JP6839947B2 - Fast-curing two-component urethane waterproof material composition and its manufacturing method - Google Patents

Fast-curing two-component urethane waterproof material composition and its manufacturing method Download PDF

Info

Publication number
JP6839947B2
JP6839947B2 JP2016179680A JP2016179680A JP6839947B2 JP 6839947 B2 JP6839947 B2 JP 6839947B2 JP 2016179680 A JP2016179680 A JP 2016179680A JP 2016179680 A JP2016179680 A JP 2016179680A JP 6839947 B2 JP6839947 B2 JP 6839947B2
Authority
JP
Japan
Prior art keywords
curing
waterproof material
pot life
main agent
ipdi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016179680A
Other languages
Japanese (ja)
Other versions
JP2018044068A (en
Inventor
裕也 後藤
裕也 後藤
尚人 谷澤
尚人 谷澤
恒 藤田
恒 藤田
直親 青山
直親 青山
石井 明
明 石井
Original Assignee
アイシーケイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシーケイ株式会社 filed Critical アイシーケイ株式会社
Priority to JP2016179680A priority Critical patent/JP6839947B2/en
Publication of JP2018044068A publication Critical patent/JP2018044068A/en
Application granted granted Critical
Publication of JP6839947B2 publication Critical patent/JP6839947B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、速硬化性2液型ウレタン防水材組成物およびその製造方法に関する。 The present invention relates to a fast-curing two-component urethane waterproof material composition and a method for producing the same.

2液型ウレタン防水材は、不定形状および狭小部分の施工に適し経済性にも優れているため、ベランダ、庇の防水をはじめコンクリート系建築物の屋上防水にも幅広く採用されており、我が国独自の発展を遂げてきた。
2液型ウレタン防水材は、施工現場で主剤、硬化剤の2液を攪拌機で数分間混合した後、金コテ、くしベラ、ゴムベラ、ローラー、刷毛などで塗布し施工されるが、2液の混合開始と同時に硬化反応は始まり、徐々に粘度が上昇し、ある程度の時間施工しやすい低粘度状態(以下、可使時間と称す。)を経た後、施工が困難なほどの高粘度となり硬化していく。可使時間は実際の施工温度で少なくとも30分程度以上が好ましいとされており、便宜上23℃での粘度が60,000mPa・sになるまでの時間を指標として用いる。
Two-component urethane waterproofing material is suitable for construction of irregular shapes and narrow parts and has excellent economic efficiency, so it is widely used for waterproofing balconies and eaves as well as rooftop waterproofing of concrete buildings, which is unique to Japan. Has achieved the development of.
The two-component urethane waterproofing material is constructed by mixing the two solutions of the main agent and the curing agent at the construction site with a stirrer for several minutes, and then applying them with a gold iron, comb spatula, rubber spatula, roller, brush, etc. The curing reaction starts at the same time as the start of mixing, the viscosity gradually increases, and after passing through a low viscosity state (hereinafter referred to as pot life) that is easy to install for a certain period of time, the viscosity becomes so high that it is difficult to install and cures. To go. It is said that the pot life is preferably at least about 30 minutes or more at the actual construction temperature, and for convenience, the time until the viscosity at 23 ° C. reaches 60,000 mPa · s is used as an index.

塗布作業において可使時間は長いほど好ましいが、一般的には可使時間を長くしようとすると硬化性が悪くなり、次工程を実施するために塗膜上に作業員が乗れるまでの時間(以下、施工可能時間と称す。)も長くなってしまう。通常の作業では、ウレタン防水材を夕方に塗布し終わり、翌日朝には施工可能状態となることが望まれており、施工可能時間は年間を通して17時間程度以内に調整できることが好ましいとされている。
夏季の施工においては材料の温度は35℃程度まで上昇し反応性が高まるため、30分の可使時間を確保するには23℃での可使時間で50分程度以上であることが好ましく、そのためには相応の配合技術が必要とされる。一方、冬季においては、材料温度は5℃程度まで下がり反応性が低下するため、可使時間の確保は比較的容易となり、23℃での可使時間で25分程度以上あれば問題ないが、翌朝までに施工可能な硬化性とするには、やはり相応の配合技術が必要となる。従って、2液型ウレタン防水材は、夏用と冬用の少なくとも二種類の配合を用意し、各季節に応じた可使時間と施工可能時間を確保するのが一般的である。
The longer the pot life is, the more preferable it is in the coating work, but in general, if the pot life is lengthened, the curability deteriorates, and the time until the worker can get on the coating film to carry out the next process (hereinafter, , It is called the workable time.) It also becomes long. In normal work, it is desired that the urethane waterproof material is applied in the evening and the work is ready for construction the next morning, and it is preferable that the workable time can be adjusted within about 17 hours throughout the year. ..
In summer construction, the temperature of the material rises to about 35 ° C and the reactivity increases. Therefore, in order to secure a pot life of 30 minutes, it is preferable that the pot life at 23 ° C is about 50 minutes or more. For that purpose, a suitable compounding technique is required. On the other hand, in winter, the material temperature drops to about 5 ° C and the reactivity decreases, so it is relatively easy to secure the pot life, and there is no problem if the pot life at 23 ° C is about 25 minutes or more. In order to make it curable so that it can be applied by the next morning, appropriate compounding technology is still required. Therefore, it is common to prepare at least two types of two-component urethane waterproofing materials, one for summer and the other for winter, to secure the pot life and the workable time according to each season.

現在汎用化されている2液型ウレタン防水材は、トリレンジイソシアナート(以下、TDIと称す。)とポリオキシプロピレンポリオールからなるイソシアナート基末端プレポリマーを主剤とし、一方の硬化剤中に、活性水素成分として比較的反応が穏やかな芳香族ポリアミンである、3,3′−ジクロロ−4,4′−ジアミノジフェニルメタン(以下MOCAと称す。)を主成分として用い、低反応性の2級ポリオールであるポリオキシプロピレンポリオールを併用している。その際、硬化剤中には、促進剤として、水分よりもポリオールとの反応を選択的に促進することで発泡防止効果があるとされるカルボン酸鉛を用いるのが一般的であり、このような防水材はMOCA架橋型防水材と称されている。 The two-component urethane waterproofing material currently in general use is mainly composed of an isocyanate group-terminated prepolymer composed of tolylene isocyanate (hereinafter referred to as TDI) and a polyoxypropylene polyol, and one of the curing agents contains an isocyanate group-terminated prepolymer. A low-reactivity secondary polyol using 3,3'-dichloro-4,4'-diaminodiphenylmethane (hereinafter referred to as MOCA), which is an aromatic polyamine with a relatively mild reaction as an active hydrogen component, as a main component. Polyoxypropylene polyol is used in combination. At that time, it is common to use lead carboxylate, which is said to have an anti-foaming effect by selectively promoting the reaction with the polyol rather than water, as the accelerator in the curing agent. The waterproof material is called MOCA cross-linked waterproof material.

MOCA架橋型防水材は反応性が穏やかであるため、特に可使時間が必要とされる夏季の施工性に優れており、また比較的機械的強度も良好であるため、今でも汎用防水材として用いられている。一方、MOCA架橋型防水材は低温時の硬化性が悪いため、冬季は促進剤のカルボン酸鉛を多目に配合するのが一般的であるが、低温硬化性の改善には限界があり、さらに鉛化合物を多く配合することで耐熱劣化が促進されるという問題点も発現する。
また、2−エチルヘキサン酸のようなカルボン酸を促進剤として用いる方法もあるが、MOCAとイソシアナートとの反応は促進されるが、併用するポリオールとの反応は促進されないため、低温硬化性を改善するにはやはり限界がある。
Since the MOCA cross-linked waterproof material has mild reactivity, it is excellent in workability in summer when pot life is required, and it has relatively good mechanical strength, so it is still used as a general-purpose waterproof material. It is used. On the other hand, since MOCA cross-linked waterproofing material has poor curability at low temperature, it is common to add a large amount of lead carboxylate as an accelerator in winter, but there is a limit to the improvement of low temperature curability. Furthermore, there is a problem that heat deterioration is promoted by blending a large amount of lead compounds.
There is also a method of using a carboxylic acid such as 2-ethylhexanoic acid as an accelerator, but the reaction between MOCA and isocyanate is promoted, but the reaction with the polyol used in combination is not promoted. There is still a limit to improvement.

なお、MOCA架橋型防水材には環境面での大きな問題もある。硬化剤に用いられているMOCAは労働安全衛生法で特定化学物質第2類物質に指定されており、硬化剤には上限値の1%を超えて使用されているため、特定化学物質等障害予防規則(以下、特化則と称す。)該当品となってしまう。また、MOCAは、IARC(国際がん研究機関)による発がん性評価でグループ1(ヒトに対して発がん性を示す。)に分類されている。
また、主剤に用いられているTDIも特定化学物質に指定されており、汎用品の主剤には遊離TDIが上限値の1%を超えて存在するため、主剤も特化則該当品となってしまい、製造時および施工時に種々の制約を受けることとなる。さらに、促進剤として用いるカルボン酸鉛は、世界的に使用が厳しく制限されている材料であり、化学物質排出把握管理促進法(通称、化管法)の特定第1種指定化学物質に指定されており、環境面からは使用を避けたい材料である。
The MOCA crosslinked waterproof material also has a big environmental problem. MOCA used as a curing agent is designated as a Class 2 Specified Chemical Substance by the Industrial Safety and Health Act, and since it is used in a curing agent in excess of 1% of the upper limit, obstacles such as Specified Chemical Substances, etc. It will be a product that falls under the preventive rules (hereinafter referred to as specialization rules). In addition, MOCA is classified into Group 1 (carcinogenic to humans) in the carcinogenicity evaluation by IARC (International Agency for Research on Cancer).
In addition, the TDI used as the main agent is also designated as a specific chemical substance, and since the free TDI is present in the main agent of general-purpose products in excess of 1% of the upper limit, the main agent is also a product subject to the special rules. As a result, various restrictions are imposed during manufacturing and construction. Furthermore, lead carboxylate used as an accelerator is a material whose use is strictly restricted worldwide, and is designated as a specified type 1 designated chemical substance under the Chemical Substance Emission Control Promotion Law (commonly known as the Chemical Substances Control Law). It is a material that we want to avoid using from the environmental point of view.

2液型ウレタン防水材において、TDIプレポリマーに対し、MOCAより反応性が高く、環境面でも安全性が高いジエチルトルエンジアミン(以下、DETDAと称す。)を用いるDETDA架橋型防水材と称されるタイプも商品化されている。DETDA架橋型防水材は低温時にも硬化性が良いという特徴を持っているが、夏季の可使時間を確保するためには可塑剤を多く配合する必要がある。但し、可塑剤を多く使用し過ぎるとトップコートとの接着性低下や可塑剤の移行性増大といった問題が発生するため、使用量には限界があり、夏場の可使時間確保が難しいとされている。
DETDA架橋型防水材の可使時間を確保する方法としては、特殊なTDIを用いる方法(特許文献1)、低反応性のポリイソシアナートであるイソホロンジイソシアナート(以下、IPDIと称す。)をTDIと併用する方法(特許文献2)、反応性の穏やかな芳香族2級アミンである4,4′−メチレンビス(N−sec−ブチルアニリン)をDETDAと併用する方法(特許文献3)等が提案されているが、まだ各々の方法に問題が残されており、汎用化されるには至っていない。
In a two-component urethane waterproofing material, it is called a DETDA crosslinked waterproofing material using diethyltoluenediamine (hereinafter referred to as DETDA), which is more reactive than MOCA and has higher environmental safety with respect to TDI prepolymer. The type has also been commercialized. The DETDA cross-linked waterproof material has a feature of having good curability even at low temperatures, but it is necessary to add a large amount of plasticizer in order to secure the pot life in summer. However, if too much plasticizer is used, problems such as deterioration of adhesiveness to the top coat and increase of plasticizer migration will occur, so the amount used is limited and it is difficult to secure the pot life in the summer. There is.
As a method for securing the pot life of the DETDA crosslinked waterproof material, a method using a special TDI (Patent Document 1) and isophorone diisocyanate (hereinafter referred to as IPDI) which is a low-reactivity polyisocyanate are used. A method of using in combination with TDI (Patent Document 2), a method of using 4,4'-methylenebis (N-sec-butylaniline), which is a mildly reactive aromatic secondary amine, in combination with DETDA (Patent Document 3), etc. Although it has been proposed, there are still problems with each method, and it has not yet been generalized.

なお、DETDAは水分よりもかなり反応性が高いため、DETDAを主反応成分とする塗膜は、カルボン酸鉛なしでも発泡現象を抑制することができるという長所があり、環境面でさらに有利となる。
また、DETDA架橋型防水材はMOCA架橋型防水材とは異なり、冬季に硬化促進剤を用いることにより硬化性をさらに良くすることはできるが、可使時間はやはり短くなるため施工性は悪くなってしまう。そのため、通常は硬化促進剤を用いないが、2−エチルヘキサン酸鉛のようなカルボン酸鉛化合物や2−エチルヘキサン酸のような低分子カルボン酸により硬化を速くすることはできる。
なお、硬化促進剤は貯蔵安定性に問題が起こらないことより硬化剤側に配合するのが一般的であるが、第3成分として施工現場で添加することも行われている。施工現場で添加する場合は、施工時の気温に合わせて添加量を調整することができるという利便性はあるが、添加量が少量であるため配合ミスが発生しやすいという問題や保管・管理が難しいという問題もある。
Since DETDA is considerably more reactive than water, a coating film containing DETDA as a main reaction component has an advantage that the foaming phenomenon can be suppressed even without lead carboxylate, which is further advantageous in terms of the environment. ..
Further, unlike the MOCA cross-linked waterproof material, the DETDA cross-linked waterproof material can further improve the curability by using a curing accelerator in winter, but the pot life is still shortened and the workability deteriorates. Will end up. Therefore, although a curing accelerator is not usually used, curing can be accelerated by a lead carboxylic acid compound such as lead 2-ethylhexanoate or a low molecular weight carboxylic acid such as 2-ethylhexanoic acid.
The curing accelerator is generally added to the curing agent side because it does not cause a problem in storage stability, but it is also added as a third component at the construction site. When adding at the construction site, there is the convenience that the amount of addition can be adjusted according to the temperature at the time of construction, but since the amount of addition is small, there is a problem that compounding mistakes are likely to occur and storage and management. There is also the problem that it is difficult.

なお、ウレタン防水材の塗膜性能は、JIS A 6021において機械的強度のみならず、耐候性、耐熱性、耐酸性、耐アルカリ性などについても詳細が規定されており、このJIS規格を満たしたものでないと、官公庁などには採用されないのは勿論、商品として認められないのが現状である。 As for the coating film performance of urethane waterproofing material, not only mechanical strength but also weather resistance, heat resistance, acid resistance, alkali resistance, etc. are specified in detail in JIS A 6021, and those satisfying this JIS standard. Otherwise, it will not be adopted by government offices, of course, and it will not be accepted as a product.

