JP2018044068A - Quick-curable two-pack type urethane waterproof material composition and method for producing the same - Google Patents
Quick-curable two-pack type urethane waterproof material composition and method for producing the same Download PDFInfo
- Publication number
- JP2018044068A JP2018044068A JP2016179680A JP2016179680A JP2018044068A JP 2018044068 A JP2018044068 A JP 2018044068A JP 2016179680 A JP2016179680 A JP 2016179680A JP 2016179680 A JP2016179680 A JP 2016179680A JP 2018044068 A JP2018044068 A JP 2018044068A
- Authority
- JP
- Japan
- Prior art keywords
- curing agent
- curing
- waterproof material
- polyol
- ipdi
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 108
- 239000000203 mixture Substances 0.000 title claims abstract description 56
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 title claims abstract description 42
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 115
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical group CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 claims abstract description 73
- 229920005862 polyol Polymers 0.000 claims abstract description 44
- 150000003077 polyols Chemical class 0.000 claims abstract description 44
- 239000004014 plasticizer Substances 0.000 claims abstract description 25
- 125000003118 aryl group Chemical group 0.000 claims abstract description 23
- 229920000768 polyamine Polymers 0.000 claims abstract description 22
- 239000005056 polyisocyanate Substances 0.000 claims abstract description 22
- 229920001228 polyisocyanate Polymers 0.000 claims abstract description 22
- YZZTZUHVGICSCS-UHFFFAOYSA-N n-butan-2-yl-4-[[4-(butan-2-ylamino)phenyl]methyl]aniline Chemical compound C1=CC(NC(C)CC)=CC=C1CC1=CC=C(NC(C)CC)C=C1 YZZTZUHVGICSCS-UHFFFAOYSA-N 0.000 claims abstract description 20
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical group CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 claims abstract description 16
- PISLZQACAJMAIO-UHFFFAOYSA-N 2,4-diethyl-6-methylbenzene-1,3-diamine Chemical compound CCC1=CC(C)=C(N)C(CC)=C1N PISLZQACAJMAIO-UHFFFAOYSA-N 0.000 claims abstract description 10
- 239000005058 Isophorone diisocyanate Substances 0.000 claims description 63
- 238000000034 method Methods 0.000 claims description 60
- 238000004078 waterproofing Methods 0.000 claims description 59
- 238000002156 mixing Methods 0.000 claims description 32
- 150000008065 acid anhydrides Chemical class 0.000 claims description 27
- 239000012948 isocyanate Substances 0.000 claims description 14
- 150000002513 isocyanates Chemical group 0.000 claims description 14
- 239000001257 hydrogen Substances 0.000 claims description 7
- 229910052739 hydrogen Inorganic materials 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 239000011248 coating agent Substances 0.000 abstract description 14
- 238000000576 coating method Methods 0.000 abstract description 14
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 abstract description 7
- 229920006311 Urethane elastomer Polymers 0.000 abstract description 4
- 238000001723 curing Methods 0.000 description 94
- 238000006243 chemical reaction Methods 0.000 description 40
- HGXVKAPCSIXGAK-UHFFFAOYSA-N 2,4-diethyl-6-methylbenzene-1,3-diamine;4,6-diethyl-2-methylbenzene-1,3-diamine Chemical compound CCC1=CC(CC)=C(N)C(C)=C1N.CCC1=CC(C)=C(N)C(CC)=C1N HGXVKAPCSIXGAK-UHFFFAOYSA-N 0.000 description 32
- 238000010276 construction Methods 0.000 description 30
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 26
- 238000012360 testing method Methods 0.000 description 22
- 230000000694 effects Effects 0.000 description 21
- 239000003513 alkali Substances 0.000 description 19
- -1 polyoxypropylene Polymers 0.000 description 19
- 239000003054 catalyst Substances 0.000 description 17
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 16
- 230000008569 process Effects 0.000 description 16
- 239000011229 interlayer Substances 0.000 description 15
- IBOFVQJTBBUKMU-UHFFFAOYSA-N 4,4'-methylene-bis-(2-chloroaniline) Chemical compound C1=C(Cl)C(N)=CC=C1CC1=CC=C(N)C(Cl)=C1 IBOFVQJTBBUKMU-UHFFFAOYSA-N 0.000 description 13
- 235000010216 calcium carbonate Nutrition 0.000 description 13
- 241001112258 Moca Species 0.000 description 12
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 229910000019 calcium carbonate Inorganic materials 0.000 description 12
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 12
- 230000000704 physical effect Effects 0.000 description 12
- 238000009472 formulation Methods 0.000 description 11
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 230000007613 environmental effect Effects 0.000 description 9
- 239000010410 layer Substances 0.000 description 9
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 8
- 239000011256 inorganic filler Substances 0.000 description 8
- 229910003475 inorganic filler Inorganic materials 0.000 description 8
- 239000002075 main ingredient Substances 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000000178 monomer Substances 0.000 description 8
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 7
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 7
- HBGGXOJOCNVPFY-UHFFFAOYSA-N diisononyl phthalate Chemical compound CC(C)CCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCC(C)C HBGGXOJOCNVPFY-UHFFFAOYSA-N 0.000 description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 7
- 229920001451 polypropylene glycol Polymers 0.000 description 7
- 230000009257 reactivity Effects 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 239000002904 solvent Substances 0.000 description 6
- 150000003512 tertiary amines Chemical class 0.000 description 6
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 5
- XQBCVRSTVUHIGH-UHFFFAOYSA-L [dodecanoyloxy(dioctyl)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCCCCCC)(CCCCCCCC)OC(=O)CCCCCCCCCCC XQBCVRSTVUHIGH-UHFFFAOYSA-L 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- 150000007942 carboxylates Chemical class 0.000 description 5
- 229940014800 succinic anhydride Drugs 0.000 description 5
- OEMSKMUAMXLNKL-UHFFFAOYSA-N 5-methyl-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1C(C)=CCC2C(=O)OC(=O)C12 OEMSKMUAMXLNKL-UHFFFAOYSA-N 0.000 description 4
- IRIAEXORFWYRCZ-UHFFFAOYSA-N Butylbenzyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCC1=CC=CC=C1 IRIAEXORFWYRCZ-UHFFFAOYSA-N 0.000 description 4
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 4
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 4
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000000945 filler Substances 0.000 description 4
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 4
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- SVNWKKJQEFIURY-UHFFFAOYSA-N 2-methyl-1-(2-methylpropyl)imidazole Chemical compound CC(C)CN1C=CN=C1C SVNWKKJQEFIURY-UHFFFAOYSA-N 0.000 description 3
- QXBYUPMEYVDXIQ-UHFFFAOYSA-N 4-methyl-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound CC1CCCC2C(=O)OC(=O)C12 QXBYUPMEYVDXIQ-UHFFFAOYSA-N 0.000 description 3
- XPEKVUUBSDFMDR-UHFFFAOYSA-N 4-methyl-3a,4,7,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound CC1C=CCC2C(=O)OC(=O)C12 XPEKVUUBSDFMDR-UHFFFAOYSA-N 0.000 description 3
- FKBMTBAXDISZGN-UHFFFAOYSA-N 5-methyl-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1C(C)CCC2C(=O)OC(=O)C12 FKBMTBAXDISZGN-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 3
- 238000007259 addition reaction Methods 0.000 description 3
- SHZIWNPUGXLXDT-UHFFFAOYSA-N caproic acid ethyl ester Natural products CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 3
- 125000002843 carboxylic acid group Chemical group 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000012975 dibutyltin dilaurate Substances 0.000 description 3
- FLISWPFVWWWNNP-BQYQJAHWSA-N dihydro-3-(1-octenyl)-2,5-furandione Chemical compound CCCCCC\C=C\C1CC(=O)OC1=O FLISWPFVWWWNNP-BQYQJAHWSA-N 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000004848 polyfunctional curative Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 3
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 3
- MUTGBJKUEZFXGO-OLQVQODUSA-N (3as,7ar)-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1CCC[C@@H]2C(=O)OC(=O)[C@@H]21 MUTGBJKUEZFXGO-OLQVQODUSA-N 0.000 description 2
- NNOZGCICXAYKLW-UHFFFAOYSA-N 1,2-bis(2-isocyanatopropan-2-yl)benzene Chemical class O=C=NC(C)(C)C1=CC=CC=C1C(C)(C)N=C=O NNOZGCICXAYKLW-UHFFFAOYSA-N 0.000 description 2
- FKTHNVSLHLHISI-UHFFFAOYSA-N 1,2-bis(isocyanatomethyl)benzene Chemical class O=C=NCC1=CC=CC=C1CN=C=O FKTHNVSLHLHISI-UHFFFAOYSA-N 0.000 description 2
- OVBFMEVBMNZIBR-UHFFFAOYSA-N 2-methylvaleric acid Chemical compound CCCC(C)C(O)=O OVBFMEVBMNZIBR-UHFFFAOYSA-N 0.000 description 2
- HNNQYHFROJDYHQ-UHFFFAOYSA-N 3-(4-ethylcyclohexyl)propanoic acid 3-(3-ethylcyclopentyl)propanoic acid Chemical compound CCC1CCC(CCC(O)=O)C1.CCC1CCC(CCC(O)=O)CC1 HNNQYHFROJDYHQ-UHFFFAOYSA-N 0.000 description 2
- 206010007269 Carcinogenicity Diseases 0.000 description 2
- 208000019651 NDE1-related microhydranencephaly Diseases 0.000 description 2
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 230000007670 carcinogenicity Effects 0.000 description 2
- 231100000260 carcinogenicity Toxicity 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- OZEHOHQZIRILDX-UHFFFAOYSA-N ctk1b7797 Chemical compound O=C1OC(=O)C2C1C1(C)CC2CC1 OZEHOHQZIRILDX-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- JQVDAXLFBXTEQA-UHFFFAOYSA-N dibutylamine Chemical compound CCCCNCCCC JQVDAXLFBXTEQA-UHFFFAOYSA-N 0.000 description 2
- AYOHIQLKSOJJQH-UHFFFAOYSA-N dibutyltin Chemical compound CCCC[Sn]CCCC AYOHIQLKSOJJQH-UHFFFAOYSA-N 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 150000007529 inorganic bases Chemical class 0.000 description 2
- 238000013008 moisture curing Methods 0.000 description 2
- LAMTXWQPHWUMLX-UHFFFAOYSA-N n-butan-2-ylaniline Chemical compound CCC(C)NC1=CC=CC=C1 LAMTXWQPHWUMLX-UHFFFAOYSA-N 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- WYVAMUWZEOHJOQ-UHFFFAOYSA-N propionic anhydride Chemical compound CCC(=O)OC(=O)CC WYVAMUWZEOHJOQ-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000010454 slate Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical compound NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 2
- 238000009423 ventilation Methods 0.000 description 2
- OLQWMCSSZKNOLQ-ZXZARUISSA-N (3s)-3-[(3r)-2,5-dioxooxolan-3-yl]oxolane-2,5-dione Chemical compound O=C1OC(=O)C[C@H]1[C@@H]1C(=O)OC(=O)C1 OLQWMCSSZKNOLQ-ZXZARUISSA-N 0.000 description 1
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- KMOUUZVZFBCRAM-UHFFFAOYSA-N 1,2,3,6-tetrahydrophthalic anhydride Chemical compound C1C=CCC2C(=O)OC(=O)C21 KMOUUZVZFBCRAM-UHFFFAOYSA-N 0.000 description 1
- GIWQSPITLQVMSG-UHFFFAOYSA-N 1,2-dimethylimidazole Chemical compound CC1=NC=CN1C GIWQSPITLQVMSG-UHFFFAOYSA-N 0.000 description 1
- FBHPRUXJQNWTEW-UHFFFAOYSA-N 1-benzyl-2-methylimidazole Chemical compound CC1=NC=CN1CC1=CC=CC=C1 FBHPRUXJQNWTEW-UHFFFAOYSA-N 0.000 description 1
- MCTWTZJPVLRJOU-UHFFFAOYSA-N 1-methyl-1H-imidazole Chemical compound CN1C=CN=C1 MCTWTZJPVLRJOU-UHFFFAOYSA-N 0.000 description 1
- SEULWJSKCVACTH-UHFFFAOYSA-N 1-phenylimidazole Chemical compound C1=NC=CN1C1=CC=CC=C1 SEULWJSKCVACTH-UHFFFAOYSA-N 0.000 description 1
- XLXCHZCQTCBUOX-UHFFFAOYSA-N 1-prop-2-enylimidazole Chemical compound C=CCN1C=CN=C1 XLXCHZCQTCBUOX-UHFFFAOYSA-N 0.000 description 1
- RXNOYRCWKRFNIM-UHFFFAOYSA-N 2-carbonochloridoylbenzoic acid Chemical compound OC(=O)C1=CC=CC=C1C(Cl)=O RXNOYRCWKRFNIM-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- BYPFICORERPGJY-UHFFFAOYSA-N 3,4-diisocyanatobicyclo[2.2.1]hept-2-ene Chemical compound C1CC2(N=C=O)C(N=C=O)=CC1C2 BYPFICORERPGJY-UHFFFAOYSA-N 0.000 description 1
- WADSJYLPJPTMLN-UHFFFAOYSA-N 3-(cycloundecen-1-yl)-1,2-diazacycloundec-2-ene Chemical compound C1CCCCCCCCC=C1C1=NNCCCCCCCC1 WADSJYLPJPTMLN-UHFFFAOYSA-N 0.000 description 1
- LJPCNSSTRWGCMZ-UHFFFAOYSA-N 3-methyloxolane Chemical compound CC1CCOC1 LJPCNSSTRWGCMZ-UHFFFAOYSA-N 0.000 description 1
- SXFJDZNJHVPHPH-UHFFFAOYSA-N 3-methylpentane-1,5-diol Chemical compound OCCC(C)CCO SXFJDZNJHVPHPH-UHFFFAOYSA-N 0.000 description 1
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 1
- HMMBJOWWRLZEMI-UHFFFAOYSA-N 4,5,6,7-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CCCC2=C1C(=O)OC2=O HMMBJOWWRLZEMI-UHFFFAOYSA-N 0.000 description 1
- RQEOBXYYEPMCPJ-UHFFFAOYSA-N 4,6-diethyl-2-methylbenzene-1,3-diamine Chemical compound CCC1=CC(CC)=C(N)C(C)=C1N RQEOBXYYEPMCPJ-UHFFFAOYSA-N 0.000 description 1
- NWIVYGKSHSJHEF-UHFFFAOYSA-N 4-[(4-amino-3,5-diethylphenyl)methyl]-2,6-diethylaniline Chemical compound CCC1=C(N)C(CC)=CC(CC=2C=C(CC)C(N)=C(CC)C=2)=C1 NWIVYGKSHSJHEF-UHFFFAOYSA-N 0.000 description 1
- QJENIOQDYXRGLF-UHFFFAOYSA-N 4-[(4-amino-3-ethyl-5-methylphenyl)methyl]-2-ethyl-6-methylaniline Chemical compound CC1=C(N)C(CC)=CC(CC=2C=C(CC)C(N)=C(C)C=2)=C1 QJENIOQDYXRGLF-UHFFFAOYSA-N 0.000 description 1
- CBEVWPCAHIAUOD-UHFFFAOYSA-N 4-[(4-amino-3-ethylphenyl)methyl]-2-ethylaniline Chemical compound C1=C(N)C(CC)=CC(CC=2C=C(CC)C(N)=CC=2)=C1 CBEVWPCAHIAUOD-UHFFFAOYSA-N 0.000 description 1
- ZMSQJSMSLXVTKN-UHFFFAOYSA-N 4-[2-(2-morpholin-4-ylethoxy)ethyl]morpholine Chemical compound C1COCCN1CCOCCN1CCOCC1 ZMSQJSMSLXVTKN-UHFFFAOYSA-N 0.000 description 1
- KZTROCYBPMKGAW-UHFFFAOYSA-N 4-[[4-amino-3,5-di(propan-2-yl)phenyl]methyl]-2,6-di(propan-2-yl)aniline Chemical compound CC(C)C1=C(N)C(C(C)C)=CC(CC=2C=C(C(N)=C(C(C)C)C=2)C(C)C)=C1 KZTROCYBPMKGAW-UHFFFAOYSA-N 0.000 description 1
- ALYNCZNDIQEVRV-UHFFFAOYSA-M 4-aminobenzoate Chemical compound NC1=CC=C(C([O-])=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-M 0.000 description 1
- 229940086681 4-aminobenzoate Drugs 0.000 description 1
- ALYNCZNDIQEVRV-UHFFFAOYSA-N 4-aminobenzoic acid Chemical compound NC1=CC=C(C(O)=O)C=C1 ALYNCZNDIQEVRV-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- AOFIWCXMXPVSAZ-UHFFFAOYSA-N 4-methyl-2,6-bis(methylsulfanyl)benzene-1,3-diamine Chemical compound CSC1=CC(C)=C(N)C(SC)=C1N AOFIWCXMXPVSAZ-UHFFFAOYSA-N 0.000 description 1
- JYCTWJFSRDBYJX-UHFFFAOYSA-N 5-(2,5-dioxooxolan-3-yl)-3a,4,5,9b-tetrahydrobenzo[e][2]benzofuran-1,3-dione Chemical compound O=C1OC(=O)CC1C1C2=CC=CC=C2C(C(=O)OC2=O)C2C1 JYCTWJFSRDBYJX-UHFFFAOYSA-N 0.000 description 1
- ZHBXLZQQVCDGPA-UHFFFAOYSA-N 5-[(1,3-dioxo-2-benzofuran-5-yl)sulfonyl]-2-benzofuran-1,3-dione Chemical compound C1=C2C(=O)OC(=O)C2=CC(S(=O)(=O)C=2C=C3C(=O)OC(C3=CC=2)=O)=C1 ZHBXLZQQVCDGPA-UHFFFAOYSA-N 0.000 description 1
- LQOPXMZSGSTGMF-UHFFFAOYSA-N 6004-79-1 Chemical compound C1CC2C3C(=O)OC(=O)C3C1C2 LQOPXMZSGSTGMF-UHFFFAOYSA-N 0.000 description 1
