶融紡糸機6のみを作動させてエアブロン溶融紡糸方式でマイクロメートル単位の繊維糸を成形棒2に紡糸させることにより、図2に示す内側のマイクロ繊維層20を形成する。このとき、冷間圧延ロール12aは、成形棒2と接触回転しながら、形成中の内側マイクロ繊維層20を圧迫する。   The control unit of the composite fiber filter manufacturing apparatus 100 controls the drive unit 4 to rotate the forming rod 2 at a predetermined rotational speed in the range of 30 to 50 rpm, and first operates only the first melt spinning machine 6 to perform the air bronze. The inner microfiber layer 20 shown in FIG. 2 is formed by spinning fiber yarns in micrometer units on the forming rod 2 by melt spinning. At this time, the cold rolling roll 12 a presses the inner microfiber layer 20 being formed while rotating in contact with the forming rod 2.

内側マイクロ繊維層20が所定の厚さ(移送制御に移行する厚さ)に形成されると、制御部は駆動部4を制御して、成形棒2内の凹片を外部に突出させ、形成中の内側マイクロ繊維層20を微細に浮き上がらせる。この際、テーパ付き冷間圧延ロール12aからの傾斜送風力により、成形棒2上に形成された内側マイクロ繊維層20が、一側に徐々に水平移送される。このとき、第1溶融紡糸機6は、マイクロメートル単位の繊維糸を溶融紡糸し続け、一方、電界紡糸機8及び第2溶融紡糸機10は、制御部の制御下で作動しはじめ、電界紡糸及び溶融紡糸を行う。   When the inner microfiber layer 20 is formed to a predetermined thickness (thickness that shifts to transfer control), the control unit controls the drive unit 4 to project the concave piece in the forming rod 2 to the outside. The inner microfiber layer 20 inside is finely raised. At this time, the inner microfiber layer 20 formed on the forming rod 2 is gradually transferred horizontally to one side by the inclined air blowing force from the tapered cold rolling roll 12a. At this time, the first melt spinning machine 6 continues to melt and spin the fiber yarn in the micrometer unit, while the electrospinning machine 8 and the second melt spinning machine 10 start to operate under the control of the control unit. And melt spinning.

電界紡糸機8の電界紡糸及び第2溶融紡糸機10の溶融紡糸により、内側マイクロ繊維層20上には、図2に示すようにナノ繊維層22及び外側マイクロ繊維層20が順に積層形成される。この繊維層が徐々に水平移送されて切断機14内に入ると、切断機14内の内部カッターが前記円筒状の繊維層を所定の有効長さに切断し、図2に示す円筒状複合繊維フィルター200が得られる。   As shown in FIG. 2, the nanofiber layer 22 and the outer microfiber layer 20 are sequentially stacked on the inner microfiber layer 20 by the electrospinning of the electrospinning machine 8 and the melt spinning of the second melt spinning machine 10. . When this fiber layer is gradually transferred horizontally and enters the cutting machine 14, an internal cutter in the cutting machine 14 cuts the cylindrical fiber layer into a predetermined effective length, and the cylindrical composite fiber shown in FIG. A filter 200 is obtained.

本実施形態において、図1に示す複合繊維フィルターの製造装置100は、2台の溶融紡糸機と電界紡糸機を採用して円筒状複合繊維フィルター200を製作したが、一方、複合繊維フィルターの製造装置100が多数の溶融紡糸機と電界紡糸機を採用し、図3に示すようにマイクロ繊維層20とナノ繊維層22を交互に積層して多層化することもできることは、当業者にとっては明らかなことである。   In the present embodiment, the composite fiber filter manufacturing apparatus 100 shown in FIG. 1 employs two melt spinning machines and an electrospinning machine to manufacture the cylindrical composite fiber filter 200. On the other hand, manufacturing the composite fiber filter It will be apparent to those skilled in the art that the apparatus 100 employs a large number of melt spinning machines and electrospinning machines, and the microfiber layers 20 and the nanofiber layers 22 can be alternately laminated as shown in FIG. It is a thing.

特に、図2及び図3において、ナノ繊維層22を構成する本実施形態に係るナノ繊維は、繊維糸の直径が数nm〜数百nm、好ましくは50nm〜800nmである。このようなナノ繊維糸は、極細であって大きな表面積と優れた柔軟性を有し、圧着加工に容易であり、フィルター用素材に適する。そこで、ナノ繊維糸からなるナノ繊維層22は、多数の気孔を有するため、低い圧力で微細粒子をほとんど除去することができる。   In particular, in FIGS. 2 and 3, the nanofiber according to the present embodiment constituting the nanofiber layer 22 has a fiber thread diameter of several nm to several hundred nm, preferably 50 nm to 800 nm. Such nanofiber yarns are extremely fine, have a large surface area and excellent flexibility, are easy to be crimped, and are suitable for filter materials. Therefore, since the nanofiber layer 22 made of nanofiber yarn has a large number of pores, most of the fine particles can be removed with a low pressure.

本実施形態に係るナノ繊維層22の厚さは、数μm〜数百μmの範囲内であり、製造者は、該当フィルターのフィルター効率を考慮して、前記範囲内で適切に設定することができる。   The thickness of the nanofiber layer 22 according to the present embodiment is in the range of several μm to several hundred μm, and the manufacturer may appropriately set the thickness within the above range in consideration of the filter efficiency of the corresponding filter. it can.

また、本実施形態に係るナノ繊維層22は、浄水用フィルターとして用いる際には、平均気孔直径を1〜3.5μmとし、気孔率を30〜70%とし、純粋密度を0.1〜0.22g/cmとし、見掛密度を0.18〜0.35g/cmとすることが好ましい。 Further, when the nanofiber layer 22 according to the present embodiment is used as a filter for water purification, the average pore diameter is 1 to 3.5 μm, the porosity is 30 to 70%, and the pure density is 0.1 to 0. 0.22 g / cm 3 and an apparent density of 0.18 to 0.35 g / cm 3 are preferable.

本発明では、ナノ繊維を用いたフィルターを実現するにあたって、マイクロ繊維製造技術とナノ繊維製造技術を融合してコスト競争力を持ちながらも差圧とろ過効率に関する問題を解決し、さらに高効率及び高機能を保障すると共に抗菌性を有する機能性フィルターを実現するために、下記のような原料素材と紡糸機の各種パラメーターを考慮する必要がある。   In the present invention, in realizing a filter using nanofibers, the problem relating to differential pressure and filtration efficiency is solved while fusing the microfiber manufacturing technology and nanofiber manufacturing technology while having cost competitiveness. In order to realize a functional filter that ensures high functionality and has antibacterial properties, it is necessary to consider the following raw material and various parameters of the spinning machine.

マイクロ繊維層20には、溶融紡糸機からの溶融紡糸が可能である合成樹脂材質として、例えば、ポリプロピレン(PP)、ポリエチレンテレフタレート、ポリフッ化ビニリデン、ナイロン、ポリ酢酸ビニル、ポリメタクリル酸メチル、ポリアクリロニトリル、ポリウレタン、ポリブチレンテレフタレート、ポリビニルブチラール、ポリ塩化ビニル、ポリエチレンイミン、ポリスルホン、ポリオレフィンなどを用いることが可能であり、中でもポリプロピレン(PP)を採用することが好ましい。   For the microfiber layer 20, synthetic resin materials that can be melt-spun from a melt spinning machine include, for example, polypropylene (PP), polyethylene terephthalate, polyvinylidene fluoride, nylon, polyvinyl acetate, polymethyl methacrylate, and polyacrylonitrile. Polyurethane, polybutylene terephthalate, polyvinyl butyral, polyvinyl chloride, polyethyleneimine, polysulfone, polyolefin and the like can be used, and among these, polypropylene (PP) is preferably used.

そして、ナノ繊維層22には、電界紡糸を可能にする一定以上の誘電率(所定の値以上の誘電率)を有する高分子樹脂を採用することが好ましい。   The nanofiber layer 22 is preferably made of a polymer resin having a certain dielectric constant (dielectric constant greater than a predetermined value) that enables electrospinning.

ナノ繊維層22を構成する一定以上の誘電率を有する高分子樹脂には、水を含む有機溶媒に溶解可能な高分子樹脂として、例えば、ポリアクリロニトリル(polyacrylonitrile:PAN)樹脂またはポリアミド(ナイロン6等のナイロン繊維)を採用することが好ましい。   For the polymer resin having a certain dielectric constant or more constituting the nanofiber layer 22, for example, polyacrylonitrile (PAN) resin or polyamide (nylon 6 or the like) is used as a polymer resin that can be dissolved in an organic solvent containing water. Nylon fiber) is preferably used.

水を含む有機溶媒に溶解可能な高分子樹脂の他の例としては、例えば、ポリビニルアルコール、ポリスチレン、ポリカプロラクトン、ポリエチレンテレフタレート、ポリフッ化ビニリデン、ナイロン、ポリ酢酸ビニル、ポリメタクリル酸メチル、ポリアクリロニトリル、ポリウレタン、ポリブチレンテレフタレート、ポリビニルブチラール、ポリ塩化ビニル、ポリエチレンイミン、ポリスルホン、ニトロセルロースなどが挙げられる。上記例のうち、ポリスチレン、ポリフッ化ビニリデン、ポリメタクリル酸メチル、ポリアクリロニトリル、ポリウレタン、ポリビニルブチラール、ポリ塩化ビニル、ポリスルホン、ニトロセルロースは、耐水性及び耐化学性(耐アルカリ性、耐酸性など)に優れているので、浄水用フィルターのナノ繊維層22に好適に適用することができる。   Other examples of the polymer resin that can be dissolved in an organic solvent containing water include, for example, polyvinyl alcohol, polystyrene, polycaprolactone, polyethylene terephthalate, polyvinylidene fluoride, nylon, polyvinyl acetate, polymethyl methacrylate, polyacrylonitrile, Examples include polyurethane, polybutylene terephthalate, polyvinyl butyral, polyvinyl chloride, polyethyleneimine, polysulfone, and nitrocellulose. Among the above examples, polystyrene, polyvinylidene fluoride, polymethyl methacrylate, polyacrylonitrile, polyurethane, polyvinyl butyral, polyvinyl chloride, polysulfone, and nitrocellulose are excellent in water resistance and chemical resistance (alkali resistance, acid resistance, etc.). Therefore, it can be suitably applied to the nanofiber layer 22 of the filter for water purification.