また、一般的なウレタン防水工法では、コンクリートなどの無機質系下地に対し、接着性を確保するためのプライマーを施し、プライマーが硬化した後にウレタン防水層の施工を行い、その後耐候性を確保するためにトップコートを塗布するのが一般的である。なお、比較的大面積の無機質系下地に対しては、各種通気緩衝シートを施工し、その上にウレタン防水材を塗布し、その後トップコートを塗布するという通気緩衝工法が普及している。 In addition, in the general urethane waterproofing method, a primer is applied to an inorganic base such as concrete to ensure adhesiveness, and after the primer is cured, a urethane waterproofing layer is applied, and then weather resistance is ensured. It is common to apply a top coat to the concrete. For an inorganic base having a relatively large area, a ventilation buffer method is widely used in which various ventilation buffer sheets are applied, a urethane waterproof material is applied on the sheet, and then a top coat is applied.

いずれの工法においても、ウレタン防水層は塗膜の欠陥を補い均一性を確保するために2回に分けて塗布し、最終的に2mm〜3mmの膜厚にするのが一般的であるが、ウレタン防水層を1回で1〜2mm施工した後にトップコートを塗布するという簡易工法もベランダ、庇、幅木といった施工部位に対してある程度普及している。
現状ではウレタン防水材を1層塗布すると、当日中には硬化しないため、翌日に2層目のウレタン防水材の塗布あるいはトップコートの塗布といった次工程を行うのが通例であり、完成までの工期が長くなってしまうのがウレタン防水材の欠点とされている。さらに近年、気候の変動が激しくなる傾向があり、ウレタン防水材塗布後数時間で降雨に見舞われ未硬化のウレタン防水層が損傷を受けるという問題も多発している。
In either method, the urethane waterproof layer is generally applied in two steps in order to compensate for defects in the coating film and ensure uniformity, and finally to a thickness of 2 mm to 3 mm. A simple method of applying a top coat after applying a urethane waterproof layer by 1 to 2 mm at a time is also widespread to some extent for construction sites such as balconies, eaves, and skirting boards.
At present, if one layer of urethane waterproofing material is applied, it will not cure during the day, so it is customary to perform the next process such as applying a second layer of urethane waterproofing material or applying a top coat the next day, and the construction period until completion. It is said that the drawback of urethane waterproofing material is that it becomes long. Furthermore, in recent years, climate change has tended to be severe, and there have been many problems that the uncured urethane waterproof layer is damaged by rainfall within a few hours after the urethane waterproof material is applied.

特許第3114557号公報Japanese Patent No. 3114557 特許第3957779号公報Japanese Patent No. 3957779 特許第3445364号公報Japanese Patent No. 3445364

最近、建設労働者の不足が顕著となってきており、防水業界においてもより効率的で省力化のできる防水工法および防水材料が望まれている。特に、ウレタン防水材においては、小面積の施工でさえ3〜5日の工期が必要となり、天候が不順であればさらに大幅に工期が延長されてしまうという大きな課題が残されている。
さらに、夜間に降雨が予想される場合は日中が好天であってもウレタン防水材を塗布することができず、また無理して降雨前に施工したため降雨により塗膜が損傷してしまい、補修に多大な時間と労力を費やしてしまうという問題もある。
Recently, the shortage of construction workers has become remarkable, and the waterproofing industry also desires more efficient and labor-saving waterproofing methods and materials. In particular, urethane waterproofing materials require a construction period of 3 to 5 days even for construction of a small area, and there remains a big problem that the construction period is further significantly extended if the weather is unseasonable.
Furthermore, if it is expected to rain at night, urethane waterproofing material cannot be applied even if the weather is fine during the day, and because it was forcibly applied before the rain, the paint film was damaged by the rain. There is also the problem that a great deal of time and effort is spent on repairs.

施工後5時間程度で硬化し(施工可能)、当日中に次工程に移ることのできる防水材についてもDETDA架橋型防水材を中心に検討はされてきたが、施工可能時間を短くすると可使時間も同時に短くしてしまい施工が難しくなるため、極小面積あるいは補修用といった特殊な用途に限定されてしまい、汎用化するには至っていない。
また、DETDA架橋型防水材には、プライマーとの接着性や防水材同士の接着性が十分でないという問題も残されている。
汎用のMOCA架橋型防水材には、低温時の硬化性が悪くなるという問題と環境対応が不十分であるという問題があり、年間を通して当日中に硬化させることができ、しかも汎用防水材とほぼ同等の可使時間を有し、接着性および施工性が良好で環境にも優しい速硬化性ウレタン防水材が望まれている。
Waterproofing materials that cure in about 5 hours after construction (can be constructed) and can be moved to the next process on the same day have been studied mainly for DETDA cross-linked waterproofing materials, but can be used if the construction time is shortened. Since the time is shortened at the same time and the construction becomes difficult, it is limited to a special application such as a very small area or repair, and has not been generalized.
Further, the DETDA crosslinked waterproof material has a problem that the adhesiveness with the primer and the adhesiveness between the waterproof materials are not sufficient.
The general-purpose MOCA cross-linked waterproof material has the problems that the curability at low temperature deteriorates and the environmental compatibility is insufficient, and it can be cured all year round on the same day, and it is almost the same as the general-purpose waterproof material. A fast-curing urethane waterproof material that has the same pot life, has good adhesiveness and workability, and is environmentally friendly is desired.

DETDA架橋型防水材において、DETDAよりも反応性の穏やかな芳香族2級アミンである4,4′−メチレンビス(N−sec−ブチルアニリン)を併用すると、硬化性をあまり損ねずに可使時間を延長することができ比較的速硬化性の防水材とすることができるが、4,4′−メチレンビス(N−sec−ブチルアニリン)を用いることで、耐熱性や耐アルカリ性を極端に低下させるため実用性に乏しいという問題が発生する。
一方、主剤において、TDIとIPDIを併用することで可使時間をある程度延長することはできるが、物性低下や硬化性の低下となることが指摘されている。
When 4,4'-methylenebis (N-sec-butylaniline), which is an aromatic secondary amine that is milder in reactivity than DETDA, is used in combination with the DETDA cross-linked waterproof material, the pot life is not significantly impaired. However, by using 4,4'-methylenebis (N-sec-butylaniline), the heat resistance and alkali resistance are extremely reduced. Therefore, there is a problem that it is not practical.
On the other hand, it has been pointed out that, in the main agent, the pot life can be extended to some extent by using TDI and IPDI in combination, but the physical properties and curability are lowered.

本願は、上記の点についてさらに詳細な検討を行った結果、主剤として特定の範囲でTDIとIPDIを用い、硬化剤として可塑剤の存在下で特定の範囲のDETDAと4,4′−メチレンビス(N−sec−ブチルアニリン)を用いることで、可使時間を保持した上で速硬化性となり、耐熱性や耐アルカリ性にも優れ、プライマーとの接着性や防水材同士との接着性が良好な、環境対応型速硬化性防水材となることを見出した。さらに、上記組成物は可使時間を必要とする夏用配合の速硬化性防水材に適しているが、この組成物に酸無水物を硬化促進剤として用いることで、低温においても可使時間を保持した速硬化性防水材となることが分かった。 As a result of further detailed examination of the above points, the present application uses TDI and IPDI in a specific range as the main agent, and DETDA and 4,4'-methylenebis in a specific range in the presence of a plasticizing agent as a curing agent. By using N-sec-butylaniline), it becomes quick-curing while maintaining the pot life, has excellent heat resistance and alkali resistance, and has good adhesion to primers and waterproof materials. , Found that it will be an environment-friendly fast-curing waterproof material. Further, the above composition is suitable for a fast-curing waterproof material for summer, which requires a pot life. However, by using an acid anhydride as a curing accelerator in this composition, the pot life can be used even at a low temperature. It was found that it is a fast-curing waterproof material that retains the above.

また、主剤の製造方法において、従来技術ではTDIとIPDIの反応速度が大きく異なるため、TDIプレポリマーとIPDIプレポリマーとを別々に製造し、両者をブレンドする方法(特許文献2)が知られているが、本発明においてはTDIとIPDIを同時に仕込むかあるいは、IPDIとポリオールを先に仕込んである程度反応を先行させた後にTDIを仕込むという1バッチ生産を行うことができ、生産性を大きく向上できることが分かった。 Further, in the method for producing the main agent, since the reaction rates of TDI and IPDI are significantly different in the prior art, a method of separately producing the TDI prepolymer and the IPDI prepolymer and blending the two is known (Patent Document 2). However, in the present invention, it is possible to carry out one-batch production in which TDI and IPDI are charged at the same time, or IPDI and polyol are charged first and the reaction is preceded to some extent, and then TDI is charged, which can greatly improve productivity. I understood.

本発明は、次の態様を含む。
[1]ポリイソシアナートとポリオールからなるイソシアナート基末端プレポリマーを含む主剤と芳香族ポリアミンおよび可塑剤を含む硬化剤とからなる2液型ウレタン防水材組成物であって、主剤はトリレンジイソシアナート骨格とイソホロンジイソシアナート骨格を50/50〜97/3のモル比で含み、硬化剤は芳香族ポリアミンとしてジエチルトルエンジアミンと4,4′−メチレンビス(N−sec−ブチルアニリン)を40/60〜97/3の当量比で含む、2液型ウレタン防水材組成物。
[2]硬化剤中の活性水素成分の80当量%以上が芳香族ポリアミンである、[1]に記載の2液型ウレタン防水材組成物。
[3]硬化促進剤として酸無水物を含む、[1]または[2]に記載の2液型ウレタン防水材組成物。
[4]ポリイソシアナートとポリオールからなるイソシアナート基末端プレポリマーを含む主剤と芳香族ポリアミンおよび可塑剤を含む硬化剤とからなる2液型ウレタン防水材組成物の製造方法であって、該方法は、
トリレンジイソシアナート、イソホロンジイソシアナートおよびポリオールを、トリレンジイソシアナートとイソホロンジイソシアナートのモル比が50/50〜97/3の範囲で、同一容器内で反応させてイソシアナート基末端プレポリマーを含む主剤を調製する工程、および、
ジエチルトルエンジアミン、4,4′−メチレンビス(N−sec−ブチルアニリン)および可塑剤を、ジエチルトルエンジアミンと4,4′−メチレンビス(N−sec−ブチルアニリン)の当量比が40/60〜97/3の範囲で、混合して硬化剤を調製する工程を含む、方法。
[5]前記主剤を調製する工程が、イソホロンジイソシアナートとポリオールを容器内で反応させる工程、次いで前記容器内にトリレンジイソシアナートを添加してさらに反応させる工程を含む、[4]に記載の方法。
The present invention includes the following aspects.
[1] A two-component urethane waterproofing composition composed of a main agent containing an isocyanate group-terminated prepolymer composed of a polyisocyanate and a polyol, and a curing agent containing an aromatic polyamine and a plasticizer, and the main agent is tolylene diisocyanate. It contains a nat skeleton and an isophorone diisocyanate skeleton in a molar ratio of 50/50 to 97/3, and the curing agent contains diethyltoluenediamine and 4,4'-methylenebis (N-sec-butylaniline) as aromatic polyamines 40 /. A two-component urethane waterproof material composition containing an equivalent ratio of 60 to 97/3.
[2] The two-component urethane waterproof material composition according to [1], wherein 80 equivalent% or more of the active hydrogen component in the curing agent is an aromatic polyamine.
[3] The two-component urethane waterproof material composition according to [1] or [2], which contains an acid anhydride as a curing accelerator.
[4] A method for producing a two-component urethane waterproofing material composition, which comprises a main agent containing an isocyanate group-terminated prepolymer composed of a polyisocyanate and a polyol, and a curing agent containing an aromatic polyamine and a plasticizer. Is
Tolylene diisocyanate, isophorone diisocyanate and polyol are reacted in the same container with a molar ratio of tolylene isocyanate to isophorone diisocyanate in the range of 50/50 to 97/3, and isocyanate group-terminated prepolymer. The process of preparing the main agent containing
The equivalent ratio of diethyltoluenediamine, 4,4'-methylenebis (N-sec-butylaniline) and plasticizer to diethyltoluenediamine and 4,4'-methylenebis (N-sec-butylaniline) is 40/60 to 97. A method comprising the step of mixing to prepare a curing agent in the range of 3/3.
[5] The step of preparing the main agent comprises a step of reacting isophorone diisocyanate and a polyol in a container, and then a step of adding tolylene diisocyanate into the container and further reacting the mixture, according to [4]. the method of.

本発明の2液型ウレタン防水材組成物は、夏季においては十分な可使時間を保持した速硬化性防水材であり、冬季においても可使時間を保持した上で低温硬化性に優れた速硬化性防水材となり、年間を通して工期短縮および施工の効率化を可能とする。
また、耐熱性や耐アルカリ性が良好であり、プライマーとの接着性や防水材同士の接着性にも優れた、生産性の良い環境対応型速硬化性ウレタン防水材である。
The two-component urethane waterproof material composition of the present invention is a fast-curing waterproof material that retains a sufficient pot life in summer, and has excellent low-temperature curability even in winter while maintaining a pot life. It becomes a curable waterproof material, which makes it possible to shorten the construction period and improve the efficiency of construction throughout the year.
In addition, it is an environment-friendly quick-curing urethane waterproof material with good productivity, good heat resistance and alkali resistance, excellent adhesion to primers and adhesiveness between waterproof materials.

一般的に、夏用防水材の可使時間は、23℃の測定において50分以上であることが望ましく、施工可能時間については23℃において20時間程度であることが望ましいとされており、MOCA架橋型防水材はこの目標をクリアーするのは比較的容易である。
一方、DETDA架橋型防水材は、施工可能時間は5〜7時間程度の速硬化性を示すが、可使時間を50分以上とすることが難しい。特に、主剤のポリイソシアナートとして、2,4−TDIと2,6−TDIを80/20(当量比)で含有するT−80と称される汎用品を用いた場合には可使時間を確保することが難しくなる。なお、2,4−TDIを100%含有するT−100と称される特殊品は可使時間の確保には有利であるが供給量が限定されるため、汎用性のある防水材の原料には適していないという面がある。
Generally, it is desirable that the usable time of the waterproof material for summer is 50 minutes or more in the measurement at 23 ° C., and the workable time is preferably about 20 hours at 23 ° C., MOCA. Cross-linked waterproofing materials are relatively easy to meet this goal.
On the other hand, the DETDA crosslinked waterproof material exhibits a quick curing property with a workable time of about 5 to 7 hours, but it is difficult to set the pot life to 50 minutes or more. In particular, when a general-purpose product called T-80 containing 2,4-TDI and 2,6-TDI at 80/20 (equivalent ratio) is used as the main agent polyisocyanate, the pot life is increased. It becomes difficult to secure. A special product called T-100, which contains 100% of 2,4-TDI, is advantageous for securing pot life, but the supply amount is limited, so it can be used as a raw material for a versatile waterproof material. Is not suitable.

主剤のイソシアナート基末端プレポリマーとして、TDIプレポリマーとIPDIプレポリマーを併用することで可使時間をある程延長することができるが(特許文献2)、この方法は硬化性の低下および物性の低下が指摘されており、また2種類のプレポリマーをブレンドし製造する必要があるため生産性を低下させてしまうという問題もある。 The pot life can be extended to some extent by using the TDI prepolymer and the IPDI prepolymer in combination as the main agent isocyanate group-terminated prepolymer (Patent Document 2), but this method reduces curability and physical properties. It has been pointed out that there is a decrease, and there is also a problem that the productivity is decreased because it is necessary to blend and produce two kinds of prepolymers.