- YPIFGDQKSSMYHQ-UHFFFAOYSA-N 7,7-dimethyloctanoic acid Chemical compound CC(C)(C)CCCCCC(O)=O YPIFGDQKSSMYHQ-UHFFFAOYSA-N 0.000 description 1
- XZOYHFBNQHPJRQ-UHFFFAOYSA-N 7-methyloctanoic acid Chemical compound CC(C)CCCCCC(O)=O XZOYHFBNQHPJRQ-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- QLUNLMXKXPJTRB-UHFFFAOYSA-L C(C)C(COC(C(O)CC(=O)[O-])=O)CCCC.C(CCCCCCC)[Sn+2]CCCCCCCC.C(C)C(COC(C(O)CC(=O)[O-])=O)CCCC Chemical compound C(C)C(COC(C(O)CC(=O)[O-])=O)CCCC.C(CCCCCCC)[Sn+2]CCCCCCCC.C(C)C(COC(C(O)CC(=O)[O-])=O)CCCC QLUNLMXKXPJTRB-UHFFFAOYSA-L 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- NXMOWTFIUDDXIT-UHFFFAOYSA-L [7,7-dimethyloctanoyloxy(dioctyl)stannyl] 7,7-dimethyloctanoate Chemical compound CC(C)(C)CCCCCC(=O)O[Sn](CCCCCCCC)(CCCCCCCC)OC(=O)CCCCCC(C)(C)C NXMOWTFIUDDXIT-UHFFFAOYSA-L 0.000 description 1
- SDXDHLDNCJPIJZ-UHFFFAOYSA-N [Zr].[Zr] Chemical class [Zr].[Zr] SDXDHLDNCJPIJZ-UHFFFAOYSA-N 0.000 description 1
- CQQXCSFSYHAZOO-UHFFFAOYSA-L [acetyloxy(dioctyl)stannyl] acetate Chemical compound CCCCCCCC[Sn](OC(C)=O)(OC(C)=O)CCCCCCCC CQQXCSFSYHAZOO-UHFFFAOYSA-L 0.000 description 1
- GPDWNEFHGANACG-UHFFFAOYSA-L [dibutyl(2-ethylhexanoyloxy)stannyl] 2-ethylhexanoate Chemical compound CCCCC(CC)C(=O)O[Sn](CCCC)(CCCC)OC(=O)C(CC)CCCC GPDWNEFHGANACG-UHFFFAOYSA-L 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- DTOSIQBPPRVQHS-PDBXOOCHSA-N alpha-linolenic acid Chemical compound CC\C=C/C\C=C/C\C=C/CCCCCCCC(O)=O DTOSIQBPPRVQHS-PDBXOOCHSA-N 0.000 description 1
- 235000020661 alpha-linolenic acid Nutrition 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 230000003254 anti-foaming effect Effects 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- 159000000009 barium salts Chemical class 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- PASDCCFISLVPSO-UHFFFAOYSA-N benzoyl chloride Chemical compound ClC(=O)C1=CC=CC=C1 PASDCCFISLVPSO-UHFFFAOYSA-N 0.000 description 1
- HIFVAOIJYDXIJG-UHFFFAOYSA-N benzylbenzene;isocyanic acid Chemical class N=C=O.N=C=O.C=1C=CC=CC=1CC1=CC=CC=C1 HIFVAOIJYDXIJG-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 150000001621 bismuth Chemical class 0.000 description 1
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 1
- 159000000007 calcium salts Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 150000004985 diamines Chemical group 0.000 description 1
- 239000012973 diazabicyclooctane Substances 0.000 description 1
- OJLSGPFUCQBGSZ-UHFFFAOYSA-N dibutyl 2-hydroxybutanedioate dibutyltin Chemical compound C(CCC)OC(C(O)CC(=O)OCCCC)=O.C(CCC)[Sn]CCCC OJLSGPFUCQBGSZ-UHFFFAOYSA-N 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- LQRUPWUPINJLMU-UHFFFAOYSA-N dioctyl(oxo)tin Chemical compound CCCCCCCC[Sn](=O)CCCCCCCC LQRUPWUPINJLMU-UHFFFAOYSA-N 0.000 description 1
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 150000002611 lead compounds Chemical class 0.000 description 1
- 229960004488 linolenic acid Drugs 0.000 description 1
- KQQKGWQCNNTQJW-UHFFFAOYSA-N linolenic acid Natural products CC=CCCC=CCC=CCCCCCCCC(O)=O KQQKGWQCNNTQJW-UHFFFAOYSA-N 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 235000010446 mineral oil Nutrition 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- 125000006353 oxyethylene group Chemical group 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- UWJJYHHHVWZFEP-UHFFFAOYSA-N pentane-1,1-diol Chemical compound CCCCC(O)O UWJJYHHHVWZFEP-UHFFFAOYSA-N 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical class OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920002503 polyoxyethylene-polyoxypropylene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 230000003449 preventive effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 150000003329 sebacic acid derivatives Chemical class 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 159000000008 strontium salts Chemical class 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- 125000005591 trimellitate group Chemical group 0.000 description 1
- 125000005590 trimellitic acid group Chemical class 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
- IFNXAMCERSVZCV-UHFFFAOYSA-L zinc;2-ethylhexanoate Chemical compound [Zn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O IFNXAMCERSVZCV-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Polyurethanes Or Polyureas (AREA)
- Paints Or Removers (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
Abstract
Description
本発明は、速硬化性2液型ウレタン防水材組成物およびその製造方法に関する。 The present invention relates to a fast-curing two-component urethane waterproof material composition and a method for producing the same.
2液型ウレタン防水材は、不定形状および狭小部分の施工に適し経済性にも優れているため、ベランダ、庇の防水をはじめコンクリート系建築物の屋上防水にも幅広く採用されており、我が国独自の発展を遂げてきた。
2液型ウレタン防水材は、施工現場で主剤、硬化剤の2液を攪拌機で数分間混合した後、金コテ、くしベラ、ゴムベラ、ローラー、刷毛などで塗布し施工されるが、2液の混合開始と同時に硬化反応は始まり、徐々に粘度が上昇し、ある程度の時間施工しやすい低粘度状態(以下、可使時間と称す。)を経た後、施工が困難なほどの高粘度となり硬化していく。可使時間は実際の施工温度で少なくとも30分程度以上が好ましいとされており、便宜上23℃での粘度が60,000mPa・sになるまでの時間を指標として用いる。
Two-component urethane waterproof material is suitable for construction of irregular shapes and narrow parts, and is also economical, so it is widely used for roofing waterproofing of concrete buildings including verandas and fences. Has been developed.
Two-component urethane waterproofing material is applied on the construction site after mixing two liquids of the main agent and curing agent with a stirrer for several minutes, and then applied with a gold trowel, comb spatula, rubber spatula, roller, brush, etc. The curing reaction starts at the same time as mixing starts, and the viscosity gradually increases. After passing through a low-viscosity state (hereinafter referred to as pot life) that is easy to apply for a certain period of time, it becomes highly viscous and hard to be applied. To go. The pot life is preferably at least about 30 minutes or more at the actual construction temperature, and the time until the viscosity at 23 ° C. reaches 60,000 mPa · s is used as an index for convenience.
塗布作業において可使時間は長いほど好ましいが、一般的には可使時間を長くしようとすると硬化性が悪くなり、次工程を実施するために塗膜上に作業員が乗れるまでの時間(以下、施工可能時間と称す。)も長くなってしまう。通常の作業では、ウレタン防水材を夕方に塗布し終わり、翌日朝には施工可能状態となることが望まれており、施工可能時間は年間を通して17時間程度以内に調整できることが好ましいとされている。
夏季の施工においては材料の温度は35℃程度まで上昇し反応性が高まるため、30分の可使時間を確保するには23℃での可使時間で50分程度以上であることが好ましく、そのためには相応の配合技術が必要とされる。一方、冬季においては、材料温度は5℃程度まで下がり反応性が低下するため、可使時間の確保は比較的容易となり、23℃での可使時間で25分程度以上あれば問題ないが、翌朝までに施工可能な硬化性とするには、やはり相応の配合技術が必要となる。従って、2液型ウレタン防水材は、夏用と冬用の少なくとも二種類の配合を用意し、各季節に応じた可使時間と施工可能時間を確保するのが一般的である。
The longer the pot life in the coating operation, the better. However, in general, the longer the pot life, the worse the curability, and the time until the worker can get on the coating film to perform the next process (below) , Also called construction possible time). In normal work, it is desired that the urethane waterproofing material is applied in the evening, and the next day morning it is desired to be ready for construction, and the construction possible time is preferably adjusted within about 17 hours throughout the year. .
In the construction in summer, the temperature of the material rises to about 35 ° C. and the reactivity increases. Therefore, in order to ensure a 30 minutes pot life, the pot life at 23 ° C. is preferably about 50 minutes or more, For this purpose, appropriate blending techniques are required. On the other hand, in winter, since the material temperature is lowered to about 5 ° C. and the reactivity is lowered, it is relatively easy to secure the pot life, and there is no problem if the pot life at 23 ° C. is about 25 minutes or more. In order to make it curable by the next morning, it is necessary to have an appropriate blending technique. Therefore, it is general that the two-pack type urethane waterproof material is prepared in at least two kinds of blends for summer and winter, and ensures the pot life and workable time according to each season.
現在汎用化されている2液型ウレタン防水材は、トリレンジイソシアナート(以下、TDIと称す。)とポリオキシプロピレンポリオールからなるイソシアナート基末端プレポリマーを主剤とし、一方の硬化剤中に、活性水素成分として比較的反応が穏やかな芳香族ポリアミンである、3,3′−ジクロロ−4,4′−ジアミノジフェニルメタン(以下MOCAと称す。)を主成分として用い、低反応性の2級ポリオールであるポリオキシプロピレンポリオールを併用している。その際、硬化剤中には、促進剤として、水分よりもポリオールとの反応を選択的に促進することで発泡防止効果があるとされるカルボン酸鉛を用いるのが一般的であり、このような防水材はMOCA架橋型防水材と称されている。 The two-component urethane waterproofing material that is currently widely used is mainly composed of an isocyanate group-terminated prepolymer composed of tolylene diisocyanate (hereinafter referred to as TDI) and polyoxypropylene polyol, and in one curing agent, A low-reactivity secondary polyol using 3,3'-dichloro-4,4'-diaminodiphenylmethane (hereinafter referred to as MOCA), which is an aromatic polyamine having a relatively mild reaction as an active hydrogen component, as a main component. The polyoxypropylene polyol which is is used together. At that time, in the curing agent, as a promoter, it is common to use lead carboxylate, which is said to have an anti-foaming effect by selectively accelerating the reaction with polyol rather than moisture. Such a waterproof material is called a MOCA cross-linked waterproof material.
MOCA架橋型防水材は反応性が穏やかであるため、特に可使時間が必要とされる夏季の施工性に優れており、また比較的機械的強度も良好であるため、今でも汎用防水材として用いられている。一方、MOCA架橋型防水材は低温時の硬化性が悪いため、冬季は促進剤のカルボン酸鉛を多目に配合するのが一般的であるが、低温硬化性の改善には限界があり、さらに鉛化合物を多く配合することで耐熱劣化が促進されるという問題点も発現する。
また、2−エチルヘキサン酸のようなカルボン酸を促進剤として用いる方法もあるが、MOCAとイソシアナートとの反応は促進されるが、併用するポリオールとの反応は促進されないため、低温硬化性を改善するにはやはり限界がある。
MOCA cross-linked waterproof material is mild in reactivity, so it has excellent workability especially in summer when pot life is required, and it has relatively good mechanical strength. It is used. On the other hand, MOCA crosslinkable waterproofing material has poor curability at low temperatures, so it is common to add lead carboxylate as an accelerator in winter, but there is a limit to improving low-temperature curability, Furthermore, the problem that heat resistance deterioration is accelerated | stimulated by mix | blending many lead compounds also expresses.
In addition, there is a method using a carboxylic acid such as 2-ethylhexanoic acid as an accelerator, but the reaction between MOCA and isocyanate is promoted, but the reaction with the polyol used in combination is not promoted. There are still limits to improvement.
なお、MOCA架橋型防水材には環境面での大きな問題もある。硬化剤に用いられているMOCAは労働安全衛生法で特定化学物質第2類物質に指定されており、硬化剤には上限値の1%を超えて使用されているため、特定化学物質等障害予防規則(以下、特化則と称す。)該当品となってしまう。また、MOCAは、IARC(国際がん研究機関)による発がん性評価でグループ1(ヒトに対して発がん性を示す。)に分類されている。
また、主剤に用いられているTDIも特定化学物質に指定されており、汎用品の主剤には遊離TDIが上限値の1%を超えて存在するため、主剤も特化則該当品となってしまい、製造時および施工時に種々の制約を受けることとなる。さらに、促進剤として用いるカルボン酸鉛は、世界的に使用が厳しく制限されている材料であり、化学物質排出把握管理促進法(通称、化管法)の特定第1種指定化学物質に指定されており、環境面からは使用を避けたい材料である。
The MOCA cross-linked waterproof material also has a serious environmental problem. MOCA used for hardeners is designated as Class 2 specified chemical substances by the Occupational Safety and Health Act and is used for hardeners in excess of the upper limit of 1%. Preventive rules (hereinafter referred to as specialization rules) become applicable products. Moreover, MOCA is classified into group 1 (showing carcinogenicity to humans) by carcinogenicity evaluation by IARC (International Cancer Research Institute).
In addition, TDI used in the main agent is also designated as a specified chemical substance, and in the main agent of general-purpose products, the free TDI exceeds 1% of the upper limit value, so the main agent is also subject to specialization rules. Therefore, various restrictions are imposed upon manufacturing and construction. Furthermore, lead carboxylate used as an accelerator is a material that is severely restricted worldwide, and is designated as a specified type 1 designated chemical substance in the Chemical Substance Emission Control Management Promotion Law (commonly known as the PRTR Law). It is a material that you want to avoid from an environmental point of view.
2液型ウレタン防水材において、TDIプレポリマーに対し、MOCAより反応性が高く、環境面でも安全性が高いジエチルトルエンジアミン(以下、DETDAと称す。)を用いるDETDA架橋型防水材と称されるタイプも商品化されている。DETDA架橋型防水材は低温時にも硬化性が良いという特徴を持っているが、夏季の可使時間を確保するためには可塑剤を多く配合する必要がある。但し、可塑剤を多く使用し過ぎるとトップコートとの接着性低下や可塑剤の移行性増大といった問題が発生するため、使用量には限界があり、夏場の可使時間確保が難しいとされている。
DETDA架橋型防水材の可使時間を確保する方法としては、特殊なTDIを用いる方法(特許文献1)、低反応性のポリイソシアナートであるイソホロンジイソシアナート(以下、IPDIと称す。)をTDIと併用する方法(特許文献2)、反応性の穏やかな芳香族2級アミンである4,4′−メチレンビス(N−sec−ブチルアニリン)をDETDAと併用する方法(特許文献3)等が提案されているが、まだ各々の方法に問題が残されており、汎用化されるには至っていない。
In a two-component urethane waterproof material, it is called a DETDA cross-linked waterproof material using diethyltoluenediamine (hereinafter referred to as DETDA), which is more reactive than MOCA and highly safe for the TDI prepolymer. Types are also commercialized. DETDA cross-linkable waterproofing material has a characteristic that it has good curability even at low temperatures, but it is necessary to add a large amount of plasticizer in order to ensure the pot life in summer. However, if too much plasticizer is used, problems such as poor adhesion to the top coat and increased plasticizer migration occur, so there is a limit to the amount used, and it is considered difficult to secure the pot life in summer. Yes.
As a method for securing the pot life of the DETDA cross-linked waterproof material, a method using a special TDI (Patent Document 1) and isophorone diisocyanate (hereinafter referred to as IPDI) which is a low-reactivity polyisocyanate. A method of using together with TDI (patent document 2), a method of using 4,4′-methylenebis (N-sec-butylaniline), which is a mild reactive secondary amine, and DETDA (patent document 3), etc. Although it has been proposed, problems still remain in each method, and it has not yet been generalized.
なお、DETDAは水分よりもかなり反応性が高いため、DETDAを主反応成分とする塗膜は、カルボン酸鉛なしでも発泡現象を抑制することができるという長所があり、環境面でさらに有利となる。
また、DETDA架橋型防水材はMOCA架橋型防水材とは異なり、冬季に硬化促進剤を用いることにより硬化性をさらに良くすることはできるが、可使時間はやはり短くなるため施工性は悪くなってしまう。そのため、通常は硬化促進剤を用いないが、2−エチルヘキサン酸鉛のようなカルボン酸鉛化合物や2−エチルヘキサン酸のような低分子カルボン酸により硬化を速くすることはできる。
なお、硬化促進剤は貯蔵安定性に問題が起こらないことより硬化剤側に配合するのが一般的であるが、第3成分として施工現場で添加することも行われている。施工現場で添加する場合は、施工時の気温に合わせて添加量を調整することができるという利便性はあるが、添加量が少量であるため配合ミスが発生しやすいという問題や保管・管理が難しいという問題もある。
In addition, since DETDA is considerably more reactive than moisture, the coating film containing DETDA as a main reaction component has an advantage that the foaming phenomenon can be suppressed without lead carboxylate, which is further advantageous in terms of environment. .
In addition, unlike the MOCA cross-linkable waterproof material, DETDA cross-linkable water-proof material can be further improved in curability by using a curing accelerator in winter, but the work life is also reduced because the pot life is still shortened. End up. Therefore, although a curing accelerator is not usually used, curing can be accelerated by a carboxylic acid lead compound such as lead 2-ethylhexanoate or a low molecular carboxylic acid such as 2-ethylhexanoic acid.
