JP6838389B2 - Battery manufacturing method - Google Patents

Battery manufacturing method Download PDF

Info

Publication number
JP6838389B2
JP6838389B2 JP2016249058A JP2016249058A JP6838389B2 JP 6838389 B2 JP6838389 B2 JP 6838389B2 JP 2016249058 A JP2016249058 A JP 2016249058A JP 2016249058 A JP2016249058 A JP 2016249058A JP 6838389 B2 JP6838389 B2 JP 6838389B2
Authority
JP
Japan
Prior art keywords
electrolytic solution
liquid
battery
injection
liquid injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016249058A
Other languages
Japanese (ja)
Other versions
JP2018106816A (en
Inventor
孝之 中山
孝之 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016249058A priority Critical patent/JP6838389B2/en
Publication of JP2018106816A publication Critical patent/JP2018106816A/en
Application granted granted Critical
Publication of JP6838389B2 publication Critical patent/JP6838389B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/618Pressure control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Filling, Topping-Up Batteries (AREA)

Description

本発明は、電池ケースに設けられた注液孔を通じて電池ケース内に電解液を注液する注液工程を備える電池の製造方法に関する。 The present invention relates to a method for manufacturing a battery including a liquid injection step of injecting an electrolytic solution into a battery case through a liquid injection hole provided in the battery case.

電池を製造するにあたっては、例えば、電池ケース内に電極体を収容した電池を組み立てた後、電池ケースに設けられた注液孔を通じて電池ケース内に電解液を注液することが行われている。なお、関連する従来技術として、特許文献1が挙げられる。 In manufacturing a battery, for example, after assembling a battery in which an electrode body is housed in a battery case, an electrolytic solution is injected into the battery case through a liquid injection hole provided in the battery case. .. In addition, Patent Document 1 is mentioned as a related prior art.

特開2015−219962号公報Japanese Unexamined Patent Publication No. 2015-219962

特許文献1の電池の製造において、電解液を電池ケース内に注液する手法として、例えば、電池ケース内を大気圧よりも減圧した状態で、一度に規定量の電解液を注液した後に、電池ケース内を大気圧に戻して、電解液の電極体内への含浸を促進させる手法が考えられる。
しかしながら、電解液を注液している最中は、電解液の電極体への含浸速度が遅い。このため、電解液が注液孔から電池外部に溢れ出ないように、電解液の電極体への含浸速度に合わせて、電解液をゆっくり注液する必要がある。このため、注液時間が長く掛かって電池の生産コストが高くなる。
In the manufacture of the battery of Patent Document 1, as a method of injecting the electrolytic solution into the battery case, for example, after injecting a specified amount of the electrolytic solution at one time in a state where the inside of the battery case is depressurized from the atmospheric pressure, the electrolytic solution is injected. A method of returning the inside of the battery case to atmospheric pressure to promote impregnation of the electrolytic solution into the electrode body can be considered.
However, while the electrolytic solution is being injected, the impregnation rate of the electrolytic solution into the electrode body is slow. Therefore, it is necessary to slowly inject the electrolytic solution according to the impregnation rate of the electrolytic solution into the electrode body so that the electrolytic solution does not overflow from the injection hole to the outside of the battery. Therefore, the injection time is long and the production cost of the battery is high.

本発明は、かかる現状に鑑みてなされたものであって、電解液を電池ケース内に注液する注液工程に掛かる時間を短くできる電池の製造方法を提供することを目的とする。 The present invention has been made in view of the current situation, and an object of the present invention is to provide a method for manufacturing a battery, which can shorten the time required for the liquid injection step of injecting an electrolytic solution into a battery case.

上記課題を解決するための本発明の一態様は、注液孔を有する電池ケースと、上記電池ケース内に収容された電極体及び電解液と、を備える電池の製造方法であって、上記電池ケース内に上記注液孔を通じて上記電解液を注液する注液工程を備え、上記注液工程は、上記電池ケース内を大気圧よりも減圧した状態で、上記電池ケースに上記電解液の注液を開始し、注液された上記電解液の液面の高さを液量センサで検知しつつ注液し、上記電極体の少なくとも一部が上記電解液に浸漬された状態で、かつ、上記電解液の上記液面が予め定めた第1基準高さに到達したことを上記液量センサが検知したら、上記電解液の注液を停止する第1注液工程と、上記電池ケース内の気圧を、上記第1注液工程を行った際の気圧よりも高めて、上記電解液の液面を、上記第1注液工程の終了時における上記電解液の上記液面よりも低下させる液面下げ工程と、上記電解液の注液を再開し、上記電解液を規定量または規定高さまで注液する第2注液工程と、上記第2注液工程の後、上記電解液の上記液面が予め定めた第2基準高さに下がるまで待つ液面調整工程と、を有する電池の製造方法である。 One aspect of the present invention for solving the above-mentioned problems is a method for manufacturing a battery including a battery case having a liquid injection hole, an electrode body and an electrolytic solution housed in the battery case, and the above-mentioned battery. A liquid injection step of injecting the electrolytic solution through the liquid injection hole is provided in the case, and in the liquid injection step, the electrolytic solution is injected into the battery case with the inside of the battery case depressurized from atmospheric pressure. The liquid is started, and the liquid is injected while detecting the height of the liquid level of the injected electrolytic solution with the liquid amount sensor, and at least a part of the electrode body is immersed in the electrolytic solution, and the liquid is injected. When the liquid level sensor detects that the liquid level of the electrolytic solution has reached a predetermined first reference height, the first liquid injection step of stopping the injection of the electrolytic solution and the inside of the battery case A liquid that raises the pressure pressure above the pressure pressure at the time of performing the first injection step and lowers the liquid level of the electrolytic solution below the liquid level of the electrolytic solution at the end of the first liquid injection step. After the surface lowering step, the second injection step of restarting the injection of the electrolytic solution and injecting the electrolytic solution to a specified amount or a specified height, and the second injection step, the above solution of the electrolytic solution. It is a method of manufacturing a battery having a liquid level adjusting step of waiting until the surface drops to a predetermined second reference height.