一方の硬化剤では、低反応性の芳香族2級アミンである4,4′−メチレンビス(N−sec−ブチルアニリン)をDETDAと併用することが可使時間延長には有効な方法であり(特許文献3)、しかもある範囲の4,4′−メチレンビス(N−sec−ブチルアニリン)の併用は硬化性をあまり損ねないとういう特性を示すため、速硬化性をあまり損ねずに可使時間延長を可能にすることができる。しかし、4,4′−メチレンビス(N−sec−ブチルアニリン)の使用は、物性の低下と同時に耐熱性や耐アルカリ性を極端に低下させてしまうという実用上の大きな問題を発生させてしまう。 For one curing agent, the combined use of 4,4'-methylenebis (N-sec-butylaniline), which is a low-reactive aromatic secondary amine, with DETDA is an effective method for extending the pot life ( Patent Document 3) Moreover, since the combined use of 4,4'-methylenebis (N-sec-butylaniline) in a certain range shows the property that the curability is not significantly impaired, the pot life is extended without significantly impairing the fast curability. Can be made possible. However, the use of 4,4'-methylenebis (N-sec-butylaniline) causes a big practical problem that the heat resistance and the alkali resistance are extremely lowered at the same time as the physical characteristics are lowered.

本発明は、DETDA架橋型防水材について再度詳細な検討を行った結果、トリレンジイソシアナート骨格(以下、「TDI骨格」ともいう。)とイソホロンジイソシアナート骨格(以下、「IPDI骨格」ともいう。)を特定の範囲で含む主剤を用い、硬化剤の芳香族ポリアミン成分としてDETDAと4,4′−メチレンビス(N−sec−ブチルアニリン)を特定の範囲で用いることで、夏用防水材として、従来よりも可使時間を確保することのできる速硬化性防水材となることを見出した。 As a result of conducting a detailed study on the DETDA crosslinked waterproof material again, the present invention also refers to a tolylene diisocyanate skeleton (hereinafter, also referred to as “TDI skeleton”) and an isophorone diisocyanate skeleton (hereinafter, also referred to as “IPDI skeleton”). As a summer waterproofing material by using a main agent containing () in a specific range and using DETDA and 4,4'-methylenebis (N-sec-butylaniline) as an aromatic polyamine component of the curing agent in a specific range. , We have found that it is a fast-curing waterproof material that can secure the pot life more than before.

なお、TDI骨格とは式(1)に示す分子構造を言い、

Figure 0006839947
IPDI骨格とは式(2)に示す分子構造を言う。
Figure 0006839947
The TDI skeleton refers to the molecular structure represented by the formula (1).
Figure 0006839947
The IPDI skeleton refers to the molecular structure represented by the formula (2).
Figure 0006839947

主剤にIPDIを併用し、同時に硬化剤に4,4′−メチレンビス(N−sec−ブチルアニリン)を併用することで、可使時間が延長されることは予測されるが、同時に4,4′−メチレンビス(N−sec−ブチルアニリン)を使用することでの最大の問題点である耐熱性や耐アルカリ性が改善傾向となることが分かった。
また、硬化性についてはIPDIの併用により遅延される傾向とはなるが、DETDA架橋型の特徴である速硬化性は維持されるため、夏季において可使時間を保持した速硬化性防水材となり、30℃前後の気温であれば5時間前後で施工可能となり、一日2工程が可能となる。
また、主剤にIPDIを併用することで、プライマーとの接着性や防水材同士の接着性を向上させることができ、この点においてもDETDA架橋型防水材の弱点を改善することができる。
It is expected that the pot life will be extended by using IPDI as the main agent and 4,4'-methylenebis (N-sec-butylaniline) as the curing agent at the same time, but at the same time, 4,4'. It was found that the heat resistance and alkali resistance, which are the biggest problems in using -methylenebis (N-sec-butylaniline), tend to improve.
In addition, although the curability tends to be delayed by the combined use of IPDI, the fast-curing property, which is a characteristic of the DETDA cross-linked type, is maintained, so that it becomes a fast-curing waterproof material that retains its pot life in summer. If the temperature is around 30 ° C, the construction can be done in about 5 hours, and two processes can be performed a day.
Further, by using IPDI in combination with the main agent, the adhesiveness with the primer and the adhesiveness between the waterproof materials can be improved, and in this respect as well, the weak points of the DETDA crosslinked waterproof material can be improved.

(主剤)
本発明で主剤は、TDI骨格とIPDI骨格を50/50〜97/3のモル比で含む必要があり、60/40〜95/5のモル比が好ましく、70/30〜90/10のモル比であることがより好ましい。IPDI骨格のモル比が、50超では速硬化性の防水材とはなり難く、3未満では可使時間を確保した耐熱性・耐アルカリ性の良好な接着性の良い速硬化性防水材にはなり難い。
(Main agent)
In the present invention, the main agent needs to contain the TDI skeleton and the IPDI skeleton in a molar ratio of 50/50 to 97/3, preferably a molar ratio of 60/40 to 95/5, and a molar ratio of 70/30 to 90/10. The ratio is more preferable. If the molar ratio of the IPDI skeleton is more than 50, it is difficult to become a fast-curing waterproof material, and if it is less than 3, it becomes a fast-curing waterproof material with good heat resistance and alkali resistance that secures pot life. hard.

(ポリイソシアナート)
主剤にTDI骨格を導入するためのポリイソシアナートとしては、工業的に入手できる2,4−TDIと2,6−TDIの当量比が65/35であるT−65、80/20であるT−80、100/0であるT−100が使用でき、各々のブレンド品も使用することができる。ただし、T−100およびT−65は、工業的に汎用品であるT−80からの分離・精製によりに製造されるため生産量に限界がある。可使時間確保の面からはT−100が有利な面もあるが、汎用性のあるウレタン防水材に用いるには、T−80を主成分として用いることが好ましい。また、一部であればTDIのダイマー体、ヌレート体、アロファネート体等の誘導体を用いることができる。好ましくは、TDI骨格のすべてがTDIモノマーに由来する。
(Polyisocyanate)
Polyisocyanates for introducing a TDI skeleton into the main agent include T-65, which has an equivalent ratio of 2,4-TDI and 2,6-TDI, which is commercially available, 65/35, and T-65, which is 80/20. T-100, which is -80 and 100/0, can be used, and each blended product can also be used. However, since T-100 and T-65 are manufactured by separation and purification from T-80, which is an industrially general-purpose product, there is a limit to the production amount. Although T-100 is advantageous in terms of securing pot life, it is preferable to use T-80 as a main component in order to use it as a versatile urethane waterproof material. In addition, derivatives such as a dimer form, a nurate form, and an allophanate form of TDI can be used in some cases. Preferably, all of the TDI backbone is derived from the TDI monomer.

主剤にIPDI骨格を導入するためのポリイソシアナートについては、IPDIモノマーやヌレート体、アダクト体、アロファネート体等のIPDI誘導体を用いることができる。好ましくは、IPDI骨格はIPDIモノマーに由来する。 As the polyisocyanate for introducing the IPDI skeleton into the main agent, IPDI monomers, nurates, adducts, allophanates and other IPDI derivatives can be used. Preferably, the IPDI backbone is derived from the IPDI monomer.

本発明では、TDIプレポリマーに対しIPDIモノマーやIPDI誘導体を添加することもできるが、プライマーとの接着性や防水材同士の接着性を向上させる効果および可使時間を延長させる効果については、TDIおよびIPDIをプレポリマーにして用いるのが有効である。そのため、本発明の主剤は、TDIおよびIPDIをプレポリマーとして用いることが好ましい。 In the present invention, an IPDI monomer or an IPDI derivative can be added to the TDI prepolymer, but the effect of improving the adhesiveness with the primer and the adhesiveness between the waterproofing materials and the effect of prolonging the pot life are described in TDI. And it is effective to use IPDI as a prepolymer. Therefore, it is preferable that TDI and IPDI are used as prepolymers as the main agent of the present invention.

また、その他のポリイソシアナート類も一部併用することはできるが、イソシアナート基として30当量%未満であることが好ましく、20当量%未満であることがより好ましく、10当量%未満であることがさらに好ましい。その他のポリイソシアナートが30当量%以上では可使時間を有した速硬化性防水材にはなり難い。その他のポリイソシアナートとしては、ヘキサメチレンジイソシアナート、ノルボルネンジイソシアナート、水添化トリレンジイソシアナート、水添化キシリレンジイソシアナート、水添加ジフェニルメタンジイソシアナート、水添加テトラメチルキシリレンジイソシアナートなどの反応性の低いポリイソシアナート類や、キシリレンジイソシアナート、テトラメチルキシリレンジイソシアナート、ジフェニルメタンジイソシアナートなど比較的反応性の高いポリイソシアナートなどが挙げられる。 Further, although some other polyisocyanates can be used in combination, the isocyanate group is preferably less than 30 equivalent%, more preferably less than 20 equivalent%, and less than 10 equivalent%. Is even more preferable. If the amount of other polyisocyanates is 30 equivalents or more, it is difficult to obtain a fast-curing waterproof material having a pot life. Other polyisocyanates include hexamethylene diisocyanate, norbornene diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate, water-added diphenylmethane diisocyanate, and water-added tetramethylxylylene diisocyanate. Examples thereof include less reactive polyisocyanates such as, and relatively highly reactive polyisocyanates such as xylylene diisocyanate, tetramethylxylylene diisocyanate, and diphenylmethane diisocyanate.

(イソシアナート含有量)
主剤のイソシアナート含有量は、1.5質量%〜4.5質量%であることが好ましく、1.7質量%〜4.0質量%であることがより好ましい。イソシアナート含有量が1.5質量%未満では硬化性が低下し防水材に必要とされる物性が得難くなり、4.5質量%超では可使時間の確保が難しくなる。
(Isocyanate content)
The isocyanate content of the main agent is preferably 1.5% by mass to 4.5% by mass, and more preferably 1.7% by mass to 4.0% by mass. If the isocyanate content is less than 1.5% by mass, the curability is lowered and it becomes difficult to obtain the physical properties required for the waterproof material, and if it exceeds 4.5% by mass, it becomes difficult to secure the pot life.

(主剤に用いるポリオール)
主剤に用いるポリオールとしては、通常ウレタン防水材の主剤に用いられるポリオールを用いることができるが、低粘度で施工性のよい主剤とするためには、分子量が300〜8000のポリオキシプロピレンポリオールやポリオキシエチレンポリオキシプロピレンポリオールといったポリエーテル系ポリオールを用いることが好ましい。また、ポリエステル系などその他の高分子量ポリオールも一部であれば使用することができる。
さらに、1,4−ブタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、プロピレングリコール、ジプロピレングリコールといった短鎖ポリオールも使用することができる。
(Polyprethane used as the main agent)
As the polyol used as the main agent, the polyol usually used as the main agent of the urethane waterproof material can be used, but in order to make the main agent having low viscosity and good workability, a polyoxypropylene polyol having a molecular weight of 300 to 8000 or poly is used. It is preferable to use a polyether polyol such as an oxyethylene polyoxypropylene polyol. In addition, other high molecular weight polyols such as polyester can be used as long as they are a part.
Further, short chain polyols such as 1,4-butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, propylene glycol and dipropylene glycol can also be used.

また、ポリオールとしては、ジオールのみでは耐熱性や耐アルカリ性が不十分となる傾向があり、トリオール以上の官能基数のポリオールが80当量%以上となると可使時間や伸び率を確保することが難しくなるため、トリオール以上の官能基数のポリオールを3〜80当量%の範囲で用いることが好ましい。 Further, as the polyol, the heat resistance and alkali resistance tend to be insufficient only with the diol, and when the amount of the polyol having a functional group number of triol or more is 80 equivalent% or more, it becomes difficult to secure the pot life and the elongation rate. Therefore, it is preferable to use a polyol having a functional group number of triol or more in the range of 3 to 80 equivalent%.

(主剤NCO基/OH基当量比)
主剤のNCO基とOH基との当量比、NCO基/OH基は、1.5〜2.3の範囲となるようにポリイソシアナートとポリオールを配合することが好ましい。NCO基/OH基が、1.5未満では主剤の粘度が上昇し、また物性の良い防水材になり難く、2.3超では遊離のTDIあるいはIPDIが多くなり可使時間確保が難しくなる。
さらに、NCO基/OH基を1.5〜2.1にすることがより好ましく、主剤中の遊離TDIの含有量を1%以下とすることができ、遊離TDIと遊離IPDIの総量も1%以下とすることができるため環境対応型の防水材にもなりうる。
(Main agent NCO group / OH group equivalent ratio)
It is preferable to mix the polyisocyanate and the polyol so that the equivalent ratio of the NCO group to the OH group of the main agent and the NCO group / OH group are in the range of 1.5 to 2.3. If the NCO group / OH group is less than 1.5, the viscosity of the main agent increases, and it is difficult to obtain a waterproof material with good physical characteristics. If the number exceeds 2.3, the amount of free TDI or IPDI increases, making it difficult to secure the pot life.
Further, it is more preferable to set the NCO group / OH group to 1.5 to 2.1, the content of free TDI in the main agent can be 1% or less, and the total amount of free TDI and free IPDI is also 1%. Since it can be as follows, it can also be an environment-friendly waterproof material.

(主剤の製造方法)
TDIとIPDIには反応性に大きな違いがあるため、TDIプレポリマーとIPDIプレポリマーを別々に製造し、各々をブレンドする「混合」法が一般的であり、プライマーとの接着性や防水材同士の接着性を向上させる効果が高く、可使時間を延長させる効果もあり、さらに耐熱性や耐アルカリ性を向上させる効果も確認することができる。ただし、この方法は2回の別々の合成工程とさらにブレンドする工程が必要となるため、多くの生産設備と時間を必要とし経済性を損ねてしまう。
(Manufacturing method of main agent)
Due to the large difference in reactivity between TDI and IPDI, it is common to manufacture TDI prepolymers and IPDI prepolymers separately and blend them together in a "mixing" method, which provides adhesion to primers and waterproofing materials. It has a high effect of improving the adhesiveness of the polymer, has an effect of extending the pot life, and can also confirm the effect of improving the heat resistance and the alkali resistance. However, this method requires a lot of production equipment and time because it requires two separate synthesis steps and a further blending step, which impairs economic efficiency.

そこでさらに検討を進めた結果、同一反応容器によるバッチ製造が可能であることを見出した。まず、TDIとIPDIをほぼ同時に仕込む「一括仕込」法では、例えば100℃近辺での反応を行ったところ、低反応性であるIPDIも一部は反応するためか、TDIプレポリマー製造後にIPDIモノマーを添加する方法よりも、可使時間の延長効果やプライマーあるいは防水材同士の接着性向上効果が明確となり、耐熱性や耐アルカリ性も良好となった。但し、IPDIのモノマー残量が多くなると、可使時間の確保や物性の確保が難しくなる傾向となる。 As a result of further studies, it was found that batch production using the same reaction vessel is possible. First, in the "batch preparation" method in which TDI and IPDI are charged almost at the same time, for example, when a reaction is carried out at around 100 ° C., some of the low-reactivity IPDI also reacts, probably because the IPDI monomer is produced after the production of the TDI prepolymer. Compared with the method of adding, the effect of extending the pot life and the effect of improving the adhesiveness between the primers or waterproofing materials were clarified, and the heat resistance and alkali resistance were also improved. However, when the remaining amount of the monomer of IPDI increases, it tends to be difficult to secure the pot life and the physical properties.