The curing accelerator is generally blended on the curing agent side because no problem occurs in storage stability, but it is also added at the construction site as the third component. When added at the construction site, there is the convenience that the added amount can be adjusted according to the temperature at the time of construction, but there is a problem that mixing errors are likely to occur because the added amount is small, storage and management There is also the problem that it is difficult.
なお、ウレタン防水材の塗膜性能は、JIS A 6021において機械的強度のみならず、耐候性、耐熱性、耐酸性、耐アルカリ性などについても詳細が規定されており、このJIS規格を満たしたものでないと、官公庁などには採用されないのは勿論、商品として認められないのが現状である。 The coating performance of the urethane waterproof material is specified not only in mechanical strength but also in weather resistance, heat resistance, acid resistance, alkali resistance, etc. in JIS A 6021 and satisfies this JIS standard. Otherwise, it will not be accepted by government offices, and of course it will not be accepted as a product.
また、一般的なウレタン防水工法では、コンクリートなどの無機質系下地に対し、接着性を確保するためのプライマーを施し、プライマーが硬化した後にウレタン防水層の施工を行い、その後耐候性を確保するためにトップコートを塗布するのが一般的である。なお、比較的大面積の無機質系下地に対しては、各種通気緩衝シートを施工し、その上にウレタン防水材を塗布し、その後トップコートを塗布するという通気緩衝工法が普及している。 In addition, in a general urethane waterproofing method, a primer for ensuring adhesion is applied to an inorganic base such as concrete, and after the primer is cured, a urethane waterproofing layer is applied, and then weather resistance is ensured. It is common to apply a top coat to the top. In addition, with respect to a relatively large area inorganic base material, a ventilation cushioning method in which various ventilation cushioning sheets are applied, a urethane waterproof material is applied thereon, and then a topcoat is applied is widespread.
いずれの工法においても、ウレタン防水層は塗膜の欠陥を補い均一性を確保するために2回に分けて塗布し、最終的に2mm〜3mmの膜厚にするのが一般的であるが、ウレタン防水層を1回で1〜2mm施工した後にトップコートを塗布するという簡易工法もベランダ、庇、幅木といった施工部位に対してある程度普及している。
現状ではウレタン防水材を1層塗布すると、当日中には硬化しないため、翌日に2層目のウレタン防水材の塗布あるいはトップコートの塗布といった次工程を行うのが通例であり、完成までの工期が長くなってしまうのがウレタン防水材の欠点とされている。さらに近年、気候の変動が激しくなる傾向があり、ウレタン防水材塗布後数時間で降雨に見舞われ未硬化のウレタン防水層が損傷を受けるという問題も多発している。
In any construction method, the urethane waterproof layer is generally applied in two times in order to compensate for defects in the coating film and ensure uniformity, and finally the film thickness is 2 mm to 3 mm. A simple construction method in which a urethane waterproof layer is applied 1-2 mm at a time and then a top coat is applied is also spread to some extent on construction sites such as verandas, scissors and skirting boards.
At present, if one layer of urethane waterproof material is applied, it will not harden on the day, so the next process such as applying the second layer of urethane waterproof material or top coat is usually performed the next day. It is regarded as a drawback of the urethane waterproof material that it becomes longer. Furthermore, in recent years, there has been a tendency for climate change to become severe, and there has also been a problem that the uncured urethane waterproof layer is damaged due to rain within a few hours after applying the urethane waterproof material.
最近、建設労働者の不足が顕著となってきており、防水業界においてもより効率的で省力化のできる防水工法および防水材料が望まれている。特に、ウレタン防水材においては、小面積の施工でさえ3〜5日の工期が必要となり、天候が不順であればさらに大幅に工期が延長されてしまうという大きな課題が残されている。
さらに、夜間に降雨が予想される場合は日中が好天であってもウレタン防水材を塗布することができず、また無理して降雨前に施工したため降雨により塗膜が損傷してしまい、補修に多大な時間と労力を費やしてしまうという問題もある。
Recently, the shortage of construction workers has become remarkable, and there is a demand for a waterproofing method and a waterproofing material that are more efficient and labor-saving in the waterproofing industry. In particular, the urethane waterproof material requires a work period of 3 to 5 days even for a small-area construction, and there remains a big problem that the work period is further extended if the weather is not good.
In addition, if rain is expected at night, urethane waterproofing material cannot be applied even if the weather is sunny, and the coating was damaged by rain because it was forcibly applied before raining, There is also a problem that a great deal of time and labor is spent on repairs.
施工後5時間程度で硬化し(施工可能)、当日中に次工程に移ることのできる防水材についてもDETDA架橋型防水材を中心に検討はされてきたが、施工可能時間を短くすると可使時間も同時に短くしてしまい施工が難しくなるため、極小面積あるいは補修用といった特殊な用途に限定されてしまい、汎用化するには至っていない。
また、DETDA架橋型防水材には、プライマーとの接着性や防水材同士の接着性が十分でないという問題も残されている。
汎用のMOCA架橋型防水材には、低温時の硬化性が悪くなるという問題と環境対応が不十分であるという問題があり、年間を通して当日中に硬化させることができ、しかも汎用防水材とほぼ同等の可使時間を有し、接着性および施工性が良好で環境にも優しい速硬化性ウレタン防水材が望まれている。
DETDA cross-linkable waterproofing materials have been studied mainly for waterproofing materials that can be cured in about 5 hours after construction (can be constructed) and can move to the next process during the day, but can be used if the construction time is shortened. Since the time is shortened at the same time and the construction becomes difficult, it is limited to a special application such as a minimum area or for repairing, and has not been widely used.
In addition, the DETDA cross-linking waterproof material still has a problem that the adhesion to the primer and the adhesion between the waterproof materials are not sufficient.
General-purpose MOCA cross-linked waterproof materials have problems of poor curability at low temperatures and insufficient environmental response, and can be cured during the day throughout the year. A fast-curing urethane waterproof material having the same pot life, good adhesion and workability, and environmentally friendly is desired.
DETDA架橋型防水材において、DETDAよりも反応性の穏やかな芳香族2級アミンである4,4′−メチレンビス(N−sec−ブチルアニリン)を併用すると、硬化性をあまり損ねずに可使時間を延長することができ比較的速硬化性の防水材とすることができるが、4,4′−メチレンビス(N−sec−ブチルアニリン)を用いることで、耐熱性や耐アルカリ性を極端に低下させるため実用性に乏しいという問題が発生する。
一方、主剤において、TDIとIPDIを併用することで可使時間をある程度延長することはできるが、物性低下や硬化性の低下となることが指摘されている。
In DETDA cross-linked waterproof material, when used together with 4,4'-methylenebis (N-sec-butylaniline), which is an aromatic secondary amine that is milder than DETDA, it can be used for a long time without degrading the curability. Can be extended to a relatively fast-curing waterproof material, but by using 4,4'-methylenebis (N-sec-butylaniline), heat resistance and alkali resistance are drastically reduced. Therefore, the problem of lack of practicality occurs.
On the other hand, it has been pointed out that the use time can be extended to some extent by using TDI and IPDI together in the main agent, but the physical properties and curability are lowered.
本願は、上記の点についてさらに詳細な検討を行った結果、主剤として特定の範囲でTDIとIPDIを用い、硬化剤として可塑剤の存在下で特定の範囲のDETDAと4,4′−メチレンビス(N−sec−ブチルアニリン)を用いることで、可使時間を保持した上で速硬化性となり、耐熱性や耐アルカリ性にも優れ、プライマーとの接着性や防水材同士との接着性が良好な、環境対応型速硬化性防水材となることを見出した。さらに、上記組成物は可使時間を必要とする夏用配合の速硬化性防水材に適しているが、この組成物に酸無水物を硬化促進剤として用いることで、低温においても可使時間を保持した速硬化性防水材となることが分かった。 As a result of further detailed examination of the above points, the present application uses TDI and IPDI in a specific range as main agents, and DETDA and 4,4'-methylenebis (in a specific range in the presence of a plasticizer as a curing agent. N-sec-Butylaniline) makes it fast-curing while maintaining the pot life, is excellent in heat resistance and alkali resistance, and has good adhesion with the primer and adhesion between waterproof materials. And found that it becomes an environment-friendly fast-curing waterproofing material. Furthermore, the above composition is suitable for a fast-curing waterproofing material formulated for summer that requires a pot life, but by using an acid anhydride as a curing accelerator in this composition, the pot life can be reduced even at low temperatures. It turned out that it becomes the quick-cure waterproofing material which hold | maintained.
また、主剤の製造方法において、従来技術ではTDIとIPDIの反応速度が大きく異なるため、TDIプレポリマーとIPDIプレポリマーとを別々に製造し、両者をブレンドする方法(特許文献2)が知られているが、本発明においてはTDIとIPDIを同時に仕込むかあるいは、IPDIとポリオールを先に仕込んである程度反応を先行させた後にTDIを仕込むという1バッチ生産を行うことができ、生産性を大きく向上できることが分かった。 In addition, since the reaction rates of TDI and IPDI are greatly different in the production method of the main agent, a method of separately producing TDI prepolymer and IPDI prepolymer and blending both is known (Patent Document 2). However, in the present invention, TDI and IPDI can be charged at the same time or IPDI and polyol can be charged first and then the reaction can be carried out to some extent before TDI is charged, which can greatly improve productivity. I understood.
本発明は、次の態様を含む。
[1]ポリイソシアナートとポリオールからなるイソシアナート基末端プレポリマーを含む主剤と芳香族ポリアミンおよび可塑剤を含む硬化剤とからなる2液型ウレタン防水材組成物であって、主剤はトリレンジイソシアナート骨格とイソホロンジイソシアナート骨格を50/50〜97/3のモル比で含み、硬化剤は芳香族ポリアミンとしてジエチルトルエンジアミンと4,4′−メチレンビス(N−sec−ブチルアニリン)を40/60〜97/3の当量比で含む、2液型ウレタン防水材組成物。
[2]硬化剤中の活性水素成分の80当量%以上が芳香族ポリアミンである、[1]に記載の2液型ウレタン防水材組成物。
[3]硬化促進剤として酸無水物を含む、[1]または[2]に記載の2液型ウレタン防水材組成物。
[4]ポリイソシアナートとポリオールからなるイソシアナート基末端プレポリマーを含む主剤と芳香族ポリアミンおよび可塑剤を含む硬化剤とからなる2液型ウレタン防水材組成物の製造方法であって、該方法は、
トリレンジイソシアナート、イソホロンジイソシアナートおよびポリオールを、トリレンジイソシアナートとイソホロンジイソシアナートのモル比が50/50〜97/3の範囲で、同一容器内で反応させてイソシアナート基末端プレポリマーを含む主剤を調製する工程、および、
ジエチルトルエンジアミン、4,4′−メチレンビス(N−sec−ブチルアニリン)および可塑剤を、ジエチルトルエンジアミンと4,4′−メチレンビス(N−sec−ブチルアニリン)の当量比が40/60〜97/3の範囲で、混合して硬化剤を調製する工程を含む、方法。
[5]前記主剤を調製する工程が、イソホロンジイソシアナートとポリオールを容器内で反応させる工程、次いで前記容器内にトリレンジイソシアナートを添加してさらに反応させる工程を含む、[4]に記載の方法。
The present invention includes the following aspects.
[1] A two-component urethane waterproofing composition comprising a main agent containing an isocyanate group-terminated prepolymer composed of a polyisocyanate and a polyol, and a curing agent containing an aromatic polyamine and a plasticizer, the main agent being tolylene diisocyanate It contains a skeleton of narate and isophorone diisocyanate in a molar ratio of 50/50 to 97/3, and the curing agent is 40/50 of diethyltoluenediamine and 4,4'-methylenebis (N-sec-butylaniline) as an aromatic polyamine. A two-component urethane waterproofing composition comprising an equivalent ratio of 60 to 97/3.
[2] The two-component urethane waterproofing composition according to [1], wherein 80 equivalent% or more of the active hydrogen component in the curing agent is an aromatic polyamine.
[3] The two-component urethane waterproofing composition according to [1] or [2], which contains an acid anhydride as a curing accelerator.
[4] A method for producing a two-pack type urethane waterproofing composition comprising a main agent containing an isocyanate group-terminated prepolymer comprising a polyisocyanate and a polyol, and a curing agent containing an aromatic polyamine and a plasticizer, Is
Tolylene diisocyanate, isophorone diisocyanate and polyol are reacted in the same vessel in a molar ratio of tolylene diisocyanate and isophorone diisocyanate in the range of 50/50 to 97/3 to give an isocyanate group-terminated prepolymer. Preparing a base comprising: and
Diethyltoluenediamine, 4,4′-methylenebis (N-sec-butylaniline) and a plasticizer are used, and the equivalent ratio of diethyltoluenediamine and 4,4′-methylenebis (N-sec-butylaniline) is 40/60 to 97. In the range of / 3, the method of mixing and preparing a hardening | curing agent is included.
[5] The process according to [4], wherein the step of preparing the main agent includes a step of reacting isophorone diisocyanate and polyol in a container, and then a step of adding tolylene diisocyanate to the container and further reacting. the method of.
本発明の2液型ウレタン防水材組成物は、夏季においては十分な可使時間を保持した速硬化性防水材であり、冬季においても可使時間を保持した上で低温硬化性に優れた速硬化性防水材となり、年間を通して工期短縮および施工の効率化を可能とする。
また、耐熱性や耐アルカリ性が良好であり、プライマーとの接着性や防水材同士の接着性にも優れた、生産性の良い環境対応型速硬化性ウレタン防水材である。
The two-pack type urethane waterproofing material composition of the present invention is a fast-curing waterproofing material that has a sufficient pot life in the summer, and has a low-temperature curability that has a pot life in the winter. It becomes a curable waterproof material, which enables shortening the construction period and improving the efficiency of construction throughout the year.
Further, it is an environment-friendly fast-curing urethane waterproof material with good productivity, which has good heat resistance and alkali resistance, and excellent adhesion to a primer and adhesion between waterproof materials.
一般的に、夏用防水材の可使時間は、23℃の測定において50分以上であることが望ましく、施工可能時間については23℃において20時間程度であることが望ましいとされており、MOCA架橋型防水材はこの目標をクリアーするのは比較的容易である。
一方、DETDA架橋型防水材は、施工可能時間は5〜7時間程度の速硬化性を示すが、可使時間を50分以上とすることが難しい。特に、主剤のポリイソシアナートとして、2,4−TDIと2,6−TDIを80/20(当量比)で含有するT−80と称される汎用品を用いた場合には可使時間を確保することが難しくなる。なお、2,4−TDIを100%含有するT−100と称される特殊品は可使時間の確保には有利であるが供給量が限定されるため、汎用性のある防水材の原料には適していないという面がある。
In general, the pot life of the summer waterproofing material is preferably 50 minutes or more in the measurement at 23 ° C, and the workable time is preferably about 20 hours at 23 ° C. Cross-linked waterproofing is relatively easy to clear this goal.
On the other hand, the DETDA cross-linkable waterproofing material exhibits fast curability of about 5 to 7 hours, but it is difficult to make the pot life 50 minutes or more. In particular, when a general-purpose product called T-80 containing 2,4-TDI and 2,6-TDI at 80/20 (equivalent ratio) is used as the main polyisocyanate, the pot life is reduced. It becomes difficult to secure. A special product called T-100 containing 100% 2,4-TDI is advantageous for securing the pot life, but the supply amount is limited. Is not suitable.
主剤のイソシアナート基末端プレポリマーとして、TDIプレポリマーとIPDIプレポリマーを併用することで可使時間をある程延長することができるが(特許文献2)、この方法は硬化性の低下および物性の低下が指摘されており、また2種類のプレポリマーをブレンドし製造する必要があるため生産性を低下させてしまうという問題もある。 As the isocyanate group-terminated prepolymer of the main agent, the combined use time can be extended to some extent by using a TDI prepolymer and an IPDI prepolymer together (Patent Document 2). A decrease is pointed out, and there is also a problem that the productivity is lowered because it is necessary to blend and produce two kinds of prepolymers.
一方の硬化剤では、低反応性の芳香族2級アミンである4,4′−メチレンビス(N−sec−ブチルアニリン)をDETDAと併用することが可使時間延長には有効な方法であり(特許文献3)、しかもある範囲の4,4′−メチレンビス(N−sec−ブチルアニリン)の併用は硬化性をあまり損ねないとういう特性を示すため、速硬化性をあまり損ねずに可使時間延長を可能にすることができる。しかし、4,4′−メチレンビス(N−sec−ブチルアニリン)の使用は、物性の低下と同時に耐熱性や耐アルカリ性を極端に低下させてしまうという実用上の大きな問題を発生させてしまう。 In one curing agent, the use of 4,4'-methylenebis (N-sec-butylaniline), a low-reactivity aromatic secondary amine, together with DETDA is an effective method for extending the pot life ( Patent Document 3), and the combined use of 4,4'-methylenebis (N-sec-butylaniline) within a certain range shows the property that the curability is not impaired so much, so that the usable time can be extended without significantly impairing the rapid curing property. Can be made possible. However, the use of 4,4'-methylenebis (N-sec-butylaniline) causes a large practical problem that the heat resistance and alkali resistance are extremely lowered simultaneously with the deterioration of physical properties.
本発明は、DETDA架橋型防水材について再度詳細な検討を行った結果、トリレンジイソシアナート骨格(以下、「TDI骨格」ともいう。)とイソホロンジイソシアナート骨格(以下、「IPDI骨格」ともいう。)を特定の範囲で含む主剤を用い、硬化剤の芳香族ポリアミン成分としてDETDAと4,4′−メチレンビス(N−sec−ブチルアニリン)を特定の範囲で用いることで、夏用防水材として、従来よりも可使時間を確保することのできる速硬化性防水材となることを見出した。 As a result of the detailed examination of the DETDA cross-linked waterproof material again, the present invention has a tolylene diisocyanate skeleton (hereinafter also referred to as “TDI skeleton”) and an isophorone diisocyanate skeleton (hereinafter also referred to as “IPDI skeleton”). )) In a specific range, and DETDA and 4,4'-methylenebis (N-sec-butylaniline) as the aromatic polyamine component of the curing agent in a specific range. The present inventors have found that it becomes a fast-curing waterproofing material that can ensure a longer pot life than conventional ones.
