JP6843952B2 - Manufacturing method of semiconductor devices - Google Patents

Manufacturing method of semiconductor devices Download PDF

Info

Publication number
JP6843952B2
JP6843952B2 JP2019217895A JP2019217895A JP6843952B2 JP 6843952 B2 JP6843952 B2 JP 6843952B2 JP 2019217895 A JP2019217895 A JP 2019217895A JP 2019217895 A JP2019217895 A JP 2019217895A JP 6843952 B2 JP6843952 B2 JP 6843952B2
Authority
JP
Japan
Prior art keywords
region
layer
type
semiconductor device
igbt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019217895A
Other languages
Japanese (ja)
Other versions
JP2020039001A (en
Inventor
中村 浩之
浩之 中村
真也 曽根田
真也 曽根田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2019217895A priority Critical patent/JP6843952B2/en
Publication of JP2020039001A publication Critical patent/JP2020039001A/en
Application granted granted Critical
Publication of JP6843952B2 publication Critical patent/JP6843952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

本発明は、電力用半導体装置などの半導体装置の製造方法に関する。 The present invention relates to a method of manufacturing a semiconductor equipment such as power semiconductor device.

電力用半導体装置であるパワーデバイスは、家電製品、電気自動車及び鉄道といった分野から、再生可能エネルギーの発電として注目が高まっている太陽光発電及び風力発電の分野まで幅広く用いられている。これらの分野では、パワーデバイスで構築されたインバータ回路によって、誘導モータなどの誘導性負荷を駆動する場合が多い。誘導性負荷を駆動する構成においては、誘導性負荷の逆起電力により生じる電流を還流させるための還流ダイオード(以下「FWD」と記す)が備えられる。なお、通常のインバータ回路は、複数の絶縁ゲート型バイポーラトランジスタ(以下「IGBT」と記す)と複数のFWDとによって構成される。 Power devices, which are semiconductor devices for electric power, are widely used in fields such as home appliances, electric vehicles, and railways, as well as in the fields of photovoltaic power generation and wind power generation, which are attracting increasing attention as power generation of renewable energy. In these fields, an inverter circuit constructed by a power device often drives an inductive load such as an induction motor. In the configuration for driving the inductive load, a freewheeling diode (hereinafter referred to as “FWD”) for returning the current generated by the back electromotive force of the inductive load is provided. A normal inverter circuit is composed of a plurality of insulated gate bipolar transistors (hereinafter referred to as "IGBT") and a plurality of FWDs.

しかしながら、インバータ回路においては、小型軽量化及び低コスト化が強く望まれており、複数のIGBTと複数のFWDとをインバータ回路に個別に搭載することは望ましくない。その解決手段の一つとして、IGBTとFWDとを一体化した逆導通型IGBT(以下「RC−IGBT」と記す)の開発が進められており、それらを適用した構成では、半導体装置の搭載面積縮小や低コスト化が可能となっている。 However, in the inverter circuit, it is strongly desired to reduce the size, weight and cost, and it is not desirable to individually mount a plurality of IGBTs and a plurality of FWDs in the inverter circuit. As one of the solutions, the development of a reverse conduction type IGBT (hereinafter referred to as "RC-IGBT") in which the IGBT and the FWD are integrated is underway, and in the configuration to which they are applied, the mounting area of the semiconductor device is being promoted. It is possible to reduce the cost and reduce the cost.

RC−IGBTでは、逆導通性能を持たない通常のIGBTにおけるp型コレクタ層のみが配設されている面に、IGBTとしてのp型コレクタ層とFWDとしてのn型カソード層とが配設されている。そしてRC−IGBTの当該面と逆側の面には、IGBTとしてのp型ベース層と、FWDとしてのp型アノード層と、これらを平面視で囲む耐圧保持領域におけるp型拡散層とが配設されている。なお、RC−IGBTは、例えば、非特許文献1、特許文献1〜3などに開示されている。 In RC-IGBT, a p-type collector layer as an IGBT and an n-type cathode layer as an FWD are arranged on a surface on which only the p-type collector layer in a normal IGBT having no reverse conduction performance is arranged. There is. A p-type base layer as an IGBT, a p-type anode layer as an FWD, and a p-type diffusion layer in a pressure-resistant holding region surrounding these are arranged on a surface opposite to the surface of the RC-IGBT. It is installed. The RC-IGBT is disclosed in, for example, Non-Patent Document 1, Patent Documents 1 to 3.

特開2008−53648号公報Japanese Unexamined Patent Publication No. 2008-53648 特開2008−103590号公報Japanese Unexamined Patent Publication No. 2008-103590 特開2008−109028号公報Japanese Unexamined Patent Publication No. 2008-109028

Takahashi H,et al、“1200V Reverse Conducting IGBT”、Proceeding of ISPSD、2004年、p.133−136Takahashi H, et al, "1200V Reverse Conducting IGBT", Proceeding of ISPSD, 2004, p. 133-136

しかしながら、RC−IGBTでは、FWDがオン状態からオフ状態になる際に、ダイオードとして通常流れるべき電流(順方向電流)と逆向きの電流であるリカバリ電流が流れ、このリカバリ電流がエネルギーロスの原因となるというという問題があった。 However, in RC-IGBT, when the FWD changes from the on state to the off state, a recovery current that is a current opposite to the current that should normally flow as a diode (forward current) flows, and this recovery current causes energy loss. There was a problem that it became.

そこで、本発明は、上記のような問題点を鑑みてなされたものであり、リカバリ電流の低減が可能な技術を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a technique capable of reducing the recovery current.