次に、IPDIを先に仕込みある程度ポリオールとの反応を先行させた後に、TDIを仕込むという「二段仕込」法について検討を行った。1段目のIPDIとポリオールの反応は水酸基が大過剰であるため、例えば無触媒、100℃の反応温度では8〜10時間程度でIPDIの全イソシアナート基の50%程度が反応した。この方法により、IPDIモノマーを減少させることができる。また、ポリオールは分けて配合することもできる。その後、2段目としてTDIを仕込み、例えば100℃で反応を始めると、IPDIより反応性の高いTDIのイソシアナート基が優先的にポリオールと反応すると思われ、数時間後には目的のNCO含有量まで反応させることができる。この方法では、最終的に低反応性であるIPDIの2級イソシアナート基は相当量残存していると思われ、従来の「混合」法とほぼ同等の可使時間延長効果やプライマーあるいは防水材同士の接着性改善効果が得られ、耐熱性や耐アルカリ性も良好となることが分かった。 Next, a "two-stage preparation" method in which IPDI was charged first and the reaction with the polyol was preceded to some extent and then TDI was charged was examined. Since the reaction between the IPDI and the polyol in the first stage has a large excess of hydroxyl groups, for example, at a reaction temperature of 100 ° C. without a catalyst, about 50% of all the isocyanate groups of the IPDI reacted in about 8 to 10 hours. By this method, the IPDI monomer can be reduced. Moreover, the polyol can also be blended separately. After that, when TDI is charged as the second step and the reaction is started at, for example, 100 ° C., it seems that the isocyanate group of TDI, which is more reactive than IPDI, reacts preferentially with the polyol, and after a few hours, the target NCO content Can be reacted up to. In this method, it seems that a considerable amount of secondary isocyanate groups of IPDI, which is finally low in reactivity, remains, and the pot life extension effect and the primer or waterproof material are almost the same as those of the conventional "mixing" method. It was found that the effect of improving the adhesiveness between the two was obtained, and the heat resistance and alkali resistance were also good.

さらに上記の「二段仕込」法について検討を行った結果、1段目のIPDIとポリオールとの反応の際にウレタン化触媒を用いることで、反応時間の短縮あるいは反応温度を低下させることが可能となり、しかも1段目の反応率を十分にコントロールできることが分かった。
ウレタン化触媒としては、3級アミン類、酸、カルボン酸金属塩、錫化合物といった一般的なウレタン化触媒を用いることができるが、特に有機第2錫化合物である、ジオクチル錫ジラウレートやジブチル錫ジラウレートが好ましく、1段目の反応時間を短縮させることができ、さらには60℃前後の低温においても反応を速やかに進行させることができる。有機第2錫の使用量は、IPDIとポリオールの合計量に対し、0.0001〜0.1質量%であることが好ましく、反応温度としては40〜110℃が好ましい。
Furthermore, as a result of examining the above-mentioned "two-stage charging" method, it is possible to shorten the reaction time or lower the reaction temperature by using a urethanization catalyst in the reaction between the IPDI and the polyol in the first stage. Moreover, it was found that the reaction rate of the first stage could be sufficiently controlled.
As the urethanization catalyst, general urethanization catalysts such as tertiary amines, acids, carboxylic acid metal salts, and tin compounds can be used, and in particular, dioctyltin dilaurate and dibutyltin dilaurate, which are organic quaternary tin compounds, can be used. The reaction time of the first stage can be shortened, and the reaction can be rapidly advanced even at a low temperature of about 60 ° C. The amount of organic ditin used is preferably 0.0001 to 0.1% by mass with respect to the total amount of IPDI and polyol, and the reaction temperature is preferably 40 to 110 ° C.

また、1段目の反応が任意の反応率に達したところで、リン酸のようなウレタン化触媒を失活させる材料を添加することでほぼ反応を停止させることができ、しかもこの失活剤の添加により、2段目のTDIとの反応時にアロファネート化等の副反応による暴走反応を防止する効果があり、反応を安全で円滑に進行させることができる。
ウレタン化触媒の失活剤としては、無機酸、ベンゾイルクロライドやフタル酸クロライド等の塩素系酸性物質等が挙げられるが、中でもリン酸が効果的であり好ましい。リン酸の使用量は使用したウレタン化触媒量により異なり、ウレタン化触媒に対して50〜200当量%であることが好ましい。
Further, when the reaction of the first stage reaches an arbitrary reaction rate, the reaction can be almost stopped by adding a material for deactivating the urethanization catalyst such as phosphoric acid, and moreover, the inactivating agent of this inactivating agent. The addition has the effect of preventing a runaway reaction due to a side reaction such as allophanation during the reaction with the second-stage TDI, and the reaction can proceed safely and smoothly.
Examples of the deactivator of the urethanization catalyst include inorganic acids and chlorine-based acidic substances such as benzoyl chloride and phthalate chloride, and among them, phosphoric acid is preferable because it is effective. The amount of phosphoric acid used varies depending on the amount of urethanization catalyst used, and is preferably 50 to 200 equivalent% with respect to the urethanization catalyst.

なお、1段目の反応はIPDIの全イソシアナート基の10〜75%の範囲で反応させることが好ましく、20〜60%の範囲で反応させることがより好ましい。反応率が10%未満では、最終的にIPDIモノマーが多く残存するため、可使時間の延長効果や接着性の改善効果が不十分となり、75%以上反応させると最終的に残存するIPDIのイソシアナート基が減少するため、可使時間の延長効果や接着性の改善効果、さらには耐熱性や耐アルカリ性の改善効果も不十分となる。
上記の「二段仕込」法は、TDIとIPDIを同時に仕込む「一括仕込」法よりも可使時間の確保やプライマーとの接着性や防水材同士の接着性向上に有効であり耐熱性や耐アルカリ性も良好であるため、本発明ではより好ましい生産方法となる。
The first-stage reaction is preferably carried out in the range of 10 to 75% of all the isocyanate groups of IPDI, and more preferably in the range of 20 to 60%. If the reaction rate is less than 10%, a large amount of IPDI monomer will eventually remain, so that the effect of extending the pot life and the effect of improving the adhesiveness will be insufficient. Since the number of monomer groups is reduced, the effect of extending the pot life, the effect of improving the adhesiveness, and the effect of improving the heat resistance and the alkali resistance are insufficient.
The above-mentioned "two-stage preparation" method is more effective than the "batch preparation" method in which TDI and IPDI are charged at the same time, and is more effective in securing the pot life, improving the adhesiveness with the primer and the adhesiveness between the waterproof materials, and has heat resistance and resistance. Since the alkalinity is also good, it is a more preferable production method in the present invention.

(主剤NCO/硬化剤NH当量比)
主剤のイソシアナート基と硬化剤の芳香族ポリアミンのアミノ基との当量比である、主剤NCO/硬化剤NHは0.9〜1.8とすることが好ましい。2液混合時の主剤NCO/硬化剤NHが0.9未満では高分子量化が不十分となるため物性が低下し、1.8超となると硬化性が低下し物性も不十分となる。
(Main agent NCO / curing agent NH 2 equivalent ratio)
The equivalent ratio of the isocyanate group of the main agent to the amino group of the aromatic polyamine of the curing agent, that is, the main agent NCO / curing agent NH 2 is preferably 0.9 to 1.8. If the main agent NCO / curing agent NH 2 at the time of mixing the two liquids is less than 0.9, the molecular weight is insufficient and the physical properties are deteriorated. If it exceeds 1.8, the curability is lowered and the physical properties are also insufficient.

(硬化剤活性水素化合物)
本願は、芳香族ポリアミンとしてDETDAと4,4′−メチレンビス(N−sec−ブチルアニリン)を当量比で40/60〜97/3の範囲で含む必要があり、50/50〜95/5の範囲が好ましく、60/40〜90/10の範囲であることがより好ましい。DETDAに対する4,4′−メチレンビス(N−sec−ブチルアニリン)の当量比が60超となると、速硬化性ではなくなると同時に物性および耐熱性・耐アルカリ性を保持することが難しくなり、3未満では可使時間延長効果が不十分となる。
なお、DETDAには、3,5−ジエチル−2,4−トルエンジアミン、3,5−ジエチル−2,6−トルエンジアミンなどの異性体が存在するが、本願ではいずれの異性体を用いてもよく、またそれらの混合物を用いてもよい。工業用としては例えばアルベマール社製のエタキュア100(2,4−異性体/2,6−異性体の質量比80/20)などが入手できる。4,4′−メチレンビス(N−sec−ブチルアニリン)としては、アルベマール社製のエタキュア420などが入手できる。
(Curing agent active hydrogen compound)
The present application should contain DETDA and 4,4'-methylenebis (N-sec-butylaniline) as aromatic polyamines in an equivalent ratio of 40/60 to 97/3, of 50/50 to 95/5. The range is preferable, and the range is more preferably 60/40 to 90/10. If the equivalent ratio of 4,4'-methylenebis (N-sec-butylaniline) to DETDA exceeds 60, it will not be fast-curing, and at the same time it will be difficult to maintain physical properties and heat resistance / alkali resistance. The effect of extending the pot life becomes insufficient.
Although isomers such as 3,5-diethyl-2,4-toluenediamine and 3,5-diethyl-2,6-toluenediamine are present in DETDA, any isomer may be used in the present application. Well, or a mixture thereof may be used. For industrial use, for example, EtaCure 100 (mass ratio of 2,4-isomer / 2,6-isomer 80/20) manufactured by Albemarle Corporation can be obtained. As 4,4'-methylenebis (N-sec-butylaniline), EtaCure 420 manufactured by Albemarle Corporation can be obtained.

また、その他の芳香族アミンも一部であれば使用することができるが、DETDAと4,4′−メチレンビス(N−sec−ブチルアニリン)の総量に対し、30当量%以下であることが好ましく、20当量%以下であることがより好ましい。その他の芳香族ポリアミンが30当量%超となると、可使時間を保持した速硬化性防水材にはなり難い。 Further, other aromatic amines can be used as long as they are a part, but it is preferably 30 equivalent% or less with respect to the total amount of DETDA and 4,4'-methylenebis (N-sec-butylaniline). , 20 equivalent% or less is more preferable. When the amount of other aromatic polyamines exceeds 30 equivalents, it is difficult to obtain a fast-curing waterproof material that retains the pot life.

その他の使用できる芳香族ポリアミンとしては、DETDAと同様に高反応性であるイハラケミカル工業株式会社製のキュアハードMED(4,4′−メチレンビス(2−エチル−6−メチルアニリン))、日本化薬株式会社製のカヤハードAA(4,4′−メチレンビス(2−エチルアニリン))、日本化薬株式会社製のカヤボンドC−300(4,4′−メチレンビス(2,6−ジエチルアニリン))、日本化薬株式会社製のカヤボンドC−400(4,4′−メチレンビス(2,6−ジiso−プロピルアニリン))などがあげられるが、結晶性が高いか溶解性が悪い場合が多いため、芳香族ポリアミン中の30当量%未満にすることが好ましい。 Other aromatic polyamines that can be used include Cure Hard MED (4,4'-methylenebis (2-ethyl-6-methylaniline)) manufactured by Ihara Chemical Industry Co., Ltd., which has high reactivity similar to DETDA. Kayahard AA (4,4'-methylenebis (2-ethylaniline)) manufactured by Yakuhin Co., Ltd., Kayabond C-300 (4,4'-methylenebis (2,6-diethylaniline)) manufactured by Nippon Kayaku Co., Ltd., Kayabond C-400 (4,4'-methylenebis (2,6-diiso-propylaniline)) manufactured by Nippon Kayaku Co., Ltd. can be mentioned, but it is often highly crystalline or poorly soluble. It is preferably less than 30 equivalent% in the aromatic polyamine.

また、低反応性の芳香族ポリアミンとしてはアルベマール社製のエタキュア300(ジメチルチオトルエンジアミン)、イハラケミカル株式会社製のエラスマー650P(ポリテトラメチレングリコールビス(p−アミノベンゾエート))、イハラケミカル株式会社製のポレアSL−100A(ポリ(テトラメチレン/3−メチルテトラメチレンエーテル)グリコールビス(4−アミノベンゾエート))などが挙げられるが、使用量が多くなると速硬化性が損なわれる傾向となるため、やはり芳香族ポリアミン中の30当量%未満にすることが好ましい。 As low-reactivity aromatic polyamines, EtaCure 300 (dimethylthiotoluenediamine) manufactured by Albemar, Erasmer 650P (polytetramethylene glycolbis (p-aminobenzoate)) manufactured by Ihara Chemical Co., Ltd., and Ihara Chemical Co., Ltd. Porea SL-100A (poly (tetramethylene / 3-methyltetramethylene ether) glycolbis (4-aminobenzoate)) manufactured by Polea SL-100A, etc., can be mentioned, but as the amount used increases, the quick-curing property tends to be impaired. It is also preferable that the content is less than 30 equivalent% in the aromatic polyamine.

本願では、硬化剤中の活性水素成分の80当量%以上が芳香族ポリアミンであることが好ましく、90当量%以上であることがより好ましい。その他の活性水素成分を20当量%超にすると十分な可使時間と速硬化性は得られない。 In the present application, 80 equivalent% or more of the active hydrogen component in the curing agent is preferably an aromatic polyamine, and more preferably 90 equivalent% or more. If the amount of other active hydrogen components exceeds 20 equivalent%, sufficient pot life and quick curing cannot be obtained.

硬化剤中の活性水素成分としてポリオールも20当量%以下であれば、可使時間の調整や粘度調整、湿潤調整、物性調整、接着性向上などのために使用することはできる。
使用できるポリオールとしては、ポリオキシプロピレンポリオール、ポリオキシエチレンポリオキシプロピレンポリオール、ポリエステルポリオールといった比較的高分子量ポリオールや、1,4−ブタンジオール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、トリメチロールプロパン、グリセリンといった短鎖ポリオールも使用することができる。
If the amount of the polyol as the active hydrogen component in the curing agent is 20 equivalent% or less, it can be used for adjusting the pot life, adjusting the viscosity, adjusting the wetness, adjusting the physical properties, improving the adhesiveness, and the like.
Examples of the polyols that can be used include relatively high molecular weight polyols such as polyoxypropylene polyol, polyoxyethylene polyoxypropylene polyol, and polyester polyol, 1,4-butanediol, 1,6-hexanediol, and 3-methyl-1,5. -Short-chain polyols such as pentadiol, trimethylolpropane and glycerin can also be used.

(可塑剤)
可使時間時間確保のためには可塑剤を使用することが必要であり、主剤中のプレポリマー100質量部に対し、20〜90質量部の可塑剤を使用することが好ましく、25〜80質量部使用することがより好ましい。可塑剤を使用しないと可使時間を確保することはできない。可塑剤は硬化剤に配合することが好ましいが、一部主剤側に配合することもできる。
(Plasticizer)
It is necessary to use a plasticizer to secure the pot life time, and it is preferable to use 20 to 90 parts by mass of the plasticizer with respect to 100 parts by mass of the prepolymer in the main agent, and 25 to 80 parts by mass. It is more preferable to use the part. It is not possible to secure pot life without using a plasticizer. The plasticizer is preferably blended with the curing agent, but it can also be partially blended with the main agent side.