なお、TDI骨格とは式(1)に示す分子構造を言い、
主剤にIPDIを併用し、同時に硬化剤に4,4′−メチレンビス(N−sec−ブチルアニリン)を併用することで、可使時間が延長されることは予測されるが、同時に4,4′−メチレンビス(N−sec−ブチルアニリン)を使用することでの最大の問題点である耐熱性や耐アルカリ性が改善傾向となることが分かった。
また、硬化性についてはIPDIの併用により遅延される傾向とはなるが、DETDA架橋型の特徴である速硬化性は維持されるため、夏季において可使時間を保持した速硬化性防水材となり、30℃前後の気温であれば5時間前後で施工可能となり、一日2工程が可能となる。
また、主剤にIPDIを併用することで、プライマーとの接着性や防水材同士の接着性を向上させることができ、この点においてもDETDA架橋型防水材の弱点を改善することができる。
It is expected that the pot life will be extended by using IPDI as the main agent and 4,4'-methylenebis (N-sec-butylaniline) at the same time as the curing agent. It has been found that heat resistance and alkali resistance, which are the biggest problems with using -methylenebis (N-sec-butylaniline), tend to be improved.
In addition, the curability tends to be delayed by the combined use of IPDI, but the fast curability that is a feature of the DETDA cross-linking type is maintained, so that it becomes a quick-curing waterproof material that maintains the pot life in the summer. If the temperature is around 30 ° C., it can be constructed in about 5 hours, and two processes per day are possible.
Further, by using IPDI in combination with the main agent, it is possible to improve the adhesion with the primer and the adhesion between the waterproofing materials, and in this respect as well, the weaknesses of the DETDA crosslinked waterproofing material can be improved.
(主剤)
本発明で主剤は、TDI骨格とIPDI骨格を50/50〜97/3のモル比で含む必要があり、60/40〜95/5のモル比が好ましく、70/30〜90/10のモル比であることがより好ましい。IPDI骨格のモル比が、50超では速硬化性の防水材とはなり難く、3未満では可使時間を確保した耐熱性・耐アルカリ性の良好な接着性の良い速硬化性防水材にはなり難い。
(Main agent)
In the present invention, the main agent needs to contain a TDI skeleton and an IPDI skeleton in a molar ratio of 50/50 to 97/3, preferably a molar ratio of 60/40 to 95/5, and a molar ratio of 70/30 to 90/10. The ratio is more preferable. If the molar ratio of the IPDI skeleton exceeds 50, it will be difficult to be a fast-curing waterproof material, and if it is less than 3, it will be a fast-curing waterproof material with good heat resistance and alkali resistance with good working life. hard.
(ポリイソシアナート)
主剤にTDI骨格を導入するためのポリイソシアナートとしては、工業的に入手できる2,4−TDIと2,6−TDIの当量比が65/35であるT−65、80/20であるT−80、100/0であるT−100が使用でき、各々のブレンド品も使用することができる。ただし、T−100およびT−65は、工業的に汎用品であるT−80からの分離・精製によりに製造されるため生産量に限界がある。可使時間確保の面からはT−100が有利な面もあるが、汎用性のあるウレタン防水材に用いるには、T−80を主成分として用いることが好ましい。また、一部であればTDIのダイマー体、ヌレート体、アロファネート体等の誘導体を用いることができる。好ましくは、TDI骨格のすべてがTDIモノマーに由来する。
(Polyisocyanate)
Polyisocyanates for introducing a TDI skeleton into the main agent include T-65 having an equivalent ratio of 2,4-TDI to 2,6-TDI of 65/35 and 80/20, which are industrially available. T-100 which is -80, 100/0 can be used, and each blended product can also be used. However, since T-100 and T-65 are manufactured by separation and purification from T-80, which is an industrially general-purpose product, the production amount is limited. Although T-100 is advantageous from the viewpoint of securing the pot life, it is preferable to use T-80 as a main component for use in a versatile urethane waterproof material. Moreover, if it is a part, derivatives, such as a dimer body of TDI, a nurate body, an allophanate body, can be used. Preferably, all of the TDI skeleton is derived from TDI monomers.
主剤にIPDI骨格を導入するためのポリイソシアナートについては、IPDIモノマーやヌレート体、アダクト体、アロファネート体等のIPDI誘導体を用いることができる。好ましくは、IPDI骨格はIPDIモノマーに由来する。 As the polyisocyanate for introducing the IPDI skeleton into the main agent, IPDI monomers, nurate bodies, adduct bodies, allophanate bodies and other IPDI derivatives can be used. Preferably, the IPDI skeleton is derived from IPDI monomers.
本発明では、TDIプレポリマーに対しIPDIモノマーやIPDI誘導体を添加することもできるが、プライマーとの接着性や防水材同士の接着性を向上させる効果および可使時間を延長させる効果については、TDIおよびIPDIをプレポリマーにして用いるのが有効である。そのため、本発明の主剤は、TDIおよびIPDIをプレポリマーとして用いることが好ましい。 In the present invention, an IPDI monomer or an IPDI derivative can be added to the TDI prepolymer. However, for the effect of improving the adhesion with the primer and the adhesion between waterproofing materials and the effect of extending the pot life, It is effective to use IPDI as a prepolymer. Therefore, it is preferable to use TDI and IPDI as prepolymers for the main agent of the present invention.
また、その他のポリイソシアナート類も一部併用することはできるが、イソシアナート基として30当量%未満であることが好ましく、20当量%未満であることがより好ましく、10当量%未満であることがさらに好ましい。その他のポリイソシアナートが30当量%以上では可使時間を有した速硬化性防水材にはなり難い。その他のポリイソシアナートとしては、ヘキサメチレンジイソシアナート、ノルボルネンジイソシアナート、水添化トリレンジイソシアナート、水添化キシリレンジイソシアナート、水添加ジフェニルメタンジイソシアナート、水添加テトラメチルキシリレンジイソシアナートなどの反応性の低いポリイソシアナート類や、キシリレンジイソシアナート、テトラメチルキシリレンジイソシアナート、ジフェニルメタンジイソシアナートなど比較的反応性の高いポリイソシアナートなどが挙げられる。 Other polyisocyanates can also be used in combination, but the isocyanate group is preferably less than 30 equivalent%, more preferably less than 20 equivalent%, and less than 10 equivalent%. Is more preferable. When other polyisocyanates are 30 equivalent% or more, it is difficult to become a fast-curing waterproofing material having a working life. Other polyisocyanates include hexamethylene diisocyanate, norbornene diisocyanate, hydrogenated tolylene diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated diphenylmethane diisocyanate, and hydrogenated tetramethylxylylene diisocyanate. And polyisocyanates having low reactivity such as xylylene diisocyanate, tetramethylxylylene diisocyanate, and diphenylmethane diisocyanate.
(イソシアナート含有量)
主剤のイソシアナート含有量は、1.5質量%〜4.5質量%であることが好ましく、1.7質量%〜4.0質量%であることがより好ましい。イソシアナート含有量が1.5質量%未満では硬化性が低下し防水材に必要とされる物性が得難くなり、4.5質量%超では可使時間の確保が難しくなる。
(Isocyanate content)
The isocyanate content of the main agent is preferably 1.5% by mass to 4.5% by mass, and more preferably 1.7% by mass to 4.0% by mass. If the isocyanate content is less than 1.5% by mass, the curability is lowered and it becomes difficult to obtain the physical properties required for the waterproof material, and if it exceeds 4.5% by mass, it is difficult to ensure the pot life.
(主剤に用いるポリオール)
主剤に用いるポリオールとしては、通常ウレタン防水材の主剤に用いられるポリオールを用いることができるが、低粘度で施工性のよい主剤とするためには、分子量が300〜8000のポリオキシプロピレンポリオールやポリオキシエチレンポリオキシプロピレンポリオールといったポリエーテル系ポリオールを用いることが好ましい。また、ポリエステル系などその他の高分子量ポリオールも一部であれば使用することができる。
さらに、1,4−ブタンジオール、3−メチル−1,5−ペンタンジオール、1,6−ヘキサンジオール、プロピレングリコール、ジプロピレングリコールといった短鎖ポリオールも使用することができる。
(Polyol used for the main agent)
As the polyol used as the main agent, the polyols usually used as the main agent of urethane waterproofing materials can be used, but in order to make the main agent having a low viscosity and good workability, a polyoxypropylene polyol having a molecular weight of 300 to 8000 or It is preferable to use a polyether-based polyol such as oxyethylene polyoxypropylene polyol. Also, other high molecular weight polyols such as polyester can be used as long as they are a part.
Furthermore, short chain polyols such as 1,4-butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, propylene glycol and dipropylene glycol can also be used.
また、ポリオールとしては、ジオールのみでは耐熱性や耐アルカリ性が不十分となる傾向があり、トリオール以上の官能基数のポリオールが80当量%以上となると可使時間や伸び率を確保することが難しくなるため、トリオール以上の官能基数のポリオールを3〜80当量%の範囲で用いることが好ましい。 Also, as a polyol, heat resistance and alkali resistance tend to be insufficient only with a diol, and when the polyol having a functional group number equal to or greater than triol is 80 equivalent% or more, it becomes difficult to ensure the pot life and elongation. Therefore, it is preferable to use a polyol having a functional group number equal to or greater than triol in the range of 3 to 80 equivalent%.
(主剤NCO基/OH基当量比)
主剤のNCO基とOH基との当量比、NCO基/OH基は、1.5〜2.3の範囲となるようにポリイソシアナートとポリオールを配合することが好ましい。NCO基/OH基が、1.5未満では主剤の粘度が上昇し、また物性の良い防水材になり難く、2.3超では遊離のTDIあるいはIPDIが多くなり可使時間確保が難しくなる。
さらに、NCO基/OH基を1.5〜2.1にすることがより好ましく、主剤中の遊離TDIの含有量を1%以下とすることができ、遊離TDIと遊離IPDIの総量も1%以下とすることができるため環境対応型の防水材にもなりうる。
(Main agent NCO group / OH group equivalent ratio)
It is preferable to blend the polyisocyanate and the polyol so that the equivalent ratio of NCO group to OH group of the main agent and NCO group / OH group is in the range of 1.5 to 2.3. If the NCO group / OH group is less than 1.5, the viscosity of the main agent increases, and it becomes difficult to form a waterproof material with good physical properties. If it exceeds 2.3, free TDI or IPDI increases, and it becomes difficult to ensure the pot life.
Further, the NCO group / OH group is more preferably 1.5 to 2.1, the content of free TDI in the main agent can be 1% or less, and the total amount of free TDI and free IPDI is also 1%. Since it can be as follows, it can be an environmentally friendly waterproof material.
(主剤の製造方法)
TDIとIPDIには反応性に大きな違いがあるため、TDIプレポリマーとIPDIプレポリマーを別々に製造し、各々をブレンドする「混合」法が一般的であり、プライマーとの接着性や防水材同士の接着性を向上させる効果が高く、可使時間を延長させる効果もあり、さらに耐熱性や耐アルカリ性を向上させる効果も確認することができる。ただし、この方法は2回の別々の合成工程とさらにブレンドする工程が必要となるため、多くの生産設備と時間を必要とし経済性を損ねてしまう。
(Manufacturing method of main agent)
Since there is a big difference in reactivity between TDI and IPDI, the “mixing” method in which TDI prepolymer and IPDI prepolymer are produced separately and blended together is generally used. The effect of improving the adhesiveness is high, there is an effect of extending the pot life, and the effect of improving the heat resistance and alkali resistance can also be confirmed. However, since this method requires two separate synthesis steps and a blending step, it requires a lot of production equipment and time, which impairs economy.
そこでさらに検討を進めた結果、同一反応容器によるバッチ製造が可能であることを見出した。まず、TDIとIPDIをほぼ同時に仕込む「一括仕込」法では、例えば100℃近辺での反応を行ったところ、低反応性であるIPDIも一部は反応するためか、TDIプレポリマー製造後にIPDIモノマーを添加する方法よりも、可使時間の延長効果やプライマーあるいは防水材同士の接着性向上効果が明確となり、耐熱性や耐アルカリ性も良好となった。但し、IPDIのモノマー残量が多くなると、可使時間の確保や物性の確保が難しくなる傾向となる。 As a result of further investigation, it was found that batch production using the same reaction vessel was possible. First, in the “batch charging” method in which TDI and IPDI are charged almost simultaneously, for example, when a reaction is carried out at around 100 ° C., IPDI monomer that is low in reactivity reacts partially after the TDI prepolymer is produced. The effect of extending the pot life and the effect of improving the adhesion between the primer and the waterproof material were clarified, and the heat resistance and alkali resistance were also improved. However, when the amount of the remaining monomer of IPDI increases, it becomes difficult to ensure the pot life and the physical properties.
次に、IPDIを先に仕込みある程度ポリオールとの反応を先行させた後に、TDIを仕込むという「二段仕込」法について検討を行った。1段目のIPDIとポリオールの反応は水酸基が大過剰であるため、例えば無触媒、100℃の反応温度では8〜10時間程度でIPDIの全イソシアナート基の50%程度が反応した。この方法により、IPDIモノマーを減少させることができる。また、ポリオールは分けて配合することもできる。その後、2段目としてTDIを仕込み、例えば100℃で反応を始めると、IPDIより反応性の高いTDIのイソシアナート基が優先的にポリオールと反応すると思われ、数時間後には目的のNCO含有量まで反応させることができる。この方法では、最終的に低反応性であるIPDIの2級イソシアナート基は相当量残存していると思われ、従来の「混合」法とほぼ同等の可使時間延長効果やプライマーあるいは防水材同士の接着性改善効果が得られ、耐熱性や耐アルカリ性も良好となることが分かった。 Next, the “two-stage charging” method in which IPDI was charged first and the reaction with polyol was advanced to some extent before TDI was charged was examined. Since the reaction of IPDI and polyol in the first stage has a large excess of hydroxyl groups, for example, at a reaction temperature of 100 ° C., about 50% of all isocyanate groups of IPDI reacted in about 8 to 10 hours. By this method, the IPDI monomer can be reduced. In addition, polyols can be blended separately. After that, when TDI is charged as the second stage and the reaction is started at 100 ° C., for example, the isocyanate group of TDI, which is more reactive than IPDI, seems to preferentially react with the polyol. Can be reacted. In this method, the secondary isocyanate group of IPDI, which is ultimately low in reactivity, seems to remain in a considerable amount, and the working life extension effect, primer, or waterproofing material is almost the same as the conventional “mixing” method. It was found that the effect of improving the adhesion between each other was obtained, and the heat resistance and alkali resistance were also good.
さらに上記の「二段仕込」法について検討を行った結果、1段目のIPDIとポリオールとの反応の際にウレタン化触媒を用いることで、反応時間の短縮あるいは反応温度を低下させることが可能となり、しかも1段目の反応率を十分にコントロールできることが分かった。
ウレタン化触媒としては、3級アミン類、酸、カルボン酸金属塩、錫化合物といった一般的なウレタン化触媒を用いることができるが、特に有機第2錫化合物である、ジオクチル錫ジラウレートやジブチル錫ジラウレートが好ましく、1段目の反応時間を短縮させることができ、さらには60℃前後の低温においても反応を速やかに進行させることができる。有機第2錫の使用量は、IPDIとポリオールの合計量に対し、0.0001〜0.1質量%であることが好ましく、反応温度としては40〜110℃が好ましい。
Furthermore, as a result of examining the above-mentioned “two-stage charging” method, it is possible to shorten the reaction time or lower the reaction temperature by using a urethanization catalyst in the reaction between the first stage IPDI and the polyol. Moreover, it was found that the reaction rate in the first stage can be sufficiently controlled.
As the urethanization catalyst, general urethanization catalysts such as tertiary amines, acids, carboxylic acid metal salts, and tin compounds can be used. In particular, dioctyltin dilaurate and dibutyltin dilaurate which are organic stannic compounds. It is preferable that the reaction time of the first stage can be shortened, and further, the reaction can be rapidly advanced even at a low temperature around 60 ° C. The amount of organic stannic used is preferably 0.0001 to 0.1% by mass with respect to the total amount of IPDI and polyol, and the reaction temperature is preferably 40 to 110 ° C.
また、1段目の反応が任意の反応率に達したところで、リン酸のようなウレタン化触媒を失活させる材料を添加することでほぼ反応を停止させることができ、しかもこの失活剤の添加により、2段目のTDIとの反応時にアロファネート化等の副反応による暴走反応を防止する効果があり、反応を安全で円滑に進行させることができる。
ウレタン化触媒の失活剤としては、無機酸、ベンゾイルクロライドやフタル酸クロライド等の塩素系酸性物質等が挙げられるが、中でもリン酸が効果的であり好ましい。リン酸の使用量は使用したウレタン化触媒量により異なり、ウレタン化触媒に対して50〜200当量%であることが好ましい。
Further, when the reaction in the first stage reaches an arbitrary reaction rate, the reaction can be almost stopped by adding a material that deactivates the urethanization catalyst such as phosphoric acid. Addition has the effect of preventing runaway reaction due to side reactions such as allophanatization during the reaction with the second stage TDI, and the reaction can proceed safely and smoothly.
Examples of the deactivator for the urethanization catalyst include inorganic acids, chlorinated acidic substances such as benzoyl chloride and phthalic acid chloride, among which phosphoric acid is effective and preferable. The amount of phosphoric acid used depends on the amount of urethanization catalyst used, and is preferably 50 to 200 equivalent% with respect to the urethanization catalyst.