本発明に係る半導体装置の製造方法において、前記半導体装置は、第1主面及び第2主面を有し、還流ダイオードが配設された第1領域と、IGBT(Insulated Gate Bipolar Transistor)が配設された第2領域と、平面視で前記第1領域及び前記第2領域を囲む耐圧保持領域とが規定された半導体基板と、前記第1領域前記第2領域及び前記耐圧保持領域の前記第1主面上に配設された表面電極と、前記第1領域、前記第2領域及び前記耐圧保持領域の前記第2主面上に配設された裏面電極とを備え、前記半導体基板は、前記第1領域の前記第1主面に配設された、第1導電型を有するアノード層と、前記アノード層と隣接して前記耐圧保持領域の前記第1主面に配設された、前記第1導電型を有する拡散層と、前記第1領域の前記第2主面に配設された、第2導電型を有するカソード層とを備え、一の前記拡散層は、当該拡散層を形成すべき領域内において千鳥状に配設された複数の領域に不純物を注入して熱拡散することによって形成され、前記表面電極は前記拡散層と非接触である。


In the method for manufacturing a semiconductor device according to the present invention, the semiconductor device has a first main surface and a second main surface, and a first region in which a freewheeling diode is arranged and an IGBT (Insulated Gate Bipolar Transistor) are arranged. A semiconductor substrate in which a provided second region, a withstand voltage holding region surrounding the first region and the second region in a plan view is defined, and the first region , the second region, and the withstand voltage holding region . The semiconductor substrate includes a front surface electrode arranged on the first main surface and a back surface electrode arranged on the second main surface of the first region, the second region, and the withstand voltage holding region. An anode layer having a first conductive type, which is arranged on the first main surface of the first region, and an anode layer which is adjacent to the anode layer and is arranged on the first main surface of the pressure resistance holding region. The diffusion layer having the first conductive type and the cathode layer having the second conductive type arranged on the second main surface of the first region are provided, and one said diffusion layer comprises the diffusion layer. It is formed by injecting impurities into a plurality of regions arranged in a staggered pattern in the region to be formed and thermally diffusing the surface electrode, and the surface electrode is in non-contact with the diffusion layer.


本発明によれば、表面電極は前記拡散層と非接触である。これにより、リカバリ電流を低減することができる。 According to the present invention, the surface electrode is in non-contact with the diffusion layer. Thereby, the recovery current can be reduced.

実施の形態1に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on Embodiment 1. FIG. 実施の形態2に係る半導体装置の構成を示す平面図である。It is a top view which shows the structure of the semiconductor device which concerns on Embodiment 2. FIG. 実施の形態3に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on Embodiment 3. FIG. 実施の形態4に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on Embodiment 4. FIG. 実施の形態5に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on Embodiment 5. 実施の形態6に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on Embodiment 6. 実施の形態7に係る半導体装置の構成を示す平面図である。It is a top view which shows the structure of the semiconductor device which concerns on Embodiment 7. 実施の形態7に係る半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the semiconductor device which concerns on Embodiment 7. 関連半導体装置の構成を示す平面図である。It is a top view which shows the structure of the related semiconductor device. 関連半導体装置の構成を示す断面図である。It is sectional drawing which shows the structure of the related semiconductor device.

<関連半導体装置>
まず、本発明の実施の形態に係る半導体装置について説明する前に、これと関連する電力用半導体装置(以下、「関連半導体装置」と記す)について説明する。
<Related semiconductor devices>
First, before explaining the semiconductor device according to the embodiment of the present invention, a power semiconductor device (hereinafter, referred to as “related semiconductor device”) related thereto will be described.

図9は、関連半導体装置の構成を示す平面図であり、図10は、図9のA1−A2線に沿った当該構成を示す断面図である。 FIG. 9 is a plan view showing the configuration of the related semiconductor device, and FIG. 10 is a cross-sectional view showing the configuration along the lines A1-A2 of FIG.

図9に示すように、関連半導体装置は、FWDが配設された第1領域であるFWD領域1と、IGBTが配設された第2領域であるIGBT領域2と、耐圧保持領域3とが規定された半導体基板11を備える。2つのIGBT領域2は、平面視でFWD領域1を挟んでおり、耐圧保持領域3は、平面視でFWD領域1及び当該2つのIGBT領域2を囲んでいる。また、関連半導体装置は、IGBT領域2に配設されたゲートパッド51を備える。 As shown in FIG. 9, in the related semiconductor device, the FWD region 1 which is the first region in which the FWD is arranged, the IGBT region 2 which is the second region in which the IGBT is arranged, and the withstand voltage holding region 3 are provided. The specified semiconductor substrate 11 is provided. The two IGBT regions 2 sandwich the FWD region 1 in a plan view, and the withstand voltage holding region 3 surrounds the FWD region 1 and the two IGBT regions 2 in a plan view. Further, the related semiconductor device includes a gate pad 51 arranged in the IGBT region 2.

以下では、第1導電型をn型とし、第2導電型をp型として説明する。また以下では、半導体基板11の第1主面を、図10における半導体基板11の上面、ひいてはFWD領域1、IGBT領域2及び耐圧保持領域3のそれぞれの上面とし、半導体基板11の第2主面を、図10における半導体基板11の下面、ひいてはFWD領域1、IGBT領域2及び耐圧保持領域3のそれぞれの下面として説明する。 Hereinafter, the first conductive type will be referred to as an n-type, and the second conductive type will be referred to as a p-type. In the following, the first main surface of the semiconductor substrate 11 will be the upper surface of the semiconductor substrate 11 in FIG. 10, and thus the upper surfaces of the FWD region 1, the IGBT region 2 and the withstand voltage holding region 3, respectively, and the second main surface of the semiconductor substrate 11 Will be described as the lower surface of the semiconductor substrate 11 in FIG. 10, and by extension, the lower surfaces of the FWD region 1, the IGBT region 2, and the withstand voltage holding region 3.

図10に示すように、関連半導体装置の半導体基板11は、n型ドリフト層12と、p型アノード層13と、拡散層である第1p型拡散層14と、n型バッファ層15と、n型カソード層16と、第2p型拡散層17とを備える。また図示しないが、半導体基板11は、例えばn型エミッタ層、p型ベース層及びp型コレクタ層などのIGBTの構成要素を備える。 As shown in FIG. 10, the semiconductor substrate 11 of the related semiconductor device includes an n-type drift layer 12, a p-type anode layer 13, a first p-type diffusion layer 14 which is a diffusion layer, an n-type buffer layer 15, and n. A mold cathode layer 16 and a second p-type diffusion layer 17 are provided. Although not shown, the semiconductor substrate 11 includes IGBT components such as an n-type emitter layer, a p-type base layer, and a p-type collector layer.

n型ドリフト層12は、n型の不純物濃度が相対的に低く、FWD領域1、IGBT領域2及び耐圧保持領域3に跨って配設されている。 The n-type drift layer 12 has a relatively low concentration of n-type impurities, and is arranged so as to straddle the FWD region 1, the IGBT region 2, and the withstand voltage holding region 3.