また、マイクロ繊維層20及びナノ繊維層22を形成するにあたり、高効率と高機能を保障すると共に抗菌性を付与するために、本実施形態では、ナノ銀粒子を混合することが好ましい。つまり、マイクロ繊維糸の溶融のための溶融紡糸機には、ポリプロピレンチップが投入されて溶融するが、本実施形態では、該ポリプロピレンチップにナノ銀粒子を含ませる。ナノ銀粒子は、ポルリプロピレンチップの融点よりも遥かに低い温度で溶融する。   Further, in forming the microfiber layer 20 and the nanofiber layer 22, in order to ensure high efficiency and high function and to provide antibacterial properties, it is preferable to mix nanosilver particles in this embodiment. That is, a polypropylene chip is charged into a melt spinning machine for melting microfiber yarn and melted. In this embodiment, nano silver particles are included in the polypropylene chip. The nanosilver particles melt at a temperature much lower than the melting point of the polypropylene chip.

また、ナノ繊維糸を電界紡糸するための注射機内の高分子樹脂溶液にも、ナノ銀粒子を含ませる。つまり、ナノ銀粒子が溶融紡糸機内及び注射機内に混合されているときに分散分布されることが極めて重要であり、このためにはアルコールのような溶媒を添加する必要がある。しかしながら、アルコールのような溶媒は、銀粒子の部分的沈澱を起こすので、本実施形態においては、アルコールのような溶媒を用いることなく分散分布が可能なナノ銀粒子を用いる。前記ナノ銀粒子は、分散剤を有する(分散剤を含有する)ナノ銀粒子である。   Further, nano silver particles are also contained in a polymer resin solution in an injection machine for electrospinning nanofiber yarn. That is, it is extremely important that the nano silver particles are dispersed and distributed when they are mixed in the melt spinning machine and the injection machine. For this purpose, it is necessary to add a solvent such as alcohol. However, since a solvent such as alcohol causes partial precipitation of silver particles, nanosilver particles that can be dispersed and distributed without using a solvent such as alcohol are used in this embodiment. The nano silver particles are nano silver particles having a dispersant (containing a dispersant).

一方、従来、ナノ銀粒子を分散するためにアルコール溶媒を用いた場合は、銀含有量が高分子樹脂の質量に対して、約0.1mass%しか及ばないことから、抗菌性に劣った。もし、抗菌性を高めるために0.1mass%を遥かに超えるナノ銀粒子を混合すると、沈澱が発生した。   On the other hand, conventionally, when an alcohol solvent is used to disperse the nanosilver particles, the silver content is only about 0.1 mass% with respect to the mass of the polymer resin, and thus the antibacterial property is inferior. If nano silver particles far exceeding 0.1 mass% were mixed in order to enhance antibacterial properties, precipitation occurred.

これに対し、本実施形態に係る自体分散剤含有ナノ銀粒子を用いた場合は、高分子樹脂の質量に対して、1mass%まで混合することができる。ナノ銀粒子をそれ以上混合することは意味がない。というのは、高分子樹脂の質量に対して、約0.5mass%のナノ銀粒子を混合するだけで、ほぼ100%に近い抗菌性を発揮することができるからである。   On the other hand, when the self-dispersing agent-containing nano silver particles according to the present embodiment are used, they can be mixed up to 1 mass% with respect to the mass of the polymer resin. It does not make sense to mix more nanosilver particles. This is because an antibacterial property close to 100% can be exhibited only by mixing about 0.5 mass% of nano silver particles with respect to the mass of the polymer resin.

したがって、本実施形態に係る自体分散剤含有ナノ銀粒子は、好ましくは高分子樹脂の質量に対して、0.1mass%〜1.0mass%の範囲で混合し、さらに好ましくは高分子樹脂の質量に対して、0.3mass%〜0.6mass%の範囲で混合する。   Therefore, the self-dispersing agent-containing nano silver particles according to this embodiment are preferably mixed in the range of 0.1 mass% to 1.0 mass%, more preferably the mass of the polymer resin, with respect to the mass of the polymer resin. Is mixed in the range of 0.3 mass% to 0.6 mass%.

抗菌性を付与するためのナノ銀粒子の混合にあたり、前記混合割合を、マイクロ繊維糸及びナノ繊維糸の双方に適用することができ、必要に応じて、マイクロ繊維糸またはナノ繊維のどちらか一方にのみ適用することもできる。また、どちらか一方にのみ適用する際には、相対的に高い表面積と空隙率を有するナノ繊維糸に適用することが好ましい。   In mixing nano silver particles for imparting antibacterial properties, the mixing ratio can be applied to both microfiber yarns and nanofiber yarns, and either microfiber yarns or nanofibers are used as necessary. It can also be applied to only. Moreover, when applying only to either one, it is preferable to apply to the nanofiber yarn which has a relatively high surface area and porosity.

マイクロ繊維層20及びナノ繊維層22を形成するにあたり、フィルターの諸機能を充分に発揮するためには、繊維糸を均一に製造し、さらに可能な限り細く製造することが極めて重要である。   In forming the microfiber layer 20 and the nanofiber layer 22, in order to fully exhibit the various functions of the filter, it is extremely important to produce the fiber yarn uniformly and to make it as thin as possible.

先ず、マイクロ繊維層20を形成するにあたり、ポリプロピレンマイクロ繊維糸を均一に且つ従来よりも細くするためには、溶融紡糸機6、10の紡糸ノズルの直径、紡糸温度、紡糸距離などのパラメーターを考慮する必要がある。本願発明者らは、これらパラメーターを変えて、最適の溶融紡糸条件を確立した。   First, in forming the microfiber layer 20, in order to make the polypropylene microfiber yarn uniform and thinner than the conventional one, parameters such as the diameter of the spinning nozzles of the melt spinning machines 6 and 10, the spinning temperature, and the spinning distance are taken into consideration. There is a need to. The inventors of the present application changed these parameters to establish optimum melt spinning conditions.

本願発明者らは、円筒状複合繊維フィルター200を浄水用フィルターとして実現するための実験を行った。浄水用フィルターは、浄水作業時に加えられる圧力に耐えられる強度を有し、均一な平均直径を有することが好ましい。   The inventors of the present application conducted an experiment for realizing the cylindrical composite fiber filter 200 as a filter for water purification. It is preferable that the water purification filter has a strength that can withstand the pressure applied during water purification work and has a uniform average diameter.

浄水用フィルターの実現に考慮されるパラメーターのうち、紡糸温度は280℃〜300℃とすることが好ましく、紡糸距離はマイクロ繊維の均一性確保に求められる変数ではないことが確認された。   Of the parameters considered for the realization of the filter for water purification, the spinning temperature is preferably 280 ° C. to 300 ° C., and it was confirmed that the spinning distance is not a variable required for ensuring the uniformity of the microfibers.

しかしながら、紡糸ノズルの直径は、マイクロ繊維の均一性確保に求められる極めて重要な変数であることが確認された。このとき、紡糸ノズルの直径は、0.1〜0.3mmであることが好ましく、0.1〜0.3mmの範囲内でも低い方に向かうほど均一性確保にさらに有利であることが確認された。   However, it was confirmed that the diameter of the spinning nozzle is a very important variable required for ensuring the uniformity of the microfibers. At this time, the diameter of the spinning nozzle is preferably 0.1 to 0.3 mm, and it has been confirmed that even in the range of 0.1 to 0.3 mm, the lower the diameter, the more advantageous for ensuring uniformity. It was.

実験例として、紡糸ノズルの直径を0.2mmとし、紡糸距離を少しずつ調節しながら溶融紡糸をした結果、平均直径12〜17μmの均一なマイクロ繊維を得ることができた。このとき、紡糸距離が増えるほどマイクロ繊維糸の直径が細くなることが確認され、また、生産効率を最適化するためには、比較的紡糸距離を短縮することが好ましいことが確認された。紡糸距離の範囲は、一例として、約80mm〜230mmである。   As an experimental example, melt spinning was performed while the spinning nozzle diameter was 0.2 mm and the spinning distance was adjusted little by little. As a result, uniform microfibers having an average diameter of 12 to 17 μm could be obtained. At this time, it was confirmed that the diameter of the microfiber yarn became thinner as the spinning distance increased, and it was confirmed that it is preferable to relatively shorten the spinning distance in order to optimize the production efficiency. The range of the spinning distance is, for example, about 80 mm to 230 mm.

本実施形態に係るマイクロ繊維層20を構成するマイクロ繊維糸は、前記12〜17μmの平均直径を持ちながらも均一にすることができ、従来の浄水用フィルターを構成するマイクロ繊維糸の通常の直径、例えば23〜50μmよりも格段に細くなり、従来に比べて相対的に大きな表面積、優れた柔軟性を有する。   The microfiber yarn constituting the microfiber layer 20 according to the present embodiment can be made uniform while having the average diameter of 12 to 17 μm, and the normal diameter of the microfiber yarn constituting the conventional water purification filter. For example, it is much thinner than 23 to 50 μm, and has a relatively large surface area and excellent flexibility as compared with the prior art.

次に、本実施形態に係るナノ繊維層22を形成するにあたり、一定以上の誘電率を有する高分子樹脂のナノ繊維糸を均一に紡糸し、再現性を高めるための、電界紡糸機8の電界紡糸条件を構成するパラメーターを考慮しなければならない。パラメーターとしては、電圧、紡糸距離、紡糸速度、高分子樹脂液の濃度などが挙げられる。   Next, in forming the nanofiber layer 22 according to the present embodiment, the electric field of the electrospinning machine 8 for uniformly spinning the nanofiber yarn of the polymer resin having a certain dielectric constant or more and improving the reproducibility is obtained. The parameters that make up the spinning conditions must be taken into account. Parameters include voltage, spinning distance, spinning speed, polymer resin solution concentration, and the like.

本発明の実施例では、一定以上の誘電率を有する高分子樹脂の好適な例であるポリアクリロニトリル(polyacrylonitrile:PAN)樹脂またはポリアミド(ナイロン6等のナイロン樹脂)のうち、ポリアクリロニトリル(polyacrylonitrile:PAN)樹脂を溶解させるための溶媒としては、N,N−ジメチルホルムアミド(dimethylformamide:DMF)を用い、ポリアミド(ナイロン6)を溶解させるための溶媒としては、ギ酸(formic acid)を用いた。   In the embodiment of the present invention, among polyacrylonitrile (PAN) resin or polyamide (nylon resin such as nylon 6), which is a preferable example of a polymer resin having a certain dielectric constant or higher, polyacrylonitrile (PAN) is used. ) N, N-dimethylformamide (DMF) was used as the solvent for dissolving the resin, and formic acid (formic acid) was used as the solvent for dissolving the polyamide (nylon 6).