なお、1段目の反応はIPDIの全イソシアナート基の10〜75%の範囲で反応させることが好ましく、20〜60%の範囲で反応させることがより好ましい。反応率が10%未満では、最終的にIPDIモノマーが多く残存するため、可使時間の延長効果や接着性の改善効果が不十分となり、75%以上反応させると最終的に残存するIPDIのイソシアナート基が減少するため、可使時間の延長効果や接着性の改善効果、さらには耐熱性や耐アルカリ性の改善効果も不十分となる。
上記の「二段仕込」法は、TDIとIPDIを同時に仕込む「一括仕込」法よりも可使時間の確保やプライマーとの接着性や防水材同士の接着性向上に有効であり耐熱性や耐アルカリ性も良好であるため、本発明ではより好ましい生産方法となる。
The first stage reaction is preferably carried out in the range of 10 to 75% of the total isocyanate groups of IPDI, and more preferably in the range of 20 to 60%. If the reaction rate is less than 10%, a large amount of IPDI monomer remains in the end, so that the effect of extending the pot life and the effect of improving the adhesiveness are insufficient. Since the number of nate groups decreases, the effect of extending the pot life, the effect of improving the adhesiveness, and the effect of improving the heat resistance and alkali resistance become insufficient.
The above-mentioned “two-stage charging” method is more effective than the “collective charging” method in which TDI and IPDI are simultaneously charged in securing the working life, improving adhesion with the primer, and adhesion between waterproofing materials. Since alkalinity is also favorable, it becomes a more preferable production method in the present invention.
(主剤NCO/硬化剤NH2当量比)
主剤のイソシアナート基と硬化剤の芳香族ポリアミンのアミノ基との当量比である、主剤NCO/硬化剤NH2は0.9〜1.8とすることが好ましい。2液混合時の主剤NCO/硬化剤NH2が0.9未満では高分子量化が不十分となるため物性が低下し、1.8超となると硬化性が低下し物性も不十分となる。
(Main agent NCO / Hardening agent NH 2 equivalent ratio)
The main agent NCO / curing agent NH 2 , which is the equivalent ratio of the isocyanate group of the main agent to the amino group of the aromatic polyamine of the curing agent, is preferably 0.9 to 1.8. If the main agent NCO / curing agent NH 2 in the two-liquid mixing is less than 0.9, the high molecular weight is insufficient and the physical properties are lowered, and if it exceeds 1.8, the curability is lowered and the physical properties are also insufficient.
(硬化剤活性水素化合物)
本願は、芳香族ポリアミンとしてDETDAと4,4′−メチレンビス(N−sec−ブチルアニリン)を当量比で40/60〜97/3の範囲で含む必要があり、50/50〜95/5の範囲が好ましく、60/40〜90/10の範囲であることがより好ましい。DETDAに対する4,4′−メチレンビス(N−sec−ブチルアニリン)の当量比が60超となると、速硬化性ではなくなると同時に物性および耐熱性・耐アルカリ性を保持することが難しくなり、3未満では可使時間延長効果が不十分となる。
なお、DETDAには、3,5−ジエチル−2,4−トルエンジアミン、3,5−ジエチル−2,6−トルエンジアミンなどの異性体が存在するが、本願ではいずれの異性体を用いてもよく、またそれらの混合物を用いてもよい。工業用としては例えばアルベマール社製のエタキュア100(2,4−異性体/2,6−異性体の質量比80/20)などが入手できる。4,4′−メチレンビス(N−sec−ブチルアニリン)としては、アルベマール社製のエタキュア420などが入手できる。
(Hardener active hydrogen compound)
This application needs to contain DETDA and 4,4'-methylenebis (N-sec-butylaniline) as an aromatic polyamine in an equivalent ratio in the range of 40/60 to 97/3, and 50/50 to 95/5. The range is preferable, and the range of 60/40 to 90/10 is more preferable. When the equivalent ratio of 4,4′-methylenebis (N-sec-butylaniline) to DETDA exceeds 60, it becomes difficult to maintain physical properties, heat resistance and alkali resistance at the same time as it is not fast-curing. The effect of extending the pot life is insufficient.
In DETDA, there are isomers such as 3,5-diethyl-2,4-toluenediamine and 3,5-diethyl-2,6-toluenediamine. In the present application, any isomer may be used. Or mixtures thereof may be used. For industrial use, for example, Etacure 100 (mass ratio of 2,4-isomer / 2,6-isomer 80/20) manufactured by Albemarle is available. As 4,4′-methylenebis (N-sec-butylaniline), Etacure 420 manufactured by Albemarle Co., Ltd. is available.
また、その他の芳香族アミンも一部であれば使用することができるが、DETDAと4,4′−メチレンビス(N−sec−ブチルアニリン)の総量に対し、30当量%以下であることが好ましく、20当量%以下であることがより好ましい。その他の芳香族ポリアミンが30当量%超となると、可使時間を保持した速硬化性防水材にはなり難い。 Other aromatic amines can be used as long as they are a part, but it is preferably 30 equivalent% or less with respect to the total amount of DETDA and 4,4′-methylenebis (N-sec-butylaniline). More preferably, it is 20 equivalent% or less. When the amount of other aromatic polyamines exceeds 30 equivalent%, it is difficult to become a fast-curing waterproofing material that maintains the pot life.
その他の使用できる芳香族ポリアミンとしては、DETDAと同様に高反応性であるイハラケミカル工業株式会社製のキュアハードMED(4,4′−メチレンビス(2−エチル−6−メチルアニリン))、日本化薬株式会社製のカヤハードAA(4,4′−メチレンビス(2−エチルアニリン))、日本化薬株式会社製のカヤボンドC−300(4,4′−メチレンビス(2,6−ジエチルアニリン))、日本化薬株式会社製のカヤボンドC−400(4,4′−メチレンビス(2,6−ジiso−プロピルアニリン))などがあげられるが、結晶性が高いか溶解性が悪い場合が多いため、芳香族ポリアミン中の30当量%未満にすることが好ましい。 Other aromatic polyamines that can be used include Cure Hard MED (4,4'-methylenebis (2-ethyl-6-methylaniline)) manufactured by Ihara Chemical Industry Co., Ltd., which is highly reactive in the same manner as DETDA. Kayahard AA (4,4'-methylenebis (2-ethylaniline)) manufactured by Yakuhin Co., Ltd., Kayabond C-300 (4,4'-methylenebis (2,6-diethylaniline)) manufactured by Nippon Kayaku Co., Ltd., Kayabond C-400 (4,4'-methylenebis (2,6-diiso-propylaniline)) manufactured by Nippon Kayaku Co., Ltd. can be mentioned, but since the crystallinity is often high or the solubility is poor, It is preferable to make it less than 30 equivalent% in aromatic polyamine.
また、低反応性の芳香族ポリアミンとしてはアルベマール社製のエタキュア300(ジメチルチオトルエンジアミン)、イハラケミカル株式会社製のエラスマー650P(ポリテトラメチレングリコールビス(p−アミノベンゾエート))、イハラケミカル株式会社製のポレアSL−100A(ポリ(テトラメチレン/3−メチルテトラメチレンエーテル)グリコールビス(4−アミノベンゾエート))などが挙げられるが、使用量が多くなると速硬化性が損なわれる傾向となるため、やはり芳香族ポリアミン中の30当量%未満にすることが好ましい。 Further, as low-reactivity aromatic polyamines, ethacur 300 (dimethylthiotoluenediamine) manufactured by Albemarle, Elastomer 650P (polytetramethylene glycol bis (p-aminobenzoate)) manufactured by Ihara Chemical Co., Ltd., Ihara Chemical Co., Ltd. Polea SL-100A (poly (tetramethylene / 3-methyltetramethylene ether) glycol bis (4-aminobenzoate)) and the like manufactured by the manufacturer can be mentioned, but since the rapid curing tends to be impaired when the amount used is increased, Again, it is preferable to make it less than 30 equivalent% in the aromatic polyamine.
本願では、硬化剤中の活性水素成分の80当量%以上が芳香族ポリアミンであることが好ましく、90当量%以上であることがより好ましい。その他の活性水素成分を20当量%超にすると十分な可使時間と速硬化性は得られない。 In this application, it is preferable that 80 equivalent% or more of the active hydrogen component in a hardening | curing agent is an aromatic polyamine, and it is more preferable that it is 90 equivalent% or more. If the other active hydrogen component exceeds 20 equivalent%, sufficient pot life and fast curability cannot be obtained.
硬化剤中の活性水素成分としてポリオールも20当量%以下であれば、可使時間の調整や粘度調整、湿潤調整、物性調整、接着性向上などのために使用することはできる。
使用できるポリオールとしては、ポリオキシプロピレンポリオール、ポリオキシエチレンポリオキシプロピレンポリオール、ポリエステルポリオールといった比較的高分子量ポリオールや、1,4−ブタンジオール、1,6−ヘキサンジオール、3−メチル−1,5−ペンタンジオール、トリメチロールプロパン、グリセリンといった短鎖ポリオールも使用することができる。
If the polyol is also 20 equivalent% or less as an active hydrogen component in the curing agent, it can be used for adjustment of pot life, viscosity adjustment, wetness adjustment, physical property adjustment, adhesion improvement and the like.
Examples of the polyol that can be used include relatively high molecular weight polyols such as polyoxypropylene polyol, polyoxyethylene polyoxypropylene polyol, and polyester polyol, 1,4-butanediol, 1,6-hexanediol, and 3-methyl-1,5. Short chain polyols such as pentanediol, trimethylolpropane and glycerin can also be used.
(可塑剤)
可使時間時間確保のためには可塑剤を使用することが必要であり、主剤中のプレポリマー100質量部に対し、20〜90質量部の可塑剤を使用することが好ましく、25〜80質量部使用することがより好ましい。可塑剤を使用しないと可使時間を確保することはできない。可塑剤は硬化剤に配合することが好ましいが、一部主剤側に配合することもできる。
(Plasticizer)
In order to ensure the pot life, it is necessary to use a plasticizer. It is preferable to use 20 to 90 parts by mass of a plasticizer with respect to 100 parts by mass of the prepolymer in the main agent. It is more preferable to use a part. If the plasticizer is not used, the pot life cannot be secured. The plasticizer is preferably blended in the curing agent, but may be partially blended on the main agent side.
可塑剤としては、ウレタン樹脂に一般的に配合できる可塑剤を使用することができる。例として、ジイソノニルフタラート(DINP)、ジオクチルフタラート(DOP)、ブチルベンジルフタラート(BBP)などのフタル酸エステル類、脂肪族二塩基酸エステル類、リン酸エステル類、トリメリット酸エステル類、セバシン酸エステル類、エポキシ脂肪酸エステル類、グリコールエステル類、動植物油系脂肪酸エステル類、石油・鉱物油系可塑剤、アルキレンオキサイド重合系可塑剤などが挙げられる。中でも、引火点が200℃以上である、ジイソノニルフタラート(DINP)、ジオクチルフタラート(DOP)は長期的にも重量減少を起こし難く、芳香族ポリエステルであり加水分解も起こし難いため、好ましく使用することができる。 As the plasticizer, a plasticizer that can be generally blended in a urethane resin can be used. Examples include phthalate esters such as diisononyl phthalate (DINP), dioctyl phthalate (DOP), butyl benzyl phthalate (BBP), aliphatic dibasic acid esters, phosphate esters, trimellitic acid esters, Examples include sebacic acid esters, epoxy fatty acid esters, glycol esters, animal and vegetable oil fatty acid esters, petroleum / mineral oil plasticizers, and alkylene oxide polymerization plasticizers. Among them, diisononyl phthalate (DINP) and dioctyl phthalate (DOP) having a flash point of 200 ° C. or higher are preferably used because they are less likely to cause weight loss over the long term, and are aromatic polyesters and hardly hydrolyze. be able to.
(無機充填剤)
本願では無機系充填剤を用いることが好ましい。無機系充填剤を配合することで、十分な可使時間を有した速硬化性防水材をJIS規格に適合した物性にすることができ、経済性のある防水材とすることができる。充填剤は、硬化剤中に配合することが好ましいが、一部主剤側にも配合することができる。無機充填剤の配合量は硬化剤中に、20質量部〜80質量部であることが好ましい。充填剤が20質量部未満では補強効果が不十分になりやすく、80質量部超では樹脂分が少なくなることによる物性低下や高粘度化が起こりやすくなる。
(Inorganic filler)
In the present application, it is preferable to use an inorganic filler. By blending an inorganic filler, a fast-curing waterproof material having a sufficient pot life can be made into physical properties conforming to JIS standards, and an economical waterproof material can be obtained. The filler is preferably blended in the curing agent, but may be partially blended on the main agent side. It is preferable that the compounding quantity of an inorganic filler is 20 mass parts-80 mass parts in a hardening | curing agent. If the filler is less than 20 parts by mass, the reinforcing effect tends to be insufficient, and if it exceeds 80 parts by mass, the physical properties are lowered and the viscosity is likely to increase due to a decrease in the resin content.
充填剤としては、例えば炭酸カルシウムが挙げられ、製造時の分散性が良好であり、配合量を多くしても比較的低粘度の状態を保つことも容易であり、コストダウン効果も高い。炭酸カルシウムには、重質炭酸カルシウム、軽質炭酸カルシウム、コロイダル炭酸カルシウム、各種表面処理炭酸カルシウムなどあるが、いずれの炭酸カルシウムも使用することができる。また、表面処理コロイダル炭酸カルシウムを配合することで適度の揺変性が得られるため、立面用防水材を製造することもできる。その他の無機充填剤としては、シリカ系、カオリンクレー系、タルク系、ベントナイト系などが使用できるが、使用量が多くなると増粘性が激しくなり、また水分量の管理が難しいという問題があるため、炭酸カルシウムが主成分であることが好ましい。また、有機系充填剤も一部であれば使用することはできる。 Examples of the filler include calcium carbonate, which has good dispersibility during production, can easily maintain a relatively low viscosity state even when the amount is increased, and has a high cost reduction effect. Calcium carbonate includes heavy calcium carbonate, light calcium carbonate, colloidal calcium carbonate, various surface-treated calcium carbonates, and any calcium carbonate can be used. Moreover, since moderate thixotropy is obtained by mix | blending surface treatment colloidal calcium carbonate, the waterproofing material for elevations can also be manufactured. As other inorganic fillers, silica-based, kaolin clay-based, talc-based, bentonite-based, etc. can be used, but as the amount used increases, there is a problem that the thickening becomes violent and the water content is difficult to manage, It is preferable that calcium carbonate is the main component. Moreover, if an organic type filler is also part, it can be used.
なお、硬化剤中に溶剤を使用することもできるが、施工後の揮発により収縮を起こす危険性や無機充填剤を沈降しやすくする傾向があり、環境面での問題もあるため、5質量%以内で用いることが好ましく、使用しないことがより好ましい。また、硬化剤側に可塑剤を配合することで、無機充填剤を多く配合することができ、経済性のある防水材とすることができる。 In addition, although a solvent can be used in the curing agent, there is a risk of shrinkage due to volatilization after construction, and the inorganic filler tends to settle, and there is an environmental problem. Is preferably used within the range, and more preferably not used. Further, by blending a plasticizer on the curing agent side, a large amount of inorganic filler can be blended, and an economical waterproof material can be obtained.
本願のウレタン防水材は、レベリング性を有する平場用防水材はもとより、ノンサグ性を有し立面部や傾斜部等にも施工できる立面用防水材にも適している。立面用防水材は表面処理コロイダル炭酸カルシウム等のノンサグ性付与剤を多く配合したもので、複雑部位を施工するため平場用防水材よりも長い可使時間が必要とされるが、本願の方法により十分に対応することができ、速硬化性を発揮することもできる。 The urethane waterproof material of the present application is suitable not only for a flat field waterproofing material having leveling properties, but also for a vertical waterproofing material that has non-sag properties and can be applied to an upright portion or an inclined portion. The waterproofing material for elevations is a combination of many non-sag imparting agents such as surface-treated colloidal calcium carbonate, and it requires a longer pot life than the waterproofing material for flat fields in order to construct complex parts. It is possible to sufficiently cope with the above, and it is possible to exhibit fast curability.
以上により、気温が30℃前後の夏場においても、30分以上の可使時間を有し、しかも5時間前後で次工程が可能となる速硬化性防水材とすることができ、耐熱性や耐アルカリ性が良好であると同時に、プライマーとの接着性や防水材同士の接着性を向上させることができる。なお、汎用のMOCA架橋型防水材の夏用については30℃での可使時間は30分以上とすることはでき、直射日光の当たる部分については5時間程度で施工可能となるが、日陰部分においては7〜10時間程度の施工可能時間であるものが多く、本願ほどの速硬化性とはなり難いため、1日2工程を行うことが難しい。 As described above, even in the summertime when the temperature is around 30 ° C., it is possible to provide a quick-curing waterproof material that has a pot life of 30 minutes or more and can be processed in the next 5 hours. The alkalinity is good, and at the same time, the adhesion with the primer and the adhesion between waterproofing materials can be improved. For summer use of general-purpose MOCA cross-linked waterproof material, the pot life at 30 ° C can be 30 minutes or more, and the part exposed to direct sunlight can be constructed in about 5 hours. In many cases, the construction time is about 7 to 10 hours, and it is difficult to perform the two steps a day because it is difficult to be as fast as the present application.
(硬化促進剤)
次に、以上のような可使時間を確保した速硬化性防水材を、年間を通して使用することについて詳細な検討を行った。従来のDETDA架橋型防水材は、低温硬化性は比較的良好であるが、10℃前後の低温時に5時間程度で施工可能にさせようとすると可使時間は30分以下となってしまい、作業性が悪化してしまう。なお、従来のDETDA架橋型防水材の硬化性を良くするには、DETDAの使用量を多くする方法、可塑剤を少なくする方法、促進剤として2−エチルヘキサン酸鉛等のカルボン酸金属塩や2−エチルヘキサン酸等のカルボン酸を用いる方法等が挙げられるが、いずれの方法も可使時間を大幅に短縮させてしまう。
(Curing accelerator)
Next, a detailed study was conducted on the use of the fast-curing waterproofing material that has secured the pot life as described above throughout the year. The conventional DETDA cross-linkable waterproofing material has relatively good low-temperature curability, but if it is allowed to be constructed in about 5 hours at a low temperature of about 10 ° C., the pot life is 30 minutes or less. Sexuality will deteriorate. In order to improve the curability of the conventional DETDA crosslinked waterproofing material, a method of increasing the amount of DETDA used, a method of reducing the plasticizer, a metal carboxylate such as lead 2-ethylhexanoate as an accelerator, Although the method etc. which use carboxylic acids, such as 2-ethylhexanoic acid, are mentioned, any method will shorten a pot life significantly.