一度に多量の電解液を注液しようとすると、前述のように、電解液が注液孔から電池外部に溢れ出ないように、電解液の電極体への含浸速度に合わせて、電解液をゆっくり注液しなければならないため、注液時間が長く掛かる。
これに対し、上述の製造方法では、第1注液工程において減圧状態で電解液を注液した後、液面下げ工程において、電池ケース内の気圧を高めて、電解液の電極体への含浸を促進させ、電解液の液面を下げる。その後、第2注液工程で電解液の注液を再開し、規定量または規定高さまで電解液を注液する。このように電解液の注液の途中に液面下げ工程を設けて、電解液の電極体への含浸を促進させ電解液の液面を下げることにより、第1注液工程及び第2注液工程における電解液の注液速度を、一度に電解液を注液する場合よりも速くでき、注液工程の時間を短くできる。
When trying to inject a large amount of electrolytic solution at one time, as described above, the electrolytic solution is injected according to the impregnation rate of the electrolytic solution into the electrode body so that the electrolytic solution does not overflow from the injection hole to the outside of the battery. Since the liquid must be injected slowly, it takes a long time to inject the liquid.
On the other hand, in the above-mentioned manufacturing method, after injecting the electrolytic solution under reduced pressure in the first liquid injection step, the air pressure inside the battery case is increased in the liquid level lowering step to impregnate the electrode body with the electrolytic solution. And lowers the level of the electrolyte. After that, the injection of the electrolytic solution is restarted in the second injection step, and the electrolytic solution is injected to a specified amount or a specified height. In this way, a liquid level lowering step is provided in the middle of the injection of the electrolytic solution to promote impregnation of the electrolytic solution into the electrode body and lower the liquid level of the electrolytic solution, whereby the first liquid injection step and the second liquid injection are performed. The injection speed of the electrolytic solution in the process can be made faster than that in the case of injecting the electrolytic solution at one time, and the time of the injection process can be shortened.

なお、「第1注液工程」において「電極体の少なくとも一部が電解液に浸漬された状態で電解液の注液を停止する」手法としては、例えば、後述するように、電解液の液面が、基準高さ(電極体の少なくとも一部が電解液に浸漬される基準高さ)に到達したときに、電解液の注液を停止する手法が挙げられる。また、電解液の注液量が、所定量(電極体の少なくとも一部が電解液に浸漬される所定量)に達したときに、電解液の注液を停止する手法も挙げられる。 In the "first liquid injection step", as a method of "stopping the injection of the electrolytic solution while at least a part of the electrode body is immersed in the electrolytic solution", for example, as will be described later, the liquid of the electrolytic solution A method of stopping the injection of the electrolytic solution when the surface reaches the reference height (the reference height at which at least a part of the electrode body is immersed in the electrolytic solution) can be mentioned. Another method is to stop the injection of the electrolytic solution when the injection amount of the electrolytic solution reaches a predetermined amount (a predetermined amount at which at least a part of the electrode body is immersed in the electrolytic solution).

「第2注液工程」は、電池ケース内を大気圧として電解液の注液を行ってもよいし、電池ケース内を大気圧よりも減圧した状態で電解液の注液を行ってもよい。また、第2注液工程で電池ケース内を減圧する場合には、第1注液工程と同じ気圧まで減圧してもよいし、第1注液工程の気圧よりも高い気圧或いは低い気圧まで減圧してもよい。 In the "second liquid injection step", the electrolytic solution may be injected with the inside of the battery case at atmospheric pressure, or the electrolytic solution may be injected with the inside of the battery case depressurized from the atmospheric pressure. .. When the inside of the battery case is depressurized in the second filling step, the pressure may be reduced to the same pressure as in the first filling step, or to a pressure higher or lower than the pressure in the first filling step. You may.

更に、上記の電池の製造方法であって、前記第1注液工程は、前記電解液の液面が、前記電極体の少なくとも一部が上記電解液に浸漬される基準高さに到達したときに、上記電解液の注液を停止する電池の製造方法とするのが好ましい。 Further, in the above-mentioned battery manufacturing method, in the first liquid injection step, when the liquid level of the electrolytic solution reaches a reference height at which at least a part of the electrode body is immersed in the electrolytic solution. In addition, it is preferable to use a method for manufacturing a battery that stops the injection of the electrolytic solution.

電池の電極体には体積バラツキや、電池ケース内に注液された電解液の電極体内への含浸速度にバラツキがある。このため、前述のように、第1注液工程において、電解液の注液量が所定量に達したときに電解液の注液を停止する手法を採用した場合には、電解液を所定量注液したときに、電池によっては電解液の一部が注液孔から電池外部に溢れ出てしまう場合も考えられる。
これに対し、上述の電池の製造方法では、第1注液工程において、電解液の液面が基準高さに到達したときに電解液の注液を停止するので、電解液が注液孔から電池外部に溢れ出るのを確実に防止できる。
There are variations in the volume of the electrode body of the battery and the rate of impregnation of the electrolytic solution injected into the battery case into the electrode body. Therefore, as described above, when the method of stopping the injection of the electrolytic solution when the injection amount of the electrolytic solution reaches a predetermined amount is adopted in the first injection step, the predetermined amount of the electrolytic solution is used. Depending on the battery, a part of the electrolytic solution may overflow from the liquid injection hole to the outside of the battery when the liquid is injected.
On the other hand, in the above-mentioned battery manufacturing method, in the first liquid injection step, the injection of the electrolytic solution is stopped when the liquid level of the electrolytic solution reaches the reference height, so that the electrolytic solution is discharged from the injection hole. It is possible to surely prevent the battery from overflowing to the outside.

実施形態に係る電池の斜視図である。It is a perspective view of the battery which concerns on embodiment. 実施形態に係る電池の縦断面図である。It is a vertical sectional view of the battery which concerns on embodiment. 実施形態に係る注液装置の説明図である。It is explanatory drawing of the liquid injection apparatus which concerns on embodiment. 実施形態に係る電池の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the battery which concerns on embodiment. 実施形態に係る注液工程の第1注液工程において、電解液の液面が第1基準高さまで上昇した様子を示す説明図である。It is explanatory drawing which shows the state that the liquid level of the electrolytic solution rises to the 1st reference height in the 1st liquid injection step of the liquid injection process which concerns on embodiment. 実施形態に係る注液工程の液面下げ工程において、電解液の液面が下降した様子を示す説明図である。It is explanatory drawing which shows the state which the liquid level of the electrolytic solution lowered in the liquid level lowering process of the liquid injection step which concerns on embodiment. 実施形態に係る注液工程の第2注液工程において、電解液を規定量注液した様子を示す説明図である。It is explanatory drawing which shows the state of injecting the electrolytic solution in the 2nd liquid injection process of the liquid injection process which concerns on embodiment. 実施形態に係る注液工程の液面調整工程において、電解液の液面が第2基準高さまで下降した様子を示す説明図である。It is explanatory drawing which shows the state that the liquid level of the electrolytic solution dropped to the 2nd reference height in the liquid level adjustment step of the liquid injection process which concerns on embodiment.