本願発明者らは、円筒状複合繊維フィルター200を浄水用フィルターとして実現するためのナノ繊維形成実験を行った。実験は、浄水用フィルターのナノ繊維層22を形成するための高分子樹脂として、ポリアクリロニトリル樹脂を用いた場合と、ポリアミド(ナイロン6)を用いた場合とに分けて行った。   The inventors of the present application conducted a nanofiber formation experiment for realizing the cylindrical composite fiber filter 200 as a filter for water purification. The experiment was performed separately for the case of using polyacrylonitrile resin and the case of using polyamide (nylon 6) as the polymer resin for forming the nanofiber layer 22 of the filter for water purification.

先ず、高分子樹脂としてポリアクリロニトリル樹脂を用いた場合の実験例を説明する。   First, an experimental example in the case of using a polyacrylonitrile resin as the polymer resin will be described.

ポリアクリロニトリルPAN樹脂がN,N−ジメチルホルムアミド(DMF)溶媒に溶解することで、PAN/DMF溶液(高分子溶液)が得られる。このとき、該PAN/DMF溶液を電界紡糸するに当たって考慮すべき重要なパラメーターは、PAN/DMF溶液における濃度、PAN/DMF溶液の紡糸速度、印加電圧、紡糸距離などであることが実験により確認された。   The polyacrylonitrile PAN resin is dissolved in an N, N-dimethylformamide (DMF) solvent to obtain a PAN / DMF solution (polymer solution). At this time, it was experimentally confirmed that important parameters to be considered in electrospinning the PAN / DMF solution were the concentration in the PAN / DMF solution, the spinning speed of the PAN / DMF solution, the applied voltage, the spinning distance, and the like. It was.

このとき、ナノ繊維の直径は、溶液における濃度と溶液の紡糸速度が減少するほど減少し、印加電圧と紡糸距離が増加するほど減少する傾向を示した。   At this time, the diameter of the nanofibers decreased as the concentration in the solution and the spinning speed of the solution decreased, and decreased as the applied voltage and the spinning distance increased.

浄水用フィルターとして最適化されたナノ繊維の例は、下記の通りである。   Examples of nanofibers optimized as a water purification filter are as follows.

(1)平均直径600nmのPANナノ繊維
電界紡糸条件のパラメーターにおいて、溶液における濃度は12mass%、溶液の紡糸速度は1.2mL/h、印加電圧は15kV、紡糸距離は15cmである。
(1) PAN nanofiber having an average diameter of 600 nm In the parameters of electrospinning conditions, the concentration in the solution is 12 mass%, the spinning speed of the solution is 1.2 mL / h, the applied voltage is 15 kV, and the spinning distance is 15 cm.

(2)平均直径300nmのPANナノ繊維
電界紡糸条件のパラメーターにおいて、溶液における濃度は10mass%、溶液の紡糸速度は1.2mL/h、印加電圧は15kV、紡糸距離は13cmである。
(2) PAN nanofiber with an average diameter of 300 nm In the parameters of electrospinning conditions, the concentration in the solution is 10 mass%, the spinning speed of the solution is 1.2 mL / h, the applied voltage is 15 kV, and the spinning distance is 13 cm.

前記最適化されたPANナノ繊維のうち、平均直径約300nmのPANナノ繊維は、繊維形状が均一であり、ビードの混在がなく、再現性に優れているという利点がある。また、平均直径約600nmのPANナノ繊維のシートは、操作が簡便であり、厚さ調節が簡単であって、ナノ/マイクロ複合繊維フィルターに最も好適に適用することができる。なお、前記PANナノ繊維は、炭素ナノ繊維製造工程などに容易に適用することができる。   Among the optimized PAN nanofibers, PAN nanofibers having an average diameter of about 300 nm have an advantage that the fiber shape is uniform, beads are not mixed, and the reproducibility is excellent. In addition, a sheet of PAN nanofibers having an average diameter of about 600 nm is easy to operate and easy to adjust the thickness, and can be most suitably applied to a nano / micro composite fiber filter. The PAN nanofiber can be easily applied to a carbon nanofiber manufacturing process.

次に、高分子樹脂がポリアミド(ナイロン6)である場合の実験例を説明する。   Next, an experimental example when the polymer resin is polyamide (nylon 6) will be described.

ポリアミド(ナイロン6)をギ酸溶媒に溶解させて高分子溶液を得、多様な条件下で電界紡糸を行った。実験の結果、優れた再現性を有する均一なナノ繊維を得るためには、電界紡糸の条件のパラメーターのうち、電圧は10〜19kV、紡糸距離は8〜20cm、紡糸速度は0.1〜0.3mL/h、高分子濃度は溶媒の15〜26mass%とすることが好ましいことが確認された。   Polyamide (nylon 6) was dissolved in a formic acid solvent to obtain a polymer solution, and electrospinning was performed under various conditions. As a result of the experiment, in order to obtain uniform nanofibers having excellent reproducibility, among the parameters of electrospinning conditions, the voltage is 10 to 19 kV, the spinning distance is 8 to 20 cm, and the spinning speed is 0.1 to 0. It was confirmed that the polymer concentration was preferably 15 to 26 mass% of the solvent at 3 mL / h.

前記電界紡糸条件下で電界紡糸を行い、平均直径約200nmのポリアミド(ナイロン6)ナノ繊維を製造することができた。   Electrospinning was performed under the above electrospinning conditions, and polyamide (nylon 6) nanofibers having an average diameter of about 200 nm could be produced.

本実施形態においては、マイクロ繊維層20及びナノ繊維層22に抗菌性を付与するために、ナノ銀を添加して紡糸を行った。   In this embodiment, in order to impart antibacterial properties to the microfiber layer 20 and the nanofiber layer 22, nanosilver was added to perform spinning.

ナノ銀添加の際、繊維糸の紡糸が円滑に行われるかどうかを確認し、さらに紡糸が円滑に行われるとしても得られた繊維糸が抗菌性を有するかどうかを確認しなければならない。   When nano silver is added, it is necessary to check whether the fiber yarn is smoothly spun and whether the obtained fiber yarn has antibacterial properties even if the spinning is performed smoothly.

本願発明者らは、例えば、ポリアミド(ナイロン6)に粒径10〜20nmのナノ銀を添加して、電界紡糸機を用いて抗菌性ナノ繊維を製造することができた。実験の結果、電界紡糸機の印加電圧が高くなるほどナノ繊維糸の太さは細くなることが確認され、一方、銀濃度の変化によるナノ繊維の形態変化がないことから、問題がないことが確認された。   The present inventors have been able to produce antibacterial nanofibers using an electrospinning machine, for example, by adding nanosilver having a particle size of 10 to 20 nm to polyamide (nylon 6). As a result of the experiment, it was confirmed that the thickness of the nanofiber yarn became thinner as the applied voltage of the electrospinning machine became higher, and on the other hand, there was no change in the shape of the nanofiber due to the change in silver concentration, so it was confirmed that there was no problem It was done.

その後、得られたポリアミド(ナイロン6)/銀ナノ繊維糸不織布に対して、銀成分の含有有無と、抗菌作用の有無とを確認するための実験を行った。   Thereafter, an experiment for confirming the presence / absence of the silver component and the presence / absence of antibacterial action was performed on the obtained polyamide (nylon 6) / silver nanofiber yarn nonwoven fabric.

図4A及び図4Bは、ポリアミド(ナイロン6)/銀ナノ繊維糸に対するTEM分析イメージを示す図であり、図5は、ポリアミド(ナイロン6)/銀ナノ繊維糸に対するEDS(Energy Dispersive Spectrosopy)分析イメージを示す図である。図4A及び図4Bでは、ポリアミド(ナイロン6)/銀ナノ繊維糸の表面及びその内部に粒径10〜20nmの銀粒子が浸透し分散されていることが確認でき、図5では、ナノ繊維糸に銀成分が含まれていることがスペクトルから確認できる。   4A and 4B are diagrams showing a TEM analysis image of polyamide (nylon 6) / silver nanofiber yarn, and FIG. 5 is an EDS (Energy Dispersive Spectroscopy) analysis image of polyamide (nylon 6) / silver nanofiber yarn. FIG. In FIG. 4A and FIG. 4B, it can be confirmed that silver particles having a particle diameter of 10 to 20 nm are permeated and dispersed on the surface of the polyamide (nylon 6) / silver nanofiber yarn and inside thereof. In FIG. It can be confirmed from the spectrum that the silver component is contained in.

本願発明者らは、黄色ブドウ球菌(Staphylococcus aureus)と肺炎桿菌(Klebsiella pneumonia)を用いた抗菌性実験を行った。黄色ブドウ球菌は陽性菌の一例であり、肺炎桿菌は陰性菌の一例である。   The inventors of the present application conducted antibacterial experiments using Staphylococcus aureus and Klebsiella pneumonia. S. aureus is an example of a positive bacterium, and K. pneumoniae is an example of a negative bacterium.

図6Aは、黄色ブドウ球菌を用いた抗菌性実験結果を示す棒グラフであり、図6Bは、肺炎桿菌を用いた抗菌性実験結果を示す棒グラフである。   FIG. 6A is a bar graph showing antibacterial experimental results using Staphylococcus aureus, and FIG. 6B is a bar graph showing antibacterial experimental results using Klebsiella pneumoniae.

図6A及び図6Bのグラフを参照すると、黄色ブドウ球菌及び肺炎桿菌を用いた抗菌性実験において、銀含有量が1000ppm以上であれば、90%以上の抗菌性(Growth inhibition rate)を示していることが確認できる。このとき、抗菌性[%]は(A−B/A)*100の式で算出される(ここで、Aは一般不織布で培養算出した生菌の数であり、Bは銀含有ナノ繊維不織布で培養算出した生菌の数である)。前記銀含有量1000ppmは、高分子樹脂の質量に対して、約0.3mass%に該当する値である。   Referring to the graphs of FIG. 6A and FIG. 6B, in an antibacterial experiment using Staphylococcus aureus and Klebsiella pneumoniae, if the silver content is 1000 ppm or more, 90% or more of the antibacterial activity (Growth inhibition rate) is shown. I can confirm that. At this time, antibacterial [%] is calculated by the formula (A−B / A) * 100 (where A is the number of viable bacteria cultured and calculated in a general nonwoven fabric, and B is a silver-containing nanofiber nonwoven fabric. Is the number of viable bacteria calculated in culture). The silver content of 1000 ppm is a value corresponding to about 0.3 mass% with respect to the mass of the polymer resin.