しかし、種々の可能性を検討した結果、本発明の組成物に対し酸無水物を硬化促進剤として用いると、可使時間をあまり短縮させずに硬化性を促進させる役割を果たし、低温においても速硬化性を示すことを見出した。
酸無水物は、硬化剤中のDETDA等のアミノ基、ポリオールの水酸基、水分等の活性水素基と付加反応することでカルボン酸基を発生させ、硬化促進作用を発現するものと思われる。その際、酸無水物と活性水素基との付加反応は瞬間的ではなく、適度の反応速度を有するようで、その結果、カルボン酸基は徐々に増加するため、数十分程度である可使時間への影響は少ないが、数時間後である硬化性には有効に作用し、潜在性促進剤的な効果が発揮されると推察される。
However, as a result of examining various possibilities, when an acid anhydride is used as a curing accelerator in the composition of the present invention, it plays a role in promoting curability without reducing the pot life so much, even at low temperatures. It has been found that it exhibits fast curability.
An acid anhydride is considered to generate a carboxylic acid group by an addition reaction with an active hydrogen group such as an amino group such as DETDA in a curing agent, a hydroxyl group of a polyol, or moisture in a curing agent, and expresses a curing accelerating action. At that time, the addition reaction between the acid anhydride and the active hydrogen group is not instantaneous, but seems to have a moderate reaction rate, and as a result, the carboxylic acid group gradually increases, so that it can be used for several tens of minutes. Although it has little influence on time, it is presumed that it effectively acts on the curability after several hours and exhibits the effect of a latent accelerator.
本発明は、従来からの硬化促進剤である2−エチルヘキサン酸のような低分子カルボン酸あるいは、2−エチルヘキサン酸亜鉛や2−エチルヘキサン酸鉛のようなカルボン酸金属塩を硬化促進剤として用いることもできるが、従来の促進剤よりも可使時間を確保したうえで速硬化性を示すことのできる酸無水物を硬化促進剤として用いることが好ましい。なお、酸無水物は夏用防水材に用いることもでき、可使時間はやや短くなるが春秋季においては作業性の良い速硬化性防水材とすることができる。 The present invention relates to a conventional curing accelerator such as a low molecular carboxylic acid such as 2-ethylhexanoic acid or a carboxylic acid metal salt such as zinc 2-ethylhexanoate or lead 2-ethylhexanoate. However, it is preferable to use an acid anhydride that can exhibit fast curing properties as compared with a conventional accelerator and can exhibit rapid curability as a curing accelerator. The acid anhydride can also be used as a summer waterproof material, and although the pot life is slightly shortened, it can be used as a fast-curing waterproof material with good workability in spring and autumn.
酸無水物はあらかじめ硬化剤側に配合することもできるが、その場合は経時により硬化剤中の活性水素基と反応しカルボン酸基が発生した状態となってしまうため、従来の2−エチルヘキサン酸などと同様の効果となり可使時間を短縮してしまう。従って、本願においては、酸無水物は、主剤に、または主剤と硬化剤を混合するときに、添加する方法が好ましい。主剤と硬化剤を混合するときに酸無水物を添加する方法としては、イソシアナート基末端プレポリマーを含む主剤パーツと、芳香族ポリアミンおよび可塑剤を含む硬化剤パーツと、酸無水物を含む硬化促進剤パーツからなるキットを用意し、施工現場でそれらのパーツを混合する方法を例示できる。
主剤に酸無水物を添加した場合、主剤には活性水素基がないため酸無水物は安定な状態を保つことができ、硬化剤と混合することで酸無水物の付加反応がスタートするため、潜在性促進剤としての効果を発揮できる。また、第3成分として施工現場で主剤と硬化剤を混合するときに添加する場合は、小分け・軽量といった煩雑な作業が伴うため、主剤に酸無水物を配合することがより好ましい。
The acid anhydride can be blended in advance on the curing agent side, but in that case, it reacts with the active hydrogen group in the curing agent over time, resulting in a state where a carboxylic acid group is generated. It has the same effect as acid and shortens the pot life. Therefore, in this application, the method of adding an acid anhydride to a main ingredient or when mixing a main ingredient and a hardening | curing agent is preferable. As a method of adding an acid anhydride when mixing a main agent and a curing agent, a main agent part including an isocyanate group-terminated prepolymer, a curing agent part including an aromatic polyamine and a plasticizer, and a curing including an acid anhydride are included. A method of preparing a kit of accelerator parts and mixing those parts at the construction site can be exemplified.
When an acid anhydride is added to the main agent, the acid anhydride can remain stable because there is no active hydrogen group in the main agent, and the addition reaction of the acid anhydride starts when mixed with the curing agent. The effect as a potential promoter can be exhibited. Moreover, when adding when mixing a main ingredient and a hardening | curing agent at a construction site as a 3rd component, since complicated work, such as a subdivision and a lightweight, is accompanied, it is more preferable to mix | blend an acid anhydride with a main ingredient.
本発明で用いる酸無水物としては、例えば、無水酢酸、無水プロピオン酸、無水コハク酸、無水マレイン酸、無水フタル酸、1,2,3,6−テトラヒドロ無水フタル酸、3−メチル−1,2,3,6−テトラヒドロ無水フタル酸、4−メチル−1,2,3,6−テトラヒドロ無水フタル酸、3,4,5,6−テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、3−メチルヘキサヒドロ無水フタル酸、4−メチルヘキサヒドロ無水フタル酸、メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物、ビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物、メチル−3,6−エンドメチレン−1,2,3,6−テトラヒドロ無水フタル酸、エチレングリコールビスアンヒドロトリメリテート、グリセリンビスアンヒドロトリメリテートモノアセテート、テトラプロペニル無水コハク酸、オクテニルコハク酸無水物、3,3′,4,4′−ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5(テトラヒドロ−2,5−ジオキソ−3−フラニル)ナフト[1,2−c]フラン−1,3−ジオン、1,2,3,4−ブタンテトラカルボン酸二無水物などが挙げられる。
酸無水物は、単独で用いられても二種以上が併用されてもよい。
Examples of the acid anhydride used in the present invention include acetic anhydride, propionic anhydride, succinic anhydride, maleic anhydride, phthalic anhydride, 1,2,3,6-tetrahydrophthalic anhydride, 3-methyl-1, 2,3,6-tetrahydrophthalic anhydride, 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, 3,4,5,6-tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 3-methylhexa Hydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride, bicyclo [2.2.1] heptane-2,3-dicarboxylic acid Anhydride, methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride, ethylene glycol bisanhydro trimellitate, glycerin bis Hydrotrimellitate monoacetate, tetrapropenyl succinic anhydride, octenyl succinic anhydride, 3,3 ', 4,4'-diphenylsulfone tetracarboxylic dianhydride, 1,3,3a, 4,5,9b-hexahydro -5 (tetrahydro-2,5-dioxo-3-furanyl) naphtho [1,2-c] furan-1,3-dione, 1,2,3,4-butanetetracarboxylic dianhydride and the like. .
An acid anhydride may be used independently or 2 or more types may be used together.
なお、2液型ウレタン防水材は施工現場で主剤と硬化剤を混合して塗布するため、常温で固体の酸無水物は混合液中に溶けきらずに結晶化する恐れがある。酸無水物が結晶化した場合十分な硬化促進効果を得られない可能性があるため、常温で液状の酸無水物が好ましい。常温で液状の酸無水物としては、例えば、無水酢酸、無水プロピオン酸、無水コハク酸、日立化成株式会社製のHN−2200(3−メチル−1,2,3,6−テトラヒドロ無水フタル酸と4−メチル−1,2,3,6−テトラヒドロ無水フタル酸の混合物)、新日本理化株式会社製のリカシッドHH(ヘキサヒドロ無水フタル酸)、新日本理化株式会社製のリカシッドMH−700(3−メチルヘキサヒドロ無水フタル酸/4−メチルヘキサヒドロ無水フタル酸=70/30の混合物)、新日本理化株式会社製のリカシッドMH(4−メチルヘキサヒドロ無水フタル酸)、新日本理化株式会社製のリカシッドHNA−100(メチルビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物とビシクロ[2.2.1]ヘプタン−2,3−ジカルボン酸無水物の混合物)、日立化成株式会社製のMHAC−P(メチル−3,6−エンドメチレン−1,2,3,6−テトラヒドロ無水フタル酸)、三洋化成工業株式会社製のDSA(テトラプロペニル無水コハク酸)、新日本理化株式会社製のリカシッドOSA(オクテニルコハク酸無水物)などが挙げられ、その中でも特に日立化成株式会社製のHN−2200(3−メチル−1,2,3,6−テトラヒドロ無水フタル酸と4−メチル−1,2,3,6−テトラヒドロ無水フタル酸の混合物)、日立化成株式会社製のMHAC−P(メチル−3,6−エンドメチレン−1,2,3,6−テトラヒドロ無水フタル酸)、新日本理化株式会社製のリカシッドMH−700(3−メチルヘキサヒドロ無水フタル酸/4−メチルヘキサヒドロ無水フタル酸=70/30の混合物)、三洋化成工業株式会社製のDSA(テトラプロペニル無水コハク酸)などがより好ましい。 Since the two-component urethane waterproofing material is applied by mixing the main agent and the curing agent at the construction site, the acid anhydride that is solid at room temperature may be crystallized without being completely dissolved in the mixed solution. When the acid anhydride is crystallized, a sufficient curing accelerating effect may not be obtained. Therefore, an acid anhydride that is liquid at room temperature is preferable. Examples of acid anhydrides that are liquid at room temperature include acetic anhydride, propionic anhydride, succinic anhydride, and HN-2200 (3-methyl-1,2,3,6-tetrahydrophthalic anhydride manufactured by Hitachi Chemical Co., Ltd.) 4-methyl-1,2,3,6-tetrahydrophthalic anhydride mixture), Rikacid HH (hexahydrophthalic anhydride) manufactured by Shin Nippon Rika Co., Ltd., Rikacid MH-700 (3- Methylhexahydrophthalic anhydride / 4-methylhexahydrophthalic anhydride = 70/30 mixture), Rikacid MH (4-methylhexahydrophthalic anhydride) manufactured by Shin Nippon Rika Co., Ltd. Ricacid HNA-100 (methylbicyclo [2.2.1] heptane-2,3-dicarboxylic anhydride and bicyclo [2.2.1] heptane-2, -A mixture of dicarboxylic anhydrides), MHAC-P (methyl-3,6-endomethylene-1,2,3,6-tetrahydrophthalic anhydride) manufactured by Hitachi Chemical Co., Ltd., DSA manufactured by Sanyo Chemical Industries, Ltd. (Tetrapropenyl succinic anhydride), Rikacido OSA (octenyl succinic anhydride) manufactured by Shin Nippon Rika Co., Ltd., and the like. Among them, HN-2200 (3-methyl-1,2,3 manufactured by Hitachi Chemical Co., Ltd.) is particularly mentioned. , 6-Tetrahydrophthalic anhydride and 4-methyl-1,2,3,6-tetrahydrophthalic anhydride), MHAC-P (Methyl-3,6-endomethylene-1,2, manufactured by Hitachi Chemical Co., Ltd.) , 3,6-tetrahydrophthalic anhydride), Rikacid MH-700 (3-methylhexahydrophthalic anhydride / 4-methylhexa) manufactured by Shin Nippon Chemical Co., Ltd. Mud mixture phthalic anhydride = 70/30), Sanyo Chemical Industries Ltd. of DSA (tetrapropenyl succinic anhydride) are more preferable.
酸無水物の使用量は、主剤100gに対して0.05〜10.0g使用することが望ましく、0.1〜5.0g使用することが更に望ましい。酸無水物の使用量が少なすぎると速硬化性が十分に得られず、一方多すぎれば十分な可使時間を確保できず物性が低下してしまう。 As for the usage-amount of an acid anhydride, it is desirable to use 0.05-10.0g with respect to 100g of main ingredients, and it is still more desirable to use 0.1-5.0g. If the amount of the acid anhydride used is too small, sufficient fast curability cannot be obtained. On the other hand, if the amount is too large, sufficient pot life cannot be ensured and the physical properties deteriorate.
本発明では、硬化促進剤として酸無水物を用いることが好ましいが、その他の硬化促進剤を用いることができ、また酸無水物と併用することもできる。
その他の硬化促進剤としては、有機第2錫系化合物、3級アミン、カルボン酸金属塩、カルボン酸などが挙げられる。有機第2錫系化合物としては、例えばジブチル錫オキサイド、ジオクチル錫オキサイド、ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジ2−エチルへキサノエート、ジオクチル錫ジアセテート、ジオクチル錫ジラウレート、ジブチル錫ジメルカプタイド、ジブチル錫ビスアセチルアセトネート、ジブチル錫オキシラウレート、ジオクチル錫ジネオデカネート、ジブチル錫ビスブチルマレート、ジオクチル錫2−エチルヘキシルマレートなどが挙げられ、中でもジブチル錫ジラウレート、ジオクチル錫ジラウレートが好ましい。有機第2錫系化合物は硬化剤中に0.001〜0.1質量%使用することが好ましい。
In the present invention, it is preferable to use an acid anhydride as the curing accelerator, but other curing accelerators can be used, and they can be used in combination with an acid anhydride.
Examples of other curing accelerators include organic stannic compounds, tertiary amines, carboxylic acid metal salts, and carboxylic acids. Examples of organic stannic compounds include dibutyltin oxide, dioctyltin oxide, dibutyltin dilaurate, dibutyltin diacetate, dibutyltin di-2-ethylhexanoate, dioctyltin diacetate, dioctyltin dilaurate, dibutyltin dimercaptaide, dibutyl Examples thereof include tin bisacetylacetonate, dibutyltin oxylaurate, dioctyltin dineodecanate, dibutyltin bisbutylmalate, dioctyltin 2-ethylhexylmalate, and among them, dibutyltin dilaurate and dioctyltin dilaurate are preferable. The organic stannic compound is preferably used in an amount of 0.001 to 0.1% by mass in the curing agent.
3級アミンとしては、例えばトリエチルアミン、トリブチルアミン、トリエチレンジアミン、N−エチルモルフォリン、ビス(2−モルホリノエチル)エーテル、ジアザビシクロウンデセンなどの一般的な3級アミンを使用することができるが、特殊な3級アミンであるイミダゾール化合物が好ましく、イミダゾール化合物としては、例えば1,2−ジメチルイミダゾール、1−イソブチル−2−メチルイミダゾール、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾールのような1位と2位に置換基を有する化合物や、1−メチルイミダゾール、1−アリルイミダゾールのような1位に置換基を有する化合物が使用できる。中でも、1位と2位に置換基を有するイミダゾール化合物が好ましい。3級アミンは、硬化剤中に0.01〜2.0質量%使用することが好ましい。 As the tertiary amine, for example, general tertiary amines such as triethylamine, tributylamine, triethylenediamine, N-ethylmorpholine, bis (2-morpholinoethyl) ether, diazabicycloundecene can be used. An imidazole compound which is a special tertiary amine is preferable. Examples of the imidazole compound include 1,2-dimethylimidazole, 1-isobutyl-2-methylimidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2- A compound having a substituent at the 1-position and the 2-position, such as phenylimidazole, and a compound having a substituent at the 1-position, such as 1-methylimidazole and 1-allylimidazole, can be used. Of these, imidazole compounds having substituents at the 1-position and 2-position are preferred. The tertiary amine is preferably used in an amount of 0.01 to 2.0% by mass in the curing agent.
また、一般的にウレタン硬化促進剤であるカルボン酸金属塩も使用することができる。カルボン酸金属塩としては、例えば2−エチルヘキサン酸、ネオデカン酸、ナフテン酸、オレイン酸、リノール酸、リノレン酸、樹脂酸の鉛塩、亜鉛塩、ビスマス塩、ジルジルコニウム塩、錫塩、銅塩、マグネシウム塩、カルシウム塩、ストロンチウム塩、バリウム塩などが挙げられ、カルボン酸金属塩は硬化剤中に0.1〜4.0質量%使用することが好ましい。 In addition, carboxylic acid metal salts that are generally urethane curing accelerators can also be used. Examples of carboxylic acid metal salts include 2-ethylhexanoic acid, neodecanoic acid, naphthenic acid, oleic acid, linoleic acid, linolenic acid, lead salts of resin acids, zinc salts, bismuth salts, zirconium zirconium salts, tin salts, copper salts , Magnesium salt, calcium salt, strontium salt, barium salt and the like, and 0.1 to 4.0% by mass of the carboxylic acid metal salt is preferably used in the curing agent.
カルボン酸としては、例えばプロピオン酸、2−メチルペンタン酸、2−エチルヘキサン酸、イソノナン酸、ナフテン酸などが挙げられ、中でも2−エチルヘキサン酸が好ましい。カルボン酸は、硬化剤中に0.05〜2.0質量%使用することが望ましく、その一部或いは全量を主剤側に配合しても構わない。 Examples of the carboxylic acid include propionic acid, 2-methylpentanoic acid, 2-ethylhexanoic acid, isononanoic acid, naphthenic acid, and the like, among which 2-ethylhexanoic acid is preferable. It is desirable to use 0.05 to 2.0% by mass of the carboxylic acid in the curing agent, and a part or all of the carboxylic acid may be added to the main agent side.
