JP6841507B2 - アンジェルマン症候群の遺伝子治療法のための組み換えube3a遺伝子 - Google Patents

アンジェルマン症候群の遺伝子治療法のための組み換えube3a遺伝子 Download PDF

Info

Publication number
JP6841507B2
JP6841507B2 JP2017556744A JP2017556744A JP6841507B2 JP 6841507 B2 JP6841507 B2 JP 6841507B2 JP 2017556744 A JP2017556744 A JP 2017556744A JP 2017556744 A JP2017556744 A JP 2017556744A JP 6841507 B2 JP6841507 B2 JP 6841507B2
Authority
JP
Japan
Prior art keywords
ube3a
seq
sequence
vector
brain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017556744A
Other languages
English (en)
Other versions
JP2018518946A5 (ja
JP2018518946A (ja
Inventor
ケビン ロン ナッシュ,
ケビン ロン ナッシュ,
エドウィン ジョン ウィーバー,
エドウィン ジョン ウィーバー,
リー デイリー ジェニファー
リー デイリー ジェニファー
Original Assignee
ユニヴァーシティ オブ サウス フロリダ
ユニヴァーシティ オブ サウス フロリダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニヴァーシティ オブ サウス フロリダ, ユニヴァーシティ オブ サウス フロリダ filed Critical ユニヴァーシティ オブ サウス フロリダ
Publication of JP2018518946A publication Critical patent/JP2018518946A/ja
Publication of JP2018518946A5 publication Critical patent/JP2018518946A5/ja
Application granted granted Critical
Publication of JP6841507B2 publication Critical patent/JP6841507B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/104Aminoacyltransferases (2.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/93Ligases (6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y203/00Acyltransferases (2.3)
    • C12Y203/02Aminoacyltransferases (2.3.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/02Acid—amino-acid ligases (peptide synthases)(6.3.2)
    • C12Y603/02019Ubiquitin-protein ligase (6.3.2.19), i.e. ubiquitin-conjugating enzyme
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/02Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/036Fusion polypeptide containing a localisation/targetting motif targeting to the medium outside of the cell, e.g. type III secretion
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/10Fusion polypeptide containing a localisation/targetting motif containing a tag for extracellular membrane crossing, e.g. TAT or VP22
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Reproductive Health (AREA)
  • Neurology (AREA)
  • Epidemiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Child & Adolescent Psychology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Neurosurgery (AREA)
  • Endocrinology (AREA)
  • Pregnancy & Childbirth (AREA)