抗菌効果においては、抗菌性が約20〜30%であればあまり効果がないとされ、90%以上であれば効果が極めて良いとされる。よって、本発明の銀含有ナノ繊維不織布は、銀含有量が1000ppm以上であるとき優れた抗菌効果が得られることがわかる。   In the antibacterial effect, if the antibacterial property is about 20 to 30%, the effect is not so much, and if it is 90% or more, the effect is very good. Therefore, it can be seen that the silver-containing nanofiber nonwoven fabric of the present invention has an excellent antibacterial effect when the silver content is 1000 ppm or more.

図7A及び図7Bは、黄色ブドウ球菌と肺炎桿菌を用いたナノ繊維の抗菌ゾーン試験結果を示す図である。図7Aは、黄色ブドウ球菌を用いたナノ繊維の抗菌ゾーン試験結果を示す写真であり、図7Bは、肺炎桿菌を用いたナノ繊維の抗菌ゾーン試験結果を示す写真である。   7A and 7B are diagrams showing the antibacterial zone test results of nanofibers using Staphylococcus aureus and Klebsiella pneumoniae. FIG. 7A is a photograph showing the antibacterial zone test results of nanofibers using Staphylococcus aureus, and FIG. 7B is a photograph showing the antibacterial zone test results of nanofibers using Klebsiella pneumoniae.

図7A及び図7Bにおいて、‘N’表示の試料不織布は、一般ナノ繊維不織布(左側)であり、表示無しの試料不織布(右側)は、約1500ppmの銀を含有した銀含有ナノ繊維不織布である。   In FIG. 7A and FIG. 7B, the sample nonwoven fabric labeled “N” is a general nanofiber nonwoven fabric (left side), and the sample nonwoven fabric (right side) without labeling is a silver-containing nanofiber nonwoven fabric containing about 1500 ppm of silver. .

図7A及び図7Bから、銀含有ナノ繊維不織布(右側)にはその周辺にも菌が生息及び増殖できないことが確認される。   From FIG. 7A and FIG. 7B, it is confirmed that the silver-containing nanofiber nonwoven fabric (right side) cannot inhabit and multiply in the vicinity thereof.

図8は、本実施形態によってマイクロ繊維層20上にナノ繊維が電界紡糸されてナノ繊維層22が形成されたことを示すSEMイメージ写真であり、図9A〜図9Cは、内側のマイクロ繊維層20上にナノ繊維層22と外側のマイクロ繊維層20が順に積層形成されたことを示す部分断面写真である。   FIG. 8 is an SEM image showing that nanofibers 22 are formed by electrospinning nanofibers on the microfiber layer 20 according to the present embodiment, and FIGS. 9A to 9C are inner microfiber layers. 2 is a partial cross-sectional photograph showing that a nanofiber layer 22 and an outer microfiber layer 20 are sequentially laminated on 20.

本願発明者らは、従来のマイクロフィルターと図2の円筒状複合繊維フィルター200を用いて粒径によるろ過率を実験で求め、その結果を図10A及び図10Bに示す。   The inventors of the present application determined the filtration rate based on the particle diameter by experiments using the conventional microfilter and the cylindrical composite fiber filter 200 of FIG. 2, and the results are shown in FIGS. 10A and 10B.

図10Aのテーブル及び図10Bのグラフにおいて、「デジンマイクロフィルター(Daejin micro filter)」は従来のマイクロフィルターであり、「デジンナノフィルター(Daejin nano filter)」は図2の円筒状複合繊維フィルター200のサンプルである。両方を比較すると、円筒状複合繊維フィルター200のサンプルである「デジンナノフィルター(Daejin nano filter)」は0.1μmの粒子をほとんど99%以上がろ過するのに対し、従来のマイクロフィルターである「デジンマイクロフィルター(Daejin micro filter)」は3μm以上の粒子であっても約80%しかろ過できないことが確認される。   In the table of FIG. 10A and the graph of FIG. 10B, “Dejein microfilter” is a conventional microfilter, and “Dejin nanofilter” is the cylindrical composite fiber filter 200 of FIG. It is a sample. Comparing both, the sample of the cylindrical composite fiber filter 200 “Daejin nanofilter” is a conventional microfilter, whereas almost 99% or more of 0.1 μm particles are filtered. It is confirmed that only about 80% of the “Dejin microfilter” can be filtered even for particles of 3 μm or more.

このような比較から、本実施形態に係る円筒状複合繊維フィルター200の優れたろ過効率が証明される。   From such a comparison, the excellent filtration efficiency of the cylindrical composite fiber filter 200 according to the present embodiment is proved.

また、本願発明者らは、従来のマイクロフィルターの流量(流速)による圧力損失と、図2の円筒状複合繊維フィルター200の流量(流速)による圧力損失とを実験で求め、その結果を図11A及び図11Bに示す。前記圧力損失は、フィルターに入る流量の圧力とフィルターから吐き出される流量の圧力間の差を意味するものであり、その数値が低いほど良い。   Further, the inventors of the present application experimentally determined the pressure loss due to the flow rate (flow velocity) of the conventional microfilter and the pressure loss due to the flow rate (flow velocity) of the cylindrical composite fiber filter 200 of FIG. 2, and the results are shown in FIG. 11A. And shown in FIG. 11B. The pressure loss means the difference between the pressure of the flow rate entering the filter and the pressure of the flow rate discharged from the filter, and the lower the value, the better.

図11A及び図11Bを参照すると、従来のマイクロフィルター「デジンマイクロフィルター(Daejin micro filter)」の流量(流速)による圧力損失と、本実施形態に係る複合繊維フィルター「デジンナノフィルター(Daejin nano filter)」の流量(流速)による圧力損失とは、流量(流速)12〜18L/minでは大差がない。特に、一般水道水における流量(流速)が12L/min程度となるが、ここで、従来のマイクロフィルター「デジンマイクロフィルター(Daejin micro filter)」の圧力損失は0.015であり、本発明の複合繊維フィルター「デジンナノフィルター(Daejin nano filter)」の圧力損失(差圧)は0.021である。   Referring to FIGS. 11A and 11B, the pressure loss due to the flow rate (flow velocity) of the conventional microfilter “Dejin microfilter” and the composite fiber filter “Daejin nanofilter” according to the present embodiment. The pressure loss due to the flow rate (flow velocity) is not significantly different at a flow rate (flow velocity) of 12 to 18 L / min. In particular, the flow rate (flow velocity) in general tap water is about 12 L / min. Here, the pressure loss of the conventional microfilter “Daejin microfilter” is 0.015, and the composite of the present invention The pressure loss (differential pressure) of the fiber filter “Daejin nano filter” is 0.021.

したがって、本実施形態に係る複合繊維フィルターは、一般水道水の場合、従来のマイクロフィルターと類似した差圧を有するので、性能が良好である。一般水道水における逆浸透圧方式のフィルターの差圧が数十L/minであることを考慮すると、本実施形態に係る複合繊維フィルターの差圧性能は大幅に改善されたことがわかる。   Therefore, in the case of general tap water, the composite fiber filter according to the present embodiment has a differential pressure similar to that of a conventional microfilter, and thus has good performance. Considering that the differential pressure of the reverse osmotic pressure filter in general tap water is several tens of L / min, it can be seen that the differential pressure performance of the composite fiber filter according to the present embodiment is greatly improved.

本実施形態に係る円筒状複合繊維フィルターは、円筒面を長さ方向に切開して展開すると、平面状の複合繊維フィルターが得られる。   When the cylindrical composite fiber filter according to the present embodiment is opened by cutting the cylindrical surface in the length direction, a planar composite fiber filter is obtained.

また、本実施形態に係る複合繊維フィルターは、浄水用はもとより空気清浄用及びその他濾材用に直接的に或いは応用して適用することができ、これは本技術分野で通常の知識を有する者にとっては明らかなことである。   In addition, the composite fiber filter according to the present embodiment can be applied directly or applied to not only for water purification but also for air purification and other filter media, which is for those who have ordinary knowledge in this technical field. Is obvious.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this example. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Understood.

例えば、本発明では、マイクロ繊維不織布とナノ繊維の複合化方法として、上述した連続工程により複合繊維フィルターを製造する方法以外の他の例を挙げると、平面状ナノ繊維不織布を別途の工程で大量生産し、図1の成形棒2上に形成されたマイクロ繊維層20上に一定の厚さに巻き取った後、さらに図1のマイクロ繊維溶融紡糸機を用いてマイクロ繊維層を交互に積層形成する方法があり、この方法で複合繊維フィルターを製造することもできる。   For example, in the present invention, as a method for combining a microfiber nonwoven fabric and nanofibers, other examples than the method for producing a composite fiber filter by the above-described continuous process will be described. After being produced and wound to a certain thickness on the microfiber layer 20 formed on the forming rod 2 of FIG. 1, the microfiber layers are alternately laminated using the microfiber melt spinning machine of FIG. A composite fiber filter can also be manufactured by this method.

このとき、成形棒2は必ずしも導電性材質であるとは限らず、また、前記別途に生産する平面状ナノ繊維不織布を構成するナノ繊維は、本発明による高分子樹脂の質量に対して、0.1mass%〜1.0mass%の自体分散剤含有銀ナノ粒子を混合してなるものであり、さらに、前記平面状ナノ繊維不織布は、気孔率30〜70%、純粋密度0.1〜0.22g/cmであることが好ましい。 At this time, the forming rod 2 is not necessarily made of a conductive material, and the nanofibers constituting the separately produced planar nanofiber nonwoven fabric are 0% relative to the mass of the polymer resin according to the present invention. 0.1 mass% to 1.0 mass% of the self-dispersing agent-containing silver nanoparticles are mixed, and the planar nanofiber nonwoven fabric has a porosity of 30 to 70% and a pure density of 0.1 to 0.00. It is preferably 22 g / cm 3 .