以下、本発明の実施形態を、図面を参照しつつ説明する。図1及び図2に、本実施形態に係る電池1の斜視図及び縦断面図を示す。なお、以下では、電池1の電池厚み方向BH、電池横方向CH及び電池縦方向DHを、図1及び図2に示す方向と定めて説明する。この電池1は、ハイブリッドカーやプラグインハイブリッドカー、電気自動車等の車両などに搭載される角型で密閉型のリチウムイオン二次電池である。電池1は、電池ケース10と、この内部に収容された電極体20と、電池ケース10に支持された正極端子部材50及び負極端子部材60等から構成される(図1及び図2参照)。また、電池ケース10内には、電解液15が収容されており、その一部は電極体20内に含浸され、一部は電池ケース10の底部に溜まっている。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a perspective view and a vertical sectional view of the battery 1 according to the present embodiment. In the following description, the battery thickness direction BH, the battery horizontal direction CH, and the battery vertical direction DH of the battery 1 are defined as the directions shown in FIGS. 1 and 2. The battery 1 is a square and sealed lithium ion secondary battery mounted on a vehicle such as a hybrid car, a plug-in hybrid car, or an electric vehicle. The battery 1 is composed of a battery case 10, an electrode body 20 housed therein, a positive electrode terminal member 50 supported by the battery case 10, a negative electrode terminal member 60, and the like (see FIGS. 1 and 2). Further, the electrolytic solution 15 is housed in the battery case 10, a part of which is impregnated in the electrode body 20, and a part of which is accumulated in the bottom of the battery case 10.

このうち電池ケース10は、直方体箱状で金属(本実施形態ではアルミニウム)からなる。この電池ケース10は、上側のみが開口した有底角筒状のケース本体部材11と、このケース本体部材11の開口を閉塞する形態で溶接された矩形板状のケース蓋部材13とから構成される。ケース蓋部材13には、注液孔13hが設けられており、封止部材17によって気密に封止されている。注液孔13hは、後述するように、電解液15を電池ケース10内に注液する際に用いられる。 Of these, the battery case 10 has a rectangular parallelepiped shape and is made of metal (aluminum in this embodiment). The battery case 10 is composed of a bottomed square tubular case body member 11 having an opening only on the upper side, and a rectangular plate-shaped case lid member 13 welded in a form of closing the opening of the case body member 11. To. The case lid member 13 is provided with a liquid injection hole 13h, and is hermetically sealed by the sealing member 17. The liquid injection hole 13h is used when the electrolytic solution 15 is injected into the battery case 10, as will be described later.

また、ケース蓋部材13には、アルミニウムからなる正極端子部材50がケース蓋部材13と絶縁された状態で固設されている。この正極端子部材50は、電池ケース10内で電極体20のうち正極板21に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。また、ケース蓋部材13には、銅からなる負極端子部材60がケース蓋部材13と絶縁された状態で固設されている。この負極端子部材60は、電池ケース10内で電極体20のうち負極板31に接続し導通する一方、ケース蓋部材13を貫通して電池外部まで延びている。 Further, a positive electrode terminal member 50 made of aluminum is fixed to the case lid member 13 in a state of being insulated from the case lid member 13. The positive electrode terminal member 50 is connected to and conducts with the positive electrode plate 21 of the electrode body 20 in the battery case 10, while penetrating the case lid member 13 and extending to the outside of the battery. Further, a negative electrode terminal member 60 made of copper is fixed to the case lid member 13 in a state of being insulated from the case lid member 13. The negative electrode terminal member 60 is connected to and conducts with the negative electrode plate 31 of the electrode body 20 in the battery case 10, while penetrating the case lid member 13 and extending to the outside of the battery.

電極体20は、扁平状をなし、横倒しにした状態で電池ケース10内に収容されている。電極体20と電池ケース10との間には、絶縁フィルムからなる袋状の絶縁フィルム包囲体19が配置されている。電極体20は、帯状の正極板21と帯状の負極板31とを、帯状の一対のセパレータ41,41を介して互いに重ね、軸線周りに捲回して扁平状に圧縮したものである。正極板21は、帯状のアルミニウム箔からなる正極集電箔の両主面の所定位置に、正極活物質層を帯状に設けてなる。この正極活物質層は、正極活物質、導電材及び結着剤からなる。また、負極板31は、帯状の銅箔からなる負極集電箔の両主面の所定位置に、負極活物質層を設けてなる。この負極活物質層は、負極活物質、結着剤及び増粘剤からなる。また、セパレータ41は、樹脂からなる多孔質膜であり、帯状でフィルム状をなす。 The electrode body 20 has a flat shape and is housed in the battery case 10 in a state of being laid on its side. A bag-shaped insulating film enclosure 19 made of an insulating film is arranged between the electrode body 20 and the battery case 10. The electrode body 20 is formed by stacking a band-shaped positive electrode plate 21 and a band-shaped negative electrode plate 31 on top of each other via a pair of band-shaped separators 41 and 41, winding them around an axis, and compressing them in a flat shape. The positive electrode plate 21 is formed by providing a strip-shaped positive electrode active material layer at predetermined positions on both main surfaces of a positive electrode current collecting foil made of a strip-shaped aluminum foil. The positive electrode active material layer is composed of a positive electrode active material, a conductive material and a binder. Further, the negative electrode plate 31 is provided with a negative electrode active material layer at predetermined positions on both main surfaces of a negative electrode current collector foil made of a strip-shaped copper foil. The negative electrode active material layer is composed of a negative electrode active material, a binder and a thickener. Further, the separator 41 is a porous film made of resin, and has a band shape and a film shape.

次いで、上記電池1の製造方法について説明する(図4参照)。まず、組立工程S1において、電池1を組み立てる。具体的には、正極板21及び負極板31を、一対のセパレータ41,41を介して互いに重ねて捲回し、扁平状に圧縮して電極体20を形成する。次に、ケース蓋部材13を用意し、これに正極端子部材50及び負極端子部材60を固設する(図1及び図2参照)。その後、正極端子部材50及び負極端子部材60を、電極体20の正極板21及び負極板31にそれぞれ溶接する。次に、電極体20に絶縁フィルム包囲体19を被せて、これらをケース本体部材11内に挿入すると共に、ケース本体部材11の開口をケース蓋部材13で塞ぐ。そして、ケース本体部材11とケース蓋部材13とを溶接して電池ケース10を形成する。 Next, a method for manufacturing the battery 1 will be described (see FIG. 4). First, in the assembly step S1, the battery 1 is assembled. Specifically, the positive electrode plate 21 and the negative electrode plate 31 are wound on top of each other via a pair of separators 41 and 41 and compressed into a flat shape to form the electrode body 20. Next, the case lid member 13 is prepared, and the positive electrode terminal member 50 and the negative electrode terminal member 60 are fixedly attached to the case lid member 13 (see FIGS. 1 and 2). After that, the positive electrode terminal member 50 and the negative electrode terminal member 60 are welded to the positive electrode plate 21 and the negative electrode plate 31 of the electrode body 20, respectively. Next, the electrode body 20 is covered with the insulating film enclosing body 19, and these are inserted into the case main body member 11, and the opening of the case main body member 11 is closed with the case lid member 13. Then, the case body member 11 and the case lid member 13 are welded to form the battery case 10.

次に、注液工程S2を行い、ケース蓋部材13に設けられた注液孔13hを通じて電池ケース10内に電解液15を規定量注液する。この注液工程S2は、図3に示す注液装置100を用いて行う。この注液装置100は、注液ノズル110、電極120、検知装置130、真空チャンバ140、大気開放バルブ147、電解液タンク150、注液バルブ155、制御装置160等から構成される。 Next, the liquid injection step S2 is performed, and a specified amount of the electrolytic solution 15 is injected into the battery case 10 through the liquid injection holes 13h provided in the case lid member 13. This liquid injection step S2 is performed using the liquid injection device 100 shown in FIG. The liquid injection device 100 includes a liquid injection nozzle 110, an electrode 120, a detection device 130, a vacuum chamber 140, an atmosphere opening valve 147, an electrolytic solution tank 150, a liquid injection valve 155, a control device 160, and the like.

このうち真空チャンバ140は、上側のみが開口した有底角筒状のチャンバ本体部材141と、このチャンバ本体部材141の開口を閉塞する矩形板状のチャンバ蓋部材143とから構成される。この真空チャンバ140の内部には、後述するように、電池1が収容される。真空チャンバ140には、真空ポンプ145が取り付けられており、この真空ポンプ145を作動させることで、真空チャンバ140内を減圧できる。また、真空チャンバ140には、大気開放バルブ147が取り付けられており、この大気開放バルブ147を開くことで、真空チャンバ140内を大気開放することができる。また、真空チャンバ140には、圧力センサ149が取り付けられており、この圧力センサ149により真空チャンバ140内の気圧を測定できる。また、真空チャンバ140のチャンバ蓋部材143には、注液ノズル110と電極120とが所定の間隔KC(図5参照)を空けて固設されている。 Of these, the vacuum chamber 140 is composed of a bottomed square tubular chamber body member 141 having an opening only on the upper side, and a rectangular plate-shaped chamber lid member 143 that closes the opening of the chamber body member 141. A battery 1 is housed inside the vacuum chamber 140, as will be described later. A vacuum pump 145 is attached to the vacuum chamber 140, and by operating the vacuum pump 145, the inside of the vacuum chamber 140 can be depressurized. Further, an air release valve 147 is attached to the vacuum chamber 140, and by opening the air release valve 147, the inside of the vacuum chamber 140 can be opened to the atmosphere. Further, a pressure sensor 149 is attached to the vacuum chamber 140, and the air pressure in the vacuum chamber 140 can be measured by the pressure sensor 149. Further, the liquid injection nozzle 110 and the electrode 120 are firmly fixed to the chamber lid member 143 of the vacuum chamber 140 with a predetermined interval KC (see FIG. 5).

注液ノズル110は、円筒状で金属(具体的にはステンレス鋼)からなる。この注液ノズル110の内部は、電解液15が流通し、注液ノズル110の先端部110sから電解液15が放出される。注液ノズル110は、その延出方向が真空チャンバ140のチャンバ鉛直方向FHと平行になるように、チャンバ蓋部材143に対して垂直に固設されている。
また、電極120は、丸棒状で金属(具体的にはステンレス鋼)からなる。この電極120は、その延出方向がチャンバ鉛直方向FHと平行(注液ノズル110と平行)となり、かつ、電極120の先端部120sが注液ノズル110の先端部110sと同じ高さとなるように、チャンバ蓋部材143に対して垂直に固設されている。
The liquid injection nozzle 110 is cylindrical and made of metal (specifically, stainless steel). The electrolytic solution 15 flows through the inside of the liquid injection nozzle 110, and the electrolytic solution 15 is discharged from the tip portion 110s of the liquid injection nozzle 110. The liquid injection nozzle 110 is fixed perpendicular to the chamber lid member 143 so that its extension direction is parallel to the chamber vertical direction FH of the vacuum chamber 140.
Further, the electrode 120 has a round bar shape and is made of metal (specifically, stainless steel). The extension direction of the electrode 120 is parallel to the vertical direction FH of the chamber (parallel to the liquid injection nozzle 110), and the tip portion 120s of the electrode 120 is at the same height as the tip portion 110s of the liquid injection nozzle 110. , Is fixed perpendicular to the chamber lid member 143.

検知装置130は、配線131を介して注液ノズル110に、配線133を介して電極120にそれぞれ電気的に接続されており、これらによって液量センサ105を構成している。検知装置130は、注液ノズル110と電極120との間に一定の電圧を印加して、注液ノズル110と電極120との間に流れる電流の大きさを測定することにより、注液された電解液15の液面15mの高さを測定し、この測定信号を出力可能に構成されている。 The detection device 130 is electrically connected to the liquid injection nozzle 110 via the wiring 131 and to the electrode 120 via the wiring 133, and constitutes the liquid volume sensor 105 by these. The detection device 130 was injected by applying a constant voltage between the injection nozzle 110 and the electrode 120 and measuring the magnitude of the current flowing between the injection nozzle 110 and the electrode 120. The height of the electrolytic solution 15 at a liquid level of 15 m is measured, and this measurement signal can be output.

電解液タンク150は、電解液15を貯留しておくタンクであり、液流通路151を介して注液ノズル110の基端部110tに繋がっている。液流通路151の途中には、流量計153及び注液バルブ155がそれぞれ配置されている。流量計153は、液流通路151を流れた電解液15の液量を測定できるため、注液ノズル110の先端部110sから放出されて電池ケース10内に注液された電解液15の液量を測定できる。また、注液バルブ155は、これを開くと、液流通路151内を電解液15が流通し、注液ノズル110に電解液15が供給されて、注液ノズル110の先端部110sから電解液15が放出される。一方、注液バルブ155を閉じると、液流通路151内の電解液15の流通が止まるため、注液ノズル110の先端部110sからの電解液15の放出(注液)も止まる。 The electrolytic solution tank 150 is a tank for storing the electrolytic solution 15, and is connected to the base end portion 110t of the liquid injection nozzle 110 via the liquid flow passage 151. A flow meter 153 and a liquid injection valve 155 are arranged in the middle of the liquid flow passage 151, respectively. Since the flow meter 153 can measure the amount of the electrolytic solution 15 flowing through the liquid flow passage 151, the amount of the electrolytic solution 15 discharged from the tip 110s of the liquid injection nozzle 110 and injected into the battery case 10. Can be measured. When the liquid injection valve 155 is opened, the electrolytic liquid 15 flows through the liquid flow passage 151, the electrolytic liquid 15 is supplied to the liquid injection nozzle 110, and the electrolytic liquid is supplied from the tip 110s of the liquid injection nozzle 110. 15 is released. On the other hand, when the liquid injection valve 155 is closed, the flow of the electrolytic liquid 15 in the liquid flow passage 151 is stopped, so that the discharge (liquid injection) of the electrolytic liquid 15 from the tip 110s of the liquid injection nozzle 110 is also stopped.

制御装置160は、図示しないCPU、ROM及びRAMを含み、ROM等に記憶された所定の制御プログラムによって作動するマイクロコンピュータを有する。この制御装置160には、圧力センサ149、流量計153、検知装置130、真空ポンプ145、大気開放バルブ147及び注液バルブ155がそれぞれ接続しており、圧力センサ149、流量計153及び検知装置130の各信号に基づいて、真空ポンプ145の作動、大気開放バルブ147の開閉及び注液バルブ155の開閉をそれぞれ制御する。 The control device 160 includes a CPU, a ROM, and a RAM (not shown), and has a microcomputer that is operated by a predetermined control program stored in the ROM or the like. A pressure sensor 149, a flow meter 153, a detection device 130, a vacuum pump 145, an atmosphere release valve 147 and a liquid injection valve 155 are connected to the control device 160, respectively, and the pressure sensor 149, the flow meter 153 and the detection device 130 are connected to each other. Based on each signal of, the operation of the vacuum pump 145, the opening / closing of the atmosphere release valve 147, and the opening / closing of the liquid injection valve 155 are controlled.

注液工程S2に先立ち、前述の電池1を、真空チャンバ140のチャンバ本体部材141内の所定位置に、電池縦方向DHがチャンバ鉛直方向FHと平行になるように電池1を立てた状態で置く。その後、チャンバ本体部材141の開口をチャンバ蓋部材143で閉塞すると共に、チャンバ蓋部材143に固設された注液ノズル110及び電極120を、電池1の注液孔13hを通じて電池ケース10内に挿入しておく(図3参照)。 Prior to the liquid injection step S2, the above-mentioned battery 1 is placed at a predetermined position in the chamber main body member 141 of the vacuum chamber 140 in a state where the battery 1 stands upright so that the battery vertical direction DH is parallel to the chamber vertical direction FH. .. After that, the opening of the chamber body member 141 is closed by the chamber lid member 143, and the liquid injection nozzle 110 and the electrode 120 fixed to the chamber lid member 143 are inserted into the battery case 10 through the liquid injection hole 13h of the battery 1. (See Fig. 3).

まず、注液工程S2のうち第1注液工程S21において、電池ケース10内を大気圧よりも減圧した状態で、電池ケース10に電解液15の注液を開始し、電解液15の液面15mが第1基準高さLAに到達したときに(図5参照)、電解液15の注液を一旦停止する。なお、本実施形態では、第1基準高さLAは、電極体20の上端20pよりも高い位置に設定している。 First, in the first liquid injection step S21 of the liquid injection step S2, the injection of the electrolytic solution 15 into the battery case 10 is started in a state where the inside of the battery case 10 is depressurized from the atmospheric pressure, and the liquid level of the electrolytic solution 15 is started. When 15 m reaches the first reference height LA (see FIG. 5), the injection of the electrolytic solution 15 is temporarily stopped. In the present embodiment, the first reference height LA is set at a position higher than the upper end 20p of the electrode body 20.

具体的には、制御装置160により、大気開放バルブ147を閉めた後、真空ポンプ145を作動させて、真空チャンバ140内を減圧する。そして、圧力センサ149により測定される真空チャンバ140内の気圧が所定圧力まで下がったら、注液バルブ155を開く。これにより、電解液タンク150に貯留された電解液15が液流通路151を通じて注液ノズル110に供給され、注液ノズル110の先端部110sから電池ケース10内に電解液15が放出される。 Specifically, after closing the atmosphere release valve 147 by the control device 160, the vacuum pump 145 is operated to reduce the pressure in the vacuum chamber 140. Then, when the air pressure in the vacuum chamber 140 measured by the pressure sensor 149 drops to a predetermined pressure, the liquid injection valve 155 is opened. As a result, the electrolytic solution 15 stored in the electrolytic solution tank 150 is supplied to the liquid injection nozzle 110 through the liquid flow passage 151, and the electrolytic solution 15 is discharged into the battery case 10 from the tip 110s of the liquid injection nozzle 110.

その後、注液された電解液15の液面15mが第1基準高さLAに到達したことが液量センサ105によって検知されると、制御装置160により注液バルブ155を閉じる。これにより、液流通路151内を流れる電解液15の流通が止まり、電池ケース10内への電解液15の注液が止まる。本実施形態では、前述のように、第1基準高さLAを電極体20の上端20pよりも高い位置に設定しているので、この第1注液工程S21の終了時には、電極体20の全体が電解液15中に浸漬される。
このように、電解液15の液面15mが第1基準高さLAに到達したときに、電解液15の注液を一旦止めることによって、電解液15が注液孔13hから電池外部に溢れ出るのを確実に防止できる。
After that, when the liquid level sensor 105 detects that the liquid level 15 m of the injected electrolyte 15 has reached the first reference height LA, the control device 160 closes the liquid injection valve 155. As a result, the flow of the electrolytic solution 15 flowing through the liquid flow passage 151 is stopped, and the injection of the electrolytic solution 15 into the battery case 10 is stopped. In the present embodiment, as described above, the first reference height LA is set at a position higher than the upper end 20p of the electrode body 20, and therefore, at the end of the first liquid injection step S21, the entire electrode body 20 is formed. Is immersed in the electrolytic solution 15.
In this way, when the liquid level 15 m of the electrolytic solution 15 reaches the first reference height LA, the injection of the electrolytic solution 15 is temporarily stopped, so that the electrolytic solution 15 overflows from the injection hole 13h to the outside of the battery. Can be reliably prevented.

第1注液工程S21の後は、液面下げ工程S22において、電池ケース10内の気圧を、第1注液工程S21を行った際の気圧よりも高めて、電解液15の液面15mを、第1注液工程S21の終了時における電解液15の液面15m(具体的には第1基準高さLA)よりも低下させる(図6参照)。
具体的には、制御装置160により大気開放バルブ147を開けて、真空チャンバ140内の気圧を高める。すると、注液された電解液15の電極体20への含浸が促進されるため、電解液15の液面15mは、第1基準高さLAから徐々に低下していく。本実施形態では、圧力センサ149により測定される真空チャンバ140内の気圧が所定圧力に上がるまで、この液面下げ工程S22を行い、真空チャンバ140内の気圧が所定圧力となったら、液面下げ工程S22を終了する。これにより、本実施形態では、電解液15の液面15mが、電極体20の上端20pよりも低い位置まで下がる。
After the first liquid injection step S21, in the liquid level lowering step S22, the air pressure inside the battery case 10 is raised above the air pressure when the first liquid injection step S21 is performed to raise the liquid level of the electrolytic solution 15 to 15 m. , The liquid level of the electrolytic solution 15 at the end of the first liquid injection step S21 is lowered from 15 m (specifically, the first reference height LA) (see FIG. 6).
Specifically, the control device 160 opens the atmospheric release valve 147 to increase the air pressure in the vacuum chamber 140. Then, since the impregnation of the injected electrolytic solution 15 into the electrode body 20 is promoted, the liquid level 15 m of the electrolytic solution 15 gradually decreases from the first reference height LA. In the present embodiment, the liquid level lowering step S22 is performed until the air pressure in the vacuum chamber 140 measured by the pressure sensor 149 rises to a predetermined pressure, and when the air pressure in the vacuum chamber 140 reaches a predetermined pressure, the liquid level is lowered. Step S22 is completed. As a result, in the present embodiment, the liquid level 15m of the electrolytic solution 15 is lowered to a position lower than the upper end 20p of the electrode body 20.

次に、第2注液工程S23において、電解液15の注液を再開し、電解液15を規定量注液する(図7参照)。
具体的には、制御装置160により注液バルブ155を開いて、大気圧下で、電解液15の電池ケース10内への注液を再開する。そして、流量計153で測定された液流通路151を流れた電解液15の流量、即ち、電池ケース10内に注入された電解液15の液量が、規定量に到達したら、注液バルブ155を閉じて、電解液15の電池ケース10内への注液を終了する。このようにして、規定量の電解液15が電池ケース10内に注液される。
Next, in the second liquid injection step S23, the injection of the electrolytic solution 15 is restarted, and a specified amount of the electrolytic solution 15 is injected (see FIG. 7).
Specifically, the liquid injection valve 155 is opened by the control device 160, and the injection of the electrolytic solution 15 into the battery case 10 is restarted under atmospheric pressure. Then, when the flow rate of the electrolytic solution 15 flowing through the liquid flow passage 151 measured by the flow meter 153, that is, the amount of the electrolytic solution 15 injected into the battery case 10 reaches a specified amount, the liquid injection valve 155 Is closed, and the injection of the electrolytic solution 15 into the battery case 10 is completed. In this way, a specified amount of the electrolytic solution 15 is injected into the battery case 10.

その後、液面調整工程S24において、電解液15の液面15mが第2基準高さLBに下がるまで待つ(図8参照)。注液された電解液15は徐々に電極体20へ含浸するため、電解液15の注液終了後(第2注液工程S23後)は、時間の経過と共に電解液15の液面15mが徐々に低下していく。電解液15の液面15mが、第2基準高さLBに到達したら、この液面調整工程S24を終了する。これにより、電池ケース10内の上部に十分大きな空間GCを確保できるため、後述するように、封止工程S3で溶接不良が生じるのを防止できる。
その後は、チャンバ蓋部材143をチャンバ本体部材141から取り外すと共に、これに固設された注液ノズル110及び電極120を、電池1の注液孔13hから取り出す。その後、チャンバ本体部材141内から電池1を取り出す。かくして、注液工程S2が終了する。
Then, in the liquid level adjusting step S24, wait until the liquid level 15 m of the electrolytic solution 15 drops to the second reference height LB (see FIG. 8). Since the injected electrolytic solution 15 gradually impregnates the electrode body 20, after the injection of the electrolytic solution 15 is completed (after the second injection step S23), the liquid level of the electrolytic solution 15 gradually rises to 15 m with the passage of time. It will decrease to. When the liquid level 15 m of the electrolytic solution 15 reaches the second reference height LB, the liquid level adjusting step S24 is completed. As a result, a sufficiently large space GC can be secured in the upper part of the battery case 10, so that it is possible to prevent welding defects from occurring in the sealing step S3, as will be described later.
After that, the chamber lid member 143 is removed from the chamber body member 141, and the liquid injection nozzle 110 and the electrode 120 fixedly attached to the chamber lid member 143 are taken out from the liquid injection hole 13h of the battery 1. After that, the battery 1 is taken out from the chamber main body member 141. Thus, the liquid injection step S2 is completed.

次に、封止工程S3において、封止部材17で注液孔13hを封止する。具体的には、封止部材17で電池外部から注液孔13hを塞いだ状態で、レーザ溶接により封止部材17を電池ケース10に溶接して、注液孔13hを封止する。その後は、この電池1に初充電を行う。また、この電池1について各種検査を行う。かくして、電池1が完成する。 Next, in the sealing step S3, the liquid injection hole 13h is sealed with the sealing member 17. Specifically, with the sealing member 17 blocking the liquid injection hole 13h from the outside of the battery, the sealing member 17 is welded to the battery case 10 by laser welding to seal the liquid injection hole 13h. After that, the battery 1 is charged for the first time. In addition, various inspections are performed on the battery 1. Thus, the battery 1 is completed.

ところで、液量センサ105を用いずに、電解液15を電池ケース10内に注液すると、電解液15が電池ケース10の注液孔13hから電池外部に溢れ出てしまう場合のほか、電解液15が溢れ出なくても、電解液15の一部がケース蓋部材13の内側面13b(図5中、下方の面)に付着する場合がある。また、液量センサ105を用いて上述のように注液工程S2を行った場合でも、第1基準高さLAをケース蓋部材13の内側面13bに近い位置に設定すると、電解液15の一部がケース蓋部材13の内側面13bに付着する場合もある。 By the way, when the electrolytic solution 15 is injected into the battery case 10 without using the liquid amount sensor 105, the electrolytic solution 15 overflows from the liquid injection hole 13h of the battery case 10 to the outside of the battery, and the electrolytic solution 15 is not used. Even if 15 does not overflow, a part of the electrolytic solution 15 may adhere to the inner side surface 13b (lower surface in FIG. 5) of the case lid member 13. Further, even when the liquid injection step S2 is performed as described above using the liquid volume sensor 105, if the first reference height LA is set at a position close to the inner side surface 13b of the case lid member 13, one of the electrolytic solutions 15 is set. The portion may adhere to the inner side surface 13b of the case lid member 13.

すると、封止工程S3で封止部材17を溶接する際に、溶接で発生する熱によって、ケース蓋部材13の内側面13bのうち注液孔13hの近傍に付着した電解液15が気化して、電池ケース10内の圧力が上昇する。その結果、封止部材17と注液孔13hとの間に形成された溶融池が、電池ケース10内の圧力によって持ち上げられ、溶接不良を生じるおそれがある。 Then, when the sealing member 17 is welded in the sealing step S3, the electrolytic solution 15 adhering to the vicinity of the liquid injection hole 13h in the inner side surface 13b of the case lid member 13 is vaporized by the heat generated by the welding. , The pressure inside the battery case 10 rises. As a result, the molten pool formed between the sealing member 17 and the liquid injection hole 13h may be lifted by the pressure in the battery case 10 and cause welding failure.

これに対し、本実施形態では、第1注液工程S21において、電解液15の液面15mが第1基準高さLAに到達したら、電解液15の注液を停止しているため、電解液15がケース蓋部材13の内側面13bに付着するのを抑制できる。
更に、本実施形態では、液面調整工程S24で電解液15の液面15mが第2基準高さLBまで下がるのを待って、電池ケース10内の上部に十分大きな空間GCを確保した後に、封止工程S3を行っている。これにより、電池ケース10内の上部に大きな空間GCが存在すれば、仮にケース蓋部材13の内側面13bに付着した電解液15が封止工程S3で気化したとしても、電池ケース10内の圧力が大きく上昇するのを防止し、前述の溶接不良が生じるのを防止できる。
On the other hand, in the present embodiment, in the first liquid injection step S21, when the liquid level 15 m of the electrolytic solution 15 reaches the first reference height LA, the injection of the electrolytic solution 15 is stopped, so that the electrolytic solution is stopped. It is possible to prevent 15 from adhering to the inner side surface 13b of the case lid member 13.
Further, in the present embodiment, after waiting for the liquid level 15 m of the electrolytic solution 15 to drop to the second reference height LB in the liquid level adjusting step S24, a sufficiently large space GC is secured in the upper part of the battery case 10. The sealing step S3 is performed. As a result, if a large space GC exists in the upper part of the battery case 10, even if the electrolytic solution 15 adhering to the inner side surface 13b of the case lid member 13 is vaporized in the sealing step S3, the pressure in the battery case 10 is reached. Can be prevented from rising significantly, and the above-mentioned welding defects can be prevented from occurring.

以上で説明したように、電池1の製造方法では、注液工程S2は、第1注液工程S21、液面下げ工程S22及び第2注液工程S23を有する。前述のように、一度に多量の電解液15を電池ケース10内に注液しようとすると、電解液15が注液孔13hから電池外部に溢れ出ないように、電解液15の電極体20への含浸速度に合わせて、電解液15をゆっくり注液しなければならないため、注液時間が長く掛かる。 As described above, in the method for manufacturing the battery 1, the liquid injection step S2 includes a first liquid injection step S21, a liquid level lowering step S22, and a second liquid injection step S23. As described above, when a large amount of the electrolytic solution 15 is to be injected into the battery case 10 at one time, the electrolytic solution 15 is directed to the electrode body 20 of the electrolytic solution 15 so as not to overflow from the injection hole 13h to the outside of the battery. Since the electrolytic solution 15 must be slowly injected according to the impregnation rate of the above, the injection time is long.

これに対し、前述の電池1の製造方法では、第1注液工程S21において減圧状態で電解液15を注液した後、液面下げ工程S22において、電池ケース10内の気圧を高めて、電解液15の電極体20への含浸を促進させ、電解液15の液面15mを下げる。その後、第2注液工程S23で電解液15の注液を再開し、電解液15を規定量注液する。このように電解液15の注液の途中に液面下げ工程S22を設けて、電解液15の電極体20への含浸を促進させ電解液15の液面15mを下げることにより、第1注液工程S21及び第2注液工程S23における電解液15の注液速度を、一度に規定量の電解液15を注液する場合よりも速くでき、注液工程S2の時間を短くできる。 On the other hand, in the above-mentioned manufacturing method of the battery 1, after injecting the electrolytic solution 15 in a reduced pressure state in the first liquid injection step S21, the air pressure in the battery case 10 is increased in the liquid level lowering step S22 to perform electrolysis. The impregnation of the liquid 15 into the electrode body 20 is promoted, and the liquid level of the electrolytic liquid 15 is lowered by 15 m. Then, in the second liquid injection step S23, the injection of the electrolytic solution 15 is restarted, and the electrolytic solution 15 is injected in a specified amount. In this way, the liquid level lowering step S22 is provided in the middle of the injection of the electrolytic solution 15 to promote the impregnation of the electrolytic solution 15 into the electrode body 20 and lower the liquid level 15 m of the electrolytic solution 15 to lower the first liquid injection. The injection speed of the electrolytic solution 15 in the steps S21 and the second injection step S23 can be made faster than when a specified amount of the electrolytic solution 15 is injected at one time, and the time of the injection step S2 can be shortened.

また、電池1の電極体20には体積バラツキや、電池ケース10内に注液された電解液15の電極体20内への含浸速度にバラツキがある。このため、例えば、第1注液工程S21において、電解液15の注液量が所定量に達したときに電解液15の注液を停止する手法を採用した場合には、電解液15を所定量注液したときに、電池1によっては電解液15の一部が注液孔13hから電池外部に溢れ出てしまう場合も考えられる。
これに対し、本実施形態の製造方法では、第1注液工程S21において、電解液15の液面15mが第1基準高さLAに到達したときに電解液15の注液を停止するので、電解液15が注液孔13hから電池外部に溢れ出るのを確実に防止できる。
Further, the electrode body 20 of the battery 1 has a volume variation, and the impregnation rate of the electrolytic solution 15 injected into the battery case 10 into the electrode body 20 varies. Therefore, for example, in the first liquid injection step S21, when the method of stopping the injection of the electrolytic solution 15 when the injection amount of the electrolytic solution 15 reaches a predetermined amount is adopted, the electrolytic solution 15 is used. Depending on the battery 1, a part of the electrolytic solution 15 may overflow from the liquid injection hole 13h to the outside of the battery when a fixed amount of liquid is injected.
On the other hand, in the manufacturing method of the present embodiment, in the first liquid injection step S21, the injection of the electrolytic solution 15 is stopped when the liquid level 15 m of the electrolytic solution 15 reaches the first reference height LA. It is possible to reliably prevent the electrolytic solution 15 from overflowing to the outside of the battery from the liquid injection hole 13h.

以上において、本発明を実施形態に即して説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施形態では、第2注液工程S23において、電解液15を規定量注液して、電解液15の注液を終了したが、これに限られない。例えば、前述の液量センサ105を利用して、電解液15を規定高さまで注液するようにしてもよい。
Although the present invention has been described above in accordance with the embodiments, it is needless to say that the present invention is not limited to the above-described embodiments and can be appropriately modified and applied without departing from the gist thereof.
For example, in the embodiment, in the second liquid injection step S23, a predetermined amount of the electrolytic solution 15 is injected to finish the injection of the electrolytic solution 15, but the present invention is not limited to this. For example, the electrolytic solution 15 may be injected to a specified height by using the liquid amount sensor 105 described above.