Description

本願は、2015年5月7日に出願された「アンジェルマン症候群の遺伝子治療法のための組み換えUBE3A遺伝子」と題する米国仮出願No.62/158,269の優先権を主張し、参照により、該出願が本明細書中に組み込まれているものとする。
本発明は、アンジェルマン症候群の治療に関する。より詳しくは、本発明は、アンジェルマン症候群治療のための治療方法と治療用組成物を提供する。
アンジェルマン症候群(AS)は、ニューロンに影響を及ぼす遺伝子疾患であり、出生数15,000に1人の割合で発症すると推定されている(非特許文献1)。ただし、おそらく誤診が原因で、実際にASと診断されている数は更に多い。
アンジェルマン症候群は、特に言語技能および運動技能に関する知的および発育的発達の遅滞および低下に現れる一連の機能障害である。特に、ASは、言語によるコミュニケーションがないか、または殆どなく、いくらかの非言語コミュニケーションと、運動失調、頻繁な笑いおよび微笑み、および、興奮性動作を含む傾向を有することによって定義される。
より進行した症例では、重度の精神遅滞、一般に3歳以前または3歳までに開始するコントロールが難しいことのある発作、頻繁な笑い(非特許文献2)、小脳髄症、異常脳波の原因となる。重症例では、患者は、言語の発達がないか、または、使用語数が5〜10語に留まる場合がある。動作は一般にぎこちなく、歩行は、一般に、手を叩く動きを伴い、ぎこちない。患者は、特に人生の早期から一般にてんかんがあり、また、睡眠時無呼吸を患い、一般に、一度の睡眠時間が5時間にしかならない。社交性があり人との接触を望む。皮膚および眼の色素が殆どまたは全くない場合や、吸啜障害および嚥下障害、熱さに対する感受性、水への執着がある場合がある。UBE3A欠損マウスの研究により、長期シナプス可塑性の障害が示されている。現在、アンジェルマン症候群には治療方法がなく、治療は、緩和的である。例えば、てんかん発作の低減のために抗けいれん薬治療が用いられ、言語技能および運動技能の向上のために、言語療法および理学療法が用いられている。
UBE3A遺伝子は、ASに関与する遺伝子であり、ヒト刷り込み遺伝子の小さなファミリーの一つである点で独特である。UBE3Aは、15番染色体上にあり、E6AP C末端相同(HECT)タンパク質(E6関連タンパク質(E6AP))をコードする(非特許文献3)。UBE3Aは脳内において空間的に定義された母性刷り込みを受け、父親由来のコピーはDNAメチル化によって発現抑制される(非特許文献4)。このようにして、母親由来のコピーのみが活性化し、父親由来の染色体は、脳のその領域のニューロンのプロテオソームに殆どまたは全く作用しない。15番染色体の一部の不活性化、転座または欠失は、このため、機能の非代償性喪失を引き起こす。いくつかの研究により、E3-APタンパク質レベルの異常がアンジェルマン症候群患者の神経突起接触を変化させることが示唆されている(非特許文献5)。
アンジェルマン症候群の症例の大半(70%)は、UBE3A遺伝子を含む母親由来染色体の15q11-q13のおよそ4Mbの新たに発生した欠失によって起こるが(非特許文献6)、母親由来のコピーの異常なメチル化の結果、その発現を妨げること(非特許文献7、非特許文献8)、または、2コピーの父親由来遺伝子が遺伝される片親性ダイソミー(非特許文献9、非特許文献10)によっても起こり得る。残るAS症例は、母親由来染色体の様々なUBE3A変異を原因とするか、または、遺伝的原因なしに診断される(12-15UBE3Aは、E6関連タンパク質(E6-AP)ユビキチンリガーゼをコードする。E6-APはE3ユビキチンリガーゼの一つであり、このため、標的タンパク質に対する特異性を示す。標的タンパク質には、腫瘍抑制分子p53(非特許文献11)、酵母DNA修復タンパク質Rad23のヒトホモログ(非特許文献12)、E6-AP自体、および、最も新しく特定された標的であるArc(非特許文献13、非特許文献14)が含まれる。
軽症例は、ユビキチン経路のE6-APユビキチンリガーゼタンパク質をコードする、染色体15q11-13のUBE3A遺伝子の変異によると考えられ、より重症例は、15番染色体のより広範囲な欠失に起因すると考えられる。一般に、海馬および小脳におけるUBE3A遺伝子の喪失はアンジェルマン症候群の原因となるが、単一の機能喪失型変異もまた障害の原因となり得る。
解剖学的形態においては、マウスおよびヒトのASの脳に、正常な脳と比較して大きな変化は見られず、認知障害が、本来、発生上の問題ではなく生化学上の問題である可能性を示している(非特許文献15、非特許文献16)。エクソン2の無発現変異による母親由来UBE3A遺伝子の欠陥を有するアンジェルマン症候群マウスモデル(非特許文献15)が使用された。このモデルは、AS患者の特徴となる主要な表現型の再現能力が優れているために、AS研究分野において、信じられないほどの貢献をしてきた。例えば、ASマウスは、誘発性発作、乏しい運動協調性、海馬依存的な学習障害、海馬のLTP(長期増強)の欠陥を有する。ASマウスモデルの認知障害は、以前に、カルシウム/カルモジュリン依存性プロテインキナーゼII(CaMKII)のリン酸化状態の異常と関連することが示された(非特許文献17)。αCaMKIIの活性化Thr286部位と抑制Thr305部位の両方におけるリン酸化に有意な増加が見られ(全酵素レベルには変化なし)、全体的な活性低下の原因となっていた。また、シナプス後肥厚部の全CaMKII量の低下もあり、活性CaMKII量の低下を示していた。リン酸化を阻害するThr305部位の点変異のある変異マウスモデルをASマウスと交雑することにより、AS表現型が救われた。つまり、発作活性、運動協調性、海馬依存的な学習、およびLTPが野生型と同等のレベルまで回復した。従って、αCaMKIIの生後の発現は、ASマウスモデルの主要な表現型が、全体的発生障害ではなく生後の生化学的変化によるものであることを示唆している(非特許文献18)。
Ube3aの欠損は、ハンチントン病にも関与している(非特許文献19)。
Matentzoglueは、E6-APが、ホルモンシグナル伝達に関係する非E3活性を有することに注目した(特許文献1)。このため、アンジェルマン症候群、自閉症、てんかん、プラダー・ウィリー症候群、子宮頸癌、脆弱X症候群、およびRet症候群を含む、様々なE6-AP疾患の治療に、アンドロゲン、エストロゲン、グルココルチコイドのようなステロイドの投与が用いられた。Philpotは、トポイソメラーゼ阻害薬を使用して発現抑制された遺伝子を脱メチル化し、これによってUbe3Aの欠損を修正することを提案した(特許文献2)。しかし、当分野における研究および提案された治療法は、ステロイド使用の場合のように基礎疾患に対処していなかったり、または、脱メチル化化合物使用の場合のように自閉症等他の疾患につながる恐れがあったりした。従って、必要とされているのは、安全で効果的な方法で、UBE3A欠損疾患の根本的原因に対処できる治療法である。
欧州特許出願公開第2724721号明細書 米国特許出願公開第2013/0317018号明細書
Clayton-Smith, Clinical research on Angelman syndrome in the United Kingdom: observations on 82 affected individuals. Am J Med Genet. 1993 Apr 1;46(1):12-5 Nicholls, New insights reveal complex mechanisms involved in genomic imprinting. Am J Hum Genet. 1994 May;54(5):733-40 Kishino, et al., UBE3A/E6-AP mutations cause Angelman syndrome. Nat Gen. 1997 Jan 15.15(1):70-3 Albrecht, et al., Imprinted expression of the murine Angelman syndrome gene, Ube3a, in hippocampal and Purkinje neurons. Nat Genet. 1997 Sep;17(1):75-8 Tonazzini, et al., Impaired neurite contract guidance in ubuitin ligase E3a (Ube3a)-deficient hippocampal neurons on nanostructured substrates. Adv Healthc Mater. 2016 Apr;5(7):850-62 (Kaplan, et al., Clinical heterogeneity associated with deletions in the long arm of chromosome 15: report of 3 new cases and their possible significance. Am J Med Genet. 1987 Sep; 28(1):45-53 Buiting, et al., Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet. 1995 Apr;9(4):395-400 Gabriel, et al., A transgene insertion creating a heritable chromosome deletion mouse model of Prader-Willi and Angelman syndrome. Proc Natl Acad Sci U.S.A. 1999 Aug;96(16):9258-63 Knoll, et al., Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion. Am J Med Genet. 1989 Fed;32(2):285-90 Malcolm, et al., Uniparental paternal disomy in Angelman’s syndrome. Lancet. 1991 Mar 23;337(8743):694-7 Huibregtse, et al., A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or18. EMBO J. 1991 Dec;10(13):4129-35 Kumar, et al., Identification of HHR23A as a substrate for E6-associated protein-mediated ubiquitination. J Biol Chem. 1999 Jun 25;274(26):18785-92 Nuber, et al., The ubiquitin-protein ligase E6-associated protein (E6-AP) serves as its own substrate. Eur J Biochem. 1998 Jun 15;254(3):643-9 Greer, et al., The Angelman Syndrome protein Ube3A regulates synapse Development by ubiquitinating arc. Cell. 2010 Mar 5;140(5): 704-16 Jiang, et al., Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron. 1998 Oct;21(4):799-811 Davies, et al., Imprinted gene expression in the brain. Neurosci Biobehav Rev. 2005 May;29(3):421-430 Weeber,et al Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome. J Neurosci. 2003 Apr;23(7):2634-44 Bayer, et al., Developmental expression of the CaM kinase II isoforms: ubiquitous γ- and δ-CaM kinase II are the early isoforms and most abundant in the developing nervous system. Brain Res Mol Brain Res. 1999 Jun 18;70(1):147-54 Maheshwari, et al., Deficeincy of Ube3a in Huntington’s disease mice brain increases aggregate load and accelerates disease pathology. Hum Mol Genet. 2014 Dec 1;23(23):6235-45
重度の精神遅滞を特徴とするヒトの疾患の殆どが、脳の構造の異常と関連しているのに対し、ASには、巨視的な解剖学的変化は関連付けられていない。細胞からのUbe3aの分泌を可能にする細胞分泌配列と、隣接する神経細胞による取り込みを可能にする細胞取り込み配列を付加されて含むUbe3aタンパク質を作成した。これにより、ニューロンにE6-AP機能タンパク質を供給し、これにより、疾患病状から救う。
こうして、UBE3Aベクターを、転写開始配列と、該転写開始配列の下流に配置されたUBEコンストラクトとを用いて作成した。該UBEコンストラクトは、UBE3A配列、分泌配列、細胞取り込み配列から構成される。UBE3A配列の非限定的な例は、配列番号1、配列番号6、配列番号12、配列番号13、15、配列番号7のcDNA、配列番号14のcDNA、または相同配列である。DNA配列の変形形態は、表に示すようなDNAトリプレットコードの保存的変異を含む。具体的な変形形態において、UBE3A配列は、ハツカネズミUBE3A U82122.1、ヒトUBE3A変異体1、変異体2、または変異体3である。分泌配列の非限定的な例は、配列番号2、配列番号8、配列番号9、配列番号10、配列番号3のcDNA、または、上述の保存的変異を含むDNA配列の変形形態を含む相同配列である。細胞取り込み配列の非限定的な例は、配列番号4、配列番号11、配列番号5のcDNA、または相同配列である。DNA配列の変形形態は、上述の保存的変異を含む。本発明の具体的変形形態において、分泌配列は、UBE3A配列の上流に配置され、より具体的には、オプションとしてUBE3A配列の上流で分泌配列の下流に配置される。
表1は、重複するトリプレットコードと、対応してコードされるアミノ酸を官能基で分類して示している。
本発明の変形形態において、転写開始配列は、サイトメガロウイルスチキンベータアクチンハイブリッドプロモーターまたはヒトユビキチンcプロモーターである。本発明は、オプションとしてエンハンサー配列を含む。エンハンサー配列の非限定的な例は、転写開始配列の上流に配置されるサイトメガロウイルス最初期エンハンサー配列である。ベクターは、オプションとして、ウッドチャック肝炎転写後調節エレメントも含む。
変形形態において、ベクターは、組み換えアデノ随伴ウイルス血清型2をベースとするプラスミドのようなプラスミドに挿入される。具体的変形形態において、組み換えアデノ随伴ウイルス血清型2をベースとするプラスミドは、DNA組み込みエレメントを欠いている。組み換えアデノ随伴ウイルス血清型2をベースとするプラスミドの非限定的な例は、pTRプラスミドである。
UBE3Aベクターの合成方法も提供される。UBE3Aコンストラクトを、転写開始配列を有する骨格プラスミドに挿入した。ここで、UBE3Aコンストラクトは、UBE3A配列、分泌配列、および細胞取り込み配列で構成される。変形形態においては、UBE3Aコンストラクトを、転写開始配列の下流に挿入した。UBE3A配列の非限定的な例は、配列番号1、配列番号6、配列番号12、配列番号13、配列番号7のcDNA、または相同配列である。DNA配列の変形形態は、表に示すようなDNAトリプレットコードの保存的変異を含む。分泌配列の非限定的な例は、配列番号2、配列番号8、配列番号9、配列番号10、配列番号3のcDNA、または、上述の保存的変異を含むDNA配列の変形形態を含む相同配列である。細胞取り込み配列の非限定的な例は、配列番号4、配列番号11、配列番号5のcDNA、または相同配列である。DNA配列の変形形態は、上述の保存的変異を含む。本発明の具体的変形形態において、分泌配列は、UBE3A配列の上流に配置され、より具体的には、がオプションとしてUBE3A配列の上流で分泌配列の下流に配置される。例えば、Ube3a遺伝子をクローニングし、3′DNA配列(他の2つのペプチド配列を伴うN末端)、シグナルペプチド配列およびHIV TAT配列にインフレーム融合し、それらを、AS患者の脳および脊髄における分泌E6-APタンパク質発現のために、組み換えアデノ随伴ウイルスベクターにクローンニングした。オプションとして、骨格プラスミドを少なくとも1つのエンドヌクレアーゼで切断することによってUBEコンストラクトを挿入し、骨格プラスミドの切断端にUBE3Aコンストラクトを結合させた。
ベクターは、その後、オプションとして、抗生物質耐性遺伝子を有する増幅宿主に挿入し、抗生物質耐性遺伝子に応じた抗生物質選択に晒した。増幅宿主は、その後、抗生物質選択を含む培地中で増殖させ、増殖した増幅宿主を回収した。その後、ベクターを、増幅宿主から単離した。本発明の具体的な変形形態において、抗生物質耐性遺伝子は、対応するアンピシリンを抗生物質選択として有する、アンピシリン耐性遺伝子である。
アンジェルマン症候群、プラダ―・ウィリー症候群、またはハンチントン病のようなUBE3A欠損疾患の治療法も提供する。UBE欠損を修正するために、上述のベクターを、UBE3A欠損疾患を患う患者の脳に投与した。ベクターは、オプションとして、注射によって投与した。非限定的な例として、海馬内注射または脳室注射を含む。具体的な変形形態において、ベクターは、両方に注射された。オプションとして、用量は、約5.55×1011ゲノム/g脳質量から約2.86×1012ゲノム/g脳質量,より具体的には5.55×1011 から2.86×1012ゲノム/g脳質量である。用量の非限定的な例は、5.55×1011ゲノム/g脳質量、5.75×1011ゲノム/g脳質量、5.8×1011ゲノム/g脳質量、5.9×1011ゲノム/g脳質量、6.0×1011ゲノム/g脳質量、 6.1×1011ゲノム/g脳質量、6.2×1011ゲノム/g脳質量、6.3×1011ゲノム/g脳質量、6.4×1011 ゲノム/g脳質量、6.5×1011ゲノム/g脳質量、6.6×1011ゲノム/g脳質量、6.7×1011ゲノム/g脳質量、6.8×1011ゲノム/g脳質量、6.9×1011 ゲノム/g脳質量、7.0×1011ゲノム/g脳質量、7.1×1011ゲノム/g脳質量、7.2×1011ゲノム/g脳質量、7.3×1011ゲノム/g脳質量、 7.4×1011ゲノム/g脳質量、7.5×1011ゲノム/g脳質量、7.6×1011ゲノム/g脳質量、7.7×1011 ゲノム/g脳質量、7.8×1011ゲノム/g脳質量、7.9 × 1011ゲノム/g脳質量、8.0×1011ゲノム/g脳質量、8.1×1011ゲノム/g脳質量、8.2×1011ゲノム/g脳質量、8.3×1011ゲノム/g脳質量、8.4×1011ゲノム/g脳質量、8.5×1011ゲノム/g脳質量、8.6×1011ゲノム/g脳質量、 8.7×1011ゲノム/g脳質量、8.8×1011ゲノム/g脳質量、8.9×1011ゲノム/g脳質量、9.0×1011 ゲノム/g脳質量、9.1×1011ゲノム/g脳質量、9.2×1011ゲノム/g脳質量、9.3×1011ゲノム/g脳質量、9.4×1011ゲノム/g脳質量、9.5×1011ゲノム/g脳質量、9.6×1011ゲノム/g脳質量、9.7×1011ゲノム/g脳質量、9.80×1011ゲノム/g脳質量、1.0×1012ゲノム/g脳質量、1.1×1012ゲノム/g脳質量、1.2×1012ゲノム/g脳質量、1.3×1012ゲノム/g脳質量、1.4×1012 ゲノム/g脳質量、1.5×1012ゲノム/g脳質量、1.6×1012ゲノム/g脳質量、1.7×1012ゲノム/g脳質量、1.8×1012ゲノム/g脳質量、1.9×1012ゲノム/g脳質量、2.0×1012ゲノム/g脳質量、2.1×1012ゲノム/g脳質量、2.2×1012ゲノム/g脳質量、2.3×1012ゲノム/g脳質量、2.40 ×1012ゲノム/g脳質量、2.5×1012ゲノム/g脳質量、2.6×1012ゲノム/g脳質量、2.7×1012ゲノム/g脳質量、2.75×1012ゲノム/g脳質量、2.8×1012ゲノム/g脳質量、または2.86×1012ゲノム/g脳質量である.