また、本発明のまた他の実施例によれば、スパンボンド不織布(spunbond)のようなマイクロ繊維不織布上に、電界紡糸方式で本発明のナノ繊維不織布を形成して積層(ラミネーション)した後、これらを一定の厚さになるまで円筒状に巻いてナノ複合浄水フィルターを製造することもできる。このとき、前記ナノ繊維不織布を構成するナノ繊維は、高分子樹脂の質量に対して、0.1mass%〜1.0mass%の自体分散剤含有銀ナノ粒子を混合した繊維であり、前記ナノ繊維不織布の気孔率を30〜70%とし、純粋密度を0.1〜0.22g/cmとする。 In addition, according to another embodiment of the present invention, after the nanofiber nonwoven fabric of the present invention is formed by electrospinning on a microfiber nonwoven fabric such as a spunbond, These can be rolled into a cylindrical shape to a certain thickness to produce a nano composite water purification filter. At this time, the nanofiber constituting the nanofiber nonwoven fabric is a fiber in which 0.1 mass% to 1.0 mass% of a self-dispersing agent-containing silver nanoparticle is mixed with respect to the mass of the polymer resin, and the nanofiber The non-woven fabric has a porosity of 30 to 70% and a pure density of 0.1 to 0.22 g / cm 3 .

さらに、本発明では、平面状ナノ繊維不織布と平面状マイクロ繊維不織布とを交互に重ねて多層化した後、折り曲げて蛇腹状にした円筒状のナノ複合繊維フィルターを製造することができる。このとき、ナノ繊維不織布を構成するナノ繊維は、高分子樹脂の質量に対して、0.1mass%〜1.0mass%の自体分散剤含有銀ナノ粒子を混合したナノ繊維糸であり、前記ナノ繊維不織布の気孔率を30〜70%とし、純粋密度を0.1〜0.22g/cmとする。 Furthermore, in the present invention, it is possible to produce a cylindrical nanocomposite fiber filter in which planar nanofiber nonwoven fabrics and planar microfiber nonwoven fabrics are alternately stacked to be multilayered and then bent into a bellows shape. At this time, the nanofiber constituting the nanofiber nonwoven fabric is a nanofiber yarn in which 0.1 mass% to 1.0 mass% of the self-dispersing agent-containing silver nanoparticles are mixed with respect to the mass of the polymer resin. The porosity of the fiber nonwoven fabric is 30 to 70%, and the pure density is 0.1 to 0.22 g / cm 3 .

本発明の一実施形態に係る複合繊維フィルターの製造装置の構成図である。It is a block diagram of the manufacturing apparatus of the composite fiber filter which concerns on one Embodiment of this invention. 本発明の一実施形態に係る円筒状複合繊維フィルターの斜視図である。It is a perspective view of the cylindrical composite fiber filter which concerns on one Embodiment of this invention. ナノ繊維層が多層化された一例を示す円筒状複合繊維フィルターの断面図である。It is sectional drawing of the cylindrical composite fiber filter which shows an example by which the nanofiber layer was multilayered. ポリアミド(ナイロン6)/銀ナノ繊維糸に対するTEM分析イメージを示す図である。It is a figure which shows the TEM analysis image with respect to a polyamide (nylon 6) / silver nanofiber yarn. ポリアミド(ナイロン6)/銀ナノ繊維糸に対するTEM分析イメージを示す図である。It is a figure which shows the TEM analysis image with respect to a polyamide (nylon 6) / silver nanofiber yarn. ポリアミド(ナイロン6)/銀ナノ繊維糸に対するEDS分析イメージを示す図である。It is a figure which shows the EDS analysis image with respect to a polyamide (nylon 6) / silver nanofiber yarn. 黄色ブドウ球菌及び肺炎桿菌を用いた抗菌性実験結果を示す棒グラフである。It is a bar graph which shows the antibacterial experiment result using Staphylococcus aureus and Klebsiella pneumoniae. 黄色ブドウ球菌及び肺炎桿菌を用いた抗菌性実験結果を示す棒グラフである。It is a bar graph which shows the antibacterial experiment result using Staphylococcus aureus and Klebsiella pneumoniae. 黄色ブドウ球菌と肺炎桿菌を用いたナノ繊維の抗菌ゾーン試験結果を示す図である。It is a figure which shows the antimicrobial zone test result of the nanofiber using Staphylococcus aureus and Klebsiella pneumoniae. 黄色ブドウ球菌と肺炎桿菌を用いたナノ繊維の抗菌ゾーン試験結果を示す図である。It is a figure which shows the antimicrobial zone test result of the nanofiber using Staphylococcus aureus and Klebsiella pneumoniae. 内側のマイクロ繊維層上にナノ繊維層が積層形成されたことを示すSEMイメージ写真である。It is a SEM image photograph which shows that the nanofiber layer was laminated | stacked and formed on the inner microfiber layer. 内側のマイクロ繊維層上にナノ繊維層と外側のマイクロ繊維層が順に積層形成されたことを示すSEMイメージ部分断面写真である。It is a SEM image partial cross-section photograph which shows that the nanofiber layer and the outer microfiber layer were laminated in order on the inner microfiber layer. 内側のマイクロ繊維層上にナノ繊維層と外側のマイクロ繊維層が順に積層形成されたことを示すSEMイメージ部分断面写真である。It is a SEM image partial cross-section photograph which shows that the nanofiber layer and the outer microfiber layer were laminated in order on the inner microfiber layer. 内側のマイクロ繊維層上にナノ繊維層と外側のマイクロ繊維層が順に積層形成されたことを示すSEMイメージ部分断面写真である。It is a SEM image partial cross-section photograph which shows that the nanofiber layer and the outer microfiber layer were laminated in order on the inner microfiber layer. 従来のフィルターの粒径によるろ過率と同実施形態に係る複合繊維フィルターの粒径によるろ過率とを実験で求め、その結果を示す図である。It is a figure which calculates | requires experimentally the filtration rate by the particle size of the conventional filter, and the filtration rate by the particle size of the composite fiber filter which concerns on the same embodiment, and shows the result. 従来のフィルターの粒径によるろ過率と同実施形態に係る複合繊維フィルターの粒径によるろ過率とを実験で求め、その結果を示す図である。It is a figure which calculates | requires experimentally the filtration rate by the particle size of the conventional filter, and the filtration rate by the particle size of the composite fiber filter which concerns on the same embodiment, and shows the result. 従来のフィルターの流量(流速)による圧力損失と同実施形態に係る複合繊維フィルターの流量(流速)による圧力損失とを実験で求め、その結果を示す図である。It is a figure which shows the pressure loss by the flow volume (flow velocity) of the conventional filter, and the pressure loss by the flow volume (flow velocity) of the composite fiber filter which concerns on the same embodiment by experiment, and shows the result. 従来のフィルターの流量(流速)による圧力損失と同実施形態に係る複合繊維フィルターの流量(流速)による圧力損失とを実験で求め、その結果を示す図である。It is a figure which shows the pressure loss by the flow volume (flow velocity) of the conventional filter, and the pressure loss by the flow volume (flow velocity) of the composite fiber filter which concerns on the same embodiment by experiment, and shows the result.

Claims (19)

