JP6347102B2 - Method for manufacturing power storage device - Google Patents

Method for manufacturing power storage device Download PDF

Info

Publication number
JP6347102B2
JP6347102B2 JP2013264796A JP2013264796A JP6347102B2 JP 6347102 B2 JP6347102 B2 JP 6347102B2 JP 2013264796 A JP2013264796 A JP 2013264796A JP 2013264796 A JP2013264796 A JP 2013264796A JP 6347102 B2 JP6347102 B2 JP 6347102B2
Authority
JP
Japan
Prior art keywords
electrolyte
electrolytic solution
capacitor
amount
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013264796A
Other languages
Japanese (ja)
Other versions
JP2015122392A (en
Inventor
晃司 星野
晃司 星野
洋之 若林
洋之 若林
和男 松下
和男 松下
隆史 黒木
隆史 黒木
太田 誠
誠 太田
光一 仲田
光一 仲田
聡司 丹野
聡司 丹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2013264796A priority Critical patent/JP6347102B2/en
Publication of JP2015122392A publication Critical patent/JP2015122392A/en
Application granted granted Critical
Publication of JP6347102B2 publication Critical patent/JP6347102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Secondary Cells (AREA)

Description

本発明は、リチウムイオン二次電池、リチウムイオンキャパシタ、電気二重層コンデンサや電解コンデンサなどの蓄電デバイスの製造方法に関する。 The present invention is a lithium ion secondary battery, lithium ion capacitor, a method of manufacturing a power storage device such as an electric double layer capacitor or an electrolytic capacitor.

コンデンサ素子に電解液を含浸している電気二重層コンデンサや電解コンデンサなどのコンデンサでは、コンデンサ素子中の電解液がコンデンサ素子から流出してケース内に滞留する。また、斯かるコンデンサでは、駆動時、ケース内に溜まるガスを放出するガス放出機構が設置され、このガス放出機構はガス透過性を有する安全弁を備えている。またコンデンサに限らず、リチウムイオン二次電池やリチウムイオンキャパシタにおいても同様にケース内に留まるガスを放出するガス放出機構が設置されている。   In a capacitor such as an electric double layer capacitor or an electrolytic capacitor in which a capacitor element is impregnated with an electrolytic solution, the electrolytic solution in the capacitor element flows out of the capacitor element and stays in the case. Moreover, in such a capacitor, a gas release mechanism that releases gas accumulated in the case when it is driven is installed, and this gas release mechanism includes a safety valve having gas permeability. Further, not only the capacitor but also a lithium ion secondary battery and a lithium ion capacitor are similarly provided with a gas release mechanism for releasing the gas remaining in the case.

この安全弁を備えたコンデンサに関し、外装ケースを塞ぐ封口板にY字形の突起を備え、安全弁の作動時、電解液が外部端子に接触するのを回避することが知られている(たとえば、特許文献1)。   With regard to a capacitor provided with this safety valve, it is known that a Y-shaped protrusion is provided on a sealing plate that closes an outer case, and that an electrolyte does not contact an external terminal when the safety valve is activated (for example, Patent Documents) 1).

また、樹脂ケースにキャップを超音波で融着させる際に、コンデンサ素子の分極性電極から振動によって流出する電解液をキャップ側に設けた遮断壁で遮断し、電解液による融着部分の汚染を防止することが知られている(たとえば、特許文献2)。
In addition, when the cap is fused to the resin case with ultrasonic waves, the electrolytic solution flowing out from the polarizable electrode of the capacitor element is blocked by a blocking wall provided on the cap side, and the fused portion is contaminated by the electrolytic solution. It is known to prevent (for example, Patent Document 2).

実開昭55−129447号公報Japanese Utility Model Publication No. 55-129447 特開2011−100998号公報JP 2011-100998 A

ところで、蓄電デバイスとしてたとえば、コンデンサの安全弁はケースを封じる封口板に備えられている。このようなコンデンサでは、通常の実装形態では、安全弁が上側であるため、電解液がケースの底側に移動する。このため、電解液が安全弁から遠ざけられ、流動性を有する電解液であっても、斯かる電解液でガス放出機能が妨げられることはない。   By the way, as a power storage device, for example, a safety valve of a capacitor is provided on a sealing plate that seals the case. In such a capacitor, since the safety valve is on the upper side in a normal mounting form, the electrolytic solution moves to the bottom side of the case. For this reason, even if electrolyte solution is kept away from the safety valve and the electrolyte solution has fluidity, the gas release function is not hindered by such electrolyte solution.

しかしながら、このようなコンデンサが安全弁のある封口板を下側に向けられて配置されると、電解液が安全弁に近づくことになる。コンデンサは安全弁を上側にした実装形態が理想的ではあるが、このような理想的な実装形態が常に維持されるとは限らない。実装環境によっては、ケースを寝かせた横配置や傾斜配置を避けることができない。このような配置では、流動性のある電解液が安全弁に近づき、電解液の付着でガス放出機能が損なわれる場合がある。   However, when such a capacitor is arranged with the sealing plate with the safety valve facing downward, the electrolyte approaches the safety valve. The capacitor is ideally mounted with the safety valve on the upper side, but such an ideal package is not always maintained. Depending on the mounting environment, it is unavoidable to place the case horizontally or tilted. In such an arrangement, the fluid electrolyte solution may approach the safety valve, and the gas discharge function may be impaired due to the adhesion of the electrolyte solution.

安全弁が電解液から離れていても、振動を伴う場合には流動性のある電解液がケース底部側から跳ね上がり、ケース内壁に付着した電解液が安全弁に到達し、電解液の付着でガス放出機能が損なわれる場合がある。   Even if the safety valve is separated from the electrolyte, if there is vibration, the fluid electrolyte will spring up from the bottom of the case, and the electrolyte attached to the inner wall of the case will reach the safety valve. May be damaged.

安全弁などのガス放出機構は、ガス透過経路と弁機能部とを備えている。ガス透過経路に電解液が侵入すると、電解液でガス透過経路が遮断されることになる。また、弁機能部に電解液が付着すると、弁機能部にケース内のガス圧を直接作用させることができない。弁機能部が電解液で覆われると、ガス透過性の悪化による弁機能が低下し、圧力上昇に対してガス放出量が低下して開弁にいたるなどのガス放出機能が低下することになる。   A gas release mechanism such as a safety valve includes a gas permeation path and a valve function unit. When the electrolyte enters the gas permeation path, the gas permeation path is blocked by the electrolyte. Moreover, if electrolyte solution adheres to a valve function part, the gas pressure in a case cannot act directly on a valve function part. If the valve function part is covered with the electrolyte solution, the valve function due to the deterioration of gas permeability is reduced, and the gas release function such as the amount of gas release decreases and the valve opens due to the pressure increase. .

また、コンデンサの長寿命化を図るため、ケース内に必要以上に電解液が封入される場合がある。斯かる場合には流動性のある電解液はケース内を流動することになる。   In addition, in order to extend the life of the capacitor, an electrolyte may be enclosed in the case more than necessary. In such a case, the electrolytic solution having fluidity flows in the case.

そこで、本発明の目的は上記課題に鑑み、蓄電デバイスの電解液によるガス放出機能の低下防止にある。
Then, the objective of this invention exists in the prevention of the fall of the gas discharge | release function by the electrolyte solution of an electrical storage device in view of the said subject.

上記目的を達成するため、本発明の蓄電デバイスの製造方法は、電解液を含浸した蓄電素子がケースに収納され、該ケースがガス放出機構を備える封口部材で封止されている蓄電デバイスの製造方法であって、該蓄電デバイスを傾斜配置として振動を付与し、所定時間放置した後、蓄電素子から流出する余剰電解液量が所定範囲となる電解液量に前記蓄電素子の電解液量を制御することで、ガス放出機構への余剰電解液の付着を抑制する。   In order to achieve the above object, a method for producing an electricity storage device according to the present invention is the production of an electricity storage device in which an electricity storage element impregnated with an electrolyte is housed in a case and the case is sealed with a sealing member having a gas release mechanism. A method of controlling the amount of electrolyte in the electricity storage element to an amount of electrolyte in which the amount of excess electrolyte flowing out from the electricity storage element is within a predetermined range after applying vibration with the electricity storage device in an inclined arrangement and leaving it for a predetermined time By doing so, adhesion of the excess electrolyte solution to a gas discharge | release mechanism is suppressed.

前記蓄電デバイスの製造方法において、前記蓄電デバイスは30度を含む傾斜範囲で傾斜配置とし、5〔Hz〕以上200〔Hz〕以下の振動を付与し、24時間以上を放置し、前記蓄電素子から流出する電解液量を1〔グラム〕未満に制御してもよい。
前記蓄電デバイスの製造方法において、前記ガス放出機構に付着する余剰電解液を、1〔ミリグラム〕以下としてもよい。
前記蓄電デバイスの製造方法において、前記蓄電素子に含浸された電解液の重量を電解液重量、電解液の含浸前の蓄電素子の重量を素子重量とし、前記制御された電解液の蓄電素子への搭載率が、電解液重量/素子重量=0.70〜0.85の範囲に設定してもよい。
In the method for manufacturing the electricity storage device, the electricity storage device is disposed in an inclined range including 30 degrees, imparts a vibration of 5 [Hz] to 200 [Hz], and is left for 24 hours or more. The amount of the electrolyte flowing out may be controlled to be less than 1 [gram].
In the method for manufacturing the electricity storage device, the excess electrolyte that adheres to the gas release mechanism may be 1 [milligram] or less.
In the method for manufacturing the electricity storage device, the weight of the electrolyte impregnated in the electricity storage element is defined as the weight of the electrolyte, the weight of the electricity storage element before impregnation with the electrolyte is defined as the element weight, and the controlled electrolyte is supplied to the energy storage element. The mounting rate may be set in a range of electrolyte weight / element weight = 0.70 to 0.85.

前記蓄電デバイスの製造方法において、蓄電素子に電解液を含浸した後、前記蓄電素子から所定量の電解液を除去する工程とを含んでもよい。   The method for manufacturing an electricity storage device may include a step of removing a predetermined amount of the electrolyte from the electricity storage element after impregnating the electricity storage element with the electrolyte.

本発明によれば、次の効果が得られる。   According to the present invention, the following effects can be obtained.

(1) コンデンサ素子から流出してケース内に滞留する電解液を抑制したので、電解液の付着によるガス放出機能が損なわれるのを防止できる。   (1) Since the electrolytic solution flowing out of the capacitor element and staying in the case is suppressed, it is possible to prevent the gas release function due to the adhesion of the electrolytic solution from being impaired.

(2) コンデンサの横配置、傾斜配置などの自由な配置態様が可能になるとともに、ケース内に滞留する電解液によるガス放出機構の機能低下を防止できる。   (2) Capacitors can be freely arranged such as laterally and obliquely arranged, and the function of the gas releasing mechanism due to the electrolyte staying in the case can be prevented from being deteriorated.

そして、本発明の他の目的、特徴および利点は、添付図面および各実施の形態を参照することにより、一層明確になるであろう。
Other objects, features, and advantages of the present invention will become clearer with reference to the accompanying drawings and each embodiment.

一実施の形態に係る蓄電デバイスの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the electrical storage device which concerns on one embodiment. 余剰電解液の測定方法の一例を示す図である。It is a figure which shows an example of the measuring method of an excess electrolyte solution. 電解液吸引装置の一例を示す図である。It is a figure which shows an example of an electrolyte solution suction device. コンデンサの試験方法を示す図である。It is a figure which shows the test method of a capacitor | condenser. 安全弁の電解液付着状況を示す図である。It is a figure which shows the electrolyte solution adhesion condition of a safety valve. 静電容量の変化特性を示す図である。It is a figure which shows the change characteristic of an electrostatic capacitance.

〔一実施の形態〕 [One embodiment]

図1は、本発明の一実施の形態に係る蓄電デバイスの製造工程の一例を示している。この製造工程は、蓄電デバイスの製造方法の一例である。この製造工程に係る蓄電デバイスはたとえば、電気二重層コンデンサであり、電解コンデンサ、リチウムイオン二次電池、リチウムイオンキャパシタなど、他の蓄電デバイスであってもよい。   FIG. 1 shows an example of a manufacturing process of an electricity storage device according to an embodiment of the present invention. This manufacturing process is an example of a method for manufacturing an electricity storage device. The electric storage device according to this manufacturing process is, for example, an electric double layer capacitor, and may be another electric storage device such as an electrolytic capacitor, a lithium ion secondary battery, or a lithium ion capacitor.

この製造工程にはコンデンサ素子形成工程(S1)、第1の素子重量測定工程(S2)、電解液含浸工程(S3)、第2の素子重量測定工程(S4)、余剰電解液吸引工程(S5)、第3の素子重量測定工程(S6)、電解液量判定工程(S7)およびケース収納・封止工程(S8)が含まれる。   This manufacturing process includes a capacitor element formation step (S1), a first element weight measurement step (S2), an electrolyte impregnation step (S3), a second element weight measurement step (S4), and an excess electrolyte suction step (S5). ), A third element weight measurement step (S6), an electrolyte amount determination step (S7), and a case storage / sealing step (S8).

コンデンサ素子形成工程(S1)では、蓄電素子の一例であるコンデンサ素子を形成する。この形成工程は、陽極側および陰極側の各電極箔の間にセパレータを介在させて巻回する。   In the capacitor element forming step (S1), a capacitor element that is an example of a power storage element is formed. In this forming step, winding is performed with a separator interposed between the electrode foils on the anode side and the cathode side.

素子重量測定工程(S2)では、コンデンサ素子形成工程で得られたコンデンサ素子の素子重量を測定する。この素子重量は電解液含浸前のコンデンサ素子の重量である。この重量に対し、電解液含浸後のコンデンサ素子重量Wrefを設定する。この素子重量Wrefを中央値に許容範囲±ΔWを想定した基準値として設定値:Wref±ΔWを決定する。許容範囲±ΔWは、不都合の生じないばらつきを想定すればよい。   In the element weight measuring step (S2), the element weight of the capacitor element obtained in the capacitor element forming step is measured. This element weight is the weight of the capacitor element before impregnation with the electrolytic solution. The capacitor element weight Wref after impregnation with the electrolytic solution is set with respect to this weight. A set value: Wref ± ΔW is determined using the element weight Wref as a median value and a reference value assuming an allowable range ± ΔW. The allowable range ± ΔW may be assumed to be a variation that does not cause inconvenience.

この設定値の決定の後、電解液含浸工程(S3)では、コンデンサ素子に電解液を含浸する。   After the determination of the set value, in the electrolytic solution impregnation step (S3), the capacitor element is impregnated with the electrolytic solution.

素子重量測定工程(S4)では、電解液含浸工程を経たコンデンサ素子の素子重量を測定する。この素子重量は電解液含浸後のコンデンサ素子の重量であり、電解液含浸前のコンデンサ素子の重量に含浸した電解液重量が加わった値である。   In the element weight measuring step (S4), the element weight of the capacitor element that has undergone the electrolytic solution impregnation step is measured. This element weight is the weight of the capacitor element after impregnating the electrolytic solution, and is a value obtained by adding the weight of the impregnating electrolyte to the weight of the capacitor element before impregnating the electrolytic solution.

電解液吸引工程(S5)は、電解液を含浸したコンデンサ素子から電解液を吸引し、コンデンサ素子から余剰となる電解液量を除去する。   In the electrolytic solution suction step (S5), the electrolytic solution is sucked from the capacitor element impregnated with the electrolytic solution, and an excessive amount of electrolytic solution is removed from the capacitor element.

電解液含浸前の素子重量をW1、電解液含浸後の素子重量をW2とすると、これら素子重量W1、W2から電解液含浸量Waは、
W2−W1=Wa ・・・(1)
となる。そこで、電解液含浸量Waに対し、予定含浸量をWfと定義すると、S5で吸引される除去電解液量ΔWは、
ΔW=Wa−Wf ・・・(2)
となる。この除去電解液量ΔWがコンデンサからの理想的な電解液吸引量となる。
Assuming that the element weight before impregnation with the electrolyte solution is W1 and the element weight after the electrolyte solution impregnation is W2, the amount of electrolyte impregnation Wa from these element weights W1 and W2 is:
W2-W1 = Wa (1)
It becomes. Therefore, if the expected amount of impregnation is defined as Wf with respect to the amount of impregnation of electrolyte Wa, the amount of removed electrolyte ΔW sucked in S5 is
ΔW = Wa−Wf (2)
It becomes. This removed electrolytic solution amount ΔW is an ideal amount of electrolytic solution sucked from the capacitor.

素子重量測定工程(S6)は、電解液吸引量で電解液が除去された後の素子重量を測定する。この素子重量をW3とする。   In the element weight measurement step (S6), the element weight after the electrolytic solution is removed with the electrolytic solution suction amount is measured. This element weight is defined as W3.

電解液量判定工程(S7)は、コンデンサ素子中の含浸電解液量を判定する。素子重量測定工程(S6)で求めた素子重量W3が設定値Wref±ΔWと比較して設定値Wref±ΔWから外れているか否かを判定する(S71)。   In the electrolytic solution amount determining step (S7), the amount of impregnated electrolytic solution in the capacitor element is determined. It is determined whether or not the element weight W3 obtained in the element weight measurement step (S6) is out of the set value Wref ± ΔW by comparison with the set value Wref ± ΔW (S71).

そこで、S72では、Wref−ΔW≦W3を判定する。Wref−ΔW≦W3でなければ(S72のNO)、含浸電解液量が少ないため、再度コンデンサ素子に電解液の含浸を行い(S3)、S4、S5、S6を経てS7に遷移する。   Therefore, in S72, Wref−ΔW ≦ W3 is determined. If Wref−ΔW ≦ W3 (NO in S72), the amount of the impregnating electrolyte is small, so the capacitor element is impregnated with the electrolyte again (S3), and the process proceeds to S7 through S4, S5, and S6.

Wref−ΔW≦W3であれば(S72のYES)、S73に移行する。このS73ではW3≦Wref+ΔWであるかを判断する(S73)。W3≦Wref+ΔWでなければ(S73のNO)、含浸電解液量が過多であるから、再度コンデンサ素子から電解液の吸引を行い(S5)、S6を経てS7に遷移する。   If Wref−ΔW ≦ W3 (YES in S72), the process proceeds to S73. In S73, it is determined whether or not W3 ≦ Wref + ΔW (S73). If W3 ≦ Wref + ΔW (NO in S73), the amount of impregnated electrolyte is excessive, so the electrolyte is sucked again from the capacitor element (S5), and the process proceeds to S7 via S6.

Wref−ΔW≦W3≦Wref+ΔWであれば、電解液を含浸したコンデンサ素子の素子重量が設定値Wref±ΔWの範囲であり、適正である。   If Wref−ΔW ≦ W3 ≦ Wref + ΔW, the element weight of the capacitor element impregnated with the electrolytic solution is within the range of the set value Wref ± ΔW and is appropriate.

そして、ケース収納・封止工程(S8)は、電解液の含浸量が適正値に制御されたコンデンサ素子をケースに収納し、該ケースを封口部材で封止する。これにより、コンデンサが完成する。   In the case storage / sealing step (S8), the capacitor element in which the amount of impregnation of the electrolyte is controlled to an appropriate value is stored in the case, and the case is sealed with a sealing member. Thereby, the capacitor is completed.

このような製造工程によれば、コンデンサ素子の電解液量はたとえば、コンデンサ素子から流出する余剰電解液量を1.0〔g〕未満に制御する。このような余剰電解液量の制御により、コンデンサ素子内の電解液量を適正量に制御することができ、コンデンサ素子から流出してケース内に滞留し、流動する余剰電解液を抑制することができる。   According to such a manufacturing process, for example, the amount of the electrolyte solution in the capacitor element is controlled to be less than 1.0 [g]. By controlling the amount of excess electrolyte, it is possible to control the amount of electrolyte in the capacitor element to an appropriate amount, and to suppress the flowing excess electrolyte from flowing out of the capacitor element and staying in the case. it can.

図2は、コンデンサの余剰電解液の測定方法を示している。この余剰電解液の測定方法は、コンデンサ2から余剰の電解液4を採取し、その電解液量を測定する方法である。   FIG. 2 shows a method for measuring the excess electrolyte of the capacitor. This surplus electrolyte solution measuring method is a method in which the surplus electrolyte solution 4 is collected from the capacitor 2 and the amount of the electrolyte solution is measured.

この測定方法に供するコンデンサ2は、電解液4を含浸したコンデンサ素子6をケース8に収納し、このケース8を封口部材10で封止している。封口部材10はガス放出機構12を備えている。このガス放出機構12は、封口部材10にガス放出孔14を備え、このガス放出孔14に安全弁16が設置されている。この安全弁16は、ガス透過性材料で形成され、ケース8内のガスを放出する。   In the capacitor 2 used for this measurement method, a capacitor element 6 impregnated with an electrolytic solution 4 is housed in a case 8, and the case 8 is sealed with a sealing member 10. The sealing member 10 includes a gas release mechanism 12. The gas release mechanism 12 includes a gas release hole 14 in the sealing member 10, and a safety valve 16 is installed in the gas release hole 14. The safety valve 16 is made of a gas permeable material and discharges the gas in the case 8.

コンデンサ2は、封口部材10を下側にして傾斜角度θで設置されている。コンデンサ素子6に含浸された電解液4は流動性を有し、ケース8内には余剰の電解液4が滞留している。この場合、封口部材10にある安全弁16は、余剰の電解液4から離れるように、たとえば封口部材10の中心位置より上方に来るようにコンデンサ2が維持されている。   The capacitor 2 is installed at an inclination angle θ with the sealing member 10 facing down. The electrolytic solution 4 impregnated in the capacitor element 6 has fluidity, and the excess electrolytic solution 4 stays in the case 8. In this case, the capacitor 2 is maintained such that the safety valve 16 in the sealing member 10 is located above the center position of the sealing member 10 so as to be away from the excess electrolyte solution 4, for example.

このコンデンサ2の余剰の電解液4の測定方法として、傾斜角度θを30〔°〕の傾斜配置とする。この状態に維持させたコンデンサ2に振動を加える。振動周波数fは、下限周波数fminをたとえば、5〔Hz〕、上限周波数fmaxをたとえば、200〔Hz〕とし、この周波数範囲の振動を与える。コンデンサ2には重力として20〔G〕を付与する。この状態で一定の環境温度たとえば、60〔℃〕中に放置し、この放置時間は所定時間たとえば、24〔時間〕とする。   As a method for measuring the excess electrolyte solution 4 of the capacitor 2, the inclination angle θ is set to be 30 [°]. Vibration is applied to the capacitor 2 maintained in this state. The vibration frequency f has a lower limit frequency fmin of, for example, 5 [Hz] and an upper limit frequency fmax of, for example, 200 [Hz], and gives vibration in this frequency range. The capacitor 2 is given 20 [G] as gravity. In this state, it is left at a constant environmental temperature, for example, 60 [° C.], and this standing time is set to a predetermined time, for example, 24 [hour].

このような条件で放置されたコンデンサ2のケース8に電解液排出孔18を形成する。この電解液排出孔18に排出パイプ20を取り付け、ケース8から排出パイプ20によりケース8外に流出させた余剰の電解液4を測定容器22に採取する。この測定容器22に溜められた電解液4を秤量計24で測定する。この測定値が余剰電解液量である。電解液量は重量で求められるが、この重量と電解液4の比重とから体積が求められる。   An electrolytic solution discharge hole 18 is formed in the case 8 of the capacitor 2 left under such conditions. A discharge pipe 20 is attached to the electrolyte discharge hole 18, and excess electrolyte 4 that has flowed out of the case 8 from the case 8 through the discharge pipe 20 is collected in the measurement container 22. The electrolyte solution 4 stored in the measurement container 22 is measured with a weighing meter 24. This measured value is the surplus electrolyte amount. The amount of the electrolytic solution is obtained by weight, but the volume is obtained from this weight and the specific gravity of the electrolytic solution 4.

図3は、電解液吸引装置の一例を示している。コンデンサ素子6に含浸されている電解液4を吸引装置28に設置して吸引し、コンデンサ素子6における電解液量を適正量に制御する。   FIG. 3 shows an example of the electrolyte solution suction device. The electrolytic solution 4 impregnated in the capacitor element 6 is placed in the suction device 28 and sucked, and the amount of the electrolytic solution in the capacitor element 6 is controlled to an appropriate amount.

この吸引装置28には、載置部30および吸引部32が備えられている。載置部30には電解液4を含浸したコンデンサ素子6が設置される。この載置部30の底面側には吸引部32が取り付けられている。載置部30上の各コンデンサ素子6から電解液4を吸引部32に吸引し、コンデンサ素子6から電解液4を排出させる。これにより、コンデンサ素子6に含まれる電解液量を適正量に制御できる。   The suction device 28 includes a placement unit 30 and a suction unit 32. A capacitor element 6 impregnated with the electrolytic solution 4 is installed on the mounting portion 30. A suction part 32 is attached to the bottom side of the mounting part 30. The electrolytic solution 4 is sucked into the suction portion 32 from each capacitor element 6 on the mounting portion 30, and the electrolytic solution 4 is discharged from the capacitor element 6. Thereby, the amount of the electrolyte contained in the capacitor element 6 can be controlled to an appropriate amount.

<一実施の形態の特徴事項および効果> <Features and effects of one embodiment>

(1) 上記実施の形態では、電解液重量としてコンデンサ素子6に含浸された電解液4の重量、素子重量として電解液4の未含浸のコンデンサ素子6の重量を設定し、上記製造方法では、未含浸の素子重量を測定し、搭載率を基準に電解液4を含浸しその過剰分を除去している。   (1) In the above embodiment, the weight of the electrolytic solution 4 impregnated in the capacitor element 6 is set as the electrolytic solution weight, and the weight of the unimpregnated capacitor element 6 in the electrolytic solution 4 is set as the element weight. The weight of the unimpregnated element is measured, the electrolyte solution 4 is impregnated based on the mounting rate, and the excess is removed.

コンデンサ素子6において素子重量が重いほど電極やセパレータが長く、コンデンサ素子6に保持できる電解液量が多くなる。つまり、素子重量が軽いものは保持できる電解液量が少ない。コンデンサ素子6の製造時、この素子重量がばらつき、含浸後の電解液量もコンデンサ素子6ごとに異なる。コンデンサ素子6に含まれる電解液量が異なれば、除去できる電解液量も異なることになる。そこで、製造工程では電解液量を素子重量で割った搭載率で電解液量を管理することができる。つまり、既述の予定含浸量(Wf)の算出基準に搭載率を適用すればよい。   In the capacitor element 6, the heavier the element weight, the longer the electrodes and separators, and the more electrolyte solution can be held in the capacitor element 6. That is, the amount of electrolyte solution that can be held is small when the element weight is light. When the capacitor element 6 is manufactured, the weight of the element varies, and the amount of electrolyte after impregnation varies from capacitor element 6 to capacitor element 6. If the amount of the electrolytic solution contained in the capacitor element 6 is different, the amount of the electrolytic solution that can be removed is also different. Therefore, in the manufacturing process, the amount of electrolyte can be managed by the mounting rate obtained by dividing the amount of electrolyte by the element weight. That is, the mounting rate may be applied to the above-described calculation standard for the planned impregnation amount (Wf).

具体的には、蓄電素子に含浸された電解液の重量を電解液重量、電解液の含浸前の蓄電素子の重量を素子重量とすれば、電解液の蓄電素子への搭載率が、電解液重量/素子重量=0.70〜0.85の範囲とすることが好ましい。   Specifically, when the weight of the electrolytic solution impregnated in the power storage element is the weight of the electrolytic solution, and the weight of the power storage element before impregnation of the electrolytic solution is the element weight, the mounting ratio of the electrolytic solution to the power storage element is Weight / element weight = 0.70 to 0.85 is preferable.

(2) 余剰電解液量を一例として1.0〔g〕未満とするには、電解液の搭載率を制御すればよい。また、ガス放出機構に付着する余剰電解液を、1〔ミリグラム〕以下とするには、同じく電解液の搭載率を制御すればよい。この場合、所定の搭載率に設定することにより、電解液4の流出を抑制することができる。   (2) In order to make the amount of excess electrolyte less than 1.0 [g] as an example, the mounting rate of the electrolyte may be controlled. Moreover, in order to make the excess electrolyte solution adhering to the gas release mechanism 1 [milligram] or less, the mounting rate of the electrolyte solution may be similarly controlled. In this case, the outflow of the electrolyte solution 4 can be suppressed by setting to a predetermined mounting rate.

(3) 斯かる処理により、コンデンサ素子6の電解液4の含浸量を適正値に制御できる。この結果、コンデンサ2を横置きや傾斜置きした場合であっても、コンデンサ素子6から流出する電解液4がガス放出機構である安全弁16に到達するのを防止でき、安全弁16が電解液4で塞がれ、電解液4の付着でガス放出機能の低下などの不都合を防止できる。   (3) The amount of impregnation of the electrolytic solution 4 of the capacitor element 6 can be controlled to an appropriate value by such treatment. As a result, even when the capacitor 2 is placed horizontally or inclined, the electrolytic solution 4 flowing out from the capacitor element 6 can be prevented from reaching the safety valve 16 that is a gas release mechanism. It is possible to prevent inconveniences such as a decrease in the gas release function due to clogging and adhesion of the electrolytic solution 4.

(4) 振動を伴う車両用機器に搭載され、エンジン起動時の激しい振動が加わっても、ケース8内で流動する電解液4が低減されているので、電解液4の跳ね上がりなどを防止でき、電解液4の安全弁16への付着を防止できる。   (4) Since the electrolyte 4 flowing in the case 8 is reduced even when intense vibration is applied at the time of engine start-up, which is mounted on a vehicle device with vibration, the electrolyte 4 can be prevented from jumping up. The electrolytic solution 4 can be prevented from adhering to the safety valve 16.

(5) コンデンサ素子6に含浸する電解液量について、コンデンサ2を斜めたとえば、30度の勾配に配置(横置き)し、振動周波数たとえば、5〔Hz〕〜200〔Hz〕、重力20〔G〕、24時間の経過後の余剰の電解液量をたとえば、1.0〔g〕以下に設定する。この場合、安全弁16は、横置きした際に封口部材10の上方側に設置し、除去する電解液量は、2〔g〕〜8〔g〕の範囲でよい。このようにすれば、安全弁16への電解液の付着を抑制でき、安全弁に付着する電解液を1〔ミリグラム〕以下に制御することができる。   (5) Concerning the amount of electrolyte impregnated in the capacitor element 6, the capacitor 2 is disposed obliquely (for example, with a 30 ° gradient), and the vibration frequency is, for example, 5 [Hz] to 200 [Hz], gravity 20 [G ], The excess amount of electrolyte after 24 hours is set to 1.0 [g] or less, for example. In this case, the safety valve 16 is installed on the upper side of the sealing member 10 when placed horizontally, and the amount of the electrolytic solution to be removed may be in the range of 2 [g] to 8 [g]. If it does in this way, adhesion of electrolyte solution to safety valve 16 can be controlled, and electrolyte solution which adheres to a safety valve can be controlled below 1 [milligram].

(6) 電解液4の除去は上記実施の形態に既述の通り、電解液4を含む素子重量の基準値を設定し、電解液含浸後の重量から余剰の電解液4を特定し、所定量に制御する。   (6) The electrolytic solution 4 is removed as described in the above embodiment by setting a reference value for the weight of the element including the electrolytic solution 4, specifying the excess electrolytic solution 4 from the weight after the impregnation with the electrolytic solution, Control to quantitative.

(7) このように余剰の電解液量に制御すれば、安全弁16に対する電解液4の付着などの影響を回避でき、ガス透過機能を維持することができるなど、信頼性の高いコンデンサ2を実現できる。   (7) By controlling the amount of surplus electrolyte in this way, it is possible to avoid the influence of the electrolyte 4 adhering to the safety valve 16 and to maintain the gas permeation function. it can.

<試験方法およびその結果> <Test method and results>

図4は、コンデンサの試験方法を示す図である。この試験方法は、コンデンサに含まれる電解液がコンデンサのガス放出機構に付着する状況を検査する。   FIG. 4 is a diagram illustrating a capacitor testing method. This test method inspects the situation where the electrolyte contained in the capacitor adheres to the capacitor gas release mechanism.

供試コンデンサには既述のコンデンサ2が用いられる。このコンデンサ2は、φ45mm、135mmの高さを有する。このコンデンサ2の製造工程には電解液4の含浸、電解液4の除去、ケース封入、加締めおよびエージングが含まれる。   The capacitor 2 described above is used as the test capacitor. The capacitor 2 has a height of φ45 mm and 135 mm. The manufacturing process of the capacitor 2 includes impregnation with the electrolyte solution 4, removal of the electrolyte solution 4, case sealing, caulking, and aging.

図4のAに示すように、コンデンサ素子6に電解液4の含浸を行う。図4のBは、電解液含浸後のコンデンサ素子6を示している。このコンデンサ素子6から図4のCに示すように、余剰の電解液4の除去を行い、電解液4の除去量を一例として、a:0〔g〕、b:−2〔g〕、c:−4〔g〕、d:−5〔g〕、e:−6〔g〕、f:−8〔g〕とする。この場合、電解液4の除去量を異ならせ、電解液の搭載率を一例として、a:0.90、b:0.86、c:0.80、d0.77、e:0.75、f:0.70に設定したコンデンサ素子6を含む複数のコンデンサを作成する。   As shown in FIG. 4A, the capacitor element 6 is impregnated with the electrolytic solution 4. FIG. 4B shows the capacitor element 6 after impregnation with the electrolytic solution. As shown in FIG. 4C, the excess electrolytic solution 4 is removed from the capacitor element 6, and the removal amount of the electrolytic solution 4 is taken as an example: a: 0 [g], b: -2 [g], c : -4 [g], d: -5 [g], e: -6 [g], f: -8 [g]. In this case, the removal amount of the electrolytic solution 4 is varied, and the mounting rate of the electrolytic solution is taken as an example, a: 0.90, b: 0.86, c: 0.80, d0.77, e: 0.75, f: A plurality of capacitors including the capacitor element 6 set to 0.70 are created.

各コンデンサ素子6はケース8に封入し、封口部材10でケース8を封口する。この場合、ケース8は封止のため加締めを行う。図4のDは、加締め後のコンデンサ2を示している。ケース8には加締め部34が形成されている。   Each capacitor element 6 is enclosed in a case 8 and the case 8 is sealed with a sealing member 10. In this case, the case 8 is caulked for sealing. 4D shows the capacitor 2 after crimping. A caulking portion 34 is formed in the case 8.

図4のEに示すように、コンデンサ2のケース8に横加締めを施し、所定時間のエージング処理を行う。図4のFは、エージング後のコンデンサ2を示している。ケース8には既述の横加締めによる帯状に複数の加締め部34が形成されている。   As shown to E of FIG. 4, the case 8 of the capacitor | condenser 2 is laterally caulked and the aging process for a predetermined time is performed. F of FIG. 4 shows the capacitor 2 after aging. The case 8 is formed with a plurality of caulking portions 34 in a band shape by the lateral caulking described above.

図4のGは、一つのコンデンサ2の配置状態を示している。この実験では、各コンデンサ2を基準面36から傾斜角度θに維持し、この傾斜角度θはたとえば、θ=30〔°〕に静置した。コンデンサ2の周囲温度は一例として、60〔℃〕に設定した。安全弁16は、図2に示したコンデンサと同様に、コンデンサ2の封口板の上側に配置されている。   G in FIG. 4 shows an arrangement state of one capacitor 2. In this experiment, each capacitor 2 was maintained at an inclination angle θ from the reference plane 36, and the inclination angle θ was left at θ = 30 [°], for example. As an example, the ambient temperature of the capacitor 2 was set to 60 [° C.]. The safety valve 16 is disposed on the upper side of the sealing plate of the capacitor 2 in the same manner as the capacitor shown in FIG.

このような環境下で静置した各コンデンサ2に対し、振動試験を施した。この振動試験は下限周波数fminたとえば、5〔Hz〕から上限周波数fmaxたとえば、200〔Hz〕の範囲で変化させ、20〔G〕の重力を付与し、一定時間たとえば、24〔時間〕放置する。これにより、図5および図6に示す試験結果を得た。   A vibration test was performed on each capacitor 2 that was allowed to stand in such an environment. In this vibration test, the lower limit frequency fmin, for example, 5 [Hz] is changed within the range of the upper limit frequency fmax, for example, 200 [Hz], a gravity of 20 [G] is applied, and left for a fixed time, for example, 24 [hour]. Thereby, the test results shown in FIGS. 5 and 6 were obtained.

図5は、安全弁16の電解液付着状況を示している。試験後の各コンデンサ2から安全弁16を取り出し、安全弁への電解液の付着状況を観察したものである。また、安全弁16への電解液の付着量をそれぞれ測定した。また、試験後の各コンデンサ2のコンデンサ素子から流出した余剰電解液量を測定し、またコンデンサ素子への電解液の搭載率も記載した。   FIG. 5 shows the state of electrolyte solution adhesion of the safety valve 16. The safety valve 16 is taken out from each capacitor 2 after the test, and the adhesion state of the electrolytic solution to the safety valve is observed. Moreover, the adhesion amount of the electrolyte solution to the safety valve 16 was measured, respectively. In addition, the amount of surplus electrolyte solution flowing out from the capacitor element of each capacitor 2 after the test was measured, and the mounting rate of the electrolyte solution on the capacitor element was also described.

aおよびbでは安全弁16への電解液4の付着量が多い。このような付着量は、安全弁16のガス放出機能が低下する。特に、安全弁16の中央で窪んでいるガス透過部位に電解液4が付着してしまっている。   In a and b, the amount of the electrolyte 4 attached to the safety valve 16 is large. Such an adhesion amount reduces the gas release function of the safety valve 16. In particular, the electrolyte solution 4 has adhered to the gas permeation site that is recessed in the center of the safety valve 16.

cでは電解液の搭載率が低く、また安全弁16への電解液4の付着量が少なく、しかも安全弁16のガス透過部位にも電解液4の付着が極めて少なく、良好である。d、eおよびfでは電解液の搭載率は低く電解液4がほとんど付着していない。   In c, the mounting ratio of the electrolytic solution is low, the amount of the electrolytic solution 4 attached to the safety valve 16 is small, and the electrolytic solution 4 is also hardly attached to the gas permeation portion of the safety valve 16, which is favorable. In d, e, and f, the mounting rate of the electrolytic solution is low, and the electrolytic solution 4 hardly adheres.

図6は、静電容量の変化特性を示している。なお、測定条件は、2.5〔V〕の電圧印加、70度環境下にて測定している。図6から分かるように、電解液4の多寡について、静電容量の変化率に顕著な差異は認められない。ただし、図示しないが、電解液の搭載率が0.70未満のコンデンサにおいては、長時間使用時にドライアップ等による静電容量等の性能劣化が生じてしまう。   FIG. 6 shows a change characteristic of the capacitance. In addition, the measurement conditions are 2.5 [V] voltage application and 70 degree environment. As can be seen from FIG. 6, no significant difference is observed in the rate of change in the capacitance with respect to the amount of the electrolytic solution 4. However, although not shown in the figure, in a capacitor having an electrolytic solution mounting rate of less than 0.70, performance deterioration such as capacitance due to dry-up occurs when used for a long time.

コンデンサ素子6から除去する電解液量は、コンデンサ素子6の大きさによって調整する。巻回タイプ(φ20〜φ100〔mm〕程度)のコンデンサであれば、除去量や余剰電解液量は、既述の範囲とすればよい。φによって形成される安全弁16の大きさも変化する。この安全弁16はたとえば、φ2〜φ10〔mm〕程度である。また、コンデンサ素子から流出する余剰電解液量は、コンデンサ素子6の大きさに依存するものの、コンデンサ素子6への電解液の搭載率を設定することで既述の一定の範囲に抑制される。余剰電解液量が1.0〔g〕以上であれば、安全弁16への付着領域や付着量が多く、安全弁16のガス透過機能の低下を引き起こすこととなる。   The amount of the electrolytic solution removed from the capacitor element 6 is adjusted according to the size of the capacitor element 6. In the case of a winding type capacitor (about φ20 to φ100 [mm]), the removal amount and the excess electrolyte amount may be in the ranges described above. The size of the safety valve 16 formed by φ also changes. The safety valve 16 is, for example, about φ2 to φ10 [mm]. Further, although the amount of excess electrolyte flowing out from the capacitor element depends on the size of the capacitor element 6, the amount of the electrolyte solution mounted on the capacitor element 6 is set to a certain range as described above. If the surplus electrolyte amount is 1.0 [g] or more, the adhesion region and the adhesion amount to the safety valve 16 are large, and the gas permeation function of the safety valve 16 is reduced.

また、コンデンサ素子6に含浸されている電解液量やその状態が、振動などが加わってもコンデンサ素子6から電解液4が流出しない程度に、しかも、その電解液4が静電容量などの電気的特性を維持できる程度にコンデンサ素子6に含まれていることが必要である。上記試験結果では、電解液4の上記削減量が静電容量の変化に影響しておらず、安全弁16の機能低下を防止する程度の削減量では信頼性の高い値として静電容量が維持されることが確認されている。   In addition, the amount of electrolyte solution impregnated in the capacitor element 6 and its state are such that the electrolyte solution 4 does not flow out of the capacitor element 6 even when vibrations are applied, and the electrolyte solution 4 has an electric capacity such as capacitance. It is necessary to be included in the capacitor element 6 to such an extent that the mechanical characteristics can be maintained. According to the above test results, the amount of reduction of the electrolyte solution 4 does not affect the change in capacitance, and the amount of reduction that prevents deterioration of the function of the safety valve 16 maintains the capacitance as a highly reliable value. It has been confirmed that

〔他の実施の形態〕 [Other Embodiments]

上記実施の形態では、コンデンサ素子6の素子重量に基準値を設定しているが、この基準値は理論値であってもよく、測定値を総合的に判断し、適正な統計値や測定値であってもよい。   In the above embodiment, a reference value is set for the element weight of the capacitor element 6, but this reference value may be a theoretical value, and the measured value is comprehensively determined, and an appropriate statistical value or measured value is determined. It may be.

以上説明したように、本発明の最も好ましい実施の形態等について説明した。本発明は、上記記載に限定されるものではない。特許請求の範囲に記載され、または発明を実施するための形態に開示された発明の要旨に基づき、当業者において様々な変形や変更が可能である。斯かる変形や変更が、本発明の範囲に含まれることは言うまでもない。
As described above, the most preferable embodiment of the present invention has been described. The present invention is not limited to the above description. Various modifications and changes can be made by those skilled in the art based on the gist of the invention described in the claims or disclosed in the embodiments for carrying out the invention. It goes without saying that such modifications and changes are included in the scope of the present invention.

本発明の蓄電デバイスやその製造方法によれば、蓄電素子に含浸する電解液を適正値に制御でき、封口部材にガス放出機構を備えた蓄電デバイスにあって、横置きや斜め置きなど、ガス放出機構の安全弁に対する電解液の付着を防止でき、その付着によるガス放出機能の低下を防止でき、信頼性の高いコンデンサなどの蓄電デバイスを提供できる。
According to the electricity storage device of the present invention and the manufacturing method thereof, the electrolyte solution impregnated in the electricity storage element can be controlled to an appropriate value. It is possible to prevent the electrolyte from adhering to the safety valve of the release mechanism, to prevent the gas release function from being lowered due to the adhesion, and to provide a highly reliable power storage device such as a capacitor.

2 コンデンサ
4 電解液
6 コンデンサ素子
8 ケース
10 封口部材
12 ガス放出機構
14 ガス放出孔
16 安全弁
18 電解液排出孔
20 排出パイプ
22 測定容器
24 秤量計
28 吸引装置
30 載置部
32 吸引部
34 加締め部
36 基準面
2 Capacitor 4 Electrolyte 6 Capacitor Element 8 Case 10 Sealing Member 12 Gas Release Mechanism 14 Gas Release Hole 16 Safety Valve 18 Electrolyte Discharge Hole 20 Discharge Pipe 22 Measuring Container 24 Weighing Meter 28 Suction Device 30 Placement Unit 32 Suction Unit 34 Clamping Part 36 Reference plane

Claims (5)

電解液を含浸した蓄電素子がケースに収納され、該ケースがガス放出機構を備える封口部材で封止されている蓄電デバイスの製造方法であって、
該蓄電デバイスを傾斜配置として振動を付与し、所定時間放置した後、蓄電素子から流出する余剰電解液量が所定範囲となる電解液量に前記蓄電素子の電解液量を制御することで、ガス放出機構への余剰電解液の付着を抑制したことを特徴とする蓄電デバイスの製造方法。
An electricity storage device impregnated with an electrolytic solution is housed in a case, and the case is a method for producing an electricity storage device sealed with a sealing member having a gas release mechanism,
By applying vibration to the electricity storage device in an inclined arrangement and leaving it for a predetermined period of time, the amount of excess electrolyte flowing out from the electricity storage element is controlled to an amount of electrolyte in a predetermined range, thereby controlling the amount of electrolyte in the electricity storage element. The manufacturing method of the electrical storage device characterized by suppressing attachment of the excess electrolyte solution to a discharge | release mechanism.
前記蓄電デバイスは30度を含む傾斜範囲で傾斜配置とし、5〔Hz〕以上200〔Hz〕以下の振動を付与し、24時間以上を放置し、前記蓄電素子から流出する電解液量を1〔グラム〕未満に制御したことを特徴とする請求項1に記載の蓄電デバイスの製造方法。The electricity storage device is inclined in an inclination range including 30 degrees, applied with a vibration of 5 Hz to 200 Hz, left for 24 hours or longer, and the amount of electrolyte flowing out of the electricity storage element is 1 [ The method of manufacturing an electricity storage device according to claim 1, wherein the storage device is controlled to be less than [gram]. 前記ガス放出機構に付着する余剰電解液を、1〔ミリグラム〕以下としたことを特徴とする請求項1又は2に記載の蓄電デバイスの製造方法。3. The method for manufacturing an electricity storage device according to claim 1, wherein an excess electrolytic solution adhering to the gas release mechanism is 1 [milligram] or less. 前記蓄電素子に含浸された電解液の重量を電解液重量、電解液の含浸前の蓄電素子の重量を素子重量とし、前記制御された電解液の蓄電素子への搭載率が、電解液重量/素子重量=0.70〜0.85の範囲に設定することを特徴とする請求項1乃至3のいずれかに記載の蓄電デバイスの製造方法。 The weight of the electrolytic solution impregnated in the electric storage element is defined as the weight of the electrolytic solution, the weight of the electric storage element before impregnation with the electrolytic solution is defined as the element weight, and the mounting rate of the controlled electrolytic solution in the electric storage element is expressed as electrolyte weight / The method for manufacturing an electricity storage device according to any one of claims 1 to 3, wherein the element weight is set in a range of 0.70 to 0.85. 蓄電素子に電解液を含浸した後、前記蓄電素子から所定量の電解液を除去する工程と、
を含むことを特徴とする請求項1乃至4のいずれかに記載の蓄電デバイスの製造方法。
Removing a predetermined amount of the electrolytic solution from the electrical storage element after impregnating the electrical storage element with the electrolytic solution;
Method for producing a device according to any of claims 1 to 4, characterized in that it comprises a.
JP2013264796A 2013-12-24 2013-12-24 Method for manufacturing power storage device Active JP6347102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013264796A JP6347102B2 (en) 2013-12-24 2013-12-24 Method for manufacturing power storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013264796A JP6347102B2 (en) 2013-12-24 2013-12-24 Method for manufacturing power storage device

Publications (2)

Publication Number Publication Date
JP2015122392A JP2015122392A (en) 2015-07-02
JP6347102B2 true JP6347102B2 (en) 2018-06-27

Family

ID=53533779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013264796A Active JP6347102B2 (en) 2013-12-24 2013-12-24 Method for manufacturing power storage device

Country Status (1)

Country Link
JP (1) JP6347102B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101942496B1 (en) * 2015-08-20 2019-01-25 주식회사 엘지화학 Device for Manufacturing Secondary Battery Capable of Removing Gas by Vibration
KR102147415B1 (en) * 2016-03-29 2020-08-24 주식회사 엘지화학 Method for preparing lithium secondary battery
DE112016000028T5 (en) * 2016-03-31 2016-12-22 Komatsu Ltd. Capacitor and capacitor module
CN109976047B (en) 2018-01-02 2021-03-16 京东方科技集团股份有限公司 Touch electrode structure, touch substrate, preparation method, display panel and device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008177322A (en) * 2007-01-18 2008-07-31 Matsushita Electric Ind Co Ltd Capacitor
JP2009123482A (en) * 2007-11-14 2009-06-04 Panasonic Corp Liquid filling method of lead storage battery and liquid filling device of lead storage battery
JP5697231B2 (en) * 2010-08-11 2015-04-08 岩下エンジニアリング株式会社 Electrolyte injection device using weight control in vacuum
DE102011088682A1 (en) * 2011-12-15 2013-06-20 Robert Bosch Gmbh Electrolyte fluid metering device for lithium cells

Also Published As

Publication number Publication date
JP2015122392A (en) 2015-07-02

Similar Documents

Publication Publication Date Title
JP6347102B2 (en) Method for manufacturing power storage device
WO2013121466A1 (en) Cell system and method for evaluating degradation
WO2009130740A1 (en) Lead storage battery
JP2014157703A (en) Lead accumulator
WO2013136942A1 (en) Non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery module
JP2020053294A (en) Lead storage battery
JP2014514694A (en) Electrochemical cell for storing electrical energy
CN113711407A (en) Electrode assembly for evaluating electrode performance and electrode performance evaluation method
US20190252665A1 (en) Enhanced flooded battery separators, method of manufacture and method of use
JP2008235055A (en) Lead acid storage cell
JP6838389B2 (en) Battery manufacturing method
JP2010267507A (en) Lead-acid battery
JP5145707B2 (en) Lead acid battery
JP2008243657A (en) Method of manufacturing secondary battery, and device of manufacturing the same
EP4084155A1 (en) Electrode current collector and secondary battery
KR20150033677A (en) Self-limiting electrolyte-filling process
JP5125040B2 (en) Lead acid battery
JP2008071693A (en) Lead storage battery
JP2010205572A (en) Lead acid battery
US20190237813A1 (en) Lithiation of electrodes for cylindrical energy storage devices and method of making same
JP2019067526A (en) Lead acid battery
CN116724440A (en) Method for charging and discharging nonaqueous electrolyte secondary battery, and system for charging nonaqueous electrolyte secondary battery
JP2011171039A (en) Vent plug for lead-acid battery and lead-acid battery
JPH08329975A (en) Sealed lead-acid battery
JP2021163608A (en) Lead-acid battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180514

R150 Certificate of patent or registration of utility model

Ref document number: 6347102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150