(その他添加剤)
その他、硬化剤には、湿潤剤、消泡剤、顔料、耐候性付与剤などの添加剤類を必要に応じて配合することができる。
(Other additives)
In addition, additives such as a wetting agent, an antifoaming agent, a pigment, and a weather resistance imparting agent can be added to the curing agent as necessary.
原材料
以下の実施例および比較例で用いた原材料は、次のとおりである。
〔イソシアナート〕
IPDI: VESTANAT(登録商標)IPDI、イソホロンジイソシアナート単体、NCO含有量37.8質量%、NCO官能基数約2.0、エボニック・ジャパン株式会社製
T−80: コロネートT−80、2,4−トリレンジイソシアナート/2,6−トリレンジイソシアナート=80/20(質量比)の混合物、NCO含有量48.3質量%、日本ポリウレタン工業株式会社製
〔ポリオール〕
サンニックスPP−2000: ポリオキシプロピレンジオール、平均分子量2000、OH価56.1mgKOH/g、三洋化成工業株式会社製
サンニックスGH−3000: ポリオキシプロピレントリオール、平均分子量3000、OH価:56.1mgKOH/g、三洋化成工業株式会社製
〔溶剤〕
MC−2000ソルベント: ノルマルパラフィン、イソパラフィン混合物、三協化学株式会社製
〔ポリアミン〕
DETDA: エタキュア100、ジエチルトルエンジアミン、アルベマール日本株式会社製
エタキュア420: 4,4′−メチレンビス(N−sec−ブチルアニリン)、芳香族二級ジアミン、アルベマール社製
〔触媒〕
ジオクチル錫ジラウレート: KS−1200A−1、共同薬品株式会社製
1−イソブチル−2−メチルイミダゾール: DABCO NC−IM、エアープロダクツジャパン株式会社製
リン酸: 85%リン酸、ナカライテスク株式会社製
HN−2200: 3−または4−メチル−1,2,3,6−テトラヒドロ無水フタル酸、日立化成株式会社製
〔可塑剤〕
DINP: サンソサイザーDINP、ジイソノニルフタレート、新日本理化株式会社製
〔無機充填剤〕
炭酸カルシウム NS#100: NS#100、炭酸カルシウム、日東粉化工業株式会社製
〔添加剤〕
添加剤類: 楠本化成株式会社製
〔プライマー〕
OTプライマーM: 1成分湿気硬化型仲介プライマー、田島ルーフィング株式会社製
OTプライマーA: 1成分湿気硬化型プライマー、田島ルーフィング株式会社製
Raw materials The raw materials used in the following examples and comparative examples are as follows.
[Isocyanate]
IPDI: VESTANAT (registered trademark) IPDI, isophorone diisocyanate alone, NCO content 37.8% by mass, NCO functional group number about 2.0, manufactured by Evonik Japan Co., Ltd. T-80: Coronate T-80, 2, 4 -Tolylene diisocyanate / 2,6-tolylene diisocyanate = 80/20 (mass ratio) mixture, NCO content 48.3 mass%, manufactured by Nippon Polyurethane Industry Co., Ltd. [Polyol]
Sanniks PP-2000: Polyoxypropylene diol, average molecular weight 2000, OH value 56.1 mgKOH / g, Sanyo Chemical Industries, Ltd. Sanniks GH-3000: Polyoxypropylene triol, average molecular weight 3000, OH value: 56.1 mgKOH / G, Sanyo Chemical Industries, Ltd. [solvent]
MC-2000 solvent: normal paraffin, isoparaffin mixture, manufactured by Sankyo Chemical Co., Ltd. [polyamine]
DETDA: Etacure 100, diethyltoluenediamine, manufactured by Albemarle Japan Co., Ltd. Etacure 420: 4,4′-methylenebis (N-sec-butylaniline), aromatic secondary diamine, manufactured by Albemarle [catalyst]
Dioctyltin dilaurate: KS-1200A-1, manufactured by Kyodo Yakuhin Co., Ltd. 1-isobutyl-2-methylimidazole: DABCO NC-IM, manufactured by Air Products Japan Co., Ltd. Phosphoric acid: 85% phosphoric acid, manufactured by Nacalai Tesque, Inc. HN- 2200: 3- or 4-methyl-1,2,3,6-tetrahydrophthalic anhydride, manufactured by Hitachi Chemical Co., Ltd. [plasticizer]
DINP: Sansosizer DINP, diisononyl phthalate, manufactured by Shin Nippon Rika Co., Ltd. [inorganic filler]
Calcium carbonate NS # 100: NS # 100, calcium carbonate, manufactured by Nitto Flour Industry Co., Ltd. [Additives]
Additives: Enomoto Kasei Co., Ltd. [Primer]
OT Primer M: One-component moisture-curing mediator primer, Tajima Roofing Co., Ltd. OT Primer A: One-component moisture-curing primer, Tajima Roofing Co., Ltd.
主剤の調製
〔二段仕込〕法
表1〜3および5の配合に従って、四つ口フラスコにポリオールと溶剤、IPDIおよび必要に応じて触媒を仕込んだ。その後攪拌しながら所定温度で所定時間反応させ、反応終了後必要に応じてリン酸を添加した。さらに、T−80を仕込み再び所定温度で所定時間反応させてプレポリマーを得た。
〔一括仕込〕法
表4の配合に従って、四つ口フラスコにポリオールと溶剤およびポリイソシアナート類を仕込んだ。その後攪拌しながら所定温度で所定時間反応させてプレポリマーを得た。
〔混合〕法
表4の配合に従って、四つ口フラスコにポリオールと溶剤、IPDIおよび必要に応じて触媒を仕込んだ。その後攪拌しながら所定温度で所定時間反応させてIPDIプレポリマーを得た。IPDIの代わりにT−80を使用して同様にT−80プレポリマーを得た。IPDIプレポリマーとT−80プレポリマーを所定の割合で混合して主剤として使用した。
なお、各プレポリマーは必要に応じて可塑剤、触媒等を加えて主剤として使用した。
Preparation of Main Agent [Two-Stage Charge] Method According to the formulations shown in Tables 1 to 3 and 5, a four-necked flask was charged with a polyol, a solvent, IPDI and, if necessary, a catalyst. Thereafter, the mixture was reacted at a predetermined temperature for a predetermined time with stirring, and phosphoric acid was added as necessary after the reaction was completed. Further, T-80 was charged and reacted again at a predetermined temperature for a predetermined time to obtain a prepolymer.
[Batch Charge] Method According to the formulation shown in Table 4, a four-necked flask was charged with a polyol, a solvent, and polyisocyanates. Thereafter, the mixture was reacted at a predetermined temperature for a predetermined time with stirring to obtain a prepolymer.
[Mixing] Method According to the formulation shown in Table 4, a four-necked flask was charged with a polyol, a solvent, IPDI, and if necessary, a catalyst. Thereafter, the mixture was reacted at a predetermined temperature for a predetermined time with stirring to obtain an IPDI prepolymer. A T-80 prepolymer was similarly obtained using T-80 instead of IPDI. An IPDI prepolymer and a T-80 prepolymer were mixed at a predetermined ratio and used as a main agent.
Each prepolymer was used as a main agent by adding a plasticizer, a catalyst and the like as required.
硬化剤の調製
表1〜5の配合に従って、金属容器に液物を仕込み、攪拌機(ディゾルバー羽根)で低速混合し均一にした後、炭酸カルシウムを配合し1500rpmで15分間混合して各硬化剤を得た。
Preparation of curing agent In accordance with the formulation of Tables 1 to 5, after the liquid material was charged into a metal container and mixed at low speed with a stirrer (dissolver blade) and uniformed, calcium carbonate was blended and mixed at 1500 rpm for 15 minutes to add each curing agent. Obtained.
実施例1、2(表1)
ポリイソシアナートとしてIPDIとT−80を使用し、「二段仕込」法で合成した主剤と、DETDAとエタキュア420の当量比を70/30とした硬化剤を用いた夏用配合の例である。IPDIとT−80の当量比が20/80の実施例1は防水材として良好な塗膜物性を示しかつ夏用配合として十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。層間接着試験では層間剥離せずにウレタン材料破壊が起こるほどの強い層間接着強度を示した。また、プライマーとの接着試験では実用に十分な接着強度を示した。IPDIとT−80の当量比が10/90の実施例2は防水材として良好な塗膜物性を示しかつ十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。また、層間接着試験およびプライマー接着試験では実用に十分な接着強度を示した。
Examples 1 and 2 (Table 1)
This is an example of summer blending using IPDI and T-80 as polyisocyanate and using a curing agent with 70/30 equivalent ratio of DETDA and Etacure 420 as synthesized by the “two-stage charging” method. . Example 1 in which the equivalent ratio of IPDI and T-80 is 20/80 shows good coating film properties as a waterproofing material and ensures sufficient pot life as a summer formulation, while the next process can be performed during the day. It was possible. In the interlayer adhesion test, the interlayer adhesion strength was strong enough to cause destruction of the urethane material without delamination. In addition, the adhesion test with the primer showed sufficient adhesive strength for practical use. Example 2 in which the equivalent ratio of IPDI and T-80 was 10/90 showed good coating film properties as a waterproof material and was able to be applied to the next process during the day while securing sufficient pot life. . Moreover, the interlayer adhesion test and the primer adhesion test showed a sufficient adhesive strength for practical use.
比較例1(表1)
実施例1、2と同じ配合の硬化剤に対して、主剤のポリイソシアナートとしてT−80のみを使用した夏用配合の例である。可使時間は45分と夏用配合としては不十分であった。層間接着強度およびプライマー接着強度は実施例1、2に比べて低く実用上問題があると思われた。また、加熱処理後あるいはアルカリ処理後の引張強さ比は実施例1、2に比べて低くなる傾向が見られた。特に、アルカリ処理後の引張強さ比は71%と低く実用上問題があると思われた。
Comparative Example 1 (Table 1)
It is an example of the summer compounding which uses only T-80 as a polyisocyanate of the main ingredient to the hardening agent of the same composition as Examples 1 and 2. The pot life was 45 minutes, which was insufficient for summer use. Interlayer adhesion strength and primer adhesion strength were lower than those of Examples 1 and 2, and it seemed that there was a problem in practical use. Further, the tensile strength ratio after heat treatment or alkali treatment tended to be lower than in Examples 1 and 2. In particular, the tensile strength ratio after alkali treatment was as low as 71%, which seemed to be problematic in practical use.
実施例3、4(表2)
ポリイソシアナートとしてIPDIとT−80を使用し、「二段仕込」法で合成した主剤と、DETDAとエタキュア420の当量比を60/40とした硬化剤を用いた夏用配合の例である。IPDIとT−80の当量比が各々20/80、10/90の実施例3、4は防水材として良好な塗膜物性を示しかつ夏用配合として十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。また、層間接着試験では実用に十分な接着強度を示した。
Examples 3 and 4 (Table 2)
This is an example of summer blending using IPDI and T-80 as polyisocyanate, and a main agent synthesized by the “two-stage charging” method and a curing agent with an equivalent ratio of DETDA and Etacure 420 of 60/40. . Examples 3 and 4 having an equivalent ratio of IPDI and T-80 of 20/80 and 10/90, respectively, showed good film properties as a waterproofing material, and secured sufficient pot life as a summer formulation. The next process could be built inside. In the interlayer adhesion test, the adhesive strength was sufficient for practical use.
比較例2(表2)
実施例3、4と同じ配合の硬化剤に対して、主剤のポリイソシアナートとしてT−80のみを使用した夏用配合の例である。可使時間は64分と夏用配合として十分であったが、層間接着強度は実施例3、4に比べて低く実用上問題があると思われた。また、加熱処理後あるいはアルカリ処理後の引張強さ比は実施例3、4に比べて低くなる傾向が見られた。特に、アルカリ処理後の引張強さ比は65%と低く実用上問題があると思われた。
Comparative Example 2 (Table 2)
This is an example of summer blending using only T-80 as the main polyisocyanate for the curing agent blended in the same manner as in Examples 3 and 4. The pot life was 64 minutes, which was sufficient for summer use, but the interlayer adhesion strength was lower than in Examples 3 and 4, and it seemed that there was a problem in practical use. In addition, the tensile strength ratio after heat treatment or alkali treatment tended to be lower than in Examples 3 and 4. In particular, the tensile strength ratio after alkali treatment was as low as 65%, which seemed to be problematic in practical use.
実施例5、6、7(表3)
ポリイソシアナートとしてIPDIとT−80を使用し、「二段仕込」法で合成したプレポリマーに酸無水物触媒HN−2200を1.00質量%添加した主剤と、DETDAとエタキュア420の当量比を80/20とした硬化剤を用いた冬用配合の例である。IPDIとT−80の当量比が各々30/70、20/80、10/90の実施例5、6,7は防水材として良好な塗膜物性を示しかつ冬用配合として十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。また、層間接着試験では実用に十分な接着強度を示した。
Examples 5, 6, and 7 (Table 3)
Equivalent ratio of DETDA and Etacure 420, based on a main polymer obtained by adding 1.00 mass% of acid anhydride catalyst HN-2200 to a prepolymer synthesized by the “two-stage charging” method using IPDI and T-80 as polyisocyanate It is an example of the formula for winter using the hardening | curing agent which made 80/20. Examples 5, 6 and 7 having equivalent ratios of IPDI and T-80 of 30/70, 20/80 and 10/90, respectively, showed good coating properties as waterproofing materials and sufficient pot life for winter use During the day, the next process could be constructed while ensuring In the interlayer adhesion test, the adhesive strength was sufficient for practical use.
比較例3(表3)
実施例5、6、7と同じ配合の硬化剤に対して、主剤のポリイソシアナートとしてT−80のみを使用した冬用配合の例である。可使時間は24分と冬用配合として不十分であった。層間接着強度は実施例5、6、7に比べて低く実用上問題があると思われた。また、加熱処理後あるいはアルカリ処理後の引張強さ比は実施例5、6、7に比べて低くなる傾向が見られた。
Comparative Example 3 (Table 3)
It is an example of the formula for winter which uses only T-80 as a polyisocyanate of a main ingredient with respect to the hardening | curing agent of the same mixing | blending as Example 5, 6, 7. FIG. The pot life was 24 minutes, which was insufficient for winter use. Interlayer adhesion strength was lower than in Examples 5, 6, and 7, and it seemed that there was a problem in practical use. In addition, the tensile strength ratio after the heat treatment or after the alkali treatment tended to be lower than those in Examples 5, 6, and 7.
実施例8(表4)
実施例7と同じ配合の主剤を「一括仕込」法で合成した冬用配合の例である。実施例8は防水材として良好な塗膜物性を示しかつ冬用配合として十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。また、層間接着試験では実用に十分な接着強度を示した。
Example 8 (Table 4)
It is an example of the formula for winter which synthesize | combined the main ingredient of the same composition as Example 7 by the "batch preparation" method. Example 8 showed good coating film properties as a waterproofing material, and was able to perform the next process during the day while securing sufficient pot life as a winter formulation. In the interlayer adhesion test, the adhesive strength was sufficient for practical use.
実施例9(表4)
IPDIプレポリマーとT−80プレポリマーを別々に合成し、IPDIとT−80の当量比が実施例7と同じ10/90となるように「混合」した主剤を使用した冬用配合の例である。実施例9は防水材として良好な塗膜物性を示しかつ冬用配合として十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。また、層間接着試験では実用に十分な接着強度を示した。
Example 9 (Table 4)
Example of winter blending using IPDI prepolymer and T-80 prepolymer separately and “mixed” main component so that the equivalent ratio of IPDI and T-80 is 10/90 as in Example 7 is there. Example 9 showed good film properties as a waterproofing material, and the next process could be performed during the day while securing sufficient pot life as a winter formulation. In the interlayer adhesion test, the adhesive strength was sufficient for practical use.
実施例10、11、12(表5)
実施例6と同じ配合で「二段仕込」法によりプレポリマーを合成する際に、触媒を使用した冬用配合の例である。一段目のIPDIとの反応において触媒としてジオクチル錫ジラウレート0.0015質量%を使用した実施例10では、一段目の反応は実施例6より低い60℃で速やかに進行した。その後、リン酸0.0015質量%を加え触媒を失活させた後に、二段目のT−80との反応を実施したところ100℃で速やかに進行した。得られたプレポリマーを使用して実施例6と同様に防水材組成物を作製したところ、良好な塗膜物性を示しかつ冬用配合として十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。また、層間接着試験では実用に十分な接着強度を示した。
一段目のIPDIとの反応において触媒としてリン酸0.04質量%を使用した実施例11では、一段目の反応は100℃で速やかに進行し実施例6より短い反応時間で所望の転化率まで達した。更に二段目のT−80との反応も100℃で速やかに進行した。得られたプレポリマーを使用して実施例6と同様に防水材組成物を作製したところ、良好な塗膜物性を示しかつ冬用配合として十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。また、層間接着試験では実用に十分な接着強度を示した。
一段目のIPDIとの反応において触媒として1−イソブチル−2−メチルイミダゾール0.10質量%を使用した実施例12では、一段目の反応は100℃で速やかに進行し実施例6より短い反応時間で所望の転化率まで達した。更に二段目のT−80との反応は実施例6より低い40℃で速やかに進行した。得られたプレポリマーを使用して実施例6と同様に防水材組成物を作製したところ、良好な塗膜物性を示しかつ冬用配合として十分な可使時間を確保しながら、当日中に次工程の施工が可能であった。また、層間接着試験では実用に十分な接着強度を示した。
Examples 10, 11, 12 (Table 5)
This is an example of winter blending using a catalyst when synthesizing a prepolymer with the same blending as in Example 6 by the “two-stage charging” method. In Example 10 in which 0.0015% by mass of dioctyltin dilaurate was used as a catalyst in the reaction with the first stage IPDI, the first stage reaction proceeded rapidly at 60 ° C., which was lower than in Example 6. Thereafter, 0.0015% by mass of phosphoric acid was added to deactivate the catalyst, and the reaction with the second stage T-80 was carried out. Using the resulting prepolymer, a waterproofing composition was prepared in the same manner as in Example 6. As a result, while exhibiting good coating film properties and ensuring sufficient pot life as a winter formulation, Construction of the process was possible. In the interlayer adhesion test, the adhesive strength was sufficient for practical use.