複合繊維フィルターの製造方法において、
一端が接地されて回転駆動される導電性材質の成形棒上に、溶融紡糸機で溶融紡糸してマイクロ繊維糸からなるマイクロ繊維層を形成し、
前記マイクロ繊維層上に、電界紡糸可能な所定の誘電率を有する高分子樹脂溶液を電界紡糸機で電界紡糸して、ナノ繊維糸からなるナノ繊維層を積層形成する
ことを特徴とする、ナノ繊維を用いた複合繊維フィルターの製造方法。
In the method for producing a composite fiber filter,
A microfiber layer composed of microfiber yarns is formed by melt spinning with a melt spinning machine on a forming rod of a conductive material that is grounded at one end and driven to rotate,
A nanofiber layer composed of nanofiber yarns is laminated on the microfiber layer by electrospinning a polymer resin solution having a predetermined dielectric constant that can be electrospun with an electrospinning machine. A method for producing a composite fiber filter using fibers.
前記溶融紡糸機及び電界紡糸機を用いて前記マイクロ繊維層と前記ナノ繊維層とを交互に連続的に積層形成して、多層化する
ことを特徴とする、請求項1に記載のナノ繊維を用いた複合繊維フィルターの製造方法。
2. The nanofiber according to claim 1, wherein the microfiber layer and the nanofiber layer are alternately and continuously laminated using the melt spinning machine and the electrospinning machine to form a multilayer. Manufacturing method of used composite fiber filter.
前記高分子樹脂溶液には、
前記高分子樹脂の質量に対して、0.1mass%〜1.0mass%の分散剤含有銀ナノ粒子が混合される
ことを特徴とする、請求項1に記載のナノ繊維を用いた複合繊維フィルターの製造方法。
In the polymer resin solution,
The composite fiber filter using nanofiber according to claim 1, wherein 0.1 mass% to 1.0 mass% of dispersant-containing silver nanoparticles are mixed with respect to the mass of the polymer resin. Manufacturing method.
前記ナノ繊維層の気孔率を、30〜70%とし、
前記ナノ繊維層の純粋密度を、0.1〜0.22g/cmとする
ことを特徴とする、請求項1または3に記載のナノ繊維を用いた複合繊維フィルターの製造方法。
The porosity of the nanofiber layer is 30 to 70%,
The pure density of the nanofiber layer, characterized in that the 0.1~0.22g / cm 3, method for manufacturing a composite fiber filter using nanofibers according to claim 1 or 3.
前記ナノ繊維糸に含まれる高分子樹脂は、
ポリアクリロニトリル樹脂又はポリアミド樹脂のいずれか一方からなる
ことを特徴とする、請求項1または3に記載のナノ繊維を用いた複合繊維フィルターの製造方法。
The polymer resin contained in the nanofiber yarn is
The method for producing a composite fiber filter using nanofibers according to claim 1 or 3, wherein the method comprises any one of a polyacrylonitrile resin and a polyamide resin.
前記ナノ繊維糸に含まれる高分子樹脂は、
ポリビニルアルコール、ポリスチレン、ポリカプロラクトン、ポリエチレンテレフタレート、ポリフッ化ビニリデン、ナイロン、ポリ酢酸ビニル、ポリメタクリル酸メチル、ポリアクリロニトリル、ポリウレタン、ポリブチレンテレフタレート、ポリビニルブチラール、ポリ塩化ビニル、ポリエチレンイミン、ポリスルホン及びニトロセルロースからなる群より選択されたいずれか1種からなる
ことを特徴とする、請求項1または3に記載のナノ繊維を用いた複合繊維フィルターの製造方法。
The polymer resin contained in the nanofiber yarn is
Polyvinyl alcohol, polystyrene, polycaprolactone, polyethylene terephthalate, polyvinylidene fluoride, nylon, polyvinyl acetate, polymethyl methacrylate, polyacrylonitrile, polyurethane, polybutylene terephthalate, polyvinyl butyral, polyvinyl chloride, polyethyleneimine, polysulfone and nitrocellulose 4. The method for producing a composite fiber filter using nanofibers according to claim 1, wherein the composite fiber filter comprises any one selected from the group consisting of:
前記溶融紡糸されるマイクロ繊維糸は、ポリプロピレン成分を含み、
前記ポリプロピレンの質量に対して、0.1mass%〜1.0mass%の自体分散剤含有銀ナノ粒子が混合される
ことを特徴とする、請求項1に記載のナノ繊維を用いた複合繊維フィルターの製造方法。
The melt-spun microfiber yarn includes a polypropylene component,
The composite fiber filter using nanofibers according to claim 1, wherein 0.1 mass% to 1.0 mass% of the self-dispersing agent-containing silver nanoparticles are mixed with respect to the mass of the polypropylene. Production method.
前記成形棒は、30〜50rpmで回転駆動する
ことを特徴とする、請求項1に記載のナノ繊維を用いた複合繊維フィルターの製造方法。
The method for producing a composite fiber filter using nanofiber according to claim 1, wherein the forming rod is driven to rotate at 30 to 50 rpm.
前記溶融紡糸機の溶融紡糸条件において、
紡糸ノズル直径は0.1〜0.3mmであり、
紡糸距離は80〜230mmである
ことを特徴とする、請求項1に記載のナノ繊維を用いた複合繊維フィルターの製造方法。
In the melt spinning conditions of the melt spinning machine,
The spinning nozzle diameter is 0.1 to 0.3 mm,
The method for producing a composite fiber filter using nanofibers according to claim 1, wherein the spinning distance is 80 to 230 mm.
前記電界紡糸機の電界紡糸条件のパラメーターには、
高分子樹脂溶液における高分子樹脂濃度、高分子樹脂溶液の紡糸速度、印加電圧、紡糸距離が含まれる
ことを特徴とする、請求項1に記載のナノ繊維を用いた複合繊維フィルターの製造方法。
For the parameters of the electrospinning conditions of the electrospinning machine,
The method for producing a composite fiber filter using nanofibers according to claim 1, wherein the polymer resin concentration in the polymer resin solution, the spinning speed of the polymer resin solution, the applied voltage, and the spinning distance are included.
前記電界紡糸機の電界紡糸条件のパラメーターには、銀濃度がさらに含まれる
ことを特徴とする、請求項10に記載のナノ繊維を用いた複合繊維フィルターの製造方法。
The method for producing a composite fiber filter using nanofiber according to claim 10, wherein the parameter of the electrospinning condition of the electrospinning machine further includes silver concentration.
請求項1または3に記載の製造方法によって製造されることを特徴とする、複合繊維フィルター。   A composite fiber filter manufactured by the manufacturing method according to claim 1. 複合繊維フィルターの製造方法において、
一端が接地されて回転駆動される導電性材質の成形棒上に、第1溶融紡糸機で溶融紡糸して第1マイクロ繊維糸からなる第1マイクロ繊維層を形成し、
前記第1マイクロ繊維層上に、電界紡糸可能な一定の誘電率を有する高分子樹脂溶液を電界紡糸機で電界紡糸して、ナノ繊維糸からなるナノ繊維層を積層形成し、
前記ナノ繊維層上に、第2溶融紡糸機で溶融紡糸して第1マイクロ繊維糸とは異なる直径を有する第2マイクロ繊維糸からなる第2マイクロ繊維層を形成し、
前記各繊維層は、前記成形棒上に連続的に積層形成される
ことを特徴とする、ナノ繊維を用いた複合繊維フィルターの製造方法。
In the method for producing a composite fiber filter,
Forming a first microfiber layer composed of the first microfiber yarn by melt spinning with a first melt spinning machine on a forming rod made of a conductive material grounded at one end and driven to rotate;
On the first microfiber layer, a polymer resin solution having a constant dielectric constant capable of electrospinning is electrospun with an electrospinning machine, and a nanofiber layer composed of nanofiber yarns is laminated and formed.
On the nanofiber layer, a second microfiber layer composed of a second microfiber yarn having a diameter different from that of the first microfiber yarn is formed by melt spinning with a second melt spinning machine,
Each of the fiber layers is continuously laminated on the forming rod, and the method for producing a composite fiber filter using nanofibers.
複合繊維フィルターの製造装置において、
一端が接地された導電性材質の成形棒を、駆動部によって回転駆動可能に構成し、
前記成形棒近傍に一つ以上の溶融紡糸機と電界紡糸機を設置して、
前記溶融紡糸機の溶融紡糸と電界紡糸機の電界紡糸とにより、前記成形棒上に、マイクロ繊維糸からなるマイクロ繊維層とナノ繊維糸からなるナノ繊維層とを交互に連続的に積層形成する
ことを特徴とする、ナノ繊維を用いた複合繊維フィルターの製造装置。
In production equipment for composite fiber filters,
A conductive rod with one end grounded is configured to be rotationally driven by the drive unit,
Install one or more melt spinning machines and electrospinning machines in the vicinity of the forming rod,
By the melt spinning of the melt spinning machine and the electrospinning of the electrospinning machine, microfiber layers made of microfiber yarns and nanofiber layers made of nanofiber yarns are alternately and continuously formed on the forming rod. An apparatus for producing a composite fiber filter using nanofibers.
第1溶融紡糸機及び電界紡糸機のそれぞれの対応位置には、
前記成形棒と圧着回転可能な冷間圧延ロールがそれぞれ設けられる
ことを特徴とする、請求項14に記載のナノ繊維を用いた複合繊維フィルターの製造装置。
In the corresponding positions of the first melt spinning machine and the electrospinning machine,
15. The apparatus for producing a composite fiber filter using nanofibers according to claim 14, wherein the forming rod and a cold rolling roll capable of being crimped and rotated are provided.
前記交互に連続的に積層形成された円筒状繊維層を所定の有効長さに切断する切断機をさらに備える
ことを特徴とする、請求項14または15に記載のナノ繊維を用いた複合繊維フィルターの製造装置。
[Claim 16] The composite fiber filter using nanofiber according to claim 14 or 15, further comprising a cutting machine that cuts the cylindrical fiber layers alternately and continuously laminated to a predetermined effective length. Manufacturing equipment.
複合繊維フィルターの製造方法において、
回転駆動される成形棒上に、第1溶融紡糸機で溶融紡糸して第1マイクロ繊維糸からなる第1マイクロ繊維層を形成し、
前記第1マイクロ繊維層上に、高分子樹脂の質量に対して、0.1mass%〜1.0mass%の自体分散剤含有銀ナノ粒子を混合したナノ繊維糸からなる平面状ナノ繊維不織布を一定の厚さに巻いたナノ繊維層を積層形成し、
前記ナノ繊維層上に、第2溶融紡糸機で溶融紡糸して第1マイクロ繊維糸とは異なる直径を有する第2マイクロ繊維糸からなる第2マイクロ繊維層を積層形成し、
前記各繊維層は、前記成形棒上に連続的に積層形成される
ことを特徴とする、ナノ繊維を用いた複合繊維フィルターの製造方法。
In the method for producing a composite fiber filter,
Forming a first microfiber layer composed of a first microfiber yarn on a rotationally driven forming rod by melt spinning with a first melt spinning machine;
On the first microfiber layer, a planar nanofiber nonwoven fabric composed of nanofiber yarns mixed with 0.1 mass% to 1.0 mass% of a self-dispersing agent-containing silver nanoparticle with respect to the mass of the polymer resin is constant. Layered nanofiber layers wound to a thickness of
On the nanofiber layer, a second microfiber layer made of a second microfiber yarn having a diameter different from that of the first microfiber yarn by laminating with a second melt spinning machine is laminated and formed.
Each of the fiber layers is continuously laminated on the forming rod, and the method for producing a composite fiber filter using nanofibers.
マイクロ繊維不織布上に電界紡糸方式によりナノ繊維不織布を形成して積層した後、前記マイクロ繊維不織布及び前記ナノ繊維不織布を所定の厚さになるまで円筒状に巻いてナノ複合浄水フィルターを製造し、
前記ナノ繊維不織布を構成するナノ繊維は、高分子樹脂の質量に対して、0.1mass%〜1.0mass%の自体分散剤含有銀ナノ粒子を混合した繊維であり、
前記ナノ繊維不織布の気孔率を30〜70%とし、前記ナノ繊維不織布の純粋密度を0.1〜0.22g/cmとする
ことを特徴とする、ナノ繊維を用いた複合繊維フィルターの製造方法。
After forming a nanofiber nonwoven fabric by electrospinning on a microfiber nonwoven fabric and laminating it, the nanofiber nonwoven fabric and the nanofiber nonwoven fabric are wound into a cylindrical shape until a predetermined thickness is produced to produce a nano composite water purification filter,
The nanofibers constituting the nanofiber nonwoven fabric are fibers in which 0.1 mass% to 1.0 mass% of the self-dispersing agent-containing silver nanoparticles are mixed with respect to the mass of the polymer resin,
The nanofiber nonwoven fabric has a porosity of 30 to 70%, and the nanofiber nonwoven fabric has a pure density of 0.1 to 0.22 g / cm 3 , thereby producing a composite fiber filter using nanofibers. Method.
高分子樹脂の質量に対して、0.1mass%〜1.0mass%の自体分散剤含有銀ナノ粒子を混合したナノ繊維からなり、
気孔率が30〜70%であり、純粋密度が0.1〜0.22g/cmである平面状ナノ繊維不織布を、平面状マイクロ繊維不織布と交互に重ねて多層化した後、折り曲げて円筒状のナノ複合繊維フィルターを製造する
ことを特徴とする、ナノ繊維を用いた複合繊維フィルターの製造方法。
It consists of nanofibers mixed with 0.1 mass% to 1.0 mass% of self-dispersing agent-containing silver nanoparticles based on the mass of the polymer resin
A planar nanofiber nonwoven fabric having a porosity of 30 to 70% and a pure density of 0.1 to 0.22 g / cm 3 is layered alternately with a planar microfiber nonwoven fabric, and then folded into a cylinder. A method for producing a composite fiber filter using nanofibers, characterized by producing a nanocomposite fiber filter in the form of a tube.
JP2007216255A 2006-10-12 2007-08-22 Conjugate fiber filter using nano material, production equipment of conjugate fiber filter using nano material and production method of conjugate fiber filter using nano material Pending JP2008095266A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060099493A KR100714219B1 (en) 2006-05-22 2006-10-12 Composite fibrous filter using nan0-materials, and manufacturing method and apparatus thereof