可塑剤としては、ウレタン樹脂に一般的に配合できる可塑剤を使用することができる。例として、ジイソノニルフタラート(DINP)、ジオクチルフタラート(DOP)、ブチルベンジルフタラート(BBP)などのフタル酸エステル類、脂肪族二塩基酸エステル類、リン酸エステル類、トリメリット酸エステル類、セバシン酸エステル類、エポキシ脂肪酸エステル類、グリコールエステル類、動植物油系脂肪酸エステル類、石油・鉱物油系可塑剤、アルキレンオキサイド重合系可塑剤などが挙げられる。中でも、引火点が200℃以上である、ジイソノニルフタラート(DINP)、ジオクチルフタラート(DOP)は長期的にも重量減少を起こし難く、芳香族ポリエステルであり加水分解も起こし難いため、好ましく使用することができる。 As the plasticizer, a plasticizer that can be generally blended with urethane resin can be used. For example, phthalates such as diisononyl phthalate (DINP), dioctyl phthalate (DOP), butyl benzyl phthalate (BBP), aliphatic dibasic acid esters, phosphoric acid esters, trimellitic acid esters, etc. Examples thereof include sebacic acid esters, epoxy fatty acid esters, glycol esters, animal and vegetable oil-based fatty acid esters, petroleum / mineral oil-based plasticizers, and alkylene oxide polymerization-based plasticizers. Among them, diisononyl phthalate (DINP) and dioctyl phthalate (DOP), which have a flash point of 200 ° C. or higher, are less likely to cause weight loss in the long term, and are aromatic polyesters and are less likely to cause hydrolysis, and are therefore preferably used. be able to.

(無機充填剤)
本願では無機系充填剤を用いることが好ましい。無機系充填剤を配合することで、十分な可使時間を有した速硬化性防水材をJIS規格に適合した物性にすることができ、経済性のある防水材とすることができる。充填剤は、硬化剤中に配合することが好ましいが、一部主剤側にも配合することができる。無機充填剤の配合量は硬化剤中に、20質量部〜80質量部であることが好ましい。充填剤が20質量部未満では補強効果が不十分になりやすく、80質量部超では樹脂分が少なくなることによる物性低下や高粘度化が起こりやすくなる。
(Inorganic filler)
In the present application, it is preferable to use an inorganic filler. By blending an inorganic filler, a fast-curing waterproof material having a sufficient pot life can be made into a physical property conforming to JIS standards, and an economical waterproof material can be obtained. The filler is preferably blended in the curing agent, but can also be partially blended on the main agent side. The blending amount of the inorganic filler is preferably 20 parts by mass to 80 parts by mass in the curing agent. If the amount of the filler is less than 20 parts by mass, the reinforcing effect tends to be insufficient, and if it exceeds 80 parts by mass, the resin content is reduced, so that the physical properties are likely to be lowered and the viscosity is likely to be increased.

充填剤としては、例えば炭酸カルシウムが挙げられ、製造時の分散性が良好であり、配合量を多くしても比較的低粘度の状態を保つことも容易であり、コストダウン効果も高い。炭酸カルシウムには、重質炭酸カルシウム、軽質炭酸カルシウム、コロイダル炭酸カルシウム、各種表面処理炭酸カルシウムなどあるが、いずれの炭酸カルシウムも使用することができる。また、表面処理コロイダル炭酸カルシウムを配合することで適度の揺変性が得られるため、立面用防水材を製造することもできる。その他の無機充填剤としては、シリカ系、カオリンクレー系、タルク系、ベントナイト系などが使用できるが、使用量が多くなると増粘性が激しくなり、また水分量の管理が難しいという問題があるため、炭酸カルシウムが主成分であることが好ましい。また、有機系充填剤も一部であれば使用することはできる。 Examples of the filler include calcium carbonate, which has good dispersibility during production, can easily maintain a relatively low viscosity state even when the blending amount is increased, and has a high cost reduction effect. Examples of calcium carbonate include heavy calcium carbonate, light calcium carbonate, colloidal calcium carbonate, and various surface-treated calcium carbonates, and any of these calcium carbonates can be used. Further, since appropriate shaking denaturation can be obtained by blending the surface-treated colloidal calcium carbonate, it is also possible to manufacture a waterproof material for elevation. As other inorganic fillers, silica-based, kaolin-based, talc-based, bentonite-based, etc. can be used, but as the amount used increases, the viscosity becomes severe and it is difficult to control the water content. It is preferable that calcium carbonate is the main component. In addition, some organic fillers can be used.

なお、硬化剤中に溶剤を使用することもできるが、施工後の揮発により収縮を起こす危険性や無機充填剤を沈降しやすくする傾向があり、環境面での問題もあるため、5質量%以内で用いることが好ましく、使用しないことがより好ましい。また、硬化剤側に可塑剤を配合することで、無機充填剤を多く配合することができ、経済性のある防水材とすることができる。 Although a solvent can be used in the curing agent, there is a risk of shrinkage due to volatilization after construction, there is a tendency for the inorganic filler to settle easily, and there are environmental problems, so 5% by mass. It is preferable to use within, and it is more preferable not to use it. Further, by blending a plasticizer on the curing agent side, a large amount of inorganic filler can be blended, and an economical waterproof material can be obtained.

本願のウレタン防水材は、レベリング性を有する平場用防水材はもとより、ノンサグ性を有し立面部や傾斜部等にも施工できる立面用防水材にも適している。立面用防水材は表面処理コロイダル炭酸カルシウム等のノンサグ性付与剤を多く配合したもので、複雑部位を施工するため平場用防水材よりも長い可使時間が必要とされるが、本願の方法により十分に対応することができ、速硬化性を発揮することもできる。 The urethane waterproofing material of the present application is suitable not only for leveling waterproofing materials for flat fields, but also for elevational waterproofing materials having non-sagging properties and can be applied to elevations and slopes. The waterproof material for elevation contains a large amount of non-sag property-imparting agent such as surface-treated colloidal calcium carbonate, and requires a longer pot life than the waterproof material for flat ground to construct complicated parts. It is possible to cope with this more sufficiently, and it is also possible to exhibit quick curing.

以上により、気温が30℃前後の夏場においても、30分以上の可使時間を有し、しかも5時間前後で次工程が可能となる速硬化性防水材とすることができ、耐熱性や耐アルカリ性が良好であると同時に、プライマーとの接着性や防水材同士の接着性を向上させることができる。なお、汎用のMOCA架橋型防水材の夏用については30℃での可使時間は30分以上とすることはでき、直射日光の当たる部分については5時間程度で施工可能となるが、日陰部分においては7〜10時間程度の施工可能時間であるものが多く、本願ほどの速硬化性とはなり難いため、1日2工程を行うことが難しい。 As a result, even in the summer when the temperature is around 30 ° C, it is possible to make a fast-curing waterproof material that has a pot life of 30 minutes or more and enables the next process in about 5 hours, and has heat resistance and resistance. At the same time as having good alkalinity, it is possible to improve the adhesiveness with the primer and the adhesiveness between the waterproof materials. The general-purpose MOCA cross-linked waterproof material for summer can be used for 30 minutes or more at 30 ° C, and the part exposed to direct sunlight can be installed in about 5 hours, but the shaded part. In many cases, the workable time is about 7 to 10 hours, and it is difficult to achieve the fast curing property of the present application, so that it is difficult to perform two steps a day.

(硬化促進剤)
次に、以上のような可使時間を確保した速硬化性防水材を、年間を通して使用することについて詳細な検討を行った。従来のDETDA架橋型防水材は、低温硬化性は比較的良好であるが、10℃前後の低温時に5時間程度で施工可能にさせようとすると可使時間は30分以下となってしまい、作業性が悪化してしまう。なお、従来のDETDA架橋型防水材の硬化性を良くするには、DETDAの使用量を多くする方法、可塑剤を少なくする方法、促進剤として2−エチルヘキサン酸鉛等のカルボン酸金属塩や2−エチルヘキサン酸等のカルボン酸を用いる方法等が挙げられるが、いずれの方法も可使時間を大幅に短縮させてしまう。
(Curing accelerator)
Next, a detailed study was conducted on the use of the fast-curing waterproof material that secured the above-mentioned pot life throughout the year. The conventional DETDA cross-linked waterproof material has relatively good low-temperature curability, but if it is attempted to be able to be applied in about 5 hours at a low temperature of about 10 ° C, the pot life will be 30 minutes or less, and the work will be done. The sex gets worse. In order to improve the curability of the conventional DETDA crosslinked waterproofing material, a method of increasing the amount of DETDA used, a method of reducing the amount of plasticizer, a carboxylic acid metal salt such as lead 2-ethylhexanoate as an accelerator, or Examples thereof include a method using a carboxylic acid such as 2-ethylhexanoic acid, but both methods significantly shorten the pot life.

しかし、種々の可能性を検討した結果、本発明の組成物に対し酸無水物を硬化促進剤として用いると、可使時間をあまり短縮させずに硬化性を促進させる役割を果たし、低温においても速硬化性を示すことを見出した。
酸無水物は、硬化剤中のDETDA等のアミノ基、ポリオールの水酸基、水分等の活性水素基と付加反応することでカルボン酸基を発生させ、硬化促進作用を発現するものと思われる。その際、酸無水物と活性水素基との付加反応は瞬間的ではなく、適度の反応速度を有するようで、その結果、カルボン酸基は徐々に増加するため、数十分程度である可使時間への影響は少ないが、数時間後である硬化性には有効に作用し、潜在性促進剤的な効果が発揮されると推察される。
However, as a result of examining various possibilities, when an acid anhydride is used as a curing accelerator for the composition of the present invention, it plays a role of promoting curing without shortening the pot life so much, and even at a low temperature. It was found to show fast curing.
It is considered that the acid anhydride generates a carboxylic acid group by an addition reaction with an amino group such as DETDA in a curing agent, a hydroxyl group of a polyol, and an active hydrogen group such as water, and exhibits a curing promoting action. At that time, the addition reaction between the acid anhydride and the active hydrogen group is not instantaneous and seems to have an appropriate reaction rate, and as a result, the carboxylic acid group gradually increases, so that it can be used for several tens of minutes. Although the effect on time is small, it is presumed that it acts effectively on the curability after several hours and exerts a potential accelerator effect.

本発明は、従来からの硬化促進剤である2−エチルヘキサン酸のような低分子カルボン酸あるいは、2−エチルヘキサン酸亜鉛や2−エチルヘキサン酸鉛のようなカルボン酸金属塩を硬化促進剤として用いることもできるが、従来の促進剤よりも可使時間を確保したうえで速硬化性を示すことのできる酸無水物を硬化促進剤として用いることが好ましい。なお、酸無水物は夏用防水材に用いることもでき、可使時間はやや短くなるが春秋季においては作業性の良い速硬化性防水材とすることができる。 The present invention uses a conventional curing accelerator as a low molecular weight carboxylic acid such as 2-ethylhexanoic acid or a metal carboxylic acid salt such as zinc 2-ethylhexanoate or lead 2-ethylhexanoate as a curing accelerator. However, it is preferable to use an acid anhydride as a curing accelerator, which can exhibit faster curing property after securing a pot life than a conventional accelerator. The acid anhydride can also be used as a waterproof material for summer, and although the pot life is slightly shortened, it can be used as a quick-curing waterproof material with good workability in spring and autumn.

酸無水物はあらかじめ硬化剤側に配合することもできるが、その場合は経時により硬化剤中の活性水素基と反応しカルボン酸基が発生した状態となってしまうため、従来の2−エチルヘキサン酸などと同様の効果となり可使時間を短縮してしまう。従って、本願においては、酸無水物は、主剤に、または主剤と硬化剤を混合するときに、添加する方法が好ましい。主剤と硬化剤を混合するときに酸無水物を添加する方法としては、イソシアナート基末端プレポリマーを含む主剤パーツと、芳香族ポリアミンおよび可塑剤を含む硬化剤パーツと、酸無水物を含む硬化促進剤パーツからなるキットを用意し、施工現場でそれらのパーツを混合する方法を例示できる。
主剤に酸無水物を添加した場合、主剤には活性水素基がないため酸無水物は安定な状態を保つことができ、硬化剤と混合することで酸無水物の付加反応がスタートするため、潜在性促進剤としての効果を発揮できる。また、第3成分として施工現場で主剤と硬化剤を混合するときに添加する場合は、小分け・軽量といった煩雑な作業が伴うため、主剤に酸無水物を配合することがより好ましい。
The acid anhydride can be added to the curing agent side in advance, but in that case, it reacts with the active hydrogen group in the curing agent over time to generate a carboxylic acid group, so that the conventional 2-ethylhexane is used. It has the same effect as acid and shortens the pot life. Therefore, in the present application, the method of adding the acid anhydride to the main agent or when mixing the main agent and the curing agent is preferable. As a method of adding an acid anhydride when mixing a main agent and a curing agent, a main agent part containing an isocyanate group-terminated prepolymer, a curing agent part containing an aromatic polyamine and a plasticizing agent, and a curing including an acid anhydride are used. An example of how to prepare a kit consisting of accelerator parts and mix those parts at the construction site can be illustrated.
When an acid anhydride is added to the main agent, the acid anhydride can be kept in a stable state because the main agent does not have an active hydrogen group, and the addition reaction of the acid anhydride is started by mixing with the curing agent. It can exert its effect as a potential accelerator. Further, when the third component is added when the main agent and the curing agent are mixed at the construction site, complicated work such as subdivision and light weight is involved, so it is more preferable to add an acid anhydride to the main agent.

本発明で用いる酸無水物としては、例えば、無水酢酸、無水プロピオン酸、無水コハク酸、無水マレイン酸、無水フタル酸、1,2,3,6−テトラヒドロ無水フタル酸、3−メチル−1,2,3,6−テトラヒドロ無水フタル酸、4−メチル−1,2,3,6−テトラヒドロ無水フタル酸、3,4,5,6−テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、3−メチルヘキサヒドロ無水フタル酸、4−メチルヘキサヒドロ無水フタル酸、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物、ビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物、メチル−3,6−エンドメチレン−1,2,3,6−テトラヒドロ無水フタル酸、エチレングリコールビスアンヒドロトリメリテート、グリセリンビスアンヒドロトリメリテートモノアセテート、テトラプロペニル無水コハク酸、オクテニルコハク酸無水物、3,3′,4,4′−ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5(テトラヒドロ−2,5−ジオキソ−3−フラニル)ナフト[1,2−c]フラン−1,3−ジオン、1,2,3,4−ブタンテトラカルボン酸二無水物などが挙げられる。
酸無水物は、単独で用いられても二種以上が併用されてもよい。
Examples of the acid anhydride used in the present invention include acetic anhydride, propionic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, 3-methyl-1, 2,3,6-tetrahydrophthalic anhydride, 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 3-methylhexa Hydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, bicyclo [2.2.1] heptane-2,3-dicarboxylic acid Anhydride, Methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, ethylene glycol bisamhydrotrimethylate, glycerin bisamhydrotrimerite monoacetate, tetrapropenyl succinic anhydride, Octenyl succinic anhydride, 3,3', 4,4'-diphenylsulfone tetracarboxylic dianhydride, 1,3,3a,4,5,9b-hexahydro-5 (tetrahydro-2,5-dioxo-3-3) Furanyl) naphtho [1,2-c] furan-1,3-dione, 1,2,3,4-butanetetracarboxylic anhydride dianhydride and the like can be mentioned.
The acid anhydride may be used alone or in combination of two or more.

なお、2液型ウレタン防水材は施工現場で主剤と硬化剤を混合して塗布するため、常温で固体の酸無水物は混合液中に溶けきらずに結晶化する恐れがある。酸無水物が結晶化した場合十分な硬化促進効果を得られない可能性があるため、常温で液状の酸無水物が好ましい。常温で液状の酸無水物としては、例えば、無水酢酸、無水プロピオン酸、無水コハク酸、日立化成株式会社製のHN−2200(3−メチル−1,2,3,6−テトラヒドロ無水フタル酸と4−メチル−1,2,3,6−テトラヒドロ無水フタル酸の混合物)、新日本理化株式会社製のリカシッドHH(ヘキサヒドロ無水フタル酸)、新日本理化株式会社製のリカシッドMH−700(3−メチルヘキサヒドロ無水フタル酸/4−メチルヘキサヒドロ無水フタル酸=70/30の混合物)、新日本理化株式会社製のリカシッドMH(4−メチルヘキサヒドロ無水フタル酸)、新日本理化株式会社製のリカシッドHNA−100(メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物の混合物)、日立化成株式会社製のMHAC−P(メチル−3,6−エンドメチレン−1,2,3,6−テトラヒドロ無水フタル酸)、三洋化成工業株式会社製のDSA(テトラプロペニル無水コハク酸)、新日本理化株式会社製のリカシッドOSA(オクテニルコハク酸無水物)などが挙げられ、その中でも特に日立化成株式会社製のHN−2200(3−メチル−1,2,3,6−テトラヒドロ無水フタル酸と4−メチル−1,2,3,6−テトラヒドロ無水フタル酸の混合物)、日立化成株式会社製のMHAC−P(メチル−3,6−エンドメチレン−1,2,3,6−テトラヒドロ無水フタル酸)、新日本理化株式会社製のリカシッドMH−700(3−メチルヘキサヒドロ無水フタル酸/4−メチルヘキサヒドロ無水フタル酸=70/30の混合物)、三洋化成工業株式会社製のDSA(テトラプロペニル無水コハク酸)などがより好ましい。 Since the two-component urethane waterproof material is applied by mixing the main agent and the curing agent at the construction site, the acid anhydride solid at room temperature may not be completely dissolved in the mixed solution and may crystallize. When the acid anhydride is crystallized, a sufficient curing promoting effect may not be obtained. Therefore, an acid anhydride that is liquid at room temperature is preferable. Examples of the acid anhydride liquid at room temperature include phthalic anhydride, propionic anhydride, succinic anhydride, and HN-2200 (3-methyl-1,2,3,6-tetrahydrophthalic anhydride manufactured by Hitachi Kasei Co., Ltd.). 4-Methyl-1,2,3,6-tetrahydrophthalic anhydride mixture), Ricacid HH (hexahydrophthalic anhydride) manufactured by Shinnihon Rika Co., Ltd., Ricacid MH-700 (3-) manufactured by Shinnihon Rika Co., Ltd. Methylhexahydrophthalic anhydride / 4-methylhexahydrophthalic anhydride = 70/30 mixture), Ricacid MH (4-methylhexahydrophthalic anhydride) manufactured by Shinnihon Rika Co., Ltd., manufactured by Shinnihon Rika Co., Ltd. Ricacid HNA-100 (mixture of methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride and bicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride), Hitachi Chemical Co., Ltd. MHAC-P (methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride) manufactured by the company, DSA (tetrapropenylphthalic anhydride) manufactured by Sanyo Kasei Kogyo Co., Ltd., Shin Nihon Rika Co., Ltd. The company's Ricacid OSA (octenyl succinic anhydride) is mentioned, and among them, HN-2200 (3-methyl-1,2,3,6-tetrahydrophthalic anhydride and 4-methyl-) manufactured by Hitachi Kasei Co., Ltd. 1,2,3,6-tetrahydrophthalic anhydride mixture), MHAC-P (methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride) manufactured by Hitachi Kasei Co., Ltd., new Ricacid MH-700 (3-methylhexahydrophthalic anhydride / 4-methylhexahydrophthalic anhydride = 70/30 mixture) manufactured by Nippon Rika Co., Ltd., DSA (tetrapropenylphthalic anhydride) manufactured by Sanyo Kasei Kogyo Co., Ltd. ) Etc. are more preferable.

酸無水物の使用量は、主剤100gに対して0.05〜10.0g使用することが望ましく、0.1〜5.0g使用することが更に望ましい。酸無水物の使用量が少なすぎると速硬化性が十分に得られず、一方多すぎれば十分な可使時間を確保できず物性が低下してしまう。 The amount of the acid anhydride used is preferably 0.05 to 10.0 g with respect to 100 g of the main agent, and more preferably 0.1 to 5.0 g. If the amount of acid anhydride used is too small, sufficient quick-curing property cannot be obtained, while if it is too large, sufficient pot life cannot be secured and the physical properties deteriorate.

本発明では、硬化促進剤として酸無水物を用いることが好ましいが、その他の硬化促進剤を用いることができ、また酸無水物と併用することもできる。
その他の硬化促進剤としては、有機第2錫系化合物、3級アミン、カルボン酸金属塩、カルボン酸などが挙げられる。有機第2錫系化合物としては、例えばジブチル錫オキサイド、ジオクチル錫オキサイド、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジ2−エチルへキサノエート、ジオクチル錫ジアセテート、ジオクチル錫ジラウレート、ジブチル錫ジメルカプタイド、ジブチル錫ビスアセチルアセトネート、ジブチル錫オキシラウレート、ジオクチル錫ジネオデカネート、ジブチル錫ビスブチルマレート、ジオクチル錫2−エチルヘキシルマレートなどが挙げられ、中でもジブチル錫ジラウレート、ジオクチル錫ジラウレートが好ましい。有機第2錫系化合物は硬化剤中に0.001〜0.1質量%使用することが好ましい。
In the present invention, it is preferable to use an acid anhydride as a curing accelerator, but other curing accelerators can be used, and they can also be used in combination with an acid anhydride.
Examples of other curing accelerators include organic stannic compounds, tertiary amines, metal carboxylic acid salts, and carboxylic acids. Examples of the organic ditin-based compound include dibutyltin oxide, dioctyltin oxide, dibutyltin dilaurate, dibutyltin diacetate, dibutyltin di2-ethylhexanoate, dioctyltin diacetate, dioctyltin dilaurate, dibutyltin dimercaptide, and dibutyl. Examples thereof include tin bisacetylacetonate, dibutyltin oxylaurate, dioctyltin dineodecanate, dibutyltin bisbutylmalate and dioctyltin 2-ethylhexylmalate, and among them, dibutyltin dilaurate and dioctyltin dilaurate are preferable. It is preferable to use 0.001 to 0.1% by mass of the organic stannic compound in the curing agent.

3級アミンとしては、例えばトリエチルアミン、トリブチルアミン、トリエチレンジアミン、N−エチルモルフォリン、ビス(2−モルホリノエチル)エーテル、ジアザビシクロウンデセンなどの一般的な3級アミンを使用することができるが、特殊な3級アミンであるイミダゾール化合物が好ましく、イミダゾール化合物としては、例えば1,2−ジメチルイミダゾール、1−イソブチル−2−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾールのような1位と2位に置換基を有する化合物や、1−メチルイミダゾール、1−アリルイミダゾールのような1位に置換基を有する化合物が使用できる。中でも、1位と2位に置換基を有するイミダゾール化合物が好ましい。3級アミンは、硬化剤中に0.01〜2.0質量%使用することが好ましい。 As the tertiary amine, for example, general tertiary amines such as triethylamine, tributylamine, triethylenediamine, N-ethylmorpholine, bis (2-morpholinoethyl) ether, and diazabicycloundecene can be used. , A imidazole compound which is a special tertiary amine is preferable, and examples of the imidazole compound include 1,2-dimethylimidazole, 1-isobutyl-2-methylimidazole, 1-benzyl-2-methylimidazole and 1-benzyl-2-. Compounds having substituents at the 1- and 2-positions such as phenylimidazole and compounds having substituents at the 1-position such as 1-methylimidazole and 1-allyl imidazole can be used. Of these, imidazole compounds having substituents at the 1- and 2-positions are preferable. The tertiary amine is preferably used in an amount of 0.01 to 2.0% by mass in the curing agent.

また、一般的にウレタン硬化促進剤であるカルボン酸金属塩も使用することができる。カルボン酸金属塩としては、例えば2−エチルヘキサン酸、ネオデカン酸、ナフテン酸、オレイン酸、リノール酸、リノレン酸、樹脂酸の鉛塩、亜鉛塩、ビスマス塩、ジルジルコニウム塩、錫塩、銅塩、マグネシウム塩、カルシウム塩、ストロンチウム塩、バリウム塩などが挙げられ、カルボン酸金属塩は硬化剤中に0.1〜4.0質量%使用することが好ましい。 In addition, a metal carboxylic acid salt, which is generally a urethane curing accelerator, can also be used. Examples of the carboxylic acid metal salt include 2-ethylhexanoic acid, neodecanoic acid, naphthenic acid, oleic acid, linoleic acid, linolenic acid, lead salt of resin acid, zinc salt, bismuth salt, zirzyl zyl salt, tin salt and copper salt. , Magnesium salt, calcium salt, strontium salt, barium salt and the like, and it is preferable to use 0.1 to 4.0% by mass of the carboxylate metal salt in the curing agent.

カルボン酸としては、例えばプロピオン酸、2−メチルペンタン酸、2−エチルヘキサン酸、イソノナン酸、ナフテン酸などが挙げられ、中でも2−エチルヘキサン酸が好ましい。カルボン酸は、硬化剤中に0.05〜2.0質量%使用することが望ましく、その一部或いは全量を主剤側に配合しても構わない。 Examples of the carboxylic acid include propionic acid, 2-methylpentanoic acid, 2-ethylhexanoic acid, isononanoic acid, naphthenic acid and the like, and 2-ethylhexanoic acid is preferable. It is desirable to use 0.05 to 2.0% by mass of the carboxylic acid in the curing agent, and a part or all of the carboxylic acid may be blended on the main agent side.

(その他添加剤)
その他、硬化剤には、湿潤剤、消泡剤、顔料、耐候性付与剤などの添加剤類を必要に応じて配合することができる。
(Other additives)
In addition, additives such as a wetting agent, an antifoaming agent, a pigment, and a weather resistance imparting agent can be added to the curing agent, if necessary.

原材料
以下の実施例および比較例で用いた原材料は、次のとおりである。
〔イソシアナート〕
IPDI: VESTANAT(登録商標)IPDI、イソホロンジイソシアナート単体、NCO含有量37.8質量%、NCO官能基数約2.0、エボニック・ジャパン株式会社製
T−80: コロネートT−80、2,4−トリレンジイソシアナート/2,6−トリレンジイソシアナート=80/20(質量比)の混合物、NCO含有量48.3質量%、日本ポリウレタン工業株式会社製
〔ポリオール〕
サンニックスPP−2000: ポリオキシプロピレンジオール、平均分子量2000、OH価56.1mgKOH/g、三洋化成工業株式会社製
サンニックスGH−3000: ポリオキシプロピレントリオール、平均分子量3000、OH価:56.1mgKOH/g、三洋化成工業株式会社製
〔溶剤〕
MC−2000ソルベント: ノルマルパラフィン、イソパラフィン混合物、三協化学株式会社製
〔ポリアミン〕
DETDA: エタキュア100、ジエチルトルエンジアミン、アルベマール日本株式会社製
エタキュア420: 4,4′−メチレンビス(N−sec−ブチルアニリン)、芳香族二級ジアミン、アルベマール社製
〔触媒〕
ジオクチル錫ジラウレート: KS−1200A−1、共同薬品株式会社製
1−イソブチル−2−メチルイミダゾール: DABCO NC−IM、エアープロダクツジャパン株式会社製
リン酸: 85%リン酸、ナカライテスク株式会社製
HN−2200: 3−または4−メチル−1,2,3,6−テトラヒドロ無水フタル酸、日立化成株式会社製
〔可塑剤〕
DINP: サンソサイザーDINP、ジイソノニルフタレート、新日本理化株式会社製
〔無機充填剤〕
炭酸カルシウム NS#100: NS#100、炭酸カルシウム、日東粉化工業株式会社製
〔添加剤〕
添加剤類: 楠本化成株式会社製
〔プライマー〕
OTプライマーM: 1成分湿気硬化型仲介プライマー、田島ルーフィング株式会社製
OTプライマーA: 1成分湿気硬化型プライマー、田島ルーフィング株式会社製
Raw materials The raw materials used in the following examples and comparative examples are as follows.
[Isocyanate]
IPDI: VESTANAT® IPDI, isophorone diisocyanate alone, NCO content 37.8% by mass, NCO functional group number about 2.0, Ebonic Japan Co., Ltd. T-80: Coronate T-80, 2, 4 -Trirange isocyanate / 2,6-Trirange isocyanate = 80/20 (mass ratio) mixture, NCO content 48.3% by mass, manufactured by Nippon Polyurethane Industry Co., Ltd. [Polyprethane]
Sanniks PP-2000: Polyoxypropylene diol, average molecular weight 2000, OH value 56.1 mgKOH / g, Sanyo Kasei Kogyo Co., Ltd. Sanniks GH-3000: Polyoxypropylene triol, average molecular weight 3000, OH value: 56.1 mgKOH / G, manufactured by Sanyo Kasei Kogyo Co., Ltd. [solvent]
MC-2000 Solvent: Normal paraffin, isoparaffin mixture, manufactured by Sankyo Chemical Co., Ltd. [Polyamine]
DETDA: EtaCure 100, diethyltoluenediamine, manufactured by Albemarle Japan Co., Ltd. EtaCure 420: 4,4'-methylenebis (N-sec-butylaniline), aromatic secondary diamine, manufactured by Albemarle Corporation [catalyst]
Dioctyltin dilaurate: KS-1200A-1, manufactured by Kyodo Yakuhin Co., Ltd. 1-isobutyl-2-methylimidazole: DABCO NC-IM, manufactured by Air Products Japan Co., Ltd. Phosphoric acid: 85% phosphoric acid, manufactured by Nacalai Tesque Co., Ltd. HN- 2200: 3- or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, manufactured by Hitachi Kasei Co., Ltd. [Plasticizer]
DINP: Sansosizer DINP, Diisononyl phthalate, manufactured by New Japan Chemical Co., Ltd. [Inorganic filler]
Calcium carbonate NS # 100: NS # 100, calcium carbonate, manufactured by Nitto Flour Chemical Co., Ltd. [Additives]
Additives: Kusumoto Kasei Co., Ltd. [Primer]
OT Primer M: 1-component moisture-curable mediator primer, manufactured by Tajima Roofing Co., Ltd. OT Primer A: 1-component moisture-curable primer, manufactured by Tajima Roofing Co., Ltd.

主剤の調製
〔二段仕込〕法
表1〜3および5の配合に従って、四つ口フラスコにポリオールと溶剤、IPDIおよび必要に応じて触媒を仕込んだ。その後攪拌しながら所定温度で所定時間反応させ、反応終了後必要に応じてリン酸を添加した。さらに、T−80を仕込み再び所定温度で所定時間反応させてプレポリマーを得た。
〔一括仕込〕法
表4の配合に従って、四つ口フラスコにポリオールと溶剤およびポリイソシアナート類を仕込んだ。その後攪拌しながら所定温度で所定時間反応させてプレポリマーを得た。
〔混合〕法
表4の配合に従って、四つ口フラスコにポリオールと溶剤、IPDIおよび必要に応じて触媒を仕込んだ。その後攪拌しながら所定温度で所定時間反応させてIPDIプレポリマーを得た。IPDIの代わりにT−80を使用して同様にT−80プレポリマーを得た。IPDIプレポリマーとT−80プレポリマーを所定の割合で混合して主剤として使用した。
なお、各プレポリマーは必要に応じて可塑剤、触媒等を加えて主剤として使用した。
Preparation of main agent [Two-stage preparation] Method The polyol and solvent, IPDI and, if necessary, a catalyst were charged into a four-necked flask according to the formulations shown in Tables 1 to 5. Then, the reaction was carried out at a predetermined temperature for a predetermined time with stirring, and after the reaction was completed, phosphoric acid was added as needed. Further, T-80 was charged and reacted again at a predetermined temperature for a predetermined time to obtain a prepolymer.
[Batch preparation] Method The polyol, solvent, and polyisocyanates were charged into a four-necked flask according to the formulation shown in Table 4. Then, the mixture was reacted at a predetermined temperature for a predetermined time with stirring to obtain a prepolymer.
[Mixing] Method According to the formulation shown in Table 4, the four-necked flask was charged with the polyol and solvent, IPDI and, if necessary, a catalyst. Then, the mixture was reacted at a predetermined temperature for a predetermined time with stirring to obtain an IPDI prepolymer. A T-80 prepolymer was similarly obtained using T-80 instead of IPDI. The IPDI prepolymer and the T-80 prepolymer were mixed in a predetermined ratio and used as the main agent.
In addition, each prepolymer was used as a main agent by adding a plasticizer, a catalyst and the like as needed.

硬化剤の調製
表1〜5の配合に従って、金属容器に液物を仕込み、攪拌機(ディゾルバー羽根)で低速混合し均一にした後、炭酸カルシウムを配合し1500rpmで15分間混合して各硬化剤を得た。
Preparation of curing agent According to the formulation shown in Tables 1 to 5, liquids are charged in a metal container, mixed at a low speed with a stirrer (dissolver blade) to make them uniform, and then calcium carbonate is added and mixed at 1500 rpm for 15 minutes to mix each curing agent. Obtained.

実施例1、2(表1)
ポリイソシアナートとしてIPDIとT−80を使用し、「二段仕込」法で合成した主剤と、DETDAとエタキュア420の当量比を70/30とした硬化剤を用いた夏用配合の例である。IPDIとT−80の当量比が20/80の実施例1は防水材として良好な塗膜物性を示しかつ夏用配合として十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。層間接着試験では層間剥離せずにウレタン材料破壊が起こるほどの強い層間接着強度を示した。また、プライマーとの接着試験では実用に十分な接着強度を示した。IPDIとT−80の当量比が10/90の実施例2は防水材として良好な塗膜物性を示しかつ十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。また、層間接着試験およびプライマー接着試験では実用に十分な接着強度を示した。
Examples 1 and 2 (Table 1)
This is an example of a summer formulation using IPDI and T-80 as polyisocyanates, a main agent synthesized by the "two-stage preparation" method, and a curing agent with an equivalent ratio of DETDA and EtaCure 420 of 70/30. .. Example 1 in which the equivalent ratio of IPDI to T-80 is 20/80 shows good coating film physical properties as a waterproof material and secures sufficient pot life as a summer compound, while the next process is carried out during the day. It was possible. In the interlayer adhesion test, the interlayer adhesion strength was so strong that urethane material fracture occurred without delamination. Moreover, in the adhesion test with the primer, the adhesive strength was sufficient for practical use. In Example 2 in which the equivalent ratio of IPDI to T-80 was 10/90, the next step could be carried out within the day while showing good coating film physical properties as a waterproof material and ensuring sufficient pot life. .. In addition, the interlayer adhesion test and the primer adhesion test showed sufficient adhesive strength for practical use.

比較例1(表1)
実施例1、2と同じ配合の硬化剤に対して、主剤のポリイソシアナートとしてT−80のみを使用した夏用配合の例である。可使時間は45分と夏用配合としては不十分であった。層間接着強度およびプライマー接着強度は実施例1、2に比べて低く実用上問題があると思われた。また、加熱処理後あるいはアルカリ処理後の引張強さ比は実施例1、2に比べて低くなる傾向が見られた。特に、アルカリ処理後の引張強さ比は71%と低く実用上問題があると思われた。
Comparative Example 1 (Table 1)
This is an example of a summer formulation in which only T-80 is used as the main polyisocyanate with respect to the curing agent having the same composition as in Examples 1 and 2. The pot life was 45 minutes, which was insufficient for the summer formulation. The interlayer adhesive strength and primer adhesive strength were lower than those of Examples 1 and 2, and it was considered that there was a problem in practical use. In addition, the tensile strength ratio after the heat treatment or the alkali treatment tended to be lower than that in Examples 1 and 2. In particular, the tensile strength ratio after the alkali treatment was as low as 71%, which seemed to be a problem in practical use.

実施例3、4(表2)
ポリイソシアナートとしてIPDIとT−80を使用し、「二段仕込」法で合成した主剤と、DETDAとエタキュア420の当量比を60/40とした硬化剤を用いた夏用配合の例である。IPDIとT−80の当量比が各々20/80、10/90の実施例3、4は防水材として良好な塗膜物性を示しかつ夏用配合として十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。また、層間接着試験では実用に十分な接着強度を示した。
Examples 3 and 4 (Table 2)
This is an example of a summer formulation using IPDI and T-80 as polyisocyanates, a main agent synthesized by the "two-stage preparation" method, and a curing agent with an equivalent ratio of DETDA and EtaCure 420 of 60/40. .. Examples 3 and 4 in which the equivalent ratios of IPDI and T-80 are 20/80 and 10/90, respectively, show good coating film physical properties as a waterproof material and secure sufficient pot life as a summer formulation on the day. It was possible to construct the next process inside. Moreover, in the interlayer adhesion test, the adhesive strength was sufficient for practical use.

比較例2(表2)
実施例3、4と同じ配合の硬化剤に対して、主剤のポリイソシアナートとしてT−80のみを使用した夏用配合の例である。可使時間は64分と夏用配合として十分であったが、層間接着強度は実施例3、4に比べて低く実用上問題があると思われた。また、加熱処理後あるいはアルカリ処理後の引張強さ比は実施例3、4に比べて低くなる傾向が見られた。特に、アルカリ処理後の引張強さ比は65%と低く実用上問題があると思われた。
Comparative Example 2 (Table 2)
This is an example of a summer formulation in which only T-80 is used as the main polyisocyanate with respect to the curing agent having the same composition as in Examples 3 and 4. The pot life was 64 minutes, which was sufficient for the summer formulation, but the interlayer adhesive strength was lower than that of Examples 3 and 4, and it was considered that there was a problem in practical use. In addition, the tensile strength ratio after the heat treatment or the alkali treatment tended to be lower than that in Examples 3 and 4. In particular, the tensile strength ratio after the alkali treatment was as low as 65%, which was considered to be a problem in practical use.

実施例5、6、7(表3)
ポリイソシアナートとしてIPDIとT−80を使用し、「二段仕込」法で合成したプレポリマーに酸無水物触媒HN−2200を1.00質量%添加した主剤と、DETDAとエタキュア420の当量比を80/20とした硬化剤を用いた冬用配合の例である。IPDIとT−80の当量比が各々30/70、20/80、10/90の実施例5、6,7は防水材として良好な塗膜物性を示しかつ冬用配合として十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。また、層間接着試験では実用に十分な接着強度を示した。
Examples 5, 6 and 7 (Table 3)
IPDI and T-80 are used as polyisocyanates, and 1.00% by mass of acid anhydride catalyst HN-2200 is added to the prepolymer synthesized by the "two-stage preparation" method, and the equivalent ratio of DETDA and EtaCure 420. This is an example of a winter formulation using a curing agent having a value of 80/20. Examples 5, 6 and 7 in which the equivalent ratios of IPDI and T-80 are 30/70, 20/80 and 10/90, respectively, show good coating film physical properties as a waterproof material and have a sufficient pot life as a winter formulation. It was possible to carry out the construction of the next process within the day while ensuring the above. Moreover, in the interlayer adhesion test, the adhesive strength was sufficient for practical use.

比較例3(表3)
実施例5、6、7と同じ配合の硬化剤に対して、主剤のポリイソシアナートとしてT−80のみを使用した冬用配合の例である。可使時間は24分と冬用配合として不十分であった。層間接着強度は実施例5、6、7に比べて低く実用上問題があると思われた。また、加熱処理後あるいはアルカリ処理後の引張強さ比は実施例5、6、7に比べて低くなる傾向が見られた。
Comparative Example 3 (Table 3)
This is an example of a winter formulation in which only T-80 is used as the main polyisocyanate with respect to the curing agent having the same composition as in Examples 5, 6 and 7. The pot life was 24 minutes, which was insufficient for winter formulation. The interlayer adhesive strength was lower than that of Examples 5, 6 and 7, and it was considered that there was a problem in practical use. In addition, the tensile strength ratio after the heat treatment or the alkali treatment tended to be lower than that in Examples 5, 6 and 7.

実施例8(表4)
実施例7と同じ配合の主剤を「一括仕込」法で合成した冬用配合の例である。実施例8は防水材として良好な塗膜物性を示しかつ冬用配合として十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。また、層間接着試験では実用に十分な接着強度を示した。
Example 8 (Table 4)
This is an example of a winter formulation in which the main agent having the same composition as in Example 7 is synthesized by the “bulk preparation” method. In Example 8, the next step could be carried out within the same day while exhibiting good coating film physical properties as a waterproof material and ensuring sufficient pot life as a winter compound. Moreover, in the interlayer adhesion test, the adhesive strength was sufficient for practical use.

実施例9(表4)
IPDIプレポリマーとT−80プレポリマーを別々に合成し、IPDIとT−80の当量比が実施例7と同じ10/90となるように「混合」した主剤を使用した冬用配合の例である。実施例9は防水材として良好な塗膜物性を示しかつ冬用配合として十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。また、層間接着試験では実用に十分な接着強度を示した。
Example 9 (Table 4)
An example of a winter formulation using an IPDI prepolymer and a T-80 prepolymer that were separately synthesized and "mixed" so that the equivalent ratio of IPDI to T-80 was 10/90, the same as in Example 7. is there. In Example 9, the next step could be carried out within the same day while exhibiting good coating film physical properties as a waterproof material and ensuring sufficient pot life as a winter compound. Moreover, in the interlayer adhesion test, the adhesive strength was sufficient for practical use.

実施例10、11、12(表5)
実施例6と同じ配合で「二段仕込」法によりプレポリマーを合成する際に、触媒を使用した冬用配合の例である。一段目のIPDIとの反応において触媒としてジオクチル錫ジラウレート0.0015質量%を使用した実施例10では、一段目の反応は実施例6より低い60℃で速やかに進行した。その後、リン酸0.0015質量%を加え触媒を失活させた後に、二段目のT−80との反応を実施したところ100℃で速やかに進行した。得られたプレポリマーを使用して実施例6と同様に防水材組成物を作製したところ、良好な塗膜物性を示しかつ冬用配合として十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。また、層間接着試験では実用に十分な接着強度を示した。
一段目のIPDIとの反応において触媒としてリン酸0.04質量%を使用した実施例11では、一段目の反応は100℃で速やかに進行し実施例6より短い反応時間で所望の転化率まで達した。更に二段目のT−80との反応も100℃で速やかに進行した。得られたプレポリマーを使用して実施例6と同様に防水材組成物を作製したところ、良好な塗膜物性を示しかつ冬用配合として十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。また、層間接着試験では実用に十分な接着強度を示した。
一段目のIPDIとの反応において触媒として1−イソブチル−2−メチルイミダゾール0.10質量%を使用した実施例12では、一段目の反応は100℃で速やかに進行し実施例6より短い反応時間で所望の転化率まで達した。更に二段目のT−80との反応は実施例6より低い40℃で速やかに進行した。得られたプレポリマーを使用して実施例6と同様に防水材組成物を作製したところ、良好な塗膜物性を示しかつ冬用配合として十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。また、層間接着試験では実用に十分な接着強度を示した。
Examples 10, 11, 12 (Table 5)
This is an example of a winter formulation using a catalyst when synthesizing a prepolymer by the "two-stage preparation" method with the same formulation as in Example 6. In Example 10 in which 0.0015% by mass of dioctyltin dilaurate was used as a catalyst in the reaction with the first-stage IPDI, the first-stage reaction proceeded rapidly at 60 ° C., which was lower than in Example 6. Then, after adding 0.0015% by mass of phosphoric acid to inactivate the catalyst, a reaction with T-80 in the second stage was carried out, and the reaction proceeded rapidly at 100 ° C. When the waterproof material composition was prepared in the same manner as in Example 6 using the obtained prepolymer, the following was performed during the day while showing good coating film physical properties and ensuring sufficient pot life as a winter formulation. It was possible to construct the process. Moreover, in the interlayer adhesion test, the adhesive strength was sufficient for practical use.
In Example 11 in which 0.04% by mass of phosphoric acid was used as a catalyst in the reaction with the first-stage IPDI, the first-stage reaction proceeded rapidly at 100 ° C. to a desired conversion rate in a shorter reaction time than in Example 6. Reached. Furthermore, the reaction with T-80 in the second stage also proceeded rapidly at 100 ° C. When the waterproof material composition was prepared in the same manner as in Example 6 using the obtained prepolymer, the following was performed during the day while showing good coating film physical properties and ensuring sufficient pot life as a winter formulation. It was possible to construct the process. Moreover, in the interlayer adhesion test, the adhesive strength was sufficient for practical use.
In Example 12 in which 0.10% by mass of 1-isobutyl-2-methylimidazole was used as a catalyst in the reaction with IPDI in the first stage, the reaction in the first stage proceeded rapidly at 100 ° C. and the reaction time was shorter than that in Example 6. The desired conversion rate was reached. Furthermore, the reaction with T-80 in the second stage proceeded rapidly at 40 ° C., which was lower than in Example 6. When the waterproof material composition was prepared in the same manner as in Example 6 using the obtained prepolymer, the following was performed during the day while showing good coating film physical properties and ensuring sufficient pot life as a winter formulation. It was possible to construct the process. Moreover, in the interlayer adhesion test, the adhesive strength was sufficient for practical use.

なお、各評価項目の測定方法は次のとおりである。 The measurement method for each evaluation item is as follows.

[NCO(質量%)]
200mLの三角フラスコに主剤約1gを精秤し、これに0.5Nジ−n−ブチルアミン(トルエン溶液)10mL、トルエン10mLおよび適量のブロムフェノールブルーを加えた後メタノール約100mLを加え溶解する。この混合液を0.25N塩酸溶液で滴定する。NCO(質量%)は以下の式によって求められる。
NCO(質量%)=(ブランク滴定値−0.5N塩酸溶液滴定値)×4.202×0.25N塩酸溶液のファクター×0.25÷サンプル重量
[NCO (mass%)]
About 1 g of the main agent is precisely weighed in a 200 mL Erlenmeyer flask, and 10 mL of 0.5 N-n-butylamine (toluene solution), 10 mL of toluene and an appropriate amount of bromphenol blue are added thereto, and then about 100 mL of methanol is added to dissolve the mixture. The mixture is titrated with a 0.25N hydrochloric acid solution. NCO (mass%) is calculated by the following formula.
NCO (mass%) = (blank titration value-0.5N hydrochloric acid solution titration value) x 4.202 x 0.25N hydrochloric acid solution factor x 0.25 / sample weight

[23℃可使時間(分)]
23℃、湿度50%の空気循環型環境試験室内において、主剤と硬化剤を所定の割合で攪拌・混合開始から、BH型粘度計で2rpmにおける粘度が60,000mPa・sになるまでの時間を測定した。
[23 ° C pot life (minutes)]
In an air circulation type environmental test room at 23 ° C. and 50% humidity, the time from the start of stirring and mixing the main agent and the curing agent at a predetermined ratio until the viscosity at 2 rpm reaches 60,000 mPa · s with a BH type viscometer. It was measured.

[23℃施工可能時間(時間)]
23℃、湿度50%の空気循環式型環境試験室内において、主剤と硬化剤を所定の割合で攪拌・混合した防水材を2kg/m2塗布し、完全には硬化していないが、塗膜上を靴で歩行が可能となり、次工程の作業を開始できるまでの時間を測定した。
[23 ° C construction time (hours)]
In an air circulation type environmental test room at 23 ° C. and 50% humidity, 2 kg / m 2 of a waterproof material in which the main agent and the curing agent were stirred and mixed at a predetermined ratio was applied, and although it was not completely cured, the coating film was applied. The time until it became possible to walk on the shoes with shoes and the work of the next process could be started was measured.

[引張強さ(N/mm2)]
養生条件を23℃で7日とした試験片について、JIS A 6021に基づいて測定を行った(JIS A 6021のウレタンゴム系高伸長形(旧1類)では引張強さは2.3N/mm2以上)。
[Tensile strength (N / mm 2 )]
The test piece whose curing condition was 23 ° C. for 7 days was measured based on JIS A 6021 (the urethane rubber-based high elongation type (former class 1) of JIS A 6021 has a tensile strength of 2.3 N / mm. 2 or more).

[破断時の伸び率(%)]
養生条件を23℃で7日とした試験片について、JIS A 6021に基づいて測定を行った(JIS A 6021のウレタンゴム系高伸長形(旧1類)では破断時の伸び率は450%以上)。
[Elongation rate at break (%)]
The test piece whose curing condition was 23 ° C. for 7 days was measured based on JIS A 6021 (the urethane rubber-based high elongation type (former class 1) of JIS A 6021 has an elongation rate of 450% or more at break. ).

[引裂き強さ(N/mm)]
養生条件を23℃で7日とした試験片について、JIS A 6021に基づいて測定を行った(JIS A 6021のウレタンゴム系高伸長形(旧1類)では引裂き強さは14N/mm以上)。
[Tear strength (N / mm)]
The test piece whose curing condition was 23 ° C. for 7 days was measured based on JIS A 6021 (the tear strength of the urethane rubber-based high elongation type (former class 1) of JIS A 6021 is 14 N / mm or more). ..

[耐熱性 引張強さ比(%)]
80℃の乾燥機に7日間入れて加熱処理した試験片について、JIS A 6021に基づいて行い、処理前に対する引張強さ比(%)を求めた。
[Heat resistance Tensile strength ratio (%)]
The test piece heat-treated in a dryer at 80 ° C. for 7 days was subjected to JIS A 6021 to determine the tensile strength ratio (%) with respect to that before the treatment.

[アルカリ処理後の引張強さ比(%)]
処理条件を60℃、1週間(JIS A 6021では23℃)に変えた以外は、JIS A 6021に基づいて行い、処理前に対する引張強さ比(%)を求めた。
[Tensile strength ratio (%) after alkali treatment]
Except for changing the treatment conditions to 60 ° C. for 1 week (23 ° C. in JIS A 6021), the treatment was carried out based on JIS A 6021, and the tensile strength ratio (%) with respect to that before the treatment was determined.

[層間接着強度]
23℃、湿度50%の空気循環型環境試験室内において、スレート板にプライマーを塗布し一日乾燥後、主剤と硬化剤を所定の割合で攪拌・混合した防水材組成物を2kg/m塗布した。3日後、一層目と同じ防水材組成物を1kg/m塗布し、その上に補強布としてサラシを被せさらに同じ防水材組成物を1kg/m塗布し、23℃、湿度50%の空気循環型環境試験室内において、7日間養生した。養生後、防水層を25mmの幅にカットし、180度剥離試験(ピール速度100mm/min)により防水材組成物一層目と二層目の層間接着強度(N/cm)を測定した。
[Interlayer adhesive strength]
In an air circulation type environmental test room at 23 ° C. and 50% humidity, a primer is applied to the slate plate, dried for one day, and then 2 kg / m 2 of the waterproof material composition in which the main agent and the curing agent are stirred and mixed at a predetermined ratio is applied. did. After 3 days, the first layer the same waterproof material composition 1 kg / m 2 was coated with a further covered with bleached same waterproof material composition 1 kg / m 2 was applied as a reinforcing cloth thereon, 23 ° C., humidity of 50% air It was cured for 7 days in a circulating environment test room. After curing, the waterproof layer was cut to a width of 25 mm, and the interlayer adhesion strength (N / cm) between the first layer and the second layer of the waterproof material composition was measured by a 180-degree peeling test (peeling speed 100 mm / min).

[プライマー接着強度]
23℃、湿度50%の空気循環型環境試験室内において、スレート板にOTプライマーMを塗布し、その上にOTプライマーAを0.15kg/m塗布した。3日後、主剤と硬化剤を所定の割合で攪拌・混合した防水材組成物を1kg/m塗布し、その上に補強布としてサラシを被せさらに同じ防水材組成物を1kg/m塗布し、23℃、湿度50%の空気循環型環境試験室内において、7日間養生した。養生後、防水層を25mmの幅にカットし、180度剥離試験(ピール速度100mm/min)によりプライマーAと防水材組成物との接着強度(N/cm)を測定した。
[Primer adhesion strength]
In an air circulation type environmental test room at 23 ° C. and 50% humidity, OT primer M was applied to a slate plate, and 0.15 kg / m 2 of OT primer A was applied thereto. After 3 days, apply 1 kg / m 2 of the waterproof material composition in which the main agent and the curing agent are stirred and mixed at a predetermined ratio, cover it with air as a reinforcing cloth, and further apply 1 kg / m 2 of the same waterproof material composition. It was cured for 7 days in an air circulation type environmental test room at 23 ° C. and 50% humidity. After curing, the waterproof layer was cut to a width of 25 mm, and the adhesive strength (N / cm) between the primer A and the waterproof material composition was measured by a 180-degree peeling test (peel speed 100 mm / min).

Figure 0006839947
Figure 0006839947

Figure 0006839947
Figure 0006839947

Figure 0006839947
Figure 0006839947

Figure 0006839947
Figure 0006839947

Figure 0006839947
Figure 0006839947

Claims (5)

ポリイソシアナートとポリオールからなるイソシアナート基末端プレポリマーを含む主剤と芳香族ポリアミンおよび可塑剤を含む硬化剤とからなる2液型ウレタン防水材組成物であって、主剤はトリレンジイソシアナート骨格とイソホロンジイソシアナート骨格を50/50〜97/3のモル比で含み、硬化剤は芳香族ポリアミンとしてジエチルトルエンジアミンと4,4′−メチレンビス(N−sec−ブチルアニリン)を40/60〜97/3の当量比で含む、2液型ウレタン防水材組成物。 A two-component urethane waterproofing composition composed of a main agent containing an isocyanate group-terminated prepolymer composed of polyisocyanate and a polyol and a curing agent containing an aromatic polyamine and a plasticizing agent, and the main agent is a tolylene diisocyanate skeleton. It contains an isophorone diisocyanate skeleton in a molar ratio of 50/50 to 97/3, and the curing agent is diethyltoluenediamine and 4,4'-methylenebis (N-sec-butylaniline) as aromatic polyamines 40/60 to 97. A two-component urethane waterproofing material composition containing an equivalent ratio of / 3. 硬化剤中の活性水素成分の80当量%以上が芳香族ポリアミンである、請求項1に記載の2液型ウレタン防水材組成物。 The two-component urethane waterproof material composition according to claim 1, wherein 80 equivalent% or more of the active hydrogen component in the curing agent is an aromatic polyamine. 硬化促進剤として酸無水物を含む、請求項1または2に記載の2液型ウレタン防水材組成物。 The two-component urethane waterproof material composition according to claim 1 or 2, which contains an acid anhydride as a curing accelerator. ポリイソシアナートとポリオールからなるイソシアナート基末端プレポリマーを含む主剤と芳香族ポリアミンおよび可塑剤を含む硬化剤とからなる2液型ウレタン防水材組成物の製造方法であって、該方法は、
トリレンジイソシアナート、イソホロンジイソシアナートおよびポリオールを、トリレンジイソシアナートとイソホロンジイソシアナートのモル比が50/50〜97/3の範囲で、同一容器内で反応させてイソシアナート基末端プレポリマーを含む主剤を調製する工程、および、
ジエチルトルエンジアミン、4,4′−メチレンビス(N−sec−ブチルアニリン)および可塑剤を、ジエチルトルエンジアミンと4,4′−メチレンビス(N−sec−ブチルアニリン)の当量比が40/60〜97/3の範囲で、混合して硬化剤を調製する工程を含む、方法。
A method for producing a two-component urethane waterproofing material composition, which comprises a main agent containing an isocyanate group-terminated prepolymer composed of a polyisocyanate and a polyol, and a curing agent containing an aromatic polyamine and a plasticizer.
Tolylene diisocyanate, isophorone diisocyanate and polyol are reacted in the same container with a molar ratio of tolylene isocyanate to isophorone diisocyanate in the range of 50/50 to 97/3, and isocyanate group-terminated prepolymer. The process of preparing the main agent containing
The equivalent ratio of diethyltoluenediamine, 4,4'-methylenebis (N-sec-butylaniline) and plasticizer to diethyltoluenediamine and 4,4'-methylenebis (N-sec-butylaniline) is 40/60 to 97. A method comprising the step of mixing to prepare a curing agent in the range of 3/3.
前記主剤を調製する工程が、イソホロンジイソシアナートとポリオールを容器内で反応させる工程、次いで前記容器内にトリレンジイソシアナートを添加してさらに反応させる工程を含む、請求項4に記載の方法。 The method according to claim 4, wherein the step of preparing the main agent comprises a step of reacting isophorone diisocyanate with a polyol in a container, and then a step of adding tolylene diisocyanate into the container and further reacting.
JP2016179680A 2016-09-14 2016-09-14 Fast-curing two-component urethane waterproof material composition and its manufacturing method Active JP6839947B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016179680A JP6839947B2 (en) 2016-09-14 2016-09-14 Fast-curing two-component urethane waterproof material composition and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016179680A JP6839947B2 (en) 2016-09-14 2016-09-14 Fast-curing two-component urethane waterproof material composition and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2018044068A JP2018044068A (en) 2018-03-22
JP6839947B2 true JP6839947B2 (en) 2021-03-10

Family

ID=61694455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016179680A Active JP6839947B2 (en) 2016-09-14 2016-09-14 Fast-curing two-component urethane waterproof material composition and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6839947B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398228B2 (en) * 2018-09-19 2023-12-15 保土谷化学工業株式会社 Set of main agent and hardening agent, waterproofing material and its construction method
MX2022000566A (en) * 2019-07-16 2022-02-10 Basf Coatings Gmbh One-pack polyurethane dispersions, their manufacture and use.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3203490A1 (en) * 1982-02-03 1983-08-11 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING COVERS
US4710560A (en) * 1986-09-08 1987-12-01 W. R. Grace & Co. Polyurethane coating composition
JP3445364B2 (en) * 1994-06-10 2003-09-08 保土谷化学工業株式会社 Method for producing cold-setting waterproof coating film
JP3957779B2 (en) * 1995-12-28 2007-08-15 保土谷化学工業株式会社 Room temperature curing type polyurethane coating material
US7045573B2 (en) * 2003-04-21 2006-05-16 Bayer Materialscience Llc Polyurethane dispersion (PUD) with improved isopropanol resistance, flexibility and softness
JP5669813B2 (en) * 2011-12-07 2015-02-18 アイシーケイ株式会社 Two-component environmentally-friendly urethane waterproof material composition
JP6187964B2 (en) * 2013-07-16 2017-08-30 アイシーケイ株式会社 Fast-curing, two-component, environmentally-friendly urethane waterproof material composition
CN105461896B (en) * 2016-01-19 2018-06-08 黎明化工研究设计院有限责任公司 A kind of bridge High Hardness Polyurethane Elastomer bearing material and preparation method thereof and application method

Also Published As

Publication number Publication date
JP2018044068A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
JP6706887B2 (en) High-strength two-component environment-friendly hand-painted urethane waterproofing material composition and urethane waterproofing method
JP5669813B2 (en) Two-component environmentally-friendly urethane waterproof material composition
US9080087B2 (en) Reduction in modulus of polyurethane sealants and adhesives
KR101772903B1 (en) Composition for polyurea waterproofing layer with high durability
JP6799390B2 (en) High tensile product 2-component environmentally friendly urethane waterproof material composition for hand coating and urethane waterproofing method
KR101478307B1 (en) Concrete Surface Preparation Material Using the Bio-Polyol and Polyurea Waterproof Method of Concrete Structure Using the Same
JP6213954B2 (en) Fast-curing, two-component, environmentally-friendly urethane waterproof material composition
EP1648949A1 (en) Self-crosslinking high-molecular polyurethane dispersion
JP6735598B2 (en) Fast-curing urethane waterproof material composition and construction method
JP6839947B2 (en) Fast-curing two-component urethane waterproof material composition and its manufacturing method
US9365743B2 (en) Stable, ready-to-use liquid polyurethane resin composition and uses thereof
JP6820787B2 (en) Two-component hand-painted urethane waterproof material composition
CN108117832B (en) Dual-curing type one-component polyurea coating and preparation method thereof
JP4660898B2 (en) Two-component polyurethane curable composition for spray coating and waterproof coating method using the same
JP6914127B2 (en) Two-component room temperature curing type environmentally friendly urethane waterproofing material composition for hand coating and urethane waterproofing method
JP6991036B2 (en) Fast-curing urethane waterproofing material composition for hand coating, kit and construction method
JP6879712B2 (en) Two-component environment-friendly hand-painted urethane waterproofing material composition and urethane waterproofing method
WO2014196303A1 (en) Adhesive composition
JP6187964B2 (en) Fast-curing, two-component, environmentally-friendly urethane waterproof material composition
JP6305097B2 (en) Two-component environmentally-friendly urethane waterproof material composition
JP7510580B1 (en) Two-component hand-applied urethane coating composition and method for applying urethane waterproof coating layer
JPH09183942A (en) Air-drying polyurethane coating material
JP2002194281A (en) Composition for two-pack polyurethane coating film waterproof material
JPH09278858A (en) Production of cold-setting waterproofing agent for coating film
JP2024069016A (en) Two-liquid type urethane water-proof material composition for hand coating and construction method of urethane water-proof coating layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210216

R150 Certificate of patent or registration of utility model

Ref document number: 6839947

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250