1 電池
10 電池ケース
13h 注液孔
15 電解液
15m (電解液の)液面
17 封止部材
20 電極体
100 注液装置
105 液量センサ
110 注液ノズル
120 電極
LA 第1基準高さ
LB 第2基準高さ
S1 組立工程
S2 注液工程
S21 第1注液工程
S22 液面下げ工程
S23 第2注液工程
S24 液面調整工程
S3 封止工程
1 Battery 10 Battery case 13h Liquid injection hole 15 Electrolyte 15m (of electrolytic solution) Liquid level 17 Sealing member 20 Electrode body 100 Liquid injection device 105 Liquid volume sensor 110 Liquid injection nozzle 120 Electrode LA 1st reference height LB 2nd Reference height S1 Assembly process S2 Lubrication process S21 First lubrication process S22 Liquid level lowering process S23 Second lubrication process S24 Liquid level adjustment process S3 Sealing process

Claims (1)

注液孔を有する電池ケースと、上記電池ケース内に収容された電極体及び電解液と、を備える電池の製造方法であって、
上記電池ケース内に上記注液孔を通じて上記電解液を注液する注液工程を備え、
上記注液工程は、
上記電池ケース内を大気圧よりも減圧した状態で、上記電池ケースに上記電解液の注液を開始し、注液された上記電解液の液面の高さを液量センサで検知しつつ注液し、上記電極体の少なくとも一部が上記電解液に浸漬された状態で、かつ、上記電解液の上記液面が予め定めた第1基準高さに到達したことを上記液量センサが検知したら、上記電解液の注液を停止する第1注液工程と、
上記電池ケース内の気圧を、上記第1注液工程を行った際の気圧よりも高めて、上記電解液の液面を、上記第1注液工程の終了時における上記電解液の上記液面よりも低下させる液面下げ工程と、
上記電解液の注液を再開し、上記電解液を規定量または規定高さまで注液する第2注液工程と、
上記第2注液工程の後、上記電解液の上記液面が予め定めた第2基準高さに下がるまで待つ液面調整工程と、を有する
電池の製造方法。
A method for manufacturing a battery including a battery case having a liquid injection hole and an electrode body and an electrolytic solution housed in the battery case.
A liquid injection step of injecting the electrolytic solution into the battery case through the liquid injection hole is provided.
The above liquid injection process
With the inside of the battery case depressurized below the atmospheric pressure, the injection of the electrolytic solution into the battery case is started, and the injection is performed while detecting the height of the liquid level of the injected electrolytic solution with the liquid level sensor. The liquid level sensor detects that at least a part of the electrode body is immersed in the electrolytic solution and the liquid level of the electrolytic solution reaches a predetermined first reference height. Then, the first injection step of stopping the injection of the electrolytic solution and the
The air pressure inside the battery case is raised above the air pressure at the time of performing the first liquid injection step, and the liquid level of the electrolytic solution is raised to the liquid level of the electrolytic solution at the end of the first liquid injection step. The liquid level lowering process and the lowering process
The second injection step of restarting the injection of the electrolytic solution and injecting the electrolytic solution to a specified amount or a specified height, and
A method for manufacturing a battery , comprising: after the second liquid injection step, a liquid level adjusting step of waiting until the liquid level of the electrolytic solution drops to a predetermined second reference height.
JP2016249058A 2016-12-22 2016-12-22 Battery manufacturing method Active JP6838389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016249058A JP6838389B2 (en) 2016-12-22 2016-12-22 Battery manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016249058A JP6838389B2 (en) 2016-12-22 2016-12-22 Battery manufacturing method

Publications (2)

Publication Number Publication Date
JP2018106816A JP2018106816A (en) 2018-07-05
JP6838389B2 true JP6838389B2 (en) 2021-03-03

Family

ID=62785889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016249058A Active JP6838389B2 (en) 2016-12-22 2016-12-22 Battery manufacturing method

Country Status (1)

Country Link
JP (1) JP6838389B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7214700B2 (en) * 2020-10-21 2023-01-30 プライムプラネットエナジー&ソリューションズ株式会社 Method for manufacturing secondary battery
JP7216696B2 (en) 2020-12-08 2023-02-01 プライムプラネットエナジー&ソリューションズ株式会社 Battery manufacturing method
CN112768850B (en) * 2021-01-05 2023-05-09 深圳市易德微扣科技有限公司 Vacuum liquid injection sealing system and method for battery assembly
JP7412378B2 (en) 2021-03-12 2024-01-12 プライムプラネットエナジー&ソリューションズ株式会社 Secondary battery manufacturing method and secondary battery assembly
JP2022188536A (en) * 2021-06-09 2022-12-21 株式会社豊田自動織機 Manufacturing method of bipolar power storage device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3775653B2 (en) * 2001-06-01 2006-05-17 日本輸送機株式会社 Battery water replenisher
JP4859972B2 (en) * 2009-02-13 2012-01-25 パナソニック株式会社 Method for manufacturing cylindrical battery
JP5683938B2 (en) * 2010-12-22 2015-03-11 日立オートモティブシステムズ株式会社 Secondary battery manufacturing method and electrolyte injection device
JP2012256528A (en) * 2011-06-09 2012-12-27 Panasonic Corp Manufacturing method of battery and manufacturing device of battery
JP6163739B2 (en) * 2011-12-05 2017-07-19 日産自動車株式会社 Method and apparatus for manufacturing film-covered electrical device
CN104106156B (en) * 2012-02-07 2016-05-25 日产自动车株式会社 The manufacture method of thin-film package electrical equipment and manufacturing installation
JP5935526B2 (en) * 2012-06-12 2016-06-15 株式会社村田製作所 Electrolyte injection method
JP2014013816A (en) * 2012-07-04 2014-01-23 Shimadzu Corp Electrolyte impregnation apparatus and electrolyte injection method
JP2015005331A (en) * 2013-06-19 2015-01-08 パナソニック株式会社 Manufacturing method of sealed electrochemical device
JP2015198023A (en) * 2014-04-01 2015-11-09 住友電気工業株式会社 Method of manufacturing molten salt battery

Also Published As

Publication number Publication date
JP2018106816A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6838389B2 (en) Battery manufacturing method
JP6977603B2 (en) Liquid injection device
US10727471B2 (en) Method for manufacturing lithium ion polymer battery, battery cell, and lithium ion polymer battery including the same
KR101691754B1 (en) Battery manufacturing method
JP5790604B2 (en) Manufacturing method of sealed battery
CN104885285B (en) Method for manufacturing a sealed battery
JP2013152834A (en) Manufacturing method of battery
JPWO2015087618A1 (en) Battery manufacturing method and manufacturing apparatus
US10396342B2 (en) Method for manufacturing secondary cell having a wound body effectively impregnated with electrolytic solution
JP6066213B2 (en) Secondary battery manufacturing method and secondary battery
KR102648710B1 (en) Method for producing a battery
JP6245279B2 (en) Storage device manufacturing method, manufacturing device, liquid injection device, and liquid injection method
US20150287548A1 (en) Self-limiting electrolyte filling method
JP2018088312A (en) Manufacturing method of power storage device
JP6642356B2 (en) Injection device
JP2022067757A (en) Method for manufacturing secondary battery
JP6347102B2 (en) Method for manufacturing power storage device
JP5747937B2 (en) Manufacturing method of sealed battery
JP5786898B2 (en) Manufacturing method of sealed battery
JPH11329505A (en) Manufacture of lithium ion secondary battery
JP2018073539A (en) Method for manufacturing power storage device
JP2015198023A (en) Method of manufacturing molten salt battery
JP2021093318A (en) Battery manufacturing method
KR102264674B1 (en) Electrolyte Injection Method Using Vacuum
KR102264683B1 (en) Electrolyte Injection Method Using Vacuum

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210125

R151 Written notification of patent or utility model registration

Ref document number: 6838389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151