Publications (1)

Publication Number Publication Date
JP2008095266A true JP2008095266A (en) 2008-04-24

Family

ID=39378403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007216255A Pending JP2008095266A (en) 2006-10-12 2007-08-22 Conjugate fiber filter using nano material, production equipment of conjugate fiber filter using nano material and production method of conjugate fiber filter using nano material

Country Status (2)

Country Link
US (1) US20080217807A1 (en)
JP (1) JP2008095266A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256863A (en) * 2008-03-28 2009-11-05 Gunze Ltd Composite fabric
JP2010513746A (en) * 2006-12-20 2010-04-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for electroblowing multilayer sheets
JP2010229563A (en) * 2009-03-25 2010-10-14 Teijin Ltd Method for producing particle-polymer fibrous composite
JP2012517898A (en) * 2009-02-17 2012-08-09 フィルトロナ・ポーラス・テクノロジーズ・コーポレーション Multilayer fluid permeable fiber structure comprising nanofibers and method for producing the structure
JP2012223674A (en) * 2011-04-15 2012-11-15 Shinshu Univ Filter and method for manufacturing filter
JP2013511627A (en) * 2009-11-19 2013-04-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Filtration media for high humidity environments
JP2013520584A (en) * 2010-10-14 2013-06-06 ゼウス インダストリアル プロダクツ インコーポレイテッド Antibacterial substrate
JP2013521106A (en) * 2010-02-26 2013-06-10 クラーコア インコーポレーテッド Fine fiber filter medium for fine fibers
JP2013204182A (en) * 2012-03-28 2013-10-07 Kuraray Co Ltd Antibacterial nanofiber sheet, method for manufacturing the same, and filter
US8679218B2 (en) 2010-04-27 2014-03-25 Hollingsworth & Vose Company Filter media with a multi-layer structure
JP2014125699A (en) * 2012-12-26 2014-07-07 Kuraray Co Ltd Antibacterial nanofiber sheet, method for manufacturing the same, and filter
JP2014144579A (en) * 2013-01-29 2014-08-14 Tamaru Seisakusho:Kk Thin film deodorizing shielding member for housing material formed by laminating nanofiber, and production apparatus of the same
KR101479205B1 (en) * 2014-06-30 2015-01-05 경북대학교 산학협력단 Method for manufacturing nano-microfiber mat layered nanofiber and microfiber orthogonally and nano-microfiber mat manufactured by the same
US8950587B2 (en) 2009-04-03 2015-02-10 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US8986432B2 (en) 2007-11-09 2015-03-24 Hollingsworth & Vose Company Meltblown filter medium, related applications and uses
US9694306B2 (en) 2013-05-24 2017-07-04 Hollingsworth & Vose Company Filter media including polymer compositions and blends
JP2018035478A (en) * 2016-09-02 2018-03-08 国立大学法人信州大学 Composite nanofiber, manufacturing method of the same, and mask
US10155186B2 (en) 2010-12-17 2018-12-18 Hollingsworth & Vose Company Fine fiber filter media and processes
US10343095B2 (en) 2014-12-19 2019-07-09 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
JP2019178451A (en) * 2018-03-30 2019-10-17 常陽化成株式会社 Functional flocculent resin fiber and method for producing functional flocculent resin fiber
US10653986B2 (en) 2010-12-17 2020-05-19 Hollingsworth & Vose Company Fine fiber filter media and processes
JP2020537062A (en) * 2017-10-20 2020-12-17 上海工程技術大学Shanghai University Of Engineering Science Cyclic electrostatic spinning mechanism and electrostatic spinning equipment
WO2021070257A1 (en) * 2019-10-08 2021-04-15 進和テック株式会社 Dust collection filter cloth and bag filter
CN114836863A (en) * 2022-04-19 2022-08-02 苏州大学 Preparation method of antibacterial conductive polypropylene yarn
WO2023224459A1 (en) * 2022-05-14 2023-11-23 Виталий ГОНЧАРОВ Method for producing an antimicrobial non-woven filtering material metallized with silver

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090042029A1 (en) * 2007-04-13 2009-02-12 Drexel University Polyamide nanofibers and methods thereof
US9750829B2 (en) 2009-03-19 2017-09-05 Emd Millipore Corporation Removal of microorganisms from fluid samples using nanofiber filtration media
KR101127991B1 (en) * 2009-05-20 2012-03-29 주식회사 아모그린텍 Ag ply yarn, functional fabric using the same and manufacturing method thereof
KR101743153B1 (en) * 2010-01-13 2017-06-05 삼성전자주식회사 Nanofiber composite, manufacturing method thereof and FET transistor using the same
ITRE20100021A1 (en) * 2010-03-22 2011-09-23 Ufi Innovation Ct Srl FILTER SECTOR
US9554888B2 (en) * 2010-04-20 2017-01-31 University Of Utah Research Foundation Phase separation sprayed scaffold
CN102958579A (en) 2010-06-30 2013-03-06 阿莫绿色技术有限公司 Filter media for a liquid filter using an electrospun nanofiber web, method for manufacturing same, and liquid filter using same
WO2012021308A2 (en) 2010-08-10 2012-02-16 Millipore Corporation Method for retrovirus removal
US8889572B2 (en) 2010-09-29 2014-11-18 Milliken & Company Gradient nanofiber non-woven
US8795561B2 (en) 2010-09-29 2014-08-05 Milliken & Company Process of forming a nanofiber non-woven containing particles
US8535590B2 (en) * 2011-01-12 2013-09-17 Cook Medical Technologies Llc Spray system and method of making phase separated polymer membrane structures
US8641967B2 (en) 2011-02-23 2014-02-04 Applied Silver, Inc. Anti-microbial device
CN105413480B (en) 2011-04-01 2019-03-29 Emd密理博公司 Composite structure containing nanofiber
WO2012147105A2 (en) * 2011-04-25 2012-11-01 Sp I-Cannano Reserach Private Limited Nano carbon reinforced composite and a method of manufacturing the same
KR101240327B1 (en) * 2011-04-25 2013-03-07 한국에너지기술연구원 Fabrication method of tubes composed of nanowire-microfiber hybrid structure and the tubular structure thereof
WO2013066022A1 (en) * 2011-10-31 2013-05-10 주식회사 아모텍 Laminated nanofiber web and method for producing same, and nanofiber composites using same
US9352267B2 (en) 2012-06-20 2016-05-31 Hollingsworth & Vose Company Absorbent and/or adsorptive filter media
US20150360157A1 (en) * 2013-02-18 2015-12-17 Amogreentech Co., Ltd. Filter medium, manufacturing method therefor, and filter equipment using same
CN103305934B (en) * 2013-07-10 2015-12-02 厦门大学 A kind of polymer melting electrostatic spinning apparatus
US20150014240A1 (en) * 2013-07-12 2015-01-15 Kx Technologies Llc Filter media for gravity filtration applications
US11618696B2 (en) 2013-08-15 2023-04-04 Applied Silver, Inc. Antimicrobial batch dilution system
US10640403B2 (en) 2013-08-15 2020-05-05 Applied Silver, Inc. Antimicrobial batch dilution system
US20150157969A1 (en) * 2013-12-05 2015-06-11 Hollingsworth & Vose Company Fine glass filter media
US10000881B2 (en) 2013-12-06 2018-06-19 Applied Silver, Inc. Method for antimicrobial fabric application
CN104689641B (en) * 2013-12-09 2017-04-12 纳米及先进材料研发院有限公司 Interlaced filtration barrier
WO2016141173A1 (en) * 2015-03-05 2016-09-09 Liquidity Corporation Portable pitcher for filtering and dispensing drinking water
SG11201706726TA (en) 2015-04-17 2017-09-28 Emd Millipore Corp Method of purifying a biological materia of interest in a sample using nanofiber ultrafiltration membranes operated in tangential flow filtration mode
CN104975375B (en) * 2015-04-23 2017-04-12 同济大学 Polymer micro-nano-fiber preparation method
US20170050870A1 (en) 2015-08-21 2017-02-23 Applied Silver, Inc. Systems And Processes For Treating Textiles With An Antimicrobial Agent
CN105332131A (en) * 2015-12-04 2016-02-17 江南大学 Method for preparing acetic acid nano fiber/polyester filament composite yarn
CN105536355B (en) * 2016-01-08 2018-02-02 南京水蓝机电科技有限公司 Melt-blown filter receives technique, melt-blown filter receiving device and melt-blown filter manufacturing machine
CZ307996B6 (en) * 2016-01-27 2019-10-09 Univerzita Palackého v Olomouci Polymer substrate with immobilized silver nanoparticles and preparing it
CN105624927B (en) * 2016-03-10 2018-04-13 博裕纤维科技(苏州)有限公司 The industrialized preparing process of sack cleaner base material nanofiber composite filtering material
CA3092627A1 (en) 2017-03-01 2018-09-07 Applied Silver, Inc. Systems and processes for treating textiles with an antimicrobial agent
DE102017006462A1 (en) * 2017-07-07 2019-01-10 Mann+Hummel Gmbh Filter medium and manufacturing process, filter element and use of the filter element
CN108842242B (en) * 2018-06-22 2021-03-23 武汉纺织大学 Nanofiber yarn and preparation method thereof
CN109109422B (en) * 2018-07-20 2021-04-02 浙江理工大学 Durable anti-haze gauze, production device and production method thereof
CN109402745B (en) * 2018-10-09 2021-04-20 保山恒丰纺织科技有限公司 Micro-nano antibacterial fiber for yarn
CN109925789A (en) * 2019-02-14 2019-06-25 安徽宏凤空调滤网有限公司 A kind of long acting antibiotic anti-mite air-conditioning filter net and preparation method thereof
CN111467876A (en) * 2020-04-15 2020-07-31 北京纯粹主义科技有限公司 Antibacterial non-woven fabric filter material, preparation method and preparation system
KR102641219B1 (en) * 2020-12-16 2024-02-29 고려대학교 산학협력단 Super-amphiphilic fiber-nanowire composite and application

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216818A (en) * 1984-01-06 1985-10-30 ポ−ル・コ−ポレ−シヨン Cylindrical fibrous structure and its production
JPH08276111A (en) * 1995-04-07 1996-10-22 Toyobo Co Ltd Unwoven fabric for reinforcing filter
JPH1119435A (en) * 1997-07-07 1999-01-26 Tounen Tapirusu Kk Cylindrical filter composed of extra fine conjugate fiber nonwoven fabric and its production
JP2004530054A (en) * 2001-03-20 2004-09-30 ナイキャスト リミテッド Method and apparatus for improving the mechanical properties of nonwoven materials
JP2005213668A (en) * 2004-01-28 2005-08-11 Japan Vilene Co Ltd Method for producing laminated fiber aggregate
JP2005218909A (en) * 2004-02-03 2005-08-18 Japan Vilene Co Ltd Filter medium and filter
JP2006501373A (en) * 2002-04-04 2006-01-12 ザ ユニバーシティ オブ アクロン Nonwoven fiber assembly
WO2006071979A1 (en) * 2004-12-28 2006-07-06 E.I. Dupont De Nemours And Company Filtration media for filtering particulate material from gas streams

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216818A (en) * 1984-01-06 1985-10-30 ポ−ル・コ−ポレ−シヨン Cylindrical fibrous structure and its production
JPH08276111A (en) * 1995-04-07 1996-10-22 Toyobo Co Ltd Unwoven fabric for reinforcing filter
JPH1119435A (en) * 1997-07-07 1999-01-26 Tounen Tapirusu Kk Cylindrical filter composed of extra fine conjugate fiber nonwoven fabric and its production
JP2004530054A (en) * 2001-03-20 2004-09-30 ナイキャスト リミテッド Method and apparatus for improving the mechanical properties of nonwoven materials
JP2006501373A (en) * 2002-04-04 2006-01-12 ザ ユニバーシティ オブ アクロン Nonwoven fiber assembly
JP2005213668A (en) * 2004-01-28 2005-08-11 Japan Vilene Co Ltd Method for producing laminated fiber aggregate
JP2005218909A (en) * 2004-02-03 2005-08-18 Japan Vilene Co Ltd Filter medium and filter
WO2006071979A1 (en) * 2004-12-28 2006-07-06 E.I. Dupont De Nemours And Company Filtration media for filtering particulate material from gas streams
WO2006071980A1 (en) * 2004-12-28 2006-07-06 E.I. Dupont De Nemours And Company Filtration media for filtering particulate material from gas streams

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513746A (en) * 2006-12-20 2010-04-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Method for electroblowing multilayer sheets
US8986432B2 (en) 2007-11-09 2015-03-24 Hollingsworth & Vose Company Meltblown filter medium, related applications and uses
JP2009256863A (en) * 2008-03-28 2009-11-05 Gunze Ltd Composite fabric
JP2012517898A (en) * 2009-02-17 2012-08-09 フィルトロナ・ポーラス・テクノロジーズ・コーポレーション Multilayer fluid permeable fiber structure comprising nanofibers and method for producing the structure
US8939295B2 (en) 2009-02-17 2015-01-27 Essentra Porous Technologies Corp. Multi-layer, fluid transmissive fiber structures containing nanofibers and a method of manufacturing such structures
JP2010229563A (en) * 2009-03-25 2010-10-14 Teijin Ltd Method for producing particle-polymer fibrous composite
US9950284B2 (en) 2009-04-03 2018-04-24 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US8950587B2 (en) 2009-04-03 2015-02-10 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
US10682595B2 (en) 2009-04-03 2020-06-16 Hollingsworth & Vose Company Filter media suitable for hydraulic applications
JP2013511627A (en) * 2009-11-19 2013-04-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Filtration media for high humidity environments
JP2013521106A (en) * 2010-02-26 2013-06-10 クラーコア インコーポレーテッド Fine fiber filter medium for fine fibers
US8679218B2 (en) 2010-04-27 2014-03-25 Hollingsworth & Vose Company Filter media with a multi-layer structure
US9283501B2 (en) 2010-04-27 2016-03-15 Hollingsworth & Vose Company Filter media with a multi-layer structure
US10155187B2 (en) 2010-04-27 2018-12-18 Hollingsworth & Vose Company Filter media with a multi-layer structure
JP2013520584A (en) * 2010-10-14 2013-06-06 ゼウス インダストリアル プロダクツ インコーポレイテッド Antibacterial substrate
US10874962B2 (en) 2010-12-17 2020-12-29 Hollingsworth & Vose Company Fine fiber filter media and processes
US10653986B2 (en) 2010-12-17 2020-05-19 Hollingsworth & Vose Company Fine fiber filter media and processes
US11458427B2 (en) 2010-12-17 2022-10-04 Hollingsworth & Vose Company Fine fiber filter media and processes
US10155186B2 (en) 2010-12-17 2018-12-18 Hollingsworth & Vose Company Fine fiber filter media and processes
JP2012223674A (en) * 2011-04-15 2012-11-15 Shinshu Univ Filter and method for manufacturing filter
JP2013204182A (en) * 2012-03-28 2013-10-07 Kuraray Co Ltd Antibacterial nanofiber sheet, method for manufacturing the same, and filter
JP2014125699A (en) * 2012-12-26 2014-07-07 Kuraray Co Ltd Antibacterial nanofiber sheet, method for manufacturing the same, and filter
JP2014144579A (en) * 2013-01-29 2014-08-14 Tamaru Seisakusho:Kk Thin film deodorizing shielding member for housing material formed by laminating nanofiber, and production apparatus of the same
US9694306B2 (en) 2013-05-24 2017-07-04 Hollingsworth & Vose Company Filter media including polymer compositions and blends
KR101479205B1 (en) * 2014-06-30 2015-01-05 경북대학교 산학협력단 Method for manufacturing nano-microfiber mat layered nanofiber and microfiber orthogonally and nano-microfiber mat manufactured by the same
US11684885B2 (en) 2014-12-19 2023-06-27 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
US10343095B2 (en) 2014-12-19 2019-07-09 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
US11167232B2 (en) 2014-12-19 2021-11-09 Hollingsworth & Vose Company Filter media comprising a pre-filter layer
JP2018035478A (en) * 2016-09-02 2018-03-08 国立大学法人信州大学 Composite nanofiber, manufacturing method of the same, and mask
JP2020537062A (en) * 2017-10-20 2020-12-17 上海工程技術大学Shanghai University Of Engineering Science Cyclic electrostatic spinning mechanism and electrostatic spinning equipment
JP7011131B2 (en) 2017-10-20 2022-01-26 上海工程技術大学 Cyclic electrostatic spinning mechanism and electrostatic spinning device
JP2019178451A (en) * 2018-03-30 2019-10-17 常陽化成株式会社 Functional flocculent resin fiber and method for producing functional flocculent resin fiber
WO2021070257A1 (en) * 2019-10-08 2021-04-15 進和テック株式会社 Dust collection filter cloth and bag filter
CN114836863A (en) * 2022-04-19 2022-08-02 苏州大学 Preparation method of antibacterial conductive polypropylene yarn
CN114836863B (en) * 2022-04-19 2023-03-17 苏州大学 Preparation method of antibacterial conductive polypropylene yarn
WO2023224459A1 (en) * 2022-05-14 2023-11-23 Виталий ГОНЧАРОВ Method for producing an antimicrobial non-woven filtering material metallized with silver

Also Published As

Publication number Publication date
US20080217807A1 (en) 2008-09-11

Similar Documents

Publication Publication Date Title
JP2008095266A (en) Conjugate fiber filter using nano material, production equipment of conjugate fiber filter using nano material and production method of conjugate fiber filter using nano material
KR100714219B1 (en) Composite fibrous filter using nan0-materials, and manufacturing method and apparatus thereof
CN105408010B (en) Liquid filter filtering material and preparation method thereof
Yang et al. Electrospun polymer composite membrane with superior thermal stability and excellent chemical resistance for high-efficiency PM2. 5 capture
KR100928232B1 (en) Dust, deodorant and antibacterial filters with nanofiber webs
KR100843191B1 (en) Anti-bacterial Nanofiber Filter Media and Manufacturing Method Therof Containing Silver Nano Particles
JP5009100B2 (en) Extra fine fiber nonwoven fabric, method for producing the same, and apparatus for producing the same
Zhang et al. Electrospun porous engineered nanofiber materials: A versatile medium for energy and environmental applications
JP2005330639A (en) Method for producing nano fiber structural material
US20120003893A1 (en) Composite Nanofibers
JP2015045114A (en) Fiber sheet and fiber product using the same
KR101739845B1 (en) Cartridge filter using composition adiabatic fiber yarn and the manufacture method thereof
WO2019082887A1 (en) Mixed-fiber nonwoven fabric, laminate, filtering medium for filter, and methods for manufacturing same
JP2017185422A (en) Depth filter
JP2009275310A (en) Composite fiber body, method for producing the same, filter, and fluid-filtering method
Behroozi et al. Fabrication and modification of nanofiltration membranes by solution electrospinning technique: A review of influential factors and applications in water treatment
Mishra et al. Electrospun nanofibers
Tabe A review of electrospun nanofber membranes
JP6675853B2 (en) Optical sheet using extra-fine meltblown nonwoven fabric
Chen et al. Advanced functional nanofibers: strategies to improve performance and expand functions
KR101691636B1 (en) Ultrafine fiber-based filter with super-flux and high filtration efficiency and preparation method thereof
KR102304596B1 (en) High and low molecular weight microfibers and TPF microfibers
JP2011074536A (en) Polymer fiber material, method for producing the same, and fluid filtration filter
Eticha et al. Electrically assisted solution blow spinning of PVDF/TPU nanofibrous mats for air filtration applications
Nayak Production methods of nanofibers for smart textiles

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201