FWDのp型アノード層13は、FWD領域1の上面に配設され、n型ドリフト層12の上面上に配設されている。 The p-type anode layer 13 of the FWD is arranged on the upper surface of the FWD region 1 and is arranged on the upper surface of the n-type drift layer 12.

図示しないIGBTのn型エミッタ層及びp型ベース層は、IGBT領域2の上面に配設され、n型ドリフト層12の上面上に配設されている。これらn型エミッタ層及びp型ベース層は、IGBTの一部であるMOSFET(Metal Oxide Semiconductor Field Effect Transistor)を構成している。また、IGBTのp型ベース層は、FWDのp型アノード層13と隣接している。 The n-type emitter layer and p-type base layer of the IGBT (not shown) are arranged on the upper surface of the IGBT region 2 and on the upper surface of the n-type drift layer 12. These n-type emitter layer and p-type base layer constitute a MOSFET (Metal Oxide Semiconductor Field Effect Transistor) that is a part of the IGBT. Further, the p-type base layer of the IGBT is adjacent to the p-type anode layer 13 of the FWD.

第1p型拡散層14は、耐圧保持領域3の上面に配設され、n型ドリフト層12の上面上に配設されている。また、第1p型拡散層14は、FWDのp型アノード層13と隣接している。そして、第1p型拡散層14のp型の不純物濃度は、p型アノード層13の当該不純物濃度よりも高くなっており、第1p型拡散層14は、p型アノード層13の不純物よりも深い。なお、第1p型拡散層14とp型アノード層13との間の境界は、耐圧保持領域3とFWD領域1との間の境界に対応し、図10に示す上下に延びた点線は、第1p型拡散層14を形成する際における注入領域の境界、言い換えるとマスクと開口領域との境界を示す。 The first p-type diffusion layer 14 is arranged on the upper surface of the pressure resistance holding region 3, and is arranged on the upper surface of the n-type drift layer 12. Further, the first p-type diffusion layer 14 is adjacent to the p-type anode layer 13 of the FWD. The p-type impurity concentration of the first p-type diffusion layer 14 is higher than the impurity concentration of the p-type anode layer 13, and the first p-type diffusion layer 14 is deeper than the impurities of the p-type anode layer 13. .. The boundary between the first p-type diffusion layer 14 and the p-type anode layer 13 corresponds to the boundary between the pressure-resistant holding region 3 and the FWD region 1, and the vertically extending dotted lines shown in FIG. 10 are the first. It shows the boundary of the injection region when forming the 1p type diffusion layer 14, in other words, the boundary between the mask and the opening region.

n型バッファ層15は、FWD領域1、IGBT領域2及び耐圧保持領域3の下面に配設され、n型ドリフト層12の下面上に配設されている。n型バッファ層15のn型の不純物濃度は、n型ドリフト層12の当該不純物濃度よりも高くなっている。 The n-type buffer layer 15 is arranged on the lower surfaces of the FWD region 1, the IGBT region 2, and the withstand voltage holding region 3, and is disposed on the lower surface of the n-type drift layer 12. The concentration of n-type impurities in the n-type buffer layer 15 is higher than the concentration of the impurities in the n-type drift layer 12.

FWDのn型カソード層16は、FWD領域1の下面に配設され、n型バッファ層15の下面上に配設されている。n型カソード層16のn型の不純物濃度は、n型バッファ層15の当該不純物濃度よりも高くなっている。 The N-type cathode layer 16 of the FWD is arranged on the lower surface of the FWD region 1 and is arranged on the lower surface of the n-type buffer layer 15. The concentration of n-type impurities in the n-type cathode layer 16 is higher than the concentration of the impurities in the n-type buffer layer 15.

IGBTのp型コレクタ層は、IGBT領域2の下面に配設され、n型バッファ層15の下面上に配設されている。また、IGBTのp型コレクタ層は、FWDのn型カソード層16と隣接している。 The p-type collector layer of the IGBT is disposed on the lower surface of the IGBT region 2, and is disposed on the lower surface of the n-type buffer layer 15. Further, the p-type collector layer of the IGBT is adjacent to the n-type cathode layer 16 of the FWD.

第2p型拡散層17は、耐圧保持領域3の下面に配設され、n型バッファ層15の下面上に配設されている。また、第2p型拡散層17は、FWDのn型カソード層16と隣接している。関連半導体装置では、第2p型拡散層17のうちFWD領域1側の端部は、FWD領域1に突出している。第2p型拡散層17のFWD領域1側の端部と、図10に示す上下に延びた点線との間の長さPWは、n型ドリフト層12のうち第1p型拡散層14の下側部分の厚さよりも大きくしている。これにより、第1p型拡散層14からn型ドリフト層12を通ってn型カソード層16にキャリアが到達することを抑制することが可能となっている。なお、この第2p型拡散層17は、FLR(Field Limiting Ring)構造、または、RESURF(REduced SURface Field)構造などを構成するが、ここでは詳細な構成の説明は省略する。 The second p-type diffusion layer 17 is arranged on the lower surface of the pressure resistance holding region 3, and is arranged on the lower surface of the n-type buffer layer 15. Further, the second p-type diffusion layer 17 is adjacent to the n-type cathode layer 16 of the FWD. In the related semiconductor device, the end portion of the second p-type diffusion layer 17 on the FWD region 1 side protrudes into the FWD region 1. The length PW between the end of the second p-type diffusion layer 17 on the FWD region 1 side and the vertically extending dotted line shown in FIG. 10 is the lower side of the first p-type diffusion layer 14 of the n-type drift layer 12. It is made larger than the thickness of the part. This makes it possible to prevent carriers from reaching the n-type cathode layer 16 from the first p-type diffusion layer 14 through the n-type drift layer 12. The second p-type diffusion layer 17 constitutes a FLR (Field Limiting Ring) structure, a RESURF (REduced SURface Field) structure, or the like, but detailed description of the configuration will be omitted here.