本発明のより完全な理解のためには、添付図面とともに以下の詳細な説明を参照すべきである。
図示のシグナルペプチドを含むGFPクローンで遺伝子導入されたHEK293細胞からの培地の抗GFPのドットブロットである。 本発明で使用されるマウスUBE3Aベクターコンストラクトのマップである。主要な遺伝子が示されている。 プラスミドで遺伝子導入されたHEK293細胞からのE6-APタンパク質の分泌を示すウェスタンブロットである。対照細胞を遺伝子導入された細胞の培地からの培地(cnt txn)、Ube3a遺伝子導入細胞からの培地(Ube3a txn)、および遺伝子導入されていない細胞からの培地(cnt untxn)を、アクリルアミドゲルおよび抗E6-AP抗体上に泳動させた。 E6-APタンパク質染色面積のパーセンテージを示すグラフである。非トランスジェニック(Ntg)対照マウスは、正常マウスの脳のUbe3a発現レベルを示している。アンジェルマン症候群(AS)マウスは、それらマウス(aka背景染色)の染色レベルを示している。ASマウスの側脳室へのAAV4-STUb注射は、ASマウスと比較したE6-APタンパク質染色レベルの上昇を示している。n=2。 非トランスジェニックマウスにおける抗E6-AP染色の顕微鏡画像である。GFP(緑色蛍光タンパク質)は、分泌されない細胞質タンパク質である。これは、Ube3aが上衣細胞から放出されて実質内に取り込まれていることを示唆している。 非トランスジェニックマウスにおける抗E6-AP染色の顕微鏡画像であり、脳室系(側脳室(LV)、第3脳室)を一層拡大して示している。GFP(緑色蛍光タンパク質)は、分泌されない細胞質タンパク質である。これは、Ube3aが上衣細胞から放出されて実質内に取り込まれていることを示唆している。 注射を受けていないASマウスにおける抗E6-AP染色の顕微鏡画像である。 注射を受けていないASマウスにおける抗E6-AP染色の顕微鏡画像であり、脳室系(側脳室(LV)、第3脳室)を一層拡大して示している。 側脳室内にAAV4-STUbを注射されたASマウスにおける抗E6-AP染色の顕微鏡画像である。上衣細胞において発現が見られるが、脳室直近の実質においても染色が観察される(矢印で示されている)。GFP(緑色蛍光タンパク質)は、分泌されない細胞質タンパク質である。これは、Ube3aが上衣細胞から放出されて実質内に取り込まれていることを示唆している。 側脳室内にAAV4-STUbを注射されたASマウスにおける抗E6-AP染色の顕微鏡画像であり、脳室系(側脳室(LV)、第3脳室)を一層拡大して示している。上衣細胞において発現が見られるが、脳室直近の実質においても染色が観察される(矢印で示されている)。GFP(緑色蛍光タンパク質)は、分泌されない細胞質タンパク質である。これは、Ube3aが上衣細胞から放出されて実質内に取り込まれていることを示唆している。 側脳室内にAAV4-STUbを注射されたASマウスにおける抗E6-AP染色の顕微鏡画像である。AAV4-STUb送達後のUbe3a発現を示す脳室系(側脳室(LV))の高拡大画像である。上衣細胞において発現が見られるが、脳室直近の実質においても染色が観察される(矢印で示されている)。GFP(緑色蛍光タンパク質)は、分泌されない細胞質タンパク質である。これは、Ube3aが上衣細胞から放出されて実質内に取り込まれていることを示唆している。 側脳室内にAAV4-STUbを注射されたASマウスにおける抗E6-AP染色の顕微鏡画像である。AAV4-STUb送達後のUbe3a発現を示す脳室系(第3脳室)の高拡大画像である。上衣細胞において発現が見られるが、脳室直近の実質においても染色が観察される(矢印で示されている)。GFP(緑色蛍光タンパク質)は、分泌されない細胞質タンパク質である。これは、Ube3aが上衣細胞から放出されて実質内に取り込まれていることを示唆している。 GFPを遺伝子導入された非トランスジェニックマウスにおける抗E6-AP染色の顕微鏡画像である。AAV4-GFP注射で発現は観察されず、上衣細胞および脈絡叢細胞の形質導入だけを示している。GFP(緑色蛍光タンパク質)は、分泌されない細胞質タンパク質である。これは、Ube3aが上衣細胞から放出されて実質内に取り込まれていることを示唆している。 側脳室内にAAV4-STUbを注射されたASマウスにおける抗E6-AP染色の顕微鏡画像である。AAV4-STUb送達後のUbe3a発現を示す脳の矢状断面である。 側脳室内にAAV4-STUbを注射されたASマウスにおける抗E6-AP染色の顕微鏡画像である。AAV4-STUb送達後のUbe3a発現を示す脳内の側脳室(LV)の矢状断面である。 側脳室内にAAV4-STUbを注射されたASマウスにおける抗E6-AP染色の顕微鏡画像である。AAV4-STUb送達後のUbe3a発現を示す脳内の第3脳室(3V)の矢状断面である。 側脳室内にAAV4-STUbを注射されたASマウスにおける抗E6-AP染色の顕微鏡画像である。AAV4-STUb送達後のUbe3a発現を示す脳内の側脳室(LV)の内角の矢状断面である。 側脳室内にAAV4-STUbを注射されたASマウスにおける抗E6-AP染色の顕微鏡画像である。AAV4-STUb送達後のUbe3a発現を示す脳内の側脳室(4V)の矢状断面である。 側脳室内にAAV4-STUbを注射されたASマウスにおける抗E6-AP染色の顕微鏡画像である。AAV4-STUb送達後のUbe3a発現を示す脳内の第4脳室(LV)の矢状断面である。 側脳室内にAAV4-STUbを注射されたASマウスにおける抗E6-AP染色の顕微鏡画像である。AAV4-STUb送達後のUbe3a発現を示す、脳室系の側脳室(LV)および(c)第3脳室(3V)を一層拡大した、脳の矢状断面である。 本発明において使用されるヒトUBE3Aベクターコンストラクトのマップである。主要遺伝子が示されている。 hSTUbコンストラクトで遺伝子導入されたHEK293細胞ライセートのウェスタンブロットである。タンパク質が、抗E6APで染色された。 GDNFシグナルまたはインスリンシグナルを有するhSTUbコンストラクトで遺伝子導入されたHEK293細胞の抗E6APによるドットブロットであり、発現と分泌のためにインスリンシグナルが、よりよく作用していることを示している。 抗HAタグ抗体を使用したインスリンシグナル分泌を裏付けるドットブロットである。
本明細書において、文脈上明らかに他の意味を示す場合を除き、単数形(英語原文において“a”、 “an”、 “the”の付されたもの)は、複数の指示対象を含むものとする。従って、例えば、「ポリペプチド(a polypeptide)」)は、2つ以上のポリペプチドの混合物等を含む。
本明細書で使用される「約(about)」は、近似的であることや近いことを意味し、数値または数値範囲の記載である場合には、数値の±15%を意味する。
「投与(administrationまたはadministering)」は、本発明の化合物が単独でまたは他の化合物との組み合わせで患者に送達されるプロセスを記述するために使用される。組成物は、特に、経口、非経口(静脈内および動脈内および他の適切な非経口経路をいう)、髄腔内、筋肉内、皮下、結腸、直腸、経鼻投与を含む、様々な経路で投与されてもよい。これら状態はそれぞれ、疾患または状態を治療するための本発明の化合物の他の投与ルートを使用して容易に治療してもよい。治療的または予防的効果を得るための本発明の化合物および組成物の用量は、当技術分野で周知のように、患者の状況によって決定される。本発明における患者の用量決定は、本発明の化合物若しくは組成物の個々の若しくは単位用量を通して、または、化合物若しくは組成物の組み合わされた若しくは予めパッケージされた若しくは予め調合された用量によって実施されることができる。平均的な40gのマウスは、0.416gの重さの脳を持ち、160gのマウスは、1.02gの重さの脳を持ち、250gのマウスは、1.802gの重さの脳を持っている。平均的なヒトの脳は1508gの重さがあり、これを、本明細書に記載する治療を実施するのに必要なまたは有用な治療量を指示するために、使用可能である。
本発明の医薬組成物は、薬学的に有用な組成物を調製する既知の方法によって調合可能である。さらに、本明細書で使用される「薬学的に受容可能な担体」という言葉は、任意の標準的な、薬学的に受容可能な担体を意味する。薬学的に受容可能な担体は、希釈剤、アジュバント、媒体、さらに、インプラント担体、および、不活性な無害の固体または液体の賦形剤、希釈剤、または、本発明の有効成分と反応しないカプセル化材料を含むことができる。例として、リン酸緩衝食塩水、生理食塩水、水、油/水乳濁液のような乳濁液を含むが、これらに限定されない。担体は、例えば、エタノール、ポリオール(例えば、グリセロール、プロピレングリコール、液体ポリエチレングリコール等)、これらの適当な混合物および植物油を含有する、溶媒または分散媒質であってもよい。調合方法は、周知かつ当業者にとって容易に入手可能な多くの情報源に記載がある。例えば、Remington’s Pharmaceutical Sciences (Martin EW [1995] Easton Pennsylvania, Mack Publishing Company, 19th ed.)には、本発明と組み合わせて使用可能な製剤方法が記載されている。
本明細書で使用される「動物」は、動物界または後生動物に分類される多細胞の真核生物を意味する。この用語は、哺乳動物を含むが、これに限定されない。非限定的例示として、齧歯動物、哺乳動物、水生哺乳動物、犬および猫のような飼育動物、羊、豚、牛、馬のような家畜、および人間を含む。ここで、「動物」(英語で“animal”または複数の“animals”)の用語が使用される場合、当該用語は任意の複数の動物にも適用されることが意図されている。
本明細書で使用される「相同」の用語は、対象配列に対して少なくとも80%の配列相同性、好ましくは、少なくとも90%の配列相同性、より好ましくは、少なくとも95%の配列相同性を有するヌクレオチド配列、さらに好ましくは、少なくとも98%の配列相同性を有するヌクレオチド配列を意味する。ヌクレオチド配列の変形形態は、ヌクレオチド配列内の保存的変異、つまり、表に示されるような同じアミノ酸をコードするトリプレットコード内の変異であってもよい。
本明細書で使用される「治療上の有効量」の用語は、アンジェルマン症候群または他のUBE3A関連疾患またはその1つ以上の症状の改善をもたらすか、アンジェルマン症候群または他のUBE3A関連疾患の進行を妨げるか、またはアンジェルマン症候群または他のUBE3A関連疾患の退行を引き起こすために十分な、治療(例えば治療薬または治療ベクター)の量を意味する。
本明細書で使用される「患者」は、本発明の組成物による予防的治療を含む治療の対象となる動物、好ましくは人間を記述するために使用される。
泌シグナルの有効性を試験するために、GFPを、ヒトインスリン、GDNFまたはIgKシグナルペプチドとインフレームにクローニングした。コンストラクトをpTRプラスミドに挿入し、HEK293細胞(American Type Culture Collection, Manassas, VA)に遺伝子導入した。HEK293細胞は、37℃、5% CO2で、10% FBSおよび1% Pen/Strepを含むダルベッコ変法必須培地(DMEM)中で培養し、80%コンフルエンスで継代培養した。
ベクター(6ウェルプレート中に2μg/ウェル)は、PEI遺伝子導入法を用いて細胞に遺伝子導入した。細胞は、遺伝子導入の2日前に、6ウェルプレート中で、DMEM培地で、ウェル当たり0.5×106細胞で継代培養した。培地は、遺伝子導入前夜に交換した。エンドドキシンフリーなdH2Oを約80℃に加熱し、ポリエチレンイミン(Sigma-Aldrich Co. LLC, St. Louis, MO)を溶解した。溶液をそのまま約25℃まで冷まし、水酸化ナトリウムを使用して溶液を中和した。各遺伝子導入ウェルに対し、AAV4−STUbベクターまたは陰性対照(培地のみ)を、200μL毎に2μgで、無血清DMEMに加え、各ウェルに対し、1μg/μLのポリエチレンイミン9μLを混合物に加えた。遺伝子導入混合物を室温で15分インキュベートし、その後、細胞の各ウェルに、ウェル毎に210μLずつ加え、48時間インキュベートした。
各培養ウェルから培地を集め、先細ピペットを使用して、ニトロセルロースメンブレンに2μL滴下した。試料が乾いた後、メンブレンに5% BSA in TBS-Tを適用し、室温で30分から1時間インキュベートしてメンブレンをブロックし、その後、メンブレンをニワトリ抗GFP(5 μg/mL, Abcam PLC, Cambridge, UK; #ab13970)in BSA/TBS-Tとともに室温で30分インキュベートした。メンブレンを、TBS-Tで3回(各回5分)洗浄した。メンブレンを、HRPとコンジュゲートした抗ニワトリHRPコンジュゲート2次抗体(Southern Biotechnology, Thermo Fisher Scientific, Inc., Waltham, MA; #6100-05, 1/3000)とともに室温で30分インキュベートし、その後、メンブレンをTBS-Tで3回(1回15分)洗浄し、引き続き、それぞれ5分で洗浄した。メンブレンを室温でTBSを用いて5分間洗浄し、発光試薬(Millipore, Merck KGaA, Darmstadt, DE; #WBKLS0100)とともに1分インキュベートした。図1に示すように、メンブレンをGEアマシャム イメージャー 600(General Electric, Fairfield, CA)に記録した。
図1に示されるように、遺伝子導入されていない対照細胞と比較して観察すると、3つの分泌シグナルは全て、細胞からのGFP標識タンパク質放出を引き起こした。3つの分泌コンストラクトのうち、IgKコンストラクトが最も高い分泌レベルを示したが、GDNFクローン2コンストラクトも同様に高いGFP標識タンパク質の分泌を示した。
pTRプラスミドを用いてマウスUBE3Aベクターを作成した。マウス(Mus musculus)UBE3A遺伝子は、cDNA(U82122.1);
atgaagcgag cagctgcaaa gcatctaata gaacgctact accatcagtt aactgagggc tgtggaaatg aggcctgcac gaatgagttt tgtgcttcct gtccaacttt tcttcgtatg gataacaatg cagcagctat taaagccctt gagctttata aaattaatgc aaaactctgt gatcctcatc cctccaagaa aggagcaagc tcagcttacc ttgagaactc aaaaggtgca tctaacaact cagagataaa aatgaacaag aaggaaggaa aagattttaa agatgtgatt tacctaactg aagagaaagt atatgaaatt tatgaatttt gtagagagag tgaggattat tcccctttaa ttcgtgtaat tggaagaata ttttctagtg ctgaggcact ggttctgagc tttcggaaag tcaaacagca cacaaaggag gaattgaaat ctcttcaaga aaaggatgaa gacaaggatg aagatgaaaa ggaaaaagct gcatgttctg ctgctgctat ggaagaagac tcagaagcat cttcttcaag gatgggtgat agttcacagg gagacaacaa tgtacaaaaa ttaggtcctg atgatgtgac tgtggatatt gatgctatta gaagggtcta cagcagtttg ctcgctaatg aaaaattaga aactgccttc ctgaatgcac ttgtatatct gtcacctaac gtggaatgtg atttgacata tcataatgtg tatactcgag atcctaatta tctcaatttg ttcattattg taatggagaa tagtaatctc cacagtcctg aatatctgga aatggcgttg ccattatttt gcaaagctat gtgtaagcta ccccttgaag ctcaaggaaa actgattagg ctgtggtcta aatacagtgc tgaccagatt cggagaatga tggaaacatt tcagcaactt attacctaca aagtcataag caatgaattt aatagccgaa atctagtgaa tgatgatgat gccattgttg ctgcttcaaa gtgtttgaaa atggtttact atgcaaatgt agtgggaggg gatgtggaca caaatcataa tgaggaagat gatgaagaac ccatacctga gtccagcgaa ttaacacttc aggagcttct gggagatgaa agaagaaata agaaaggtcc tcgagtggat ccactagaaa ccgaacttgg cgttaaaact ctagactgtc gaaaaccact tatctccttt gaagaattca ttaatgaacc actgaatgat gttctagaaa tggacaaaga ttataccttt ttcaaagttg aaacagagaa caaattctct tttatgacat gtccctttat attgaatgct gtcacaaaga atctgggatt atattatgac aatagaattc gcatgtacag tgaaagaaga atcactgttc tttacagcct agttcaagga cagcagttga atccgtattt gagactcaaa gtcagacgtg accatattat agatgatgca ctggtccggc tagagatgat tgctatggaa aatcctgcag acttgaagaa gcagttgtat gtggaatttg aaggagaaca aggagtaatg agggaggcgt ttccaaagag ttttttcagt tgggttgtgg aggaaatttt taatccaaat attggtatgt tcacatatga tgaagctacg aaattatttt ggtttaatcc atcttctttt gaaactgagg gtcaggttta ctctgattgg catatcctgg gtctggctat ttacaataat tgtatactgg atgtccattt tcccatggtt gtatacagga agctaatggg gaaaaaagga acctttcgtg acttgggaga ctctcaccca gttttatatc agagtttaaa ggatttattg gaatatgaag ggagtgtgga agatgatatg atgatcactt tccagatatc acagacagat ctttttggta acccaatgat gtatgatcta aaagaaaatg gtgataaaat tccaattaca aatgaaaaca ggaaggaatt tgtcaatctc tattcagact acattctcaa taaatctgta gaaaaacaat tcaaggcatt tcgcagaggt tttcatatgg tgactaatga atcgccctta aaatacttat tcagaccaga agaaattgaa ttgcttatat gtggaagccg gaatctagat ttccaggcac tagaagaaac tacagagtat gacggtggct atacgaggga atctgttgtg attagggagt tctgggaaat tgttcattcg tttacagatg aacagaaaag actctttctg cagtttacaa caggcacaga cagagcacct gttggaggac taggaaaatt gaagatgatt atagccaaaa atggcccaga cacagaaagg ttacctacat ctcatacttg ctttaatgtc cttttacttc cggaatattc aagcaaagaa aaacttaaag agagattgtt gaaggccatc acatatgcca aaggatttgg catgctgtaa (配列番号1)
から作成した。
cDNAをサブクローニングし、配列した。マウスUBE3A遺伝子(配列番号1)を、分泌シグナリングペプチドをコードするDNA配列(配列番号2)とHIV TAT配列(配列番号4)に融合した。分泌シグナリングペプチドは、DNA配列;
atg gcc ctg ttg gtg cac ttc cta ccc ctg ctg gcc ctg ctt gcc ctc tgg gag ccc aaa ccc acc cag gct ttt gtc (SEQ ID No. 2)
を有し、タンパク質配列;
MALLVHFLPLLALLALWEPKPTQAFV(配列番号3)
をコードし、一方、HIV TAT配列は;
tac ggc aga aag aag agg agg cag aga agg aga (配列番号4)
であり、タンパク質配列;
YGRKKRRQRRR (配列番号5)
をコードする。
配列番号2および配列番号4と融合された配列番号1のコンストラクト配列をpTRプラスミドに挿入した。 Age I および Xho Iエンドヌクレアーゼを用いてプラスミドを切断し、リガーゼを用いてコンストラクト配列を連結した。ベクターは、図2に示すように、AAV血清型2の末端反復、CMVニワトリベータアクチンハイブリッドプロモーターおよびWPREを含む。組み換えプラスミドはRepおよびCap配列を欠き、宿主DNAへのプラスミドの組み込みが制限されている。
ベクター(AAV4-STUbベクター)は、その後、大腸菌(E. coli, Invitrogen, Thermo Fisher Scientific, Inc., Waltham, MA; SURE2 cells)に形質転換された。簡略に説明すると、細胞を氷上で平衡化し、1pgから500ngのベクターをE. coliに加え、そのまま1分間インキュベートした。BioRad Gene Pulserを使用し、0.1cmキュベット内で、細胞を電気穿孔した(1.7V, 200オーム)。E. coliは、その後、培地内で60分間培養した後、アンピシリン(50 μg/mL)を含む、ATCC培地1065(American Type Culture Collection, Manassas, VA)のような寒天培地に蒔いた。多量のベクターを集めるため、アンピシリンを含有するブロス内で、E. coliを増殖させた。
実施例2で作成されたコンストラクトのマウスベクターの特性を、HEK293細胞(American Type Culture Collection, Manassas, VA)内で試験した。HEK293細胞は、37℃、5% CO2で、10% FBSおよび1% Pen/Strepを含むダルベッコ変法必須培地(DMEM)中で培養し、80%コンフルエンスで継代培養した。
ベクター(6ウェルプレート中に2μg/ウェル)を、PEI遺伝子導入法を用いて細胞に遺伝子導入した。細胞は、遺伝子導入の2日前に、6ウェルプレート中で、DMEM培地で、ウェル当たり0.5×106細胞で継代培養した。培地は、遺伝子導入前夜に交換した。エンドドキシンフリーなdH2Oを約80℃に加熱し、ポリエチレンイミン(Sigma-Aldrich Co. LLC, St. Louis, MO)を溶解した。溶液をそのまま約25℃まで冷まし、水酸化ナトリウムを使用して溶液を中和した。各遺伝子導入ウェルに対し、AAV4-STUbベクターまたは陰性対照(培地のみ)を、200μL毎に2μgで、無血清DMEMに加え、各ウェルに対し、1μg/μlのポリエチレンイミン9μlを混合物に加えた。遺伝子導入混合物を室温で15分インキュベートし、細胞の各ウェルに、ウェル毎に210μLずつ加え、48時間インキュベートした。
AAV4-STUbベクター遺伝子導入細胞、培地のみ遺伝子導入対照細胞、遺伝子導入されていない対照細胞から培地を集めた。培地をウェスタンブロットで泳動させ、ヒトおよびマウスE6-APに対して反応性を示す、ウサギ抗E6-AP抗体(A300-351A, Bethyl Labs, Montgomery, TX)、0.4 μg/mlで染色した。ウサギコンジュゲート西洋ワサビペルオキシダーゼ(Southern Biotechnology, Thermo Fisher Scientific, Inc., Waltham, MA)と2次コンジュゲートを行った。デンシオメトリー法で結果を判定すると、図3に示されるように、AAV4-STUbで遺伝子導入されたHEK293細胞が培地中にE6-APタンパク質を分泌することが示された。
母親由来UBE3Aに欠失のあるマウスを交雑することにより、トランスジェニックマウスを作成した。(Jiang, et al., Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron. 1998 Oct;21(4):799-811; Gustin, et al., Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome. Neurobiol Dis. 2010 Sep;39(3):283-91; Heck, et al., Analysis of cerebellar function in Ube3a-deficient mice reveals novel genotype-specific behaviors. Hum Mol Genet. 2008 Jul 15;17(14):2181-9)。マウスを12時間の昼光サイクルで飼育し、餌と水を自由に与えた。月齢3か月のマウスをベクターで治療した。
マウスをイソフルランで麻酔し、定位固定装置(51725D Digital Just for Mice Stereotaxic Instrument, Stoelting, Wood Dale, IL)に置いた。頭蓋の中央部を矢状に切開し、開口を広げるために周囲の皮膚を押し広げた。左右の海馬の位置を特定するために、以下の座標を用いた:AP 22.7mm、L 62.7mm、およびV 23.0mm。マウスは、10 mLハミルトンシリンジによって、各半球内に、20%マンニトール10μL中の濃度1×1012ゲノム/mL (N=2)のAAV4-STUb粒子または媒体(20%マンニトール10μL)のいずれかの、両側海馬内注射を受けた。傷は、生理食塩水で洗浄し、ベットボンド(NC9286393 Fisher Scientific, Pittsburgh, PA)で閉じた。対照動物には、注射を受けていないASマウスと、同腹の野生型マウスが含まれていた(n=2)。マウスは、清潔な、温かいヒーターの上に載せた空のケージ内で回復させ、屠殺するまで単独で飼育した。実験期間を通して、マウスの観察を行った。
治療後30日時点で、販売されている安楽死溶液のSomnasol(登録商標)(0.22 ml/kg)を腹腔内に注射して、マウスを安楽死させた。マウスを安楽死させた後、CSFを回収し、マウスをPBSで灌流し、脳を取り出した。脳は、ショ糖溶液中で凍結保護するに先立って、4%パラホルムアルデヒド溶液内で1晩固定した。ミクロトームで、脳を、25μmの薄片にした。
殆どの組み換え型アデノ随伴ウイルスベクターの研究では、ベクターを直接実質に注射するため、一般的に、細胞の形質導入が限られている(Li, et al., Intra-ventricular infusion of rAAV-1-EGFP resulted in transduction in multiple regions of adult rat brain: a comparative study with rAAV2 and rAAV5 vectors. Brain Res. 2006 Nov 29;1122(1):1-9)。しかし、分泌シグナルリング配列とTAT配列をUbe3Aタンパク質に付加することにより、遺伝子導入された細胞からのHECTタンパク質(すなわちUBE3A)の分泌と近接ニューロンによるペプチドの取り込みが可能となり、離れた部位への注射を、全脳内の別の部位のためのタンパク質供給源として作用させることができる。
屠殺したマウスの脳をミクロトームでスライスし、抗E6-AP抗体(A300-351A, Bethyl Labs, Montgomery, TX)とビオチン標識抗ウサギ2次抗体(Vector Labs #AB-1000)を用いて、E6-APタンパク質の染色を行った。染色は、ABC(Vector Labs)とDAB反応で完成された。切片をZeiss Axio Scan顕微鏡に乗せてスキャンした。染色面積のパーセンテージを、IAE-NearCYTE画像解析ソフトウェア(University of Pittsburgh Starzl Transplant Institute, Pittsburgh, PA)で定量した。
非トランスジェニック(Ntg)対照マウスは、正常マウスの脳のUbe3a発現レベルを示し、図4に示すように約40%であった。これと比較して、アンジェルマン症候群マウス(AS)は、約25%のUbe3aタンパク質染色レベルを示している。ASマウスの側脳室へのAAV4-STUbベクターの挿入は、ベクターがE6-APのレベルを約30〜35%まで増加させたことを示している。
脳スライスの免疫組織化学解析は、非トランスジェニックマウスが、領域特異的染色を伴う比較的高いレベルのE6-APを有していることを示している(図5および図6参照)。アンジェルマン症候群モデルマウスでは、E6-APの染色パターンは類似しているが、E6-APレベルは予想通り極端に減少している(図7および図8参照)。アンジェルマン症候群モデルマウスへのマウスUBE3Aベクター投与は、非トランスジェニックマウスのレベルまでではないものの、E6-APレベル」を上昇させた(図9およ図10参照)。側脳室の詳細な分析により、UBE3Aベクターの注射により、上衣細胞によるベクター取り込みが起こったことが示されている(図11参照)。しかし、上衣細胞によるUBE3Aベクター取り込みとE6-AP発現に加えて、図の矢印で示されるように、実質内の近接する細胞も、染色されてE6-AP陽性を示している。さらに、図12に示されるように、染色は、3d脳室のような、さらに距離の離れた場所にも見られた。このことは、E6-APが遺伝子導入された細胞によって分泌され、近接する細胞によって順調に取り込まれていたことを示し、コンストラクトがE6-APの導入に使用できること、および、アンジェルマン症候群のようなE6-AP発現に関連する全体的な脳の欠陥を治療するための治療用材料として、E6-APコンストラクトを使用できることを裏付けている。図13に示されるように、AAV4-GFPベクターを使用した対照治療においては、対照タンパク質の取り込みを示さず、上衣細胞および脈絡叢細胞の形質導入だけであった。
アンジェルマン症候群モデルマウスの冠状断面の詳細な解析により、UBE3Aコンストラクトの投与が、側脳室内および側脳室周辺のE6-APのレベルを上昇させることが確認された(図14〜図20参照)。
pTRプラスミドを用いて、ヒトベクターコンストラクトを作成した。ヒトUBE3A遺伝子は、cDNA(AH005553.1);
ggagtagttt actgagccac taatctaaag tttaatactg tgagtgaata ccagtgagta cctttgttaa tgtggataac caatacttgg ctataggaag ttttttagtt gtgtgtttta tnacacgtat ttgactttgt gaataattat ggcttataat ggcttgtctg ttggtatcta tgtatagcgt ttacagtttc ctttaaaaaa catgcattga gttttttaat agtccaaccc ttaaaataaa tgtgttgtat ggccacctga tctgaccact ttctttcatg ttgacatctt taattttaaa actgttttat ttagtgctta aatcttgttn acaaaattgt cttcctaagt aatatgtcta cctttttttt tggaatatgg aatattttgc taactgtttc tcaattgcat tttacagatc aggagaacct cagtctgacg acattgaagc tagccgaatg taagtgtaac ttggttgaga ctgtggttct tattttgagt tgccctagac tgctttaaat tacgtcacat tatttggaaa taatttctgg ttaaaagaaa ggaatcattt agcagtaaat gggagatagg aacataccta ctttttttcc tatcagataa ctctaaacct cggtaacagt ttactaggtt tctactacta gatagataaa tgcacacgcc taaattctta gtctttttgc ttccctggta gcagttgtag ggaaataggg aggttgagga aagagtttaa cagtctcaac gcctaccata tttaaggcat caagtactat gttatagata cagagatgcg taataattag ttttcaccct acagaaattt atattatact caagagtgaa agatgcagaa gcaaataatt tcagtcactg aggtagaatg gtatccaaaa tacaatagta acatgaagga gtactggagt accaggtatg caataggaat ctagtgtaga tggcagggaa gtaagagtgg ccaggaaatg ctaagttcag tcttgaaatg tgactgggaa tcaggcagct atcaactata agtcaaatgt ttacaagctg ttaaaaatga aatactgatt atgtaaaaga aaaccggatt gatgctttaa atagactcat tttcntaatg ctaattttta aaatgataga atcctacaan tcttagctgt aaaccttgtg atttttcagc tgttgtacta aacaacttaa gcacatatac catcagacaa gcccccntcc ccccttttaa accaaaggaa tgtatactct gttaatacag tcagtaagca ttgacattct ttatcataat atcctagaaa atatttatta actatttcac tagtcaggag ttgtggtaaa tagtgcatct ccattttcta cttctcatct tcatacacag gttaatcact tcagtgcttg actaactttt gccttgatga tatgttgagc tttgtacttg agagctgtac taatcactgt gcttattgtt tgaatgtttg gtacaggaag cgagcagctg caaagcatct aatagaacgc tactaccacc agttaactga gggctgtgga aatgaagcct gcacgaatga gttttgtgct tcctgtccaa cttttcttcg tatggataat aatgcagcag ctattaaagc cctcgagctt tataagatta atgcaaaact ctgtgatcct catccctcca agaaaggagc aagctcagct taccttgaga actcgaaagg tgcccccaac aactcctgct ctgagataaa aatgaacaag aaaggcgcta gaattgattt taaaggtaag atgttttatt ttcaattgag aattgttgcc tgaaaaccat gtgggagatt taaatgtatt agtttttatt tgttttttct tctgtgacat aaagacattt tgatatcgta gaaccaattt tttattgtgg taacggacag gaataataac tacattttac aggtctaatc attgctaatt agaagcagat catatgccaa aagttcattt gttaatagat tgatttgaac tttttaaaat tcttaggaaa aatgtattaa gtggtagtga atctccaaaa ctatttaaga gctgtattat gattaatcag tacatgacat attggttcat atttataatt aaagctatac attaatagat atcttgatta taaagaaagt ttaaactcat gatcttatta agagttatac attgttgaaa gaatgtaaaa gcatgggtga ggtcattggt ataggtaggt agttcattga aaaaaatagg taagcattaa attttgtttg ctgaatctaa gtattagata ctttaagagt tgtatatcat aaatgatatt gagcctagaa tgtttggctg ttttactttt agaacttttt gcaacagagt aaacatacat attatgaaaa taaatgttct cttttttcct ctgattttct agatgtgact tacttaacag aagagaaggt atatgaaatt cttgaattat gtagagaaag agaggattat tcccctttaa tccgtgttat tggaagagtt ttttctagtg ctgaggcatt ggtacagagc ttccggaaag ttaaacaaca caccaaggaa gaactgaaat ctcttcaagc aaaagatgaa gacaaagatg aagatgaaaa ggaaaaagct gcatgttctg ctgctgctat ggaagaagac tcagaagcat cttcctcaag gataggtgat agctcacagg gagacaacaa tttgcaaaaa ttaggccctg atgatgtgtc tgtggatatt gatgccatta gaagggtcta caccagattg ctctctaatg aaaaaattga aactgccttt ctcaatgcac ttgtatattt gtcacctaac gtggaatgtg acttgacgta tcacaatgta tactctcgag atcctaatta tctgaatttg ttcattatcg taatggagaa tagaaatctc cacagtcctg aatatctgga aatggctttg ccattatttt gcaaagcgat gagcaagcta ccccttgcag cccaaggaaa actgatcaga ctgtggtcta aatacaatgc agaccagatt cggagaatga tggagacatt tcagcaactt attacttata aagtcataag caatgaattt aacagtcgaa atctagtgaa tgatgatgat gccattgttg ctgcttcgaa gtgcttgaaa atggtttact atgcaaatgt agtgggaggg gaagtggaca caaatcacaa tgaagaagat gatgaagagc ccatccctga gtccagcgag ctgacacttc aggaactttt gggagaagaa agaagaaaca agaaaggtcc tcgagtggac cccctggaaa ctgaacttgg tgttaaaacc ctggattgtc gaaaaccact tatccctttt gaagagttta ttaatgaacc actgaatgag gttctagaaa tggataaaga ttatactttt ttcaaagtag aaacagagaa caaattctct tttatgacat gtccctttat attgaatgct gtcacaaaga atttgggatt atattatgac aatagaattc gcatgtacag tgaacgaaga atcactgttc tctacagctt agttcaagga cagcagttga atccatattt gagactcaaa gttagacgtg accatatcat agatgatgca cttgtccggg taagttgggc tgctagatta aaaacctaat aatggggata tcatgataca gttcagtgaa ttcattttaa aagtgactga aaaaaatgat accatatagc ataggaacac atggacattt ctgatcttat ataagtatta tacttttgtt gttcctgtgc aagtttatag atgtgttcta caaagtatcg gttgtattat ataatggtca tgctatcttt gaaaaagaat gggttttcta aatcttgaaa actaaatcca aagtttcttt cattcagaag agaatagagt gttggacaaa gaccagaaca agagaaatgt ggagataccc aataataagt gtggatgtgc agtcttgaac tgggagtaat ggtacagtaa aaccatacca taaaattata ggtagtgtcc aaaaaattcc atcgtgtaaa attcagagtt gcattattgt ggacttgaag aagcagttgt atgtgggacg gtatcgataa gcttgatatc gaattcctgc agcccggggg atccactagt gtggtaatta atactaagtc ttactgtgag agaccataaa ctgctttagt attcagtgta tttttcttaa ttgaaatatt taacttatga cttagtagat actaagactt aacccttgag tttctattct aataaaggac tactaatgaa caattttgag gttagacctc tactccattg tttttgctga aatgatttag ctgcttttcc atgtcctgtg tagtccagac ttaacacaca agtaataaaa tcttaattaa ttgtatgtta atttcataac aaatcagtaa agttagcttt ttactatgct agtgtctgtt ttgtgtctgt ctttttgatt atctttaaga ctgaatcttt gtcttcactg gctttttatc agtttgcttt ctgtttccat ttacatacaa aaagtcaaaa atttgtattt gtttcctaat cctactcctt gtttttattt tgtttttttc ctgatactag caatcatctt cttttcatgt ttatcttttc aatcactagc tagagatgat cgctatggaa aatcctgcag acttgaagaa gcagttgtat gtggaatttg aaggagaaca aggagttgat gagggaggtg tttccaaaga attttttcag ctggttgtgg aggaaatctt caatccagat attggtaaat acattagtaa tgtgattatg gtgtcgtatc atcttttgag ttagttattt gtttatctta ctttgtaaat attttcagct atgaagagca gcaaaagaag gatttggtat ggattaccca gaatcacaca tcatgactga atttgtaggt tttaggaact gatttgtatc actaatttat tcaaattctt ttatttctta gaaggaatat tctaatgaag gaaattatct ctttggtaaa ctgaattgaa agcactttag aatggtatat tggaacagtt ggagggattt ctttgctttt tgttgtctaa aaccatcatc aaactcacgg ttttcctgac ctgtgaactt caaagaacaa tggtttgaag agtattgaga gactgtctca caagtatgtc atgctcaaag ttcagaaaca ctagctgata tcacattaat taggtttatt tgctataaga tttcttgggg cttaatatan gtagtgttcc cccaaacttt ttgaactcca gaactctttt ctgccctaac agtagctact caggagctga ggcaggagaa ttgtttgaac ctaggaggca gaggttgcag tgagctgaga tcgtgccact ccagcccacc cctgggtaac agagcgagac tccatctcaa agaaaaaaat gaaaaattgt tttcaaaaat agtacgtgtg gtacagatat aagtaattat atttttataa atgaaacact ttggaaatgt agccattttt tgttttttta tgtttatttt tcagctatgg gtggataaag catgaatata acttttctta tgtgttagta gaaaattaga aagcttgaat ttaattaacg tatttttcta cccgatgcca ccaaattact tactacttta ttcctttggc ttcataaaat tacatatcac cattcacccc aatttatagc agatatatgt ggacattgtt ttctcaagtg ctaatataat agaaatcaat gttgcatgcc taattacata tattttaaat gttttatatg cataattatt ttaagtttat atttgtatta ttcatcagtc cttaataaaa tacaaaagta atgtattttt aaaaatcatt tcttataggt atgttcacat acgatgaatc tacaaaattg ttttggttta atccatcttc ttttgaaact gagggtcagt ttactctgat tggcatagta ctgggtctgg ctatttacaa taactgtata ctggatgtac attttcccat ggttgtctac aggaagctaa tggggaaaaa aggaactttt cgtgacttgg gagactctca cccagtaagt tctttgtcat ttttttaatt cagtctctta gattttattt aaatgcaaaa atttaattta tgtcaaaatt ttaaagtttt tgtttagaat ctttgttgat actcttatca ataagataaa aatgttttaa tctgaccgaa gtaccagaaa cacttaaaaa ctcaaagggg gacattttta tatattgctg tcagcacgaa gctttcgtaa gattgatttc atagagaagt gtttctaaac attttgtttg tgttttagtg aaatcttaag agataggtaa aaatcagagt agccctggct aagggtcttg gtagttacaa cgagtgtgcc tgctcctacc acccccaccc ccaccttgag acaccacaga atttctcata gagcacagtg tgaattctat tgctaaattg gtggtatggg gtttctcagc agagaatggg acatcacagt gactgacaat ctttctttta taggttggaa actatttggg ggactggagg gatactgtct acacttttta caatttttat tgataagatt tttgttgtct tctaagaaga gtgatataaa ttatttgttg tattttgtag ttctatggtg gcctcaattt accatttctg gttgctaggt tctatatcag agtttaaaag atttattgga gtatgaaggg aatgtggaag atgacatgat gatcactttc cagatatcac agacagatct ttttggtaac ccaatgatgt atgatctaaa ggaaaatggt gataaaattc caattacaaa tgaaaacagg aaggtaataa atgtttttat gtcacatttt gtctcttcat taacactttc aaagcatgta tgcttataat ttttaaagaa gtatctaata tagtctgtac aaaaaaaaaa caagtaacta agtttatgta aatgctagag tccacttttc taaatcttgg atataagttg gtatgaaagc acacagttgg gcactaaagc cccttttaga gaaagaggac atgaagcagg agatagttaa tagctaagtg tggttgtagt ataaagcaag aagcagggtg tttcttgtat taagctgtaa gcaggaacct catgattaag gtctttatca cagaacaaat aaaaattaca tttaatttac acatgtatat cctgtttgtg ataaaaatac atttctgaaa agtatacttt acgtcagatt tgggttctat tgactaaaat gtgttcatcg ggaatgggaa taacccagaa cataacaagc aaaaaattat gacaaatata tagtatacct ttaagaaaca tgtttatatt gatataattt tttgattaaa tattatacac actaagggta caangcacat tttcctttta tganttngat acagtagttt atgtgtcagt cagatacttc cacatttttg ctgaactgga tacagtaagc agcttaccaa atattctatg gtagaaaact nggacttcct ggtttgctta aatcaaatat attgtactct cttaaaacgg ttggcattta taaatagatg gatacatggt ttaaatgtgt ctgttnacat acctagttga gagaacctaa agaattttct gcgtctccag catttatatt cagttctgtt taatacatta tcgaaattga catttataag tatgacagtt ttgtgtatat ggccttttca tagcttaata ttggctgtaa cagagaattg tgaaattgta agaagtagtt ttctttgtag gtgtaaaatt gaatttttaa gaatattctt gacagtttta tgtatatggc cttttcatag cttaatattg gctataacag agaattgtga aattgttaag aagtaggtgt aaaattgaat ttttaagaat attcttgaat gtttttttct tggaaaaatt aaaaagctat gcagcccaat aacttgtgtt ttgtttgcat agcatattat aagaagttct tgtgattaat gttttctaca ggaatttgtc aatctttatt ctgactacat tctcaataaa tcagtagaaa aacagttcaa ggcttttcgg agaggttttc atatggtgac caatgaatct cccttaaagt acttattcag accagaagaa attgaattgc ttatatgtgg aagccgggta agaaagcagg tgtctgcaaa aagtcatgta tcgatttatt gtttgtaatg atacagtagt atagcagata actaagacat attttcttga atttgcagaa tctagatttc caagcactag aagaaactac agaatatgac ggtggctata ccagggactc tgttctgatt aggtgaggta cttagttctt cagaggaaga tttgattcac caaaggggtg tgtgattttg cttcagacct ttatctctag gtactaattc ccaaataagc aaactcacaa attgtcatct atatacttag atttgtattt gtaatataat caccattttt cagagctaat cttgtgattt atttcatgaa tgaagtgttg ttatatataa gtctcatgta atctcctgca tttggcgtat ggattatcta gtattcctca ctggttagag tatgcttact gctggttaga agataattaa aataaggcta ccatgtctgc aatttttcct ttcttttgaa ctctgcattt gtgaactgtt acatggcttc ccaggatcaa gcactttttg agtgaaatgg tagtctttta tttaattctt aagataatat gtccagatac atactagtat ttccatttta caccctaaaa aactaagccc tgaattctca cagaaagatg tagaggttcc cagttctatc tgcttttaaa caaatgccct tactactcta ctgtctactt ctgtgtacta catcatcgta tgtagttgtt tgcatttggg ccagttggtt ggggcagggg tctttttttc ttttgtccct taatctgtat cactttttcc tcccaaagtt gagttaaagg atgagtagac caggagaata aaggagaaag gataaataaa
atatataccc aaaggcacct ggagttaatt tttccaaata ttcatttcag tctttttcaa ttcataggat tttgtctttt gctcattact gactgcataa tgtgattata ccatagttta aatagtcact tcctgttact acacacttgg gttttctcaa ttttttacta ttgtagtact aatattttac tatattgtaa tctaatccaa atttttacgt attcagagct gttcaggata aatttgcttg gaaattttta aatcaccaga agtgatacta tcctgataat taacttccaa gttgtctctt aatatagttt taatgcaaat cataagctta tgttagtacc agtcataatg aatgccaaac tgaaaccagt attgtatttt ttctcattag ggagttctgg gaaatcgttc attcatttac agatgaacag aaaagactct tcttgcagtt tacaacgggc acagacagag cacctgtggg aggactagga aaattaaaga tgattatagc caaaaatggc ccagacacag aaaggtaggt aattattaac ttgtgactgt atacctaccg aaaaccttgc attcctcgtc acatacatat gaactgtctt tatagtttct gagcacattc gtgattttat atacaaatcc ccaaatcata ttagacaatt gagaaaatac tttgctgtca ttgtgtgagg aaacttttaa gaaattgccc tagttaaaaa ttattatggg gctcacattg gtttggaatc aaattagtgt gattcattta cttttttgat tcccagcttg ttaattgaaa gccatataac atgatcatct atttagaatg gttacattga ggctcggaag attatcattt gattgtgcta gaatcctgtt atcaaatcat tttcttagtc atattgccag cagtgtttct aataagcatt taagagcaca cactttgcag tcttgtaaaa caggtttgag tattttctcc accttagagg aagttacttg acttctcagt gacctaacct ctaaagtgca tttactgatg tcctctctgt ggttttgttg tggaaagatt tagttaaatg aactgtaaga attcagtacc taaaatggta tctgttatgt agtaaaaact caatggatac agtatcttat catcgtcact agctttgagt aatttatagg ataaaggcaa cttggtagtt acacaacaaa aagtttatga tttgcattaa tgtatagttt gcattgcaga ccgtctcaac tatatacaat ctaaaaatag gagcatttaa ttctaagtgt atttcccatg acttacagtt ttcctgtttt tttccccttt tctctattta ggttacctac atctcatact tgctttaatg tgcttttact tccggaatac tcaagcaaag aaaaacttaa agagagattg ttgaaggcca tcacgtatgc caaaggattt ggcatgctgt aaaacaaaac aaaacaaaat aaaacaaaaa aaaggaagga aaaaaaaaga aaaaatttaa aaaattttaa aaatataacg agggataaat ttt(配列番号6)から作成し、このcDNAは;
MKRAAAKHLIERYYHQLTEGCGNEACTNEFCASCPTFLRMDNNAAAIKALELYKINAKLCDPHPSKKGASSAYLENSKGAPNNSCSEIKMNKKGARIDFKDVTYLTEEKVYEILELCREREDYSPLIRVIGRVFSSAEALVQSFRKVKQHTKEELKSLQAKDEDKDEDEKEKAACSAAAMEEDSEASSSRIGDSSQGDNNLQKLGPDDVSVDIDAIRRVYTRLLSNEKIETAFLNALVYLSPNVECDLTYHNVYSRDPNYLNLFIIVMENRNLHSPEYLEMALPLFCKAMSKLPLAAQGKLIRLWSKYNADQIRRMMETFQQLITYKVISNEFNSRNLVNDDDAIVAASKCLKMVYYANVVGGEVDTNHNEEDDEEPIPESSELTLQELLGEERRNKKGPRVDPLETELGVKTLDCRKPLIPFEEFINEPLNEVLEMDKDYTFFKVETENKFSFMTCPFILNAVTKNLGLYYDNRIRMYSERRITVLYSLVQGQQLNPYLRLKVRRDHIIDDALVRLEMIAMENPADLKKQLYVEFEGEQGVDEGGVSKEFFQLVVEEIFNPDIGMFTYDESTKLFWFNPSSFETEGQFTLIGIVLGLAIYNNCILDVHFPMVVYRKLMGKKGTFRDLGDSHPVLYQSLKDLLEYEGNVEDDMMITFQISQTDLFGNPMMYDLKENGDKIPITNENRKEFVNLYSDYILNKSVEKQFKAFRRGFHMVTNESPLKYLFRPEEIELLICGSRNLDFQALEETTEYDGGYTRDSVLIREFWEIVHSFTDEQKRLFLQFTTGTDRAPVGGLGKLKMIIAKNGPDTERLPTSHTCFNVLLLPEYSSKEKLKERLLKAITYAKGFGML(配列番号7)をコードする。
cDNAをサブクローニングし、配列した。UBE3A変異体1遺伝子(配列番号6)を、
GDNFに基づく;
ATGAAGTTATGGGATGTCGTGGCTGTCTGCCTGGTGCTGCTCCACACCGCGTCCGCC(配列番号8)、
インスリンタンパク質からの;
ATGGCCCTGTGGATGCGCCTCCTGCCCCTGCTGGCGCTGCTGGCCCTCTGGGGACCTGACCCAGCCGCAGCC(配列番号9)、
またはIgKからの;
ATGGAGACAGACACACTCCTGCTATGGGTACTGCTGCTCTGGGTTCCAGGTTCCACTGGT(配列番号10)の、分泌シグナリングペプチドをコードする3つの遺伝子の1つに融合した。

コンストラクトを、CMVニワトリベータアクチンハイブリッドプロモーターまたはヒトユビキチンcプロモーターのもとで、hSTUbベクターに挿入した。ウッドチャック肝炎転写後調節エレメント(WPRE)が存在し、発現レベルを上昇させる。
UBE3A分泌シグナルコンストラクトを、次に、
HIV TAT配列;
YGRKKRRQRRR(配列番号5)、または
HIV TATk配列;
YARKAARQARA(配列番号11)、
のいずれかの細胞取り込みペプチド(細胞透過性ペプチド)に結合させた。
図21に示すヒトUBE3Aベクターを、その後、実施例2に記載のヒートショック法を使用してE. coliに形質転換した。形質転換されたE. coliを、ベクターを選択し多量のベクターを回収するために、アンピシリン含有ブロス内で増殖させた。
UBE3Aの他の配列として、以下に示す変異体1、2または3が含まれる。
ヒトUBE3A変異体1;
(配列番号12)。
ヒトUBE3A変異体2;
(配列番号13)、タンパク質をコードする。
(配列番号14)
ヒトUBE3A変異体3;
(配列番号12)。
ヒトベクターの特性を、10% FBSおよび1% Pen/Strepを含むDMEM中で、37℃、5% CO2で培養し、80%コンフルエンスで継代培養されたHEK293細胞(American Type Culture Collection, Manassas, VA)内で試験した。
ベクター(6ウェルプレート中に2μg/ウェル)を、PEI遺伝子導入法を用いて細胞に遺伝子導入した。細胞は、遺伝子導入の2日前に、6ウェルプレート中で、DMEM培地で、ウェル当たり0.5×106細胞で継代培養した。培地は、遺伝子導入前夜に交換した。エンドドキシンフリーなdH2Oを約80℃に加熱し、ポリエチレンイミン(Sigma-Aldrich Co. LLC, St. Louis, MO)を溶解した。溶液をそのまま約25℃まで冷まし、水酸化ナトリウムを使用して溶液を中和した。各遺伝子導入ウェルに対し、AAV4−STUbベクターまたは陰性対照(培地のみ)を、200μL毎に2μgで、無血清DMEMに加え、各ウェルに対し、1μg/μlのポリエチレンイミン9μlを混合物に加えた。遺伝子導入混合物を室温で15分インキュベートし、細胞の各ウェルに、ウェル毎に210μlずつ加え、48時間インキュベートした。細胞をプレートからかきとることによって、細胞と培地を回収した。その後、培地と細胞を5000×gで5分間遠心分離した。
抽出物のウェスタンブロットのために、細胞ペレットを50μLの低浸透圧緩衝液内に再懸濁し、凍結/解凍を3回繰り返すことによって細胞を溶解した。ライセート(可溶化液)をLamelli試料緩衝液とともに加熱し、BioRad 4〜20% アクリルアミドゲル上で泳動させた。トランスブロットを使用して、ニトロセルロースメンブレンに転写した。5%ミルクでブロットをブロックし、抗E6AP抗体を使用してタンパク質を検出した。
図22に示されるように、コンストラクトで遺伝子導入された細胞は、UBE3A遺伝子、すなわちE6-APを発現している。さらに、様々な分泌シグナルへの遺伝子の付加は、分泌シグナルペプチドに応じて、様々な結果を示した。例えば、図23に示されるように、GDNF分泌シグナルに基づくコンストラクトを使用した遺伝子導入は、より低い発現を示し、遺伝子導入細胞からの検出可能な分泌は示されなかった。インスリン分泌シグナルの使用は、細胞内のコンストラクトの高い発現とともに、遺伝子導入細胞からの中程度のE6AP分泌を引き起こした。インスリンシグナル分泌の結果は、図24に示されるように、HA標識コンストラクトを使用して確認された。
以上の明細書において、開示された全ての文書、行為または情報は、その文書、行為、情報またはその任意の組み合わせが、優先日において、公に入手可能であったか、公知であったか、当該分野における一般的知識の一部であったか、または何らかの問題解決に関連することが知られていたことを認めるものではない。
以上で引用された全ての公開物の開示は、各公開物が個々に参照により組み込まれたのと同程度に、個々に、完全に、参照により明示的に本明細書中に組み込まれる。
UBE3A欠損の治療法の具体的実施形態について記載、例示を行ってきたが、本発明の広範な精神と原理から逸脱することなしに、変形および改変を行い得ることは、当業者にとって明らかである。以下の請求項が、ここに記載された本発明の一般的および具体的特徴の全て、および、言語上、範囲に含まれる可能性のある、本発明の範囲の記述を全て、網羅することを意図することも、理解されるべきである。

Claims (12)

  1. サイトメガロウィルスチキンベータアクチンハイブリッドプロモーターまたはヒトユビキチンcプロモーターである転写開始配列、
    前記転写開始配列の下流に配置された、配列番号12、配列番号13、配列番号15、配列番号7のcDNA、または配列番号14のcDNAである、UBE3A配列、
    前記転写開始配列の下流に配置された、配列番号2、配列番号8、配列番号9、配列番号10、または配列番号3のcDNAである、分泌配列、および、
    前記転写開始配列の下流に配置された、配列番号4、または配列番号5のcDNAである、細胞取り込み配列、を含むUBE3Aベクターであり、
    前記UBE3Aベクターで遺伝子導入された細胞は、E6関連タンパク質を発現し、また、前記E6関連タンパク質を分泌し、
    前記E6関連タンパク質が、E6関連タンパク質発現に欠陥がある脳細胞によって取り込まれる、
    ことを特徴とするUBE3Aベクター
  2. 前記転写開始配列の上流に配置されたサイトメガロウイルス最初期エンハンサー配列をさらに含むことを特徴とする、請求項1に記載のベクター。
  3. 前記UBE3A配列の下流に配置されたウッドチャック肝炎転写後調節エレメントをさらに含むことを特徴とする、請求項1に記載のベクター。
  4. 前記分泌配列は、前記UBE3A配列の上流に配置されていることを特徴とする、請求項1に記載のベクター。
  5. 前記細胞取り込み配列は、前記UBE3A配列の上流で前記分泌配列の下流に配置されていることを特徴とする、請求項1に記載のベクター。
  6. 転写開始配列を有する骨格プラスミドを用意することと、ここで、前記転写開始配列はサイトメガロウィルスチキンベータアクチンハイブリッドプロモーターまたはヒトユビキチンcプロモーターであり、
    UBE3Aコンストラクトを作成することと、
    前記UBE3Aコンストラクトを前記転写開始配列の下流に挿入することとを含み、
    前記UBE3Aコンストラクトを作成することは、さらに、
    配列番号12、配列番号13、配列番号15、配列番号7のcDNA、または配列番号14のcDNAである、UBE3A配列を用意することと、
    配列番号2、配列番号8、配列番号9、配列番号10、または配列番号3のcDNAである、分泌配列を前記UBE3A配列に付加することと、
    配列番号4、または配列番号5のcDNAである、細胞取り込み配列を前記UBE3A配列に付加することとを含む、
    UBE3Aベクターの合成方法であり、
    前記UBE3Aベクターで遺伝子導入された細胞は、E6関連タンパク質を発現し、また、前記E6関連タンパク質を分泌し、
    前記E6関連タンパク質が、E6関連タンパク質発現に欠陥がある脳細胞によって取り込まれる、
    ことを特徴とするUBE3Aベクターの合成方法
  7. 前記ベクターを増幅宿主に挿入することと、
    前記増幅宿主を抗生物質選択に晒すことと、ここで、前記骨格プラスミドは抗生物質耐性遺伝子を有し、
    前記増幅宿主を、抗生物質選択を含む培地中で増殖させることと、
    増殖した前記増幅宿主を回収することと、
    前記ベクターを前記増幅宿主から単離することと、をさらに含むことを特徴とする、請求項6に記載の方法。
  8. 前記抗生物質耐性遺伝子は、アンピシリン耐性遺伝子であり、前記抗生物質選択は、アンピシリン選択であることを特徴とする、請求項7に記載の方法。
  9. UBE3A欠損疾患の治療のために使用される請求項1乃至5のいずれか一項に記載のUBE3Aベクターであって、
    前記UBE3A欠損疾患は、アンジェルマン症候群、プラダ―・ウィリー症候群またはハンチントン病であることを特徴とするUBE3Aベクター
  10. 記UBE3A欠損疾患の治療が、前記UBE3Aベクターを脳に注射することである、請求項9に記載のUBE3Aベクター。
  11. 記UBE3A欠損疾患の治療に使用される前記UBE3Aベクターの投与量が、5.55×1011から2.86×1012ゲノム/g脳質量、2.86×1012ゲノム/g脳質量、2.40×1012ゲノム/g脳質量、9.80×1011ゲノム/g脳質量または5.55×1011ゲノム/g脳質量であることを特徴とする、請求項9に記載のUBE3Aベクター。
  12. 前記UBE3Aベクターは、
    前記転写開始配列の上流に配置されたサイトメガロウイルス最初期エンハンサー配列、
    前記UBE3A配列の下流に配置されたウッドチャック肝炎転写後調節エレメント、
    をさらに含み、
    前記UBE3A配列は、配列番号12、配列番号13、または配列番号15であり、
    前記細胞取り込み配列は、前記UBE3A配列の上流で前記転写開始配列の下流に配置され、前記細胞取り込み配列は、配列番号4、または配列番号5のcDNAであり、
    前記分泌配列は、前記UBE3A配列の上流に配置され、前記分泌配列は、配列番号2、配列番号8、配列番号9、または配列番号10である
    ことを特徴とする、請求項1に記載のベクター。
JP2017556744A 2015-05-07 2016-05-09 アンジェルマン症候群の遺伝子治療法のための組み換えube3a遺伝子 Active JP6841507B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562158269P 2015-05-07 2015-05-07
US62/158,269 2015-05-07
PCT/US2016/031468 WO2016179584A1 (en) 2015-05-07 2016-05-09 Modified ube3a gene for a gene therapy approach for angelman syndrome

Publications (3)

Publication Number Publication Date
JP2018518946A JP2018518946A (ja) 2018-07-19
JP2018518946A5 JP2018518946A5 (ja) 2019-06-13
JP6841507B2 true JP6841507B2 (ja) 2021-03-10

Family

ID=57218344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017556744A Active JP6841507B2 (ja) 2015-05-07 2016-05-09 アンジェルマン症候群の遺伝子治療法のための組み換えube3a遺伝子

Country Status (9)

Country Link
US (2) US11534500B2 (ja)
EP (2) EP4154914B1 (ja)
JP (1) JP6841507B2 (ja)
CN (1) CN107530451A (ja)
CA (1) CA2984629C (ja)
ES (1) ES2947311T3 (ja)
HU (1) HUE062186T2 (ja)
PL (1) PL3291843T3 (ja)
WO (1) WO2016179584A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3641794A4 (en) * 2017-06-23 2021-03-24 The Trustees of Columbia University in the City of New York METHODS FOR THE PREVENTION AND TREATMENT OF DISEASES CHARACTERIZED BY SYNAPTIC DYSFUNCTION AND NEURODEGENERENCE, INCLUDING ALZHEIMER'S DISEASE
JP2020528739A (ja) * 2017-06-28 2020-10-01 ユニヴァーシティ オブ サウス フロリダ アンジェルマン症候群の遺伝子治療法のための改変ube3a遺伝子
CN110237257B (zh) * 2018-03-09 2023-01-03 中国科学院脑科学与智能技术卓越创新中心 Ube3a泛素化PP2A激活因子PTPA在治疗天使综合症和孤独症中的应用
CN112739353A (zh) * 2018-06-14 2021-04-30 奥维德医疗公司 Mir-92a或mir-145在治疗安格曼综合征中的用途
JP7241185B2 (ja) * 2019-01-17 2023-03-16 エフ. ホフマン-ラ ロシュ アーゲー E3ユビキチンリガーゼ(ube3a)のタンパク質標的
WO2020191366A1 (en) * 2019-03-21 2020-09-24 Ptc Therapeutics, Inc. Vector and method for treating angelman syndrome
AU2020279387A1 (en) * 2019-05-22 2021-12-09 The University Of North Carolina At Chapel Hill UBE3A genes and expression cassettes and their use
IT201900008877A1 (it) * 2019-06-13 2020-12-13 Univ Bologna Alma Mater Studiorum Nuovi costrutti per terapia genica
US20220305098A1 (en) * 2019-08-22 2022-09-29 The Regents Of The University Of California Ube3a for the treatment of angelman syndrome
WO2021222232A1 (en) * 2020-04-28 2021-11-04 The Trustees Of The University Of Pennsylvania Compositions and uses thereof for treatment of angelman syndrome
WO2022272171A2 (en) * 2021-06-25 2022-12-29 University Of South Florida Secreted ube3a for treatment of neurological disorders

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5658785A (en) * 1994-06-06 1997-08-19 Children's Hospital, Inc. Adeno-associated virus materials and methods
AUPP655698A0 (en) * 1998-10-16 1998-11-05 Commonwealth Scientific And Industrial Research Organisation Delivery system for porcine somatotropin
US6706505B1 (en) * 2000-03-08 2004-03-16 Amgen Inc Human E3α ubiquitin ligase family
AU2001257078A1 (en) * 2000-04-18 2001-10-30 Iconix Pharmaceuticals, Inc. Vector and method for targeted replacement and disruption of an integrated dna sequence
AU2001268163A1 (en) 2000-06-01 2001-12-11 Genaissance Pharmaceuticals, Inc. Haplotypes of the ube3a gene
JP2006506044A (ja) * 2002-04-19 2006-02-23 ジョージア テック リサーチ コーポレイション タンパク質分泌ダイナミクスの加速のための組成物及び方法
DK1636260T3 (da) * 2003-06-10 2009-06-22 Biogen Idec Inc Forbedret udskillelse af Neublastin
EP1699492A2 (en) * 2003-12-31 2006-09-13 Sanofi Pasteur Inc. Targeted immunogens
WO2005084714A2 (en) * 2004-03-02 2005-09-15 University Of Florida Research Foundation, Inc. Raav-neprilysin compositions and methods of use
US20130058915A1 (en) 2010-03-02 2013-03-07 Children's Medica Center Corporation Methods and compositions for treatment of angelman syndrome and autism spectrum disorders
US9714427B2 (en) 2010-11-11 2017-07-25 The University Of North Carolina At Chapel Hill Methods and compositions for unsilencing imprinted genes
WO2012115980A1 (en) * 2011-02-22 2012-08-30 California Institute Of Technology Delivery of proteins using adeno-associated virus (aav) vectors
PT2703487T (pt) * 2011-04-26 2018-10-11 Genomix Co Ltd Péptido para induzir a regeneração de um tecido e a sua utilização
WO2013016279A1 (en) * 2011-07-25 2013-01-31 Beth Israel Deaconess Medical Center, Inc. Animal model of autism
ES2688831T3 (es) 2012-06-25 2018-11-07 Ionis Pharmaceuticals, Inc. Modulación de la expresión de UBE3A-ATS
EP2724721A1 (en) 2012-10-26 2014-04-30 Matentzoglu, Konstantin Composition for use in the treatment of Angelman syndrome and/or autism spectrum disorder, the use of such composition and a method for manufacturing a medicament for the treatment of Angelman syndrome and/or autism spectrum disorder
US11053291B2 (en) 2014-02-19 2021-07-06 University Of Florida Research Foundation, Incorporated Delivery of Nrf2 as therapy for protection against reactive oxygen species
US9822156B2 (en) * 2014-06-13 2017-11-21 Whitehead Institute For Biomedical Research Amyloid beta expression constructs and uses therefor

Also Published As

Publication number Publication date
EP3291843A4 (en) 2018-12-05
CA2984629C (en) 2024-06-18
US11534500B2 (en) 2022-12-27
HUE062186T2 (hu) 2023-09-28
US20180104358A1 (en) 2018-04-19
US20230277684A1 (en) 2023-09-07
PL3291843T3 (pl) 2023-07-17
ES2947311T3 (es) 2023-08-04
CN107530451A (zh) 2018-01-02
EP3291843B1 (en) 2023-03-22
EP4154914A1 (en) 2023-03-29
EP4154914B1 (en) 2024-08-28
JP2018518946A (ja) 2018-07-19
EP3291843A1 (en) 2018-03-14
WO2016179584A1 (en) 2016-11-10
CA2984629A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
JP6841507B2 (ja) アンジェルマン症候群の遺伝子治療法のための組み換えube3a遺伝子
KR102604159B1 (ko) 조직 선택적 트랜스진 발현
US20200113955A1 (en) Modified ube3a gene for a gene therapy approach for angelman syndrome
JP7057281B2 (ja) 眼疾患のための遺伝子療法
KR20180043373A (ko) 색소성망막염의 치료
JP2022523632A (ja) CRISPR-Casによる標的化された核内RNA切断及びポリアデニル化
US6838444B1 (en) Compositions and methods for the therapeutic use of an atonal-associated sequence for deafness, osteoarthritis, and abnormal cell proliferation
US20220323611A1 (en) Aav vectors with myelin protein zero promoter and uses thereof for treating schwann cell-associated diseases like charcot-marie-tooth disease
JP2020527335A (ja) 眼疾患のための遺伝子療法
US20240216536A1 (en) Secreted ube3a for treatment of neurological disorders
CN109971729B (zh) 一种酶组合物
US20230234997A1 (en) Compositions and Methods for the Treatment of Synucleinopathies
TWI848486B (zh) 組織選擇性轉基因表現
JP2019532637A (ja) 脆弱X症候群遺伝子治療のための組換えDgkk遺伝子
RU2800428C2 (ru) НЕ ЯВЛЯЮЩИЕСЯ ЧЕЛОВЕКОМ ЖИВОТНЫЕ, СОДЕРЖАЩИЕ ГУМАНИЗИРОВАННЫЙ ЛОКУС TrkB
KR102709884B1 (ko) 인간화된 trkb 유전자좌를 포함하는 비인간 동물
CN117098771A (zh) 用于治疗阿尔茨海默病的组合物和方法
CA3234720A1 (en) Compositions and methods for the treatment of p53-mediated cancers
JP2022524747A (ja) Akt経路を標的とする神経保護遺伝子療法
CN117836420A (zh) 重组tert编码病毒基因组和运载体

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200525

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210210

R150 Certificate of patent or registration of utility model

Ref document number: 6841507

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250