In Example 11 in which 0.04% by mass of phosphoric acid was used as a catalyst in the reaction with the first stage IPDI, the first stage reaction proceeded rapidly at 100 ° C. and reached the desired conversion rate in a shorter reaction time than in Example 6. Reached. Furthermore, the reaction with the second stage T-80 also proceeded rapidly at 100 ° C. Using the resulting prepolymer, a waterproofing composition was prepared in the same manner as in Example 6. As a result, while exhibiting good coating film properties and ensuring sufficient pot life as a winter formulation, Construction of the process was possible. In the interlayer adhesion test, the adhesive strength was sufficient for practical use.
In Example 12, in which 0.10% by mass of 1-isobutyl-2-methylimidazole was used as a catalyst in the reaction with IPDI at the first stage, the reaction at the first stage proceeded rapidly at 100 ° C. and the reaction time was shorter than that in Example 6. To reach the desired conversion. Further, the reaction with the second stage T-80 proceeded rapidly at 40 ° C., which was lower than in Example 6. Using the resulting prepolymer, a waterproofing composition was prepared in the same manner as in Example 6. As a result, while exhibiting good coating film properties and ensuring sufficient pot life as a winter formulation, Construction of the process was possible. In the interlayer adhesion test, the adhesive strength was sufficient for practical use.
なお、各評価項目の測定方法は次のとおりである。 In addition, the measuring method of each evaluation item is as follows.
[NCO(質量%)]
200mLの三角フラスコに主剤約1gを精秤し、これに0.5Nジ−n−ブチルアミン(トルエン溶液)10mL、トルエン10mLおよび適量のブロムフェノールブルーを加えた後メタノール約100mLを加え溶解する。この混合液を0.25N塩酸溶液で滴定する。NCO(質量%)は以下の式によって求められる。
NCO(質量%)=(ブランク滴定値−0.5N塩酸溶液滴定値)×4.202×0.25N塩酸溶液のファクター×0.25÷サンプル重量
[NCO (mass%)]
About 1 g of the main agent is precisely weighed in a 200 mL Erlenmeyer flask, and 10 mL of 0.5N di-n-butylamine (toluene solution), 10 mL of toluene and an appropriate amount of bromophenol blue are added to it, and then about 100 mL of methanol is added and dissolved. The mixture is titrated with 0.25N hydrochloric acid solution. NCO (mass%) is calculated | required by the following formula | equation.
NCO (mass%) = (blank titration value−0.5N hydrochloric acid solution titration value) × 4.202 × 0.25N hydrochloric acid solution factor × 0.25 ÷ sample weight
[23℃可使時間(分)]
23℃、湿度50%の空気循環型環境試験室内において、主剤と硬化剤を所定の割合で攪拌・混合開始から、BH型粘度計で2rpmにおける粘度が60,000mPa・sになるまでの時間を測定した。
[23 ° C pot life (minutes)]
In the air circulation type environmental test chamber at 23 ° C and 50% humidity, the time from the start of stirring and mixing the main agent and curing agent at a predetermined ratio until the viscosity at 2 rpm with the BH viscometer reaches 60,000 mPa · s It was measured.
[23℃施工可能時間(時間)]
23℃、湿度50%の空気循環式型環境試験室内において、主剤と硬化剤を所定の割合で攪拌・混合した防水材を2kg/m2塗布し、完全には硬化していないが、塗膜上を靴で歩行が可能となり、次工程の作業を開始できるまでの時間を測定した。
[23 ° C construction time (hours)]
In an air circulation type environmental test chamber at 23 ° C and 50% humidity, 2 kg / m 2 of a waterproofing material in which the main agent and curing agent were stirred and mixed at a predetermined ratio was not completely cured. The time until it was possible to walk on the top with shoes and the work of the next process could be started was measured.
[引張強さ(N/mm2)]
養生条件を23℃で7日とした試験片について、JIS A 6021に基づいて測定を行った(JIS A 6021のウレタンゴム系高伸長形(旧1類)では引張強さは2.3N/mm2以上)。
[Tensile strength (N / mm 2 )]
A test piece having a curing condition of 23 ° C. for 7 days was measured based on JIS A 6021 (the tensile strength is 2.3 N / mm in the urethane rubber-based high elongation type (formerly Class 1) of JIS A 6021). 2 or more).
[破断時の伸び率(%)]
養生条件を23℃で7日とした試験片について、JIS A 6021に基づいて測定を行った(JIS A 6021のウレタンゴム系高伸長形(旧1類)では破断時の伸び率は450%以上)。
[Elongation at break (%)]
Measurements were made based on JIS A 6021 for specimens with curing conditions of 7 days at 23 ° C. (JIS A 6021 urethane rubber high elongation type (formerly Class 1) has an elongation at break of 450% or more. ).
[引裂き強さ(N/mm)]
養生条件を23℃で7日とした試験片について、JIS A 6021に基づいて測定を行った(JIS A 6021のウレタンゴム系高伸長形(旧1類)では引裂き強さは14N/mm以上)。
[Tear strength (N / mm)]
Measurements were made based on JIS A 6021 for test pieces with curing conditions of 7 days at 23 ° C. (in the case of urethane rubber high elongation type (formerly Class 1) of JIS A 6021, the tear strength is 14 N / mm or more) .
[耐熱性 引張強さ比(%)]
80℃の乾燥機に7日間入れて加熱処理した試験片について、JIS A 6021に基づいて行い、処理前に対する引張強さ比(%)を求めた。
[Heat resistance Tensile strength ratio (%)]
About the test piece put into the 80 degreeC drying machine for 7 days and heat-processed, it carried out based on JISA6021 and calculated | required tensile strength ratio (%) with respect to a process.
[アルカリ処理後の引張強さ比(%)]
処理条件を60℃、1週間(JIS A 6021では23℃)に変えた以外は、JIS A 6021に基づいて行い、処理前に対する引張強さ比(%)を求めた。
[Tensile strength ratio after alkali treatment (%)]
Except for changing the treatment conditions to 60 ° C. for one week (23 ° C. for JIS A 6021), the tensile strength ratio (%) before treatment was determined based on JIS A 6021.
[層間接着強度]
23℃、湿度50%の空気循環型環境試験室内において、スレート板にプライマーを塗布し一日乾燥後、主剤と硬化剤を所定の割合で攪拌・混合した防水材組成物を2kg/m2塗布した。3日後、一層目と同じ防水材組成物を1kg/m2塗布し、その上に補強布としてサラシを被せさらに同じ防水材組成物を1kg/m2塗布し、23℃、湿度50%の空気循環型環境試験室内において、7日間養生した。養生後、防水層を25mmの幅にカットし、180度剥離試験(ピール速度100mm/min)により防水材組成物一層目と二層目の層間接着強度(N/cm)を測定した。
[Interlayer adhesion strength]
In a 23 ° C, 50% humidity air circulation environment test chamber, a primer is applied to a slate plate, dried for one day, and then a 2 kg / m 2 waterproof material composition in which the main agent and curing agent are stirred and mixed at a predetermined ratio is applied. did. Three days later, 1 kg / m 2 of the same waterproof material composition as that of the first layer was applied, covered with a sash as a reinforcing cloth, and further 1 kg / m 2 of the same waterproof material composition was applied, and air at 23 ° C. and 50% humidity It was cured for 7 days in a circulation type environmental test chamber. After curing, the waterproof layer was cut into a width of 25 mm, and the interlayer adhesive strength (N / cm) of the first and second waterproof material compositions was measured by a 180 degree peel test (peel rate 100 mm / min).
[プライマー接着強度]
23℃、湿度50%の空気循環型環境試験室内において、スレート板にOTプライマーMを塗布し、その上にOTプライマーAを0.15kg/m2塗布した。3日後、主剤と硬化剤を所定の割合で攪拌・混合した防水材組成物を1kg/m2塗布し、その上に補強布としてサラシを被せさらに同じ防水材組成物を1kg/m2塗布し、23℃、湿度50%の空気循環型環境試験室内において、7日間養生した。養生後、防水層を25mmの幅にカットし、180度剥離試験(ピール速度100mm/min)によりプライマーAと防水材組成物との接着強度(N/cm)を測定した。
[Primer adhesive strength]
In an air circulation type environmental test chamber at 23 ° C. and a humidity of 50%, OT primer M was applied to the slate plate, and OT primer A was applied to the top of 0.15 kg / m 2 . After 3 days, base and curing agent agitating and mixing the waterproof material composition 1 kg / m 2 was applied at a predetermined ratio, further covered with a bleached same waterproof material composition 1 kg / m 2 applied as a reinforcing cloth thereon It was cured for 7 days in an air circulation type environmental test chamber at 23 ° C. and 50% humidity. After curing, the waterproof layer was cut to a width of 25 mm, and the adhesive strength (N / cm) between the primer A and the waterproof material composition was measured by a 180 degree peel test (peel speed 100 mm / min).
Claims (5)
トリレンジイソシアナート、イソホロンジイソシアナートおよびポリオールを、トリレンジイソシアナートとイソホロンジイソシアナートのモル比が50/50〜97/3の範囲で、同一容器内で反応させてイソシアナート基末端プレポリマーを含む主剤を調製する工程、および、
ジエチルトルエンジアミン、4,4′−メチレンビス(N−sec−ブチルアニリン)および可塑剤を、ジエチルトルエンジアミンと4,4′−メチレンビス(N−sec−ブチルアニリン)の当量比が40/60〜97/3の範囲で、混合して硬化剤を調製する工程を含む、方法。 A method for producing a two-component urethane waterproofing composition comprising a main component comprising an isocyanate group-terminated prepolymer comprising a polyisocyanate and a polyol and a curing agent comprising an aromatic polyamine and a plasticizer, the method comprising:
Tolylene diisocyanate, isophorone diisocyanate and polyol are reacted in the same vessel in a molar ratio of tolylene diisocyanate and isophorone diisocyanate in the range of 50/50 to 97/3 to give an isocyanate group-terminated prepolymer. Preparing a base comprising: and
Diethyltoluenediamine, 4,4′-methylenebis (N-sec-butylaniline) and a plasticizer are used, and the equivalent ratio of diethyltoluenediamine and 4,4′-methylenebis (N-sec-butylaniline) is 40/60 to 97. In the range of / 3, the method of mixing and preparing a hardening | curing agent is included.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016179680A JP6839947B2 (en) | 2016-09-14 | 2016-09-14 | Fast-curing two-component urethane waterproof material composition and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016179680A JP6839947B2 (en) | 2016-09-14 | 2016-09-14 | Fast-curing two-component urethane waterproof material composition and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018044068A true JP2018044068A (en) | 2018-03-22 |
JP6839947B2 JP6839947B2 (en) | 2021-03-10 |
Family
ID=61694455
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016179680A Active JP6839947B2 (en) | 2016-09-14 | 2016-09-14 | Fast-curing two-component urethane waterproof material composition and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6839947B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021107467A (en) * | 2018-09-19 | 2021-07-29 | 保土谷化学工業株式会社 | Set of main agent and curing agent, waterproof material and method for application thereof |
JP2022540688A (en) * | 2019-07-16 | 2022-09-16 | ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング | One-component polyurethane dispersion, its manufacture and use |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58134160A (en) * | 1982-02-03 | 1983-08-10 | バイエル・アクチエンゲゼルシヤフト | Coating formation |
JPS6369873A (en) * | 1986-09-08 | 1988-03-29 | ダブリユー・アール・グレイス・アンド・カンパニー−コネチカツト | Polyurethane paint composition |
JPH07330855A (en) * | 1994-06-10 | 1995-12-19 | Hodogaya Chem Co Ltd | Production of cold-setting coating-waterproofing material |
JPH09183942A (en) * | 1995-12-28 | 1997-07-15 | Hodogaya Chem Co Ltd | Air-drying polyurethane coating material |
WO2005035612A1 (en) * | 2003-10-02 | 2005-04-21 | Bayer Materialscience Llc | Polyurethane dispersion (pud) with improved isopropanol resistance, flexibility and softness |
JP2013139559A (en) * | 2011-12-07 | 2013-07-18 | I C K Kk | Two-pack, environmental-responsive urethane waterproof material composition |
JP2015021021A (en) * | 2013-07-16 | 2015-02-02 | アイシーケイ株式会社 | Fast curing 2-liquid type environmentally friendly urethane waterproof material composition |
CN105461896A (en) * | 2016-01-19 | 2016-04-06 | 黎明化工研究设计院有限责任公司 | High-hardness polyurethane elastomer pressure-bearing support material for bridge and preparation method and using method thereof |
-
2016
- 2016-09-14 JP JP2016179680A patent/JP6839947B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58134160A (en) * | 1982-02-03 | 1983-08-10 | バイエル・アクチエンゲゼルシヤフト | Coating formation |
JPS6369873A (en) * | 1986-09-08 | 1988-03-29 | ダブリユー・アール・グレイス・アンド・カンパニー−コネチカツト | Polyurethane paint composition |
JPH07330855A (en) * | 1994-06-10 | 1995-12-19 | Hodogaya Chem Co Ltd | Production of cold-setting coating-waterproofing material |
JPH09183942A (en) * | 1995-12-28 | 1997-07-15 | Hodogaya Chem Co Ltd | Air-drying polyurethane coating material |
WO2005035612A1 (en) * | 2003-10-02 | 2005-04-21 | Bayer Materialscience Llc | Polyurethane dispersion (pud) with improved isopropanol resistance, flexibility and softness |
JP2007511621A (en) * | 2003-10-02 | 2007-05-10 | バイエル・マテリアルサイエンス・リミテッド・ライアビリティ・カンパニー | Polyurethane dispersions with improved isopropanol resistance, flexibility and softness |
JP2013139559A (en) * | 2011-12-07 | 2013-07-18 | I C K Kk | Two-pack, environmental-responsive urethane waterproof material composition |
JP2015021021A (en) * | 2013-07-16 | 2015-02-02 | アイシーケイ株式会社 | Fast curing 2-liquid type environmentally friendly urethane waterproof material composition |
CN105461896A (en) * | 2016-01-19 | 2016-04-06 | 黎明化工研究设计院有限责任公司 | High-hardness polyurethane elastomer pressure-bearing support material for bridge and preparation method and using method thereof |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021107467A (en) * | 2018-09-19 | 2021-07-29 | 保土谷化学工業株式会社 | Set of main agent and curing agent, waterproof material and method for application thereof |
JP2021107466A (en) * | 2018-09-19 | 2021-07-29 | 保土谷化学工業株式会社 | Set of main agent and curing agent, waterproof material and method for application thereof |
JP7398229B2 (en) | 2018-09-19 | 2023-12-15 | 保土谷化学工業株式会社 | Set of main agent and hardening agent, waterproofing material and its construction method |
JP7398228B2 (en) | 2018-09-19 | 2023-12-15 | 保土谷化学工業株式会社 | Set of main agent and hardening agent, waterproofing material and its construction method |
JP2022540688A (en) * | 2019-07-16 | 2022-09-16 | ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング | One-component polyurethane dispersion, its manufacture and use |
JP7433411B2 (en) | 2019-07-16 | 2024-02-19 | ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング | One-component polyurethane dispersion, its production and use |
Also Published As
Publication number | Publication date |
---|---|
JP6839947B2 (en) | 2021-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6706887B2 (en) | High-strength two-component environment-friendly hand-painted urethane waterproofing material composition and urethane waterproofing method | |
JP5669813B2 (en) | Two-component environmentally-friendly urethane waterproof material composition | |
US9080087B2 (en) | Reduction in modulus of polyurethane sealants and adhesives | |
JP6799390B2 (en) | High tensile product 2-component environmentally friendly urethane waterproof material composition for hand coating and urethane waterproofing method | |
KR101478307B1 (en) | Concrete Surface Preparation Material Using the Bio-Polyol and Polyurea Waterproof Method of Concrete Structure Using the Same | |
JP6213954B2 (en) | Fast-curing, two-component, environmentally-friendly urethane waterproof material composition | |
JP6735598B2 (en) | Fast-curing urethane waterproof material composition and construction method | |
JP6839947B2 (en) | Fast-curing two-component urethane waterproof material composition and its manufacturing method | |
JP5044879B2 (en) | Polyurea paint composition | |
JP6820787B2 (en) | Two-component hand-painted urethane waterproof material composition | |
KR100663186B1 (en) | Silane modified polyurethane waterproofing membrane composition and manufacturing method thereof | |
JP4964631B2 (en) | Two-component urethane resin composition | |
JP6914127B2 (en) | Two-component room temperature curing type environmentally friendly urethane waterproofing material composition for hand coating and urethane waterproofing method | |
JP4660898B2 (en) | Two-component polyurethane curable composition for spray coating and waterproof coating method using the same | |
JP6187964B2 (en) | Fast-curing, two-component, environmentally-friendly urethane waterproof material composition | |
JP6879712B2 (en) | Two-component environment-friendly hand-painted urethane waterproofing material composition and urethane waterproofing method | |
JP6991036B2 (en) | Fast-curing urethane waterproofing material composition for hand coating, kit and construction method | |
JP7510580B1 (en) | Two-component hand-applied urethane coating composition and method for applying urethane waterproof coating layer | |
JP6305097B2 (en) | Two-component environmentally-friendly urethane waterproof material composition | |
JP2002194281A (en) | Composition for two-pack polyurethane coating film waterproof material | |
JPH09183942A (en) | Air-drying polyurethane coating material | |
JPH09278858A (en) | Production of cold-setting waterproofing agent for coating film | |
JP2021123633A (en) | Two component room temperature-curable urethane waterproof material composition for hand coating | |
JP6083705B2 (en) | Two-component diphenylmethane diisocyanate urethane waterproofing composition | |
JP2022172937A (en) | Two-part normal-temperature-curable urethane waterproof composition for hand coating |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190725 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200417 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200616 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210119 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6839947 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |