JP6843396B2 - Plasma etching processing method for multi-component materials - Google Patents

Plasma etching processing method for multi-component materials Download PDF

Info

Publication number
JP6843396B2
JP6843396B2 JP2018017230A JP2018017230A JP6843396B2 JP 6843396 B2 JP6843396 B2 JP 6843396B2 JP 2018017230 A JP2018017230 A JP 2018017230A JP 2018017230 A JP2018017230 A JP 2018017230A JP 6843396 B2 JP6843396 B2 JP 6843396B2
Authority
JP
Japan
Prior art keywords
processing
plasma
component
component material
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018017230A
Other languages
Japanese (ja)
Other versions
JP2019131451A (en
Inventor
和也 山村
和也 山村
雄司 大久保
雄司 大久保
栄硯 孫
栄硯 孫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Priority to JP2018017230A priority Critical patent/JP6843396B2/en
Publication of JP2019131451A publication Critical patent/JP2019131451A/en
Application granted granted Critical
Publication of JP6843396B2 publication Critical patent/JP6843396B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、多成分材料の加工において表面粗さの悪化を抑制できる、多成分材料のプラズマエッチング加工方法に関する。 The present invention relates to a plasma etching processing method for a multi-component material, which can suppress deterioration of surface roughness in the processing of the multi-component material.

多成分材料である反応焼結炭化ケイ素(Reaction Sintered Silicon Carbide:RS−SiC)材は、耐食性、耐熱性、耐摩耗性に優れ、高剛性、高熱伝導、低熱膨脹、低比重などの特性を持つことから、ガラスモールド用の金型材料に適した材料である。 Reaction Sintered Silicon Carbide (RS-SiC), which is a multi-component material, has excellent corrosion resistance, heat resistance, and abrasion resistance, and has properties such as high rigidity, high thermal conductivity, low thermal expansion, and low specific gravity. Therefore, it is a material suitable for a mold material for a glass mold.

しかしながら、高硬度かつ化学的に不活性であるため、ダイヤモンド砥粒を用いた研削加工ではスクラッチや加工変質層の生成が問題となる。また、研磨工程において用いられるCMP(Chemical Mechanical Polishing)では、ダメージのない良好な表面粗さが得られるが、加工速度が遅いうえ、さらに研磨に用いるスラリーと呼ばれる研磨液は凝集等を防ぐための維持管理が難しく、購入価格や産廃処理費用も高いことから、代替技術の開発が望まれている(たとえば、特許文献1参照。)。 However, since it has high hardness and is chemically inert, scratches and formation of a work-altered layer become a problem in grinding using diamond abrasive grains. Further, in CMP (Chemical Mechanical Polishing) used in the polishing process, good surface roughness without damage can be obtained, but the processing speed is slow and the polishing liquid called slurry used for polishing is used to prevent aggregation and the like. Since maintenance is difficult and the purchase price and industrial waste treatment cost are high, the development of an alternative technology is desired (see, for example, Patent Document 1).

特開2003−197574号公報Japanese Unexamined Patent Publication No. 2003-197574

そこで、本発明が前述の状況に鑑み、解決しようとするところは、多成分材料で高硬度かつ化学的不活性な材料であっても、スクラッチや加工変質層の生成がなく、効率よく低コストにダメージのない均一で良好な表面粗さが得られる加工方法を提供する点にある。 Therefore, what the present invention seeks to solve in view of the above-mentioned situation is that even if the material is a multi-component material with high hardness and chemically inertness, there is no scratching or formation of a work-affected layer, and the cost is efficiently low. The point is to provide a processing method that can obtain uniform and good surface roughness without damage.

本発明者は、プラズマエッチング加工に着目した。プラズマエッチング加工であれば、高硬度かつ化学的不活性な材料であっても、スクラッチや加工変質層の生成がなく、効率よく低コストに加工を行うことができる。特に、高能率な化学的ダメージフリー加工法として知られる大気圧プラズマCVM(atmospheric-pressure plasma chemical vaporization machining:AP−PCVM)を用いれば、より効率よく低コストに加工を行うことが可能となる。 The present inventor has focused on plasma etching processing. In the case of plasma etching processing, even if the material has high hardness and is chemically inert, it can be processed efficiently and at low cost without scratching or forming a processing alteration layer. In particular, if atmospheric-pressure plasma chemical vaporization machining (AP-PCVM) known as a highly efficient chemical damage-free processing method is used, processing can be performed more efficiently and at low cost.

しかし、プラズマエッチング加工は、SiやSiC、水晶ウエハなどの単成分材料の場合には良好な表面粗さが得られるものの、多成分材料に対しては、表面粗さが悪く、良好な表面粗さが得られず、また、加工領域内での加工量(エッチングレート)も均一にならず、良好な加工面が得られなかった。 However, although plasma etching processing can obtain good surface roughness in the case of single component materials such as Si, SiC, and quartz wafers, the surface roughness is poor in the case of multi-component materials, and good surface roughness is obtained. In addition, the processing amount (etching rate) in the processing region was not uniform, and a good processed surface could not be obtained.

そこで、本発明者は更に鋭意検討した結果、多成分材料を構成する各成分のプラズマによる反応性の相違が、表面粗さの悪化や加工量の不均一化の原因であり、各成分ごとのプラズマによる反応性を考慮することで、表面粗さを良好なものにしたり、加工領域内の加工量を均一化できることを見出し、本発明を完成するに至ったものである。 Therefore, as a result of further diligent studies by the present inventor, the difference in the reactivity of each component constituting the multi-component material due to plasma is the cause of the deterioration of the surface roughness and the non-uniformity of the processing amount. It has been found that the surface roughness can be made good and the amount of processing in the processing region can be made uniform by considering the reactivity by plasma, and the present invention has been completed.

すなわち本発明は、以下の発明を包含する。
(1) 多成分材料のプラズマエッチング加工方法であって、プラズマ発生条件を、多成分材料を構成する各成分からなる材料のエッチングレートが、ほぼ同じレートとなる範囲内のプラズマ発生条件に設定し、該プラズマ発生条件を用いて、多成分材料をプラズマエッチング加工することを特徴とするプラズマエッチング加工方法。
That is, the present invention includes the following inventions.
(1) In the plasma etching processing method for a multi-component material, the plasma generation condition is set to a plasma generation condition within a range in which the etching rate of the material composed of each component constituting the multi-component material is almost the same. , A plasma etching processing method characterized in that a multi-component material is plasma-etched using the plasma generation conditions.

(2) 前記プラズマ発生条件が、反応ガスの混合比である(1)記載のプラズマエッチング加工方法。
(3) 前記多成分材料がRS−SiCであり、反応ガスをCFとOの混合ガスとし、且つ反応ガスの混合比をOガス80〜90%に設定してプラズマエッチング加工する(2)記載のプラズマエッチング加工方法。
(2) The plasma etching processing method according to (1), wherein the plasma generation condition is a mixing ratio of reaction gases.
(3) The multi-component material is RS-SiC, the reaction gas is a mixed gas of CF 4 and O 2 , and the mixing ratio of the reaction gas is set to 80 to 90% of the O 2 gas, and plasma etching is performed ( 2) The plasma etching processing method described.

(4) 加工ギャップを、多成分材料を構成する各成分からなる材料の加工痕の形状が、ほぼ円形ないし楕円形となる範囲内の加工ギャップに設定し、該加工ギャップのもと、多成分材料をプラズマエッチング加工する(1)〜(3)のいずれかに記載のプラズマエッチング加工方法。なお、本発明でいう「加工痕」は静止加工痕である。 (4) The machining gap is set to a machining gap within a range in which the shape of the machining mark of the material composed of each component constituting the multi-component material is substantially circular or elliptical, and the multi-component is set under the machining gap. The plasma etching processing method according to any one of (1) to (3), wherein the material is plasma-etched. The "machining mark" referred to in the present invention is a static machining mark.

(5) 多成分材料のプラズマエッチング加工方法であって、加工ギャップを、多成分材料を構成する各成分からなる材料の加工痕の形状が、ほぼ円形ないし楕円形となる範囲内の加工ギャップに設定し、該加工ギャップのもと、多成分材料をプラズマエッチング加工することを特徴とするプラズマエッチング加工方法。 (5) In a plasma etching processing method for a multi-component material, the processing gap is set within a range in which the shape of the processing mark of the material composed of each component constituting the multi-component material is substantially circular or elliptical. A plasma etching processing method characterized by setting and plasma etching a multi-component material under the processing gap.

以上にしてなる本発明によれば、プラズマ発生条件を、多成分材料を構成する各成分からなる材料のエッチングレートが、ほぼ同じレートとなる範囲内のプラズマ発生条件に設定し、該プラズマ発生条件を用いて、多成分材料をプラズマエッチング加工することで、各成分のエッチングレートの相違に基づく凹凸が生じなく、効率よく低コストにダメージのない良好な表面粗さが得られる。 According to the present invention as described above, the plasma generation condition is set to a plasma generation condition within a range in which the etching rate of the material composed of each component constituting the multi-component material is substantially the same, and the plasma generation condition is set. By plasma etching the multi-component material using the above, unevenness due to the difference in the etching rate of each component does not occur, and good surface roughness can be obtained efficiently and at low cost without damage.

とくに、前記プラズマ発生条件として、エッチングレートに大きく影響する反応ガスの混合比を、前記各成分からなる材料のエッチングレートが同じレートとなる範囲内の混合比にすることで、より効率よく良好な表面粗さを得ることができる。たとえば多成分材料がRS−SiCの場合、反応ガスをCFとOの混合ガスとし、且つ反応ガスの混合比をOガス80〜90%に設定することで良好な表面粗さを効率よく得ることができる。 In particular, as the plasma generation condition, the mixing ratio of the reaction gas, which greatly affects the etching rate, is set to a mixing ratio within a range in which the etching rate of the material composed of each component is the same, so that it is more efficient and good. Surface roughness can be obtained. For example, when the multi-component material is RS-SiC, the reaction gas is a mixed gas of CF 4 and O 2 , and the mixing ratio of the reaction gas is set to 80 to 90% of the O 2 gas to achieve good surface roughness efficiency. You can get it well.

また、多成分材料を構成する各成分からなる材料の加工痕の形状が、ほぼ円形ないし楕円形となる範囲内の加工ギャップに設定し、該加工ギャップのもと、多成分材料をプラズマエッチング加工することで、各成分の加工領域内のエッチングレートの片寄りによる加工量(エッチングレート)の不均一化が生じなく、均一な加工を行うことができる。 Further, the shape of the processing mark of the material composed of each component constituting the multi-component material is set to a processing gap within a range of being substantially circular or elliptical, and the multi-component material is plasma-etched under the processing gap. By doing so, uniform processing can be performed without causing non-uniformity of the processing amount (etching rate) due to the deviation of the etching rate in the processing region of each component.

(a)、(b)は、本発明の代表的実施形態にかかるプラズマエッチング加工装置を示す説明図。(A) and (b) are explanatory views which show the plasma etching processing apparatus which concerns on the typical embodiment of this invention. (a)は、加工ギャップ3.0mmでの各成分材料の加工痕、および同ギャップでの多成分材料の加工痕を示す走査型白色光干渉計(SWLI)画像、(b)は、加工ギャップ6.0mmでの各成分材料の加工痕、および同ギャップでの多成分材料の加工痕を示すSWLI画像。(A) is a scanning white light interferometer (SWLI) image showing the processing marks of each component material in the processing gap of 3.0 mm and the processing marks of the multi-component material in the same gap, and (b) is the processing gap. SWLI image showing the processing marks of each component material at 6.0 mm and the processing marks of the multi-component material at the same gap. 反応ガスの混合比と各成分材料のエッチングレートとの関係を示すグラフ。The graph which shows the relationship between the mixing ratio of a reaction gas and the etching rate of each component material. (a)は、図3のAの反応ガス組成(混合比が酸素80%)による多成分材料の加工痕を示すSWLI画像とa−b横断切片の表面形状を示すグラフ、(b)は、図3のBの反応ガス組成(混合比が酸素85%)による多成分材料の加工痕を示すSWLI画像とa−b横断切片の表面形状を示すグラフ、(c)は、図3のCの反応ガス組成(混合比が酸素90%)による多成分材料の加工痕を示すSWLI画像とa−b横断切片の表面形状を示すグラフ、(d)は、図3のDの反応ガス組成(混合比が酸素50%)による多成分材料の加工痕を示すSWLI画像とa−b横断切片の表面形状を示すグラフ。(A) is a SWLI image showing the processing marks of the multi-component material according to the reaction gas composition (mixing ratio is 80% oxygen) of FIG. 3A, and the graph showing the surface shape of the ab cross section, (b) is. The SWLI image showing the processing marks of the multi-component material according to the reaction gas composition (mixing ratio: oxygen 85%) of B in FIG. 3 and the graph showing the surface shape of the ab cross section, (c) is the graph of C in FIG. The SWLI image showing the processing marks of the multi-component material due to the reaction gas composition (mixing ratio of 90% oxygen) and the graph showing the surface shape of the ab cross section, (d) is the reaction gas composition (mixing) of FIG. 3D. A SWLI image showing processing marks of a multi-component material with a ratio of 50% oxygen) and a graph showing the surface shape of ab cross sections. (a)は、図3のCの反応ガス組成(混合比が酸素90%)による多成分材料の加工表面の走査型電子顕微鏡(SEM)画像、(b)は、図3のDの反応ガス組成(混合比が酸素50%)による多成分材料の加工表面のSEM画像。(A) is a scanning electron microscope (SEM) image of the processed surface of the multi-component material according to the reaction gas composition of C in FIG. 3 (mixing ratio is 90% oxygen), and (b) is the reaction gas of D in FIG. SEM image of the processed surface of a multi-component material according to the composition (mixing ratio is 50% oxygen). (a)は、図3のDの反応ガス組成(混合比が酸素50%)による多成分材料の30秒間の加工痕を示すSWLI画像、(b)は同じく60秒間の加工痕を示すSWLI画像、(c)は各場合のa−b横断切片の表面形状を示すグラフ。(A) is a SWLI image showing a processing mark of a multi-component material for 30 seconds according to the reaction gas composition (mixing ratio of oxygen is 50%) of FIG. 3D, and (b) is a SWLI image showing a processing mark of the same 60 seconds. , (C) is a graph showing the surface shape of the ab cross section in each case. (a)は、図3のCの反応ガス組成(混合比が酸素90%)による多成分材料の60秒間の加工痕を示すSWLI画像、(b)は同じく120秒間の加工痕を示すSWLI画像、(c)は各場合のa−b横断切片の表面形状を示すグラフ。(A) is a SWLI image showing a processing mark of a multi-component material for 60 seconds according to the reaction gas composition (mixing ratio of 90% oxygen) of C in FIG. 3, and (b) is a SWLI image showing a processing mark of the same 120 seconds. , (C) is a graph showing the surface shape of the ab cross section in each case. (a)は、プラズマエッチング加工前のダイヤモンド・ラップ仕上げをした多成分材料の表面の原子間力顕微鏡(AFM)画像とそのA−B間の断面形状を示す図、(b)は、図3のDの反応ガス組成(混合比が酸素50%)による多成分材料の加工表面のAFM画像とそのA−B間の断面形状を示す図、(c)は、図3のCの反応ガス組成(混合比が酸素90%)による多成分材料の加工表面のAFM画像とそのA−B間の断面形状を示す図、(d)は、混合比が酸素95%の反応ガス組成による多成分材料の加工表面のAFM画像とそのA−B間の断面形状を示す図。(A) is a diagram showing an atomic force microscope (AFM) image of the surface of a multi-component material having a diamond wrap finish before plasma etching processing and a cross-sectional shape between A and B thereof, and FIG. 3 (b) is a diagram showing a cross-sectional shape between A and B. The figure showing the AFM image of the processed surface of the multi-component material by the reaction gas composition of D (mixing ratio is 50% oxygen) and the cross-sectional shape between A and B thereof, (c) is the reaction gas composition of C of FIG. The figure showing the AFM image of the processed surface of the multi-component material with (mixing ratio of 90% oxygen) and the cross-sectional shape between A and B thereof, (d) shows the multi-component material with a reaction gas composition having a mixing ratio of 95% oxygen. The figure which shows the AFM image of the processed surface and the cross-sectional shape between AB. (a)は、プラズマエッチング加工前のダイヤモンド・ラップ仕上げをした多成分材料の断面構造を示す模式図、(b)は、図3のDの反応ガス組成(混合比が酸素50%)による多成分材料の加工後の断面構造を示す模式図、(c)は、図3のCの反応ガス組成(混合比が酸素90%)による多成分材料の加工後の断面構造を示す模式図、(d)は、混合比が酸素95%の反応ガス組成による多成分材料の加工後の断面構造を示す模式図。(A) is a schematic view showing a cross-sectional structure of a multi-component material that has been diamond-wrapped before plasma etching, and (b) is a poly-based reaction gas composition (mixing ratio of 50% oxygen) of FIG. 3D. Schematic diagram showing the cross-sectional structure of the component material after processing, (c) is a schematic view showing the cross-sectional structure of the multi-component material after processing according to the reaction gas composition (mixing ratio of 90% oxygen) of C in FIG. d) is a schematic view showing a cross-sectional structure of a multi-component material after processing with a reaction gas composition having a mixing ratio of 95% oxygen.

次に、本発明の実施形態を添付図面に基づき詳細に説明する。 Next, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

本発明の多成分材料のプラズマエッチング加工方法は、プラズマ発生条件につき、多成分材料を構成する各成分からなる材料のエッチングレートが、ほぼ同じレートとなる範囲内の条件に設定し、この条件を用いて多成分材料をプラズマエッチング加工することを特徴とするものであり、これにより各成分のエッチングレートの相違に基づく凹凸が生じなく、良好な表面粗さが得られるものである。 In the plasma etching processing method for a multi-component material of the present invention, the etching rate of the material composed of each component constituting the multi-component material is set to a condition within a range in which the etching rate is substantially the same for the plasma generation condition, and this condition is set. It is characterized in that a multi-component material is plasma-etched by using the material, whereby unevenness due to a difference in etching rate of each component does not occur, and good surface roughness can be obtained.

このようなプラズマ発生条件としては、反応ガスの混合比や反応ガスを含むプロセスガスの流量、電力量、加工ギャップなどがあるが、特に、反応ガスの混合比はエッチングレートに大きく影響するため、この混合比を各成分材料のエッチングレートがほぼ同じになるように設定することが最も効果的である。 Such plasma generation conditions include the mixing ratio of the reaction gas, the flow rate of the process gas including the reaction gas, the electric energy, the processing gap, and the like. In particular, the mixing ratio of the reaction gas greatly affects the etching rate. It is most effective to set this mixing ratio so that the etching rates of the respective component materials are substantially the same.

また、本発明は、多成分材料のプラズマエッチング加工方法であって、加工ギャップを、多成分材料を構成する各成分からなる材料の加工痕の形状が、ほぼ円形ないし楕円形となる範囲内の加工ギャップに設定し、該加工ギャップのもと、多成分材料をプラズマエッチング加工することをも特徴とし、これにより各成分の加工領域内のエッチングレートの片寄りによる加工量(エッチングレート)の不均一化が生じなく、均一な加工を行うことができるものである。 Further, the present invention is a plasma etching processing method for a multi-component material, in which the processing gap is within a range in which the shape of the processing mark of the material composed of each component constituting the multi-component material is substantially circular or elliptical. It is also characterized by setting a processing gap and plasma-etching a multi-component material under the processing gap, so that the processing amount (etching rate) is not large due to the deviation of the etching rate in the processing region of each component. Uniform processing can be performed without homogenization.

以下の実施形態では、各成分からなる材料のエッチングレートがほぼ同じになるようにプラズマ発生条件を設定することに加え、その前段階として、各成分からなる材料の加工痕の形状がほぼ円形ないし楕円形となる範囲内の加工ギャップに設定しているが、本発明は、双方の設定を組み合わせて用いることに何ら限定されず、一方のみ、すなわちエッチングレートがほぼ同じになるようにプラズマ発生条件を設定するが、各成分からなる材料の加工痕の形状はほぼ円形ないし楕円形とならないものや、その逆の場合も含まれる。 In the following embodiments, in addition to setting the plasma generation conditions so that the etching rates of the materials composed of each component are substantially the same, as a preliminary step, the shape of the processing marks of the material composed of each component is substantially circular or. Although the processing gap is set within the range of elliptical shape, the present invention is not limited to using both settings in combination, and the plasma generation condition is such that only one of them, that is, the etching rate is almost the same. However, the shape of the processing marks of the material composed of each component does not become almost circular or elliptical, and vice versa.

本発明の加工対象としての「多成分材料」としては、プラズマエッチング加工が可能な多成分材料を広く適用でき、とくにセラミックス材料の加工に好適である。セラミックス材料の中でもダメージフリーで良好な表面粗さを得ることが難しい反応焼結セラミックス材料を対象とすれば効果的である。以下、大気圧プラズマCVM(AP−PCVM)の装置を用いて、反応焼結炭化ケイ素(RS−SiC)をプラズマエッチング加工する例について説明する。 As the "multi-component material" to be processed in the present invention, a multi-component material capable of plasma etching processing can be widely applied, and is particularly suitable for processing ceramic materials. Among ceramic materials, it is effective to target reaction-sintered ceramic materials that are damage-free and difficult to obtain good surface roughness. Hereinafter, an example in which reaction-sintered silicon carbide (RS-SiC) is plasma-etched using an atmospheric pressure plasma CVM (AP-PCVM) apparatus will be described.

図1は、本実施形態で用いるAP−PCVM装置1の概略構成を示している。中心部にキャリアガスとしてアルゴンガスを供給するセラミック管2が設けられ、該セラミック管2の周囲には空洞共振器3が配置されている。空洞共振器3には、セラミック管2の先端付近(空洞共振器3の内側導体30の先端位置)に最大強度の電界が生成されるように、周波数2.45GHzのマイクロ波電界が付与される。このマイクロ波によりセラミック管2の先端付近の内部でアルゴンプラズマP1が発生する。 FIG. 1 shows a schematic configuration of the AP-PCVM device 1 used in the present embodiment. A ceramic tube 2 for supplying argon gas as a carrier gas is provided in the central portion, and a cavity resonator 3 is arranged around the ceramic tube 2. A microwave electric field having a frequency of 2.45 GHz is applied to the cavity resonator 3 so that an electric field having the maximum strength is generated near the tip of the ceramic tube 2 (the tip position of the inner conductor 30 of the cavity resonator 3). .. Argon plasma P1 is generated inside the vicinity of the tip of the ceramic tube 2 by this microwave.

また、セラミック管2の先端開口が臨む空洞共振器3の内部には、側方の供給口11より、プロセスガスとしてアルゴン、CF、Oガスが供給され、上記アルゴンプラズマ中の活性アルゴンがプロセスガス中の反応ガス成分CF、Oに衝突することで、エッチングに寄与するFラジカルおよび活性酸素が生成される二次的プラズマP2が生じ、空洞共振器3先端のノズル4から吐出した先で被加工物9の表面をエッチング加工する。 Further, argon, CF 4 , and O 2 gas are supplied as process gases from the side supply port 11 into the cavity resonator 3 facing the tip opening of the ceramic tube 2, and the active argon in the argon plasma is discharged. By colliding with the reaction gas components CF 4 and O 2 in the process gas, a secondary plasma P2 that generates F radicals and active oxygen that contribute to etching is generated and discharged from the nozzle 4 at the tip of the cavity resonator 3. First, the surface of the workpiece 9 is etched.

プラズマP2によるRS−SiCのエッチング加工は、RS−SiCを構成するSiおよびSiCの酸化プロセス、並びにSi、SiC及び酸化物SiOのエッチング過程により行われる。酸化プロセスは、
SiC+4O*→SiO+CO
Si+2O*→SiO
の各反応が生じ、エッチング過程は、
SiO+4F*→SiF↑+O
SiC+2O*+4F*→SiF↑+CO
Si+4F*→SiF
の各反応が生じる。O*は活性酸素、F*はFラジカルを示す。
The etching process of RS-SiC by the plasma P2 is carried out by an oxidation process of Si and SiC constituting RS-SiC and an etching process of Si, SiC and oxide SiO 2. Oxidation process
SiC + 4O * → SiO 2 + CO 2
Si + 2O * → SiO 2
Each reaction occurs, and the etching process is
SiO 2 + 4F * → SiF 4 ↑ + O 2
SiC + 2O * + 4F * → SiC 4 ↑ + CO 2
Si + 4F * → SiF 4
Each reaction occurs. O * indicates active oxygen and F * indicates F radical.

空洞共振器3は図示しないXYZテーブル上に支持されてコンピュータ数値制御(CNC)され、ノズル4先端と被加工物との間の加工ギャップの調整や横方向への移動がなされる。以上の装置構成は例示であり、他の装置構成でも勿論よい。また、キャリアガス、プロセスガスの種類も上記ガスに限定されるものではなく、被加工物に応じて適したものを選択できる。本実施形態の被加工物9であるRS−SiCは、AP−PCVM装置1で加工する前の前加工として、ダイヤモンド・ラップ仕上げを行った。 The cavity resonator 3 is supported on an XYZ table (not shown) and is numerically controlled by a computer (CNC) to adjust the machining gap between the tip of the nozzle 4 and the workpiece and move it in the lateral direction. The above device configuration is an example, and of course other device configurations may be used. Further, the types of carrier gas and process gas are not limited to the above gases, and suitable ones can be selected according to the workpiece. RS-SiC, which is the workpiece 9 of the present embodiment, was diamond-wrapped as a pre-processing before being processed by the AP-PCVM device 1.

本実施形態では、RS−SiCをプラズマエッチング加工するにあたり、まず加工ギャップを最適な値に設定する。図2(a)の右端のSWLI画像は、加工ギャップ3.0mmにおけるRS−SiC表面の加工痕を示しており、図2(b)の右端のSWLI画像は、加工ギャップ6.0mmにおけるRS−SiC表面の加工痕を示している。加工時間は60秒、反応ガス(CF、Oガス)のOガスの混合比(流量(sccm)の比)を50%とした。いずれも表面粗さは良くないが、加工ギャップ3.0mmの場合、加工領域(加工痕)内のエッチングレートが左半分の領域に片寄り、加工量(エッチングレート)の不均一化が生じているのに対し、加工ギャップ6.0mmの場合は、加工領域(加工痕)内の加工量(エッチングレート)が均一化していることが分かる。 In the present embodiment, when plasma etching the RS-SiC, the processing gap is first set to an optimum value. The SWLI image at the right end of FIG. 2 (a) shows the processing marks on the RS-SiC surface at the processing gap of 3.0 mm, and the SWLI image at the right end of FIG. 2 (b) shows the RS-SiC surface at the processing gap of 6.0 mm. The processing marks on the SiC surface are shown. The processing time was 60 seconds, and the mixing ratio (ratio of flow rate (sccm)) of the reaction gas (CF 4 , O 2 gas) to the O 2 gas was set to 50%. The surface roughness is not good in either case, but when the machining gap is 3.0 mm, the etching rate in the machining area (machining mark) is biased to the left half region, and the machining amount (etching rate) becomes non-uniform. On the other hand, when the machining gap is 6.0 mm, it can be seen that the machining amount (etching rate) in the machining region (machining mark) is uniform.

そして、図2(a)の左端と中央のSWLI画像は、それぞれ多成分材料(RS−SiC)を構成する各成分材料(SiC(単結晶SiC)とSi(単結晶Si))を用意し、それぞれ同じ加工ギャップ3.0mm、その他同じ条件で加工した材料表面の加工痕を示している。図2(b)の左端と中央のSWLI画像も、それぞれ多成分材料(RS−SiC)を構成する各成分材料(SiC(単結晶SiC)とSi(単結晶Si))を用意し、それぞれ同じ加工ギャップ6.0mm、その他同じ条件で加工した材料表面の加工痕を示している。 Then, for the SWLI images at the left end and the center of FIG. 2A, each component material (SiC (single crystal SiC) and Si (single crystal Si)) constituting the multi-component material (RS-SiC) is prepared. The processing marks on the surface of the material processed under the same processing gap of 3.0 mm and other same conditions are shown. For the SWLI images at the left end and the center of FIG. 2B, each component material (SiC (single crystal SiC) and Si (single crystal Si)) constituting the multi-component material (RS-SiC) is prepared and the same. The processing gap is 6.0 mm, and the processing marks on the surface of the material processed under the same conditions are shown.

この結果から、加工ギャップ3.0mmの場合、図2(a)の中央のSWLI画像が示すようにSi成分の加工が左側に片寄った歪な形状をしており、その影響で、RS−SiCの加工量も左半分の領域に片寄ったものとなっていることが分かる。これに対し、加工ギャップ6.0mmの場合、図2(b)に示すようにSiC(単結晶SiC)とSi(単結晶Si)の両材料とも加工痕の形状がほぼ円形ないし楕円形で均一な加工がされており、結果、RS−SiCの加工も均一な加工となっていることが分かる。 From this result, when the processing gap is 3.0 mm, the processing of the Si component has a distorted shape that is offset to the left as shown by the SWLI image in the center of FIG. 2 (a). It can be seen that the processing amount of is also biased toward the left half area. On the other hand, when the processing gap is 6.0 mm, as shown in FIG. 2 (b), the shape of the processing marks is almost circular or elliptical and uniform for both SiC (single crystal SiC) and Si (single crystal Si) materials. As a result, it can be seen that the processing of RS-SiC is also uniform.

このように、多成分材料を構成する各成分からなる材料の加工痕の形状が、ほぼ円形ないし楕円形となる範囲内の加工ギャップに設定すれば、均一な加工を行うことができるのである。加工ギャップGが大きくなりすぎると加工レートが落ちるため、本実施形態のように反応ガスCFおよびOガスを用いたAP−PCVM装置によるRS−SiCの加工においては、5.0mm〜7.0mm、好ましくは6.0mmに加工ギャップが設定される。 As described above, if the shape of the processing mark of the material composed of each component constituting the multi-component material is set to the processing gap within the range of being substantially circular or elliptical, uniform processing can be performed. If the processing gap G becomes too large, the processing rate drops. Therefore, in the processing of RS-SiC by the AP-PCVM device using the reaction gases CF 4 and O 2 gas as in the present embodiment, 5.0 mm to 7. The machining gap is set to 0 mm, preferably 6.0 mm.

次に、反応ガス(CF、Oガス)のOガスの混合比(流量(sccm)の比)を設定する。図4(a)〜(d)は、それぞれ前記混合比を酸素80%、85%、90%、50%としたときの加工痕を示すSWLI画像とa−b横断切片の表面形状を示すグラフである。なお、50%の加工痕の画像は、同じ条件で加工した図2(b)の右端の画像とほぼ同じである。この結果からOガスの混合比を80〜90%に設定すれば、良好な表面粗さの加工が行えることが分かる。 Next, the mixing ratio (ratio of flow rate (sccm)) of the O 2 gas of the reaction gas (CF 4 , O 2 gas) is set. 4 (a) to 4 (d) are a SWLI image showing processing marks when the mixing ratios are 80%, 85%, 90%, and 50% oxygen, respectively, and a graph showing the surface shape of the ab cross section. Is. The image of the 50% processed mark is almost the same as the image at the right end of FIG. 2B processed under the same conditions. From this result, it can be seen that if the mixing ratio of O 2 gas is set to 80 to 90%, processing with good surface roughness can be performed.

そして、図3は、多成分材料(RS−SiC)を構成する各成分材料(SiC(単結晶SiC)とSi(単結晶Si))を用意し、それぞれOガスの混合比を変化させて加工したときのエッチングレートを示すグラフである。グラフ中A、B、C、Dは、それぞれOガス混合比が80%、85%、90%、50%の位置を示している。このグラフから分かるように、上記良好な表面粗さの加工が行われたOガス混合比80〜90%(A〜C)は、各成分材料(SiC(単結晶SiC)とSi(単結晶Si))のエッチングレートが、ほぼ同じレートとなる範囲の混合比であることが分かる。 Then, in FIG. 3, each component material (SiC (single crystal SiC) and Si (single crystal Si)) constituting the multi-component material (RS-SiC) is prepared, and the mixing ratio of O 2 gas is changed for each. It is a graph which shows the etching rate at the time of processing. In the graph, A, B, C, and D indicate the positions where the O 2 gas mixing ratios are 80%, 85%, 90%, and 50%, respectively. As can be seen from this graph, the O 2 gas mixing ratios of 80 to 90% (A to C) subjected to the above-mentioned good surface roughness processing are the respective component materials (SiC (single crystal SiC) and Si (single crystal). It can be seen that the etching rate of Si)) is a mixing ratio in a range in which the etching rate is almost the same.

このように、多成分材料を構成する各成分からなる材料のエッチングレートが、ほぼ同じレートとなる範囲内の反応ガスの混合比に設定すれば、良好な表面粗さの加工を行うことができるのである。本実施形態のように反応ガスCFおよびOガスを用いたAP−PCVM装置によるRS−SiCの加工においては、上述のとおり、好ましくはOガス混合比を80〜90%、より好ましくは85〜90%に設定される。 As described above, if the etching rate of the material composed of each component constituting the multi-component material is set to the mixing ratio of the reaction gas within a range of substantially the same rate, processing with good surface roughness can be performed. It is. In the processing of RS-SiC by the AP-PCVM apparatus using the reaction gases CF 4 and O 2 gas as in the present embodiment , as described above, the O 2 gas mixing ratio is preferably 80 to 90%, more preferably. It is set to 85-90%.

図5(a)は、Oガス混合比90%のときのRS−SiCの加工表面のSEM画像、図5(b)は、Oガス混合比50%のときのRS−SiCの加工表面のSEM画像である。Oガス混合比90%では滑らかな表面となっているが、Oガス混合比50%ではSiのエッチングレートが高く、SiCが表面に大きく露出した凹凸表面となっている。 FIG. 5 (a) is an SEM image of the processed surface of RS-SiC when the O 2 gas mixing ratio is 90%, and FIG. 5 (b) is the processed surface of RS-SiC when the O 2 gas mixing ratio is 50%. It is an SEM image of. When the O 2 gas mixing ratio is 90%, the surface is smooth, but when the O 2 gas mixing ratio is 50%, the etching rate of Si is high, and the surface is uneven with SiC greatly exposed.

また、図6(a)は、Oガス混合比50%のときのRS−SiCの30秒間の加工痕を示すSWLI画像、(b)は同じく60秒間の加工痕を示すSWLI画像、(c)は各場合のa−b横断切片の表面形状を示すグラフである。図6から分かるように、Oガス混合比50%では、加工時間を2倍にしても表面が荒れる(Siだけが加工が進み、穴あき状態となる)だけで加工深さが時間に比例しない。 6 (a) is, O 2 SWLI shows a machining mark of 30 seconds RS-SiC when the gas mixing ratio of 50% image, (b) the SWLI image also shows a machining mark of 60 seconds, (c ) Is a graph showing the surface shape of the ab cross section in each case. As can be seen from FIG. 6, the O 2 gas mixture ratio of 50%, the processing time of the surface becomes rough be doubled (only Si proceeds to process, a perforated state) only proportional to the machining depth is time do not do.

他方、図7(a)は、Oガス混合比90%のときのRS−SiCの60秒間の加工痕を示すSWLI画像、(b)は同じく120秒間の加工痕を示すSWLI画像、(c)は各場合のa−b横断切片の表面形状を示すグラフである。図7から分かるように、Oガス混合比90%では、加工時間を2倍にすれば表面が若干荒れるものの、時間に比例した加工深さが得られることが分かる。このことから、多成分材料を構成する各成分からなる材料のエッチングレートをほぼ同じレートとなる範囲内の反応ガスの混合比に設定すれば、良好な表面粗さの加工を行うことができるとともに、加工効率も向上できることが分かる。 On the other hand, FIG. 7 (a), O 2 SWLI shows a machining mark of 60 seconds RS-SiC when the gas mixing ratio of 90% image, (b) the SWLI image also shows the processing marks 120 seconds, (c ) Is a graph showing the surface shape of the ab cross section in each case. As can be seen from FIG. 7, when the O 2 gas mixing ratio is 90%, the surface is slightly roughened by doubling the processing time, but the processing depth proportional to the time can be obtained. From this, if the etching rate of the material composed of each component constituting the multi-component material is set to the mixing ratio of the reaction gas within a range of substantially the same rate, it is possible to perform processing with good surface roughness. It can be seen that the processing efficiency can also be improved.

図8(a)は、プラズマエッチング加工前のダイヤモンド・ラップ仕上げをしたRS−SiC表面の原子間力顕微鏡(AFM)画像とそのA−B間の断面形状を示す図、(b)は、Oガス混合比50%のときのRS−SiCの加工表面のAFM画像とそのA−B間の断面形状を示す図、(c)は、Oガス混合比90%のときのRS−SiCの加工表面のAFM画像とそのA−B間の断面形状を示す図、(d)は、Oガス混合比95%としたときのRS−SiCの加工表面のAFM画像とそのA−B間の断面形状を示す図である。 FIG. 8 (a) shows an atomic force microscope (AFM) image of the RS-SiC surface finished with diamond wrap before plasma etching, and a cross-sectional shape between A and B thereof. FIG. 8 (b) is O. The figure showing the AFM image of the processed surface of RS-SiC when the 2 gas mixing ratio is 50% and the cross-sectional shape between A and B thereof, (c) shows the RS-SiC when the O 2 gas mixing ratio is 90%. shows AFM images of the work surface and the cross-sectional shape between the a-B, (d) is, O 2 gas mixture ratio of 95% and the AFM image and the processed surface of RS-SiC time between the a-B It is a figure which shows the cross-sectional shape.

図8(a)が示すように、ダイヤモンド・ラップ仕上げは表面粗さは良好だが加工変質層が全面に形成され、スクラッチも避けられない。図8(b)が示すように、Oガス混合比50%ではSiのエッチングレートが大きく、表面が荒れてしまう。図8(c)が示すようにOガス混合比90%では良好な表面粗さが得られる。図8(d)が示すようにOガス混合比95%とすると、逆にSiCのエッチングレートが大きく、Siが突出する形で表面が荒れてしまう。 As shown in FIG. 8A, the diamond wrap finish has a good surface roughness, but a work-altered layer is formed on the entire surface, and scratches are unavoidable. As shown in FIG. 8 (b), O 2 gas mixture ratio of 50%, the large etching rate of Si, the surface becomes rough. As shown in FIG. 8C, good surface roughness can be obtained when the O 2 gas mixing ratio is 90%. As shown in FIG. 8D, when the O 2 gas mixing ratio is 95%, on the contrary, the etching rate of SiC is large and the surface is roughened in the form of protruding Si.

これを断面構造の模式図で示したものが図9である。(a)〜(d)は図8の(a)〜(d)に対応したものである。図中(a)の表面の黒塗りの部分は加工変質層を表している。特に(b)〜(d)に示すように、多成分材料のプラズマエッチングで表面粗さを良好にすることが難しいのは各成分材料のエッチングレートのアンバランスであり、これが同じになるようにプラズマ生成条件(本例ではOガス混合比)を設定することで、(c)のような良好な表面粗さが得られるのである。 FIG. 9 shows this in a schematic view of the cross-sectional structure. (A) to (d) correspond to (a) to (d) of FIG. The black-painted portion of the surface in (a) in the figure represents the processed alteration layer. In particular, as shown in (b) to (d), it is the imbalance of the etching rate of each component material that makes it difficult to improve the surface roughness by plasma etching of the multi-component material, so that this becomes the same. By setting the plasma generation conditions (O 2 gas mixing ratio in this example), the good surface roughness as shown in (c) can be obtained.

RS−SiCは耐食性、耐熱性、耐摩耗性に優れ、高剛性、高熱伝導、低熱膨脹、低比重などの特性を持つため、これを効率よく低コストにダメージのない良好な表面粗さに加工することができる本発明によれば、RS−SiCを例えば宇宙望遠鏡用のミラーやガラスモールド非球面レンズの金型等に利用することができ、産業の発展に大きく貢献する。 RS-SiC has excellent corrosion resistance, heat resistance, and wear resistance, and has characteristics such as high rigidity, high thermal conductivity, low thermal expansion, and low specific gravity. Therefore, it is efficiently processed into good surface roughness at low cost without damage. According to the present invention, RS-SiC can be used, for example, in a mirror for a space telescope, a mold for a glass-molded aspherical lens, and the like, which greatly contributes to the development of industry.

以上、本発明の実施形態について説明したが、本発明はこうした実施例に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる形態で実施し得ることは勿論である。 Although the embodiments of the present invention have been described above, the present invention is not limited to these examples, and it goes without saying that the present invention can be implemented in various forms without departing from the gist of the present invention.

1 AP−PCVM装置
2 セラミック管
3 空洞共振器
4 ノズル
9 被加工物
30 内側導体
11 供給口
G 加工ギャップ
P1、P2 プラズマ
1 AP-PCVM device 2 Ceramic tube 3 Cavity resonator 4 Nozzle 9 Work piece 30 Inner conductor 11 Supply port G Machining gap P1, P2 Plasma

Claims (2)

多成分材料のプラズマエッチング加工方法であって、
プラズマ発生条件を、多成分材料を構成する各成分からなる材料のエッチングレートが、ほぼ同じレートとなる範囲内のプラズマ発生条件に設定し、
該プラズマ発生条件を用いて、多成分材料をプラズマエッチング加工するプラズマエッチング加工方法であり、
前記プラズマ発生条件が、反応ガスの混合比であり、
前記多成分材料がRS−SiCであり、
反応ガスをCFとOの混合ガスとし、且つ反応ガスの混合比をOガス80〜90%に設定してプラズマエッチング加工するプラズマエッチング加工方法。
It is a plasma etching processing method for multi-component materials.
Set the plasma generation conditions to the plasma generation conditions within the range where the etching rate of the material composed of each component constituting the multi-component material is almost the same.
It is a plasma etching processing method in which a multi-component material is plasma-etched using the plasma generation conditions.
The plasma generation condition is the mixing ratio of the reaction gas.
The multi-component material is RS-SiC.
The reaction gas was a mixed gas of CF 4 and O 2, and Help plasma etching method the mixing ratio is set to O 2 gas 80-90% to plasma etching of the reaction gas.
加工ギャップを、多成分材料を構成する各成分からなる材料の加工痕の形状が、ほぼ円形ないし楕円形となる範囲内の加工ギャップに設定し、
該加工ギャップのもと、多成分材料をプラズマエッチング加工する請求項1記載のプラズマエッチング加工方法。
The processing gap is set to a processing gap within a range in which the shape of the processing mark of the material composed of each component constituting the multi-component material is approximately circular or elliptical.
The original working gap, plasma etching method of claim 1 Symbol mounting the multi-component material is plasma etched.
JP2018017230A 2018-02-02 2018-02-02 Plasma etching processing method for multi-component materials Active JP6843396B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018017230A JP6843396B2 (en) 2018-02-02 2018-02-02 Plasma etching processing method for multi-component materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018017230A JP6843396B2 (en) 2018-02-02 2018-02-02 Plasma etching processing method for multi-component materials

Publications (2)

Publication Number Publication Date
JP2019131451A JP2019131451A (en) 2019-08-08
JP6843396B2 true JP6843396B2 (en) 2021-03-17

Family

ID=67545666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018017230A Active JP6843396B2 (en) 2018-02-02 2018-02-02 Plasma etching processing method for multi-component materials

Country Status (1)

Country Link
JP (1) JP6843396B2 (en)

Also Published As

Publication number Publication date
JP2019131451A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
Deng et al. Damage-free finishing of CVD-SiC by a combination of dry plasma etching and plasma-assisted polishing
CN1983517A (en) Semiconductor processing
JP2007134688A (en) Semiconductor treatment
TW200901270A (en) Erosion resistance enhanced quartz used in plasma etch chamber
JP2018046216A (en) Plasma processing method
JP2011176243A (en) Precise processing method and device of hard-to-process material
JP2002502553A (en) Selective plasma etching of silicon nitride in the presence of silicon or silicon oxide using (NH 3 lower or SF lower 6), HBr and N lower 2
JP5211543B2 (en) Wafer support jig, vertical heat treatment boat equipped with the same, and method for manufacturing wafer support jig
JP5842138B2 (en) Method for etching SiC substrate
JP6843396B2 (en) Plasma etching processing method for multi-component materials
Li et al. Plasma-based isotropic etching polishing of synthetic quartz
KR102017138B1 (en) Method for Recycling of SiC Product and Recycled SiC Product
JP2009043969A (en) Processing method for semiconductor wafer outer peripheral part, and device therefor
Yamamura et al. Preliminary study on chemical figuring and finishing of sintered sic substrate using atmospheric pressure plasma
JP2008108926A (en) Jig for thermally treating wafer
JP7112491B2 (en) Ceramic sintered bodies and members for plasma processing equipment
WO2006134779A1 (en) Quartz glass tool for heat treatment of silicon wafer and process for producing the same
JP2020015645A (en) Manufacturing method of SiC wafer
Zheng et al. Fast smoothing on diamond surface by inductively coupled plasma reactive ion etching
JP5185213B2 (en) Method for producing plasma-resistant fluoride sintered body
JP2022133198A (en) Plasma assisted processing method and plasma assisted processing device
JP2001233676A (en) Plasma corrosion-resistant member and method for producing the same
JP6749104B2 (en) Numerically controlled plasma processing method and apparatus
JP4541193B2 (en) Etching method
JP2020009935A (en) Film forming method, film forming apparatus, and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R150 Certificate of patent or registration of utility model

Ref document number: 6843396

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250