関連半導体装置は、上述した半導体基板11だけでなく、層間絶縁膜21,23と、ポリシリコンからなるゲート電極層22と、表面電極24と、裏面電極25とを備える。 The related semiconductor device includes not only the semiconductor substrate 11 described above, but also interlayer insulating films 21 and 23, a gate electrode layer 22 made of polysilicon, a front electrode 24, and a back electrode 25.

層間絶縁膜21は、半導体基板11の端部に配設されている。ゲート電極層22は層間絶縁膜21上に配設され、層間絶縁膜23はゲート電極層22を覆う。 The interlayer insulating film 21 is arranged at the end of the semiconductor substrate 11. The gate electrode layer 22 is arranged on the interlayer insulating film 21, and the interlayer insulating film 23 covers the gate electrode layer 22.

表面電極24は、FWD領域1、IGBT領域2及び耐圧保持領域3の上面上に配設され、図9のゲートパッド51と電気的に接続されている。裏面電極25は、FWD領域1、IGBT領域2及び耐圧保持領域3の下面上に配設されている。 The surface electrode 24 is arranged on the upper surface of the FWD region 1, the IGBT region 2, and the withstand voltage holding region 3, and is electrically connected to the gate pad 51 of FIG. The back surface electrode 25 is arranged on the lower surfaces of the FWD region 1, the IGBT region 2, and the withstand voltage holding region 3.

以上のように構成された関連半導体装置は、RC−IGBTとして機能する。具体的には、IGBTがオン状態の場合に、p型コレクタ層からn型エミッタ層に向う電流(図10の下から上に向かう電流)が流れる。IGBTがオン状態からオフ状態になる場合には、RC−IGBTに接続された図示しない誘導性負荷によって、RC−IGBTに逆電圧が印加される。この結果、表面電極24側が高電位となってFWDがオン状態となり、p型アノード層13からn型カソード層16に向かう電流(図10の上から下に向かう電流)、つまりIGBTがオン状態の場合と逆向きの電流が流れる。このように逆電圧を逃がすことにより、当該逆電圧による故障が抑制されるとともに、逆電圧が誘導性負荷において有効利用される。 The related semiconductor device configured as described above functions as an RC-IGBT. Specifically, when the IGBT is in the ON state, a current flowing from the p-type collector layer to the n-type emitter layer (current from the bottom to the top in FIG. 10) flows. When the IGBT goes from the on state to the off state, a reverse voltage is applied to the RC-IGBT by an inductive load (not shown) connected to the RC-IGBT. As a result, the surface electrode 24 side becomes a high potential, the FWD is turned on, and the current from the p-type anode layer 13 to the n-type cathode layer 16 (current from top to bottom in FIG. 10), that is, the IGBT is on. The current flows in the opposite direction to the case. By releasing the reverse voltage in this way, the failure due to the reverse voltage is suppressed, and the reverse voltage is effectively used in the inductive load.

次に、IGBTがオフ状態からオン状態に切り替えられたことによって、FWDがオン状態からオフ状態に切り替えられた際には、それまでに注入されていたp型アノード層13のホールなどのキャリアが原因で、FWDがオン状態に流れていた電流と逆方向にリカバリ電流がしばらく流れ続けてしまう。このリカバリ電流は、IGBTがオン状態の場合にRC−IGBTにおいて流れるべき電流と同じ向きであることから、エネルギーロスの原因となる。 Next, when the IGBT is switched from the off state to the on state and the FWD is switched from the on state to the off state, carriers such as holes of the p-type anode layer 13 that have been injected up to that point are released. Due to this, the recovery current continues to flow for a while in the direction opposite to the current that was flowing when the FWD was in the ON state. This recovery current causes energy loss because it is in the same direction as the current that should flow in the RC-IGBT when the IGBT is in the ON state.

特に、上述した関連半導体装置では、濃度が比較的高い第1p型拡散層14が、p型アノード層13と隣接している。このような構成では、IGBTがオフ状態からオン状態に切り替えられ、FWDがオン状態からオフ状態に切り替えられた際に、第1p型拡散層14からp型アノード層13にホールが注入される。この結果、排出されるべきホールが増加するので、ホールの移動方向とは逆方向の電流、つまり図10の矢印Irrに示されるリカバリ電流が増大してしまう。これに対して、耐圧保持領域3の下面に第2p型拡散層17が設けられたり、当該第2p型拡散層17をFWD領域1に突出させたりすることによって、リカバリ電流を低減することは可能であるが、さらにリカバリ電流を低減することが望まれる。ここで、以下で説明するように、実施の形態1〜7に係る半導体装置によればリカバリ電流を低減することが可能となっている。 In particular, in the related semiconductor device described above, the first p-type diffusion layer 14 having a relatively high concentration is adjacent to the p-type anode layer 13. In such a configuration, when the IGBT is switched from the off state to the on state and the FWD is switched from the on state to the off state, holes are injected from the first p-type diffusion layer 14 into the p-type anode layer 13. As a result, the number of holes to be discharged increases, so that the current in the direction opposite to the moving direction of the holes, that is, the recovery current shown by the arrow Irr in FIG. 10 increases. On the other hand, it is possible to reduce the recovery current by providing the second p-type diffusion layer 17 on the lower surface of the withstand voltage holding region 3 or by projecting the second p-type diffusion layer 17 into the FWD region 1. However, it is desired to further reduce the recovery current. Here, as described below, the semiconductor device according to the first to seventh embodiments can reduce the recovery current.

<実施の形態1>
図1は、本発明の実施の形態1に係る半導体装置の構成を示す断面図である。以下、本実施の形態1で説明する構成要素のうち、関連半導体装置で説明した構成要素と同じまたは類似する構成要素については同じ参照符号を付し、異なる構成要素について主に説明する。
<Embodiment 1>
FIG. 1 is a cross-sectional view showing the configuration of the semiconductor device according to the first embodiment of the present invention. Hereinafter, among the components described in the first embodiment, the same or similar components as those described in the related semiconductor device will be designated by the same reference numerals, and different components will be mainly described.

図1に示すように、本実施の形態1に係る半導体装置では、p型アノード層13と第1p型拡散層14との間の境界よりもp型アノード層13側の半導体基板11の上面に第1トレンチ31が配設されている。つまり、第1トレンチ31は、第1p型拡散層14と接触されずに、p型アノード層13のうちの第1p型拡散層14側の部分に配設されている。なお、本実施の形態1では、第1トレンチ31は、少なくともFWD領域1及びIGBT領域2に形成されている図示しないゲート電極構造と同様に形成される。このため、第1トレンチ31内にはゲート絶縁膜と同じ絶縁膜を介して、ゲート電極層と同じ電極層が配設されている。 As shown in FIG. 1, in the semiconductor device according to the first embodiment, the upper surface of the semiconductor substrate 11 on the p-type anode layer 13 side of the boundary between the p-type anode layer 13 and the first p-type diffusion layer 14 The first trench 31 is arranged. That is, the first trench 31 is arranged in the portion of the p-type anode layer 13 on the side of the first p-type diffusion layer 14 without being in contact with the first p-type diffusion layer 14. In the first embodiment, the first trench 31 is formed in the same manner as the gate electrode structure (not shown) formed in at least the FWD region 1 and the IGBT region 2. Therefore, the same electrode layer as the gate electrode layer is arranged in the first trench 31 via the same insulating film as the gate insulating film.

以上のような本実施の形態1に係る半導体装置によれば、FWDがオン状態からオフ状態に切り替えられた際に、第1p型拡散層14からp型アノード層13にホールが注入されることを抑制することができる。この結果、第1p型拡散層14からp型アノード層13を介してn型カソード層16に流れるリカバリ電流を低減することができる。 According to the semiconductor device according to the first embodiment as described above, when the FWD is switched from the on state to the off state, holes are injected from the first p-type diffusion layer 14 into the p-type anode layer 13. Can be suppressed. As a result, the recovery current flowing from the first p-type diffusion layer 14 to the n-type cathode layer 16 via the p-type anode layer 13 can be reduced.

なお本実施の形態1において、半導体基板11は、珪素(Si)などの半導体から構成されてもよいし、炭化珪素(SiC)、窒化ガリウム(GaN)、ダイヤモンドなどのワイドバンドギャップ半導体から構成されてもよい。このことは、実施の形態2以降においても同様である。 In the first embodiment, the semiconductor substrate 11 may be composed of a semiconductor such as silicon (Si), or may be composed of a wide bandgap semiconductor such as silicon carbide (SiC), gallium nitride (GaN), or diamond. You may. This also applies to the second and subsequent embodiments.

<実施の形態2>
図2は、本発明の実施の形態2に係る半導体装置の構成を示す平面図である。以下、本実施の形態2で説明する構成要素のうち、関連半導体装置で説明した構成要素と同じまたは類似する構成要素については同じ参照符号を付し、異なる構成要素について主に説明する。
<Embodiment 2>
FIG. 2 is a plan view showing the configuration of the semiconductor device according to the second embodiment of the present invention. Hereinafter, among the components described in the second embodiment, the same or similar components as those described in the related semiconductor device will be designated by the same reference numerals, and different components will be mainly described.

図2に示すように、本実施の形態2に係る半導体装置では、p型アノード層13に、第1トレンチ31と交差する第2トレンチ32が配設されている。なお、第2トレンチ32内には、第1トレンチ31と同様に、ゲート絶縁膜と同じ絶縁膜を介して、ゲート電極層と同じ電極層が配設されている。 As shown in FIG. 2, in the semiconductor device according to the second embodiment, the p-type anode layer 13 is provided with a second trench 32 that intersects with the first trench 31. In the second trench 32, the same electrode layer as the gate electrode layer is arranged through the same insulating film as the gate insulating film, as in the first trench 31.

以上のような本実施の形態2に係る半導体装置によれば、第1トレンチ31の下側において集中していた電界が、第2トレンチ32の下側に分散される。これにより、トレンチに電界が集中することを抑制することができるので、耐圧性を高めることができ、かつ、トレンチのデメリットを抑制することができる。 According to the semiconductor device according to the second embodiment as described above, the electric field concentrated on the lower side of the first trench 31 is dispersed on the lower side of the second trench 32. As a result, it is possible to suppress the concentration of the electric field in the trench, so that the pressure resistance can be enhanced and the demerit of the trench can be suppressed.

<実施の形態3>
図3は、本発明の実施の形態3に係る半導体装置の構成を示す断面図である。以下、本実施の形態3で説明する構成要素のうち、関連半導体装置で説明した構成要素と同じまたは類似する構成要素については同じ参照符号を付し、異なる構成要素について主に説明する。
<Embodiment 3>
FIG. 3 is a cross-sectional view showing the configuration of the semiconductor device according to the third embodiment of the present invention. Hereinafter, among the components described in the third embodiment, the same or similar components as those described in the related semiconductor device will be designated by the same reference numerals, and different components will be mainly described.

本実施の形態3に係る半導体装置では、p型アノード層13のp型の不純物濃度は、第1p型拡散層14に近づくにつれて低くなっている。なお、p型アノード層13として濃度に勾配を有する不純物層を形成する方法としては、例えば一般的に知られているVLD(Variation of Lateral Doping)を用いてもよいし、これ以外の方法を用いてもよい。 In the semiconductor device according to the third embodiment, the concentration of p-type impurities in the p-type anode layer 13 decreases as it approaches the first p-type diffusion layer 14. As a method for forming an impurity layer having a concentration gradient as the p-type anode layer 13, for example, a generally known VLD (Variation of Lateral Doping) may be used, or other methods may be used. You may.

以上のような本実施の形態3に係る半導体装置によれば、p型アノード層13の濃度に勾配を設けたことにより、p型アノード層13と第1p型拡散層14との間の、図3の想像線で示される抵抗33を高くすることができる。これにより、第1p型拡散層14からp型アノード層13を介してn型カソード層に流れるリカバリ電流を低減することができる。 According to the semiconductor device according to the third embodiment as described above, the figure between the p-type anode layer 13 and the first p-type diffusion layer 14 is provided by providing a gradient in the concentration of the p-type anode layer 13. The resistance 33 indicated by the imaginary line of 3 can be increased. As a result, the recovery current flowing from the first p-type diffusion layer 14 to the n-type cathode layer via the p-type anode layer 13 can be reduced.

<実施の形態4>
図4は、本発明の実施の形態4に係る半導体装置の構成を示す断面図である。以下、本実施の形態4で説明する構成要素のうち、関連半導体装置で説明した構成要素と同じまたは類似する構成要素については同じ参照符号を付し、異なる構成要素について主に説明する。
<Embodiment 4>
FIG. 4 is a cross-sectional view showing the configuration of the semiconductor device according to the fourth embodiment of the present invention. Hereinafter, among the components described in the fourth embodiment, the same or similar components as those described in the related semiconductor device will be designated by the same reference numerals, and different components will be mainly described.

図4に示すように、本実施の形態4に係る半導体装置では、表面電極24は、耐圧保持領域3の上方に配設されており、第1p型拡散層14と非接触となっている。ここでは、層間絶縁膜23のうちFWD領域1側の端部がFWD領域1に突出し、その突出部分によって表面電極24と第1p型拡散層14とが離間されている。なお、表面電極24は、FWD領域1及びIGBT領域2上に配設されており、p型アノード層13、p型ベース層及びn型エミッタ層と接触されている。 As shown in FIG. 4, in the semiconductor device according to the fourth embodiment, the surface electrode 24 is arranged above the withstand voltage holding region 3 and is not in contact with the first p-type diffusion layer 14. Here, the end of the interlayer insulating film 23 on the FWD region 1 side protrudes into the FWD region 1, and the surface electrode 24 and the first p-type diffusion layer 14 are separated by the protruding portion. The surface electrode 24 is arranged on the FWD region 1 and the IGBT region 2, and is in contact with the p-type anode layer 13, the p-type base layer, and the n-type emitter layer.

以上のような本実施の形態4に係る半導体装置によれば、FWDがオン状態の際に第1p型拡散層14においてキャリアであるホールの発生を抑制することができる。このため、FWDがオン状態からオフ状態に切り替えられた際に、第1p型拡散層14からp型アノード層13にホールが注入されることを抑制することができるので、リカバリ電流を低減することができる。 According to the semiconductor device according to the fourth embodiment as described above, it is possible to suppress the generation of holes as carriers in the first p-type diffusion layer 14 when the FWD is in the ON state. Therefore, when the FWD is switched from the on state to the off state, it is possible to suppress the injection of holes from the first p-type diffusion layer 14 into the p-type anode layer 13, so that the recovery current can be reduced. Can be done.

<実施の形態5>
図5は、本発明の実施の形態5に係る半導体装置の構成を示す断面図である。以下、本実施の形態5で説明する構成要素のうち、実施の形態4に係る半導体装置で説明した構成要素と同じまたは類似する構成要素については同じ参照符号を付し、異なる構成要素について主に説明する。
<Embodiment 5>
FIG. 5 is a cross-sectional view showing the configuration of the semiconductor device according to the fifth embodiment of the present invention. Hereinafter, among the components described in the fifth embodiment, the same or similar components as those described in the semiconductor device according to the fourth embodiment are designated by the same reference numerals, and different components are mainly referred to. explain.

図5に示すように、本実施の形態5に係る半導体装置では、p型アノード層13と第1p型拡散層14とは、n型ドリフト層12の一部分によって離間されており、n型ドリフト層12の当該一部分は、層間絶縁膜23の突出部分によって表面電極24と離間されている。 As shown in FIG. 5, in the semiconductor device according to the fifth embodiment, the p-type anode layer 13 and the first p-type diffusion layer 14 are separated by a part of the n-type drift layer 12, and the n-type drift layer The portion of 12 is separated from the surface electrode 24 by a protruding portion of the interlayer insulating film 23.

以上のような本実施の形態5に係る半導体装置によれば、p型アノード層13と第1p型拡散層14との間の、図5の想像線で示される抵抗34を高くすることができる。これにより、第1p型拡散層14からp型アノード層13を介してn型カソード層に流れるリカバリ電流を低減することができる。 According to the semiconductor device according to the fifth embodiment as described above, the resistance 34 shown by the imaginary line in FIG. 5 between the p-type anode layer 13 and the first p-type diffusion layer 14 can be increased. .. As a result, the recovery current flowing from the first p-type diffusion layer 14 to the n-type cathode layer via the p-type anode layer 13 can be reduced.

<実施の形態6>
図6は、本発明の実施の形態6に係る半導体装置の構成を示す断面図である。以下、本実施の形態6で説明する構成要素のうち、実施の形態4に係る半導体装置で説明した構成要素と同じまたは類似する構成要素については同じ参照符号を付し、異なる構成要素について主に説明する。
<Embodiment 6>
FIG. 6 is a cross-sectional view showing the configuration of the semiconductor device according to the sixth embodiment of the present invention. Hereinafter, among the components described in the sixth embodiment, the same or similar components as those described in the semiconductor device according to the fourth embodiment are designated by the same reference numerals, and different components are mainly referred to. explain.

図6に示すように、本実施の形態6に係る半導体基板11は、n型を有する分離領域35をさらに備えており、分離領域35は、p型アノード層13と第1p型拡散層14との間に挟まれて半導体基板11の上面上に配設されており、分離領域35の上部は、層間絶縁膜23の突出部分によって表面電極24と離間されている。なお本実施の形態6では、分離領域35のn型の不純物濃度は、n型ドリフト層12の当該不純物濃度よりも高くしている。 As shown in FIG. 6, the semiconductor substrate 11 according to the sixth embodiment further includes a separation region 35 having an n-type, and the separation region 35 includes a p-type anode layer 13 and a first p-type diffusion layer 14. It is arranged on the upper surface of the semiconductor substrate 11 so as to be sandwiched between the two, and the upper portion of the separation region 35 is separated from the surface electrode 24 by the protruding portion of the interlayer insulating film 23. In the sixth embodiment, the concentration of n-type impurities in the separation region 35 is higher than the concentration of the impurities in the n-type drift layer 12.

以上のような本実施の形態6に係る半導体装置によれば、分離領域35を形成する分だけ、実施の形態5よりも製造工程が増えるが、p型アノード層13と第1p型拡散層14との間の、図6の想像線で部分示される抵抗36の抵抗値を、意図する値にすることができる。これにより、リカバリ電流を適切に低減することができる。 According to the semiconductor device according to the sixth embodiment as described above, the number of manufacturing steps is increased as compared with the fifth embodiment by the amount of forming the separation region 35, but the p-type anode layer 13 and the first p-type diffusion layer 14 The resistance value of the resistor 36, which is partially shown by the imaginary line in FIG. 6, can be set to the intended value. Thereby, the recovery current can be appropriately reduced.

<実施の形態7>
図7は、本発明の実施の形態7に係る半導体装置の構成を示す平面図であり、図8は、当該構成を示す断面図である。以下、本実施の形態7で説明する構成要素のうち、関連半導体装置で説明した構成要素と同じまたは類似する構成要素については同じ参照符号を付し、異なる構成要素について主に説明する。
<Embodiment 7>
FIG. 7 is a plan view showing the configuration of the semiconductor device according to the seventh embodiment of the present invention, and FIG. 8 is a cross-sectional view showing the configuration. Hereinafter, among the components described in the seventh embodiment, the same or similar components as those described in the related semiconductor device will be designated by the same reference numerals, and different components will be mainly described.

図7及び図8に示すように、本実施の形態7に係る半導体装置では、第1p型拡散層14は、複数の選択注入層14aと、複数の選択注入層14aが配設された半導体層14bとを含んでいる。図7に示すように、複数の四角形状の選択注入層14aは、耐圧保持領域3の周方向に沿って千鳥状のパターンで配設されており、図8に示すように、選択注入層14aは、半導体層14bの上部に配設されている。ただし、複数の選択注入層14aの形状、位置及び範囲は、図7及び図8に示すものに限ったものではない。 As shown in FIGS. 7 and 8, in the semiconductor device according to the seventh embodiment, the first p-type diffusion layer 14 is a semiconductor layer in which a plurality of selective injection layers 14a and a plurality of selective injection layers 14a are arranged. 14b and is included. As shown in FIG. 7, the plurality of rectangular selective injection layers 14a are arranged in a staggered pattern along the circumferential direction of the pressure resistance holding region 3, and as shown in FIG. 8, the selective injection layers 14a are arranged. Is disposed above the semiconductor layer 14b. However, the shapes, positions and ranges of the plurality of selective injection layers 14a are not limited to those shown in FIGS. 7 and 8.

本実施の形態7では、第1p型拡散層14は、第1p型拡散層14を形成すべき領域内において選択的に不純物を注入することによって形成される。これにより、複数の選択注入層14aには不純物が注入されるが、半導体層14bには不純物は注入されない。しかしながら、熱拡散等により複数の選択注入層14aの不純物が、半導体層14bに拡散する。このため、概ね、半導体層14bの不純物濃度は、選択注入層14aの不純物濃度よりも低くなっている。なお、選択注入層14a及び半導体層14bに一方から他方に向かう方向に沿った不純物濃度の変化は、急峻であってもよいし緩慢であってもよい。このように構成された本実施の形態7では、第1p型拡散層14は、不純物濃度が不均一となる。 In the seventh embodiment, the first p-type diffusion layer 14 is formed by selectively injecting impurities in the region where the first p-type diffusion layer 14 should be formed. As a result, impurities are injected into the plurality of selective injection layers 14a, but impurities are not injected into the semiconductor layer 14b. However, impurities in the plurality of selective injection layers 14a diffuse into the semiconductor layer 14b due to thermal diffusion or the like. Therefore, the impurity concentration of the semiconductor layer 14b is generally lower than the impurity concentration of the selective injection layer 14a. The change in impurity concentration in the direction from one to the other in the selective injection layer 14a and the semiconductor layer 14b may be steep or slow. In the seventh embodiment configured as described above, the impurity concentration of the first p-type diffusion layer 14 becomes non-uniform.

以上のような本実施の形態7に係る半導体装置によれば、第1p型拡散層14全体の平均的な不純物濃度を、選択注入層14aの不純物濃度よりも低くすることができる。これにより、FWDがオン状態の際に第1p型拡散層14においてホールの発生を抑制することができるので、リカバリ電流を低減することができる。 According to the semiconductor device according to the seventh embodiment as described above, the average impurity concentration of the entire first p-type diffusion layer 14 can be made lower than the impurity concentration of the selective injection layer 14a. As a result, the generation of holes in the first p-type diffusion layer 14 can be suppressed when the FWD is on, so that the recovery current can be reduced.

なお、本発明は、その発明の範囲内において、各実施の形態及び各変形例を自由に組み合わせたり、各実施の形態及び各変形例を適宜、変形、省略したりすることが可能である。 In the present invention, each embodiment and each modification can be freely combined, and each embodiment and each modification can be appropriately modified or omitted within the scope of the invention.

1 FWD領域、2 IGBT領域、3 耐圧保持領域、11 半導体基板、13 p型アノード層、14 第1p型拡散層、16 n型カソード層、24 表面電極、25 裏面電極、31 第1トレンチ、32 第2トレンチ、35 分離領域。 1 FWD region, 2 IGBT region, 3 breakdown voltage holding region, 11 semiconductor substrate, 13 p-type anode layer, 14 1st p-type diffusion layer, 16 n-type cathode layer, 24 front electrode, 25 back electrode, 31 first trench, 32 Second trench, 35 separation area.

Claims (1)

半導体装置の製造方法であって、
前記半導体装置は、
第1主面及び第2主面を有し、還流ダイオードが配設された第1領域と、IGBT(Insulated Gate Bipolar Transistor)が配設された第2領域と、平面視で前記第1領域及び前記第2領域を囲む耐圧保持領域とが規定された半導体基板と、
前記第1領域、前記第2領域及び前記耐圧保持領域の前記第1主面上に配設された表面電極と、
前記第1領域、前記第2領域及び前記耐圧保持領域の前記第2主面上に配設された裏面電極と
を備え、
前記半導体基板は、
前記第1領域の前記第1主面に配設された、第1導電型を有するアノード層と、
前記アノード層と隣接して前記耐圧保持領域の前記第1主面に配設された、前記第1導電型を有する拡散層と、
前記第1領域の前記第2主面に配設された、第2導電型を有するカソード層と
を備え、
一の前記拡散層は、当該拡散層を形成すべき領域内において千鳥状に配設された複数の領域に不純物を注入して熱拡散することによって形成され、
前記表面電極は前記拡散層と非接触である、半導体装置の製造方法。
It is a manufacturing method of semiconductor devices.
The semiconductor device is
A first region having a first main surface and a second main surface and a freewheeling diode is arranged, a second region in which an IGBT (Insulated Gate Bipolar Transistor) is arranged, the first region and the first region in a plan view. A semiconductor substrate in which a withstand voltage holding region surrounding the second region is defined, and
A surface electrode disposed on the first main surface of the first region, the second region, and the pressure resistance holding region, and
A back surface electrode arranged on the second main surface of the first region, the second region, and the pressure resistance holding region is provided.
The semiconductor substrate is
An anode layer having a first conductive type, which is arranged on the first main surface of the first region, and
A diffusion layer having the first conductive type, which is arranged on the first main surface of the pressure-resistant holding region adjacent to the anode layer, and
A cathode layer having a second conductive type, which is arranged on the second main surface of the first region, is provided.
One of the diffusion layers is formed by injecting impurities into a plurality of regions arranged in a staggered pattern in the region where the diffusion layer should be formed and thermally diffusing the layers.
A method for manufacturing a semiconductor device, wherein the surface electrode is in non-contact with the diffusion layer.
JP2019217895A 2019-12-02 2019-12-02 Manufacturing method of semiconductor devices Active JP6843952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019217895A JP6843952B2 (en) 2019-12-02 2019-12-02 Manufacturing method of semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019217895A JP6843952B2 (en) 2019-12-02 2019-12-02 Manufacturing method of semiconductor devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017085001A Division JP6804379B2 (en) 2017-04-24 2017-04-24 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2020039001A JP2020039001A (en) 2020-03-12
JP6843952B2 true JP6843952B2 (en) 2021-03-17

Family

ID=69738256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019217895A Active JP6843952B2 (en) 2019-12-02 2019-12-02 Manufacturing method of semiconductor devices

Country Status (1)

Country Link
JP (1) JP6843952B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7374818B2 (en) 2020-03-06 2023-11-07 三菱重工業株式会社 ammonia engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363327A (en) * 2003-06-04 2004-12-24 Fuji Electric Device Technology Co Ltd Semiconductor device
JP2006173437A (en) * 2004-12-17 2006-06-29 Toshiba Corp Semiconductor device
JP5515922B2 (en) * 2010-03-24 2014-06-11 富士電機株式会社 Semiconductor device
JP2014038937A (en) * 2012-08-16 2014-02-27 Mitsubishi Electric Corp Semiconductor device
JP2014103376A (en) * 2012-09-24 2014-06-05 Toshiba Corp Semiconductor device
CN104704635A (en) * 2012-10-02 2015-06-10 三菱电机株式会社 Semiconductor device and method for manufacturing same
JP6668697B2 (en) * 2015-05-15 2020-03-18 富士電機株式会社 Semiconductor device
DE102015111371B4 (en) * 2015-07-14 2017-07-20 Infineon Technologies Ag Semiconductor component with a switchable and a non-switchable diode region

Also Published As

Publication number Publication date
JP2020039001A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
KR101309674B1 (en) Insulated gate bipolar transistor and manufacturing method thereof
CN102593168B (en) Semiconductor device and a reverse conducting IGBT
WO2018155566A1 (en) Silicon carbide semiconductor device, and electric power converting device
KR101613442B1 (en) Insulating gate-type bipolar transistor
KR20140031982A (en) Semiconductor device
US20230106654A1 (en) Semiconductor device and method of manufacturing semiconductor device
JP2013115223A (en) Semiconductor device
US9613951B2 (en) Semiconductor device with diode
US9153678B2 (en) Power semiconductor device and method of manufacturing the same
JP2021052078A (en) Semiconductor device and manufacturing method thereof
JP6843952B2 (en) Manufacturing method of semiconductor devices
JP6101440B2 (en) Diode and power converter using the same
JP2019075502A (en) Semiconductor device
JP2018078230A (en) Power semiconductor device and method of manufacturing the same
CN109564939B (en) Semiconductor device with a plurality of semiconductor chips
JP5465937B2 (en) Semiconductor device, semiconductor device control method, and semiconductor module
JP6020317B2 (en) Semiconductor element
JP6002387B2 (en) Diode and power conversion system using the same
US20150187869A1 (en) Power semiconductor device
JP7521620B2 (en) Semiconductor Device
US9356116B2 (en) Power semiconductor device and method of fabricating the same
JP2013069801A (en) Semiconductor device
WO2012042640A1 (en) Semiconductor device
JP3277125B2 (en) Semiconductor device
US9147757B2 (en) Power semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210224

R150 Certificate of patent or registration of utility model

Ref document number: 6843952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250