JP2011171039A - Vent plug for lead-acid battery and lead-acid battery - Google Patents

Vent plug for lead-acid battery and lead-acid battery Download PDF

Info

Publication number
JP2011171039A
JP2011171039A JP2010032202A JP2010032202A JP2011171039A JP 2011171039 A JP2011171039 A JP 2011171039A JP 2010032202 A JP2010032202 A JP 2010032202A JP 2010032202 A JP2010032202 A JP 2010032202A JP 2011171039 A JP2011171039 A JP 2011171039A
Authority
JP
Japan
Prior art keywords
exhaust
opening
battery
porous filter
lead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010032202A
Other languages
Japanese (ja)
Inventor
Kei Ishimaki
圭 石牧
Muneyoshi Noda
宗良 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2010032202A priority Critical patent/JP2011171039A/en
Publication of JP2011171039A publication Critical patent/JP2011171039A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lead-acid battery having high reliability in which clogging of a porous filter arranged as a flame arrestor is suppressed and a pressure release valve arranged in parallel to the porous filter is stably operated, in the lead-acid battery; and to provide a vent plug of the lead-acid battery. <P>SOLUTION: The inside of the vent plug fit to a liquid opening of the lead-acid battery is divided into four or more exhaust hoods communicating with each other by gaps, two opening parts are formed in the exhaust hood arranged beyond one or more exhaust hoods from the exhaust hood communicating with the battery, the porous filter is arranged to cover one opening part, an exhaust cylinder is formed in the other opening part, and a cap-like valve is fit to the tip of the exhaust cylinder. The opening area S of the opening part on the side facing the porous filter is limited to less than the bottom area D of the porous filter, and the opening area of the opening part corresponding to the exhaust cylinder is limited to the area smaller than an internal circumference area. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、鉛蓄電池用の排気栓と、この排気栓を装着した鉛蓄電池に関するものである。   The present invention relates to an exhaust plug for a lead storage battery and a lead storage battery equipped with the exhaust plug.

鉛蓄電池は、充電することによって、電解液中の水の電気分解され、その内部で水素ガスと酸素ガスが発生する。したがって、これらの酸素ガスを負極で吸収させて、負極での水素ガスの発生を抑制する、あるいは触媒によって、水素と酸素を再結合させ水に戻す、さらには、これらのガスを大気中に放出するための排気経路を電池に設ける。   When the lead storage battery is charged, water in the electrolytic solution is electrolyzed, and hydrogen gas and oxygen gas are generated therein. Therefore, these oxygen gases are absorbed by the negative electrode to suppress the generation of hydrogen gas at the negative electrode, or the catalyst is used to recombine hydrogen and oxygen to return them to water. Furthermore, these gases are released into the atmosphere. An exhaust path is provided in the battery.

液式の鉛蓄電池では、この排気経路を内蔵した排気栓を蓋に装着する構成が広く採用されているが、排気栓付近に電気スパークやたばこ等の火点が存在した場合、ガスに含まれる水素ガスに引火し、この炎が排気経路を介して電池内部に引き込まれ、電池内部に滞留した水素ガスに引火して電槽や蓋といった電池外装部品を破損する可能性がある。   In liquid lead-acid batteries, a configuration in which an exhaust plug with a built-in exhaust path is attached to the lid is widely adopted, but if there is a fire point such as an electric spark or cigarette near the exhaust plug, it is included in the gas There is a possibility that the hydrogen gas is ignited and this flame is drawn into the battery through the exhaust path, and the hydrogen gas staying inside the battery is ignited to damage the battery exterior parts such as the battery case and the lid.

したがって、このような外部から電池内部への炎の引き込みを防止するため、排気栓内部のガスの排気経路上に、フレームアレスタとしての多孔質フィルタを装着することが一般的である。多孔質フィルタは、主としてアルミナ等のセラミック粒体やポリプロピレン樹脂等の剛性樹脂粒体を焼結加工して得られるものが用いられている。多孔質フィルタは、その内部に屈折した微細な空隙を有しており、この空隙を通して電池内部のガスを排気可能であり、また、外部で発生した炎が多孔質フィルタの空隙を伝播する間に炎の熱エネルギーを吸収あるいは放散することにより、電池内部への炎の伝播を抑制できる。   Therefore, in order to prevent the flame from being drawn into the battery from the outside, it is common to install a porous filter as a flame arrester on the gas exhaust path inside the exhaust plug. As the porous filter, those obtained by sintering ceramic particles such as alumina and rigid resin particles such as polypropylene resin are mainly used. The porous filter has fine voids that are refracted inside, and the gas inside the battery can be exhausted through the voids, and the flame generated outside propagates through the voids of the porous filter. By absorbing or dissipating the heat energy of the flame, the propagation of the flame into the battery can be suppressed.

一方、電池内部は電解液(希硫酸)が存在するため、電池内部の気体は水分を含んでおり、電池を充電した際の極板からのガッシングや電池に振動が加わった際に発生する電解液の飛沫が多孔質フィルタ内部で結露して、多孔質フィルタを目詰まりさせてしまう課題がある。多孔質フィルタの目詰まり(圧力損出の過大な増加)は、電池内圧が過大に上昇し、電槽や蓋を変形させたり、電池が破損する場合があった。   On the other hand, since there is an electrolyte solution (dilute sulfuric acid) inside the battery, the gas inside the battery contains moisture, and electrolysis occurs when the battery is charged with gassing from the electrode plate or when vibration is applied to the battery. There is a problem that liquid droplets are condensed inside the porous filter and clog the porous filter. When the porous filter is clogged (excessive increase in pressure loss), the internal pressure of the battery increases excessively, which may deform the battery case or the lid, or damage the battery.

このような多孔質フィルタの目詰まりによる電池の変形あるいは破損を抑制するため、特許文献1には、排気栓内の排気経路中に、セラミック等の多孔質体からなる防爆フィルタと安全弁を並列に介在させた鉛蓄電池が示されている。この特許文献1の構成により、万一、防爆フィルタが目詰まりした場合でも、ガスが安全弁を介して電池外に排出されるため電池の変形や破損を抑制することができる。   In order to suppress the deformation or breakage of the battery due to such clogging of the porous filter, Patent Document 1 discloses that an explosion-proof filter made of a porous material such as ceramic and a safety valve are arranged in parallel in the exhaust path in the exhaust plug. An intervening lead acid battery is shown. With the configuration of Patent Document 1, even if the explosion-proof filter is clogged, the gas is discharged out of the battery through the safety valve, so that deformation and breakage of the battery can be suppressed.

実開昭63−109441号公報Japanese Utility Model Publication No. 63-109441

しかしながら、特許文献1で示された構成では、排気経路中の防爆フィルタおよび安全弁の下方が、電解液に面しているため、電解液の飛沫が防爆フィルタや安全弁に容易に付着する。電解液には硫酸の他にセパレータから溶出したオイル等の不揮発成分を含むため、これらの物質により防爆フィルタが目詰まりし、あるいはゴム体である安全弁が変質し、安全弁の開弁圧が不安定となる課題があった。   However, in the configuration shown in Patent Document 1, since the lower part of the explosion-proof filter and the safety valve in the exhaust path faces the electrolyte, the splash of the electrolyte easily adheres to the explosion-proof filter and the safety valve. In addition to sulfuric acid, the electrolyte contains non-volatile components such as oil eluted from the separator, so these substances clog the explosion-proof filter, or the safety valve, which is a rubber body, is altered, and the valve opening pressure of the safety valve is unstable. There was a problem.

本発明は、上述した課題を解決するものであって、フレームアレスタとしての機能を有する多孔質フィルタの目詰まりを抑制するとともに、多孔質フィルタに並列に配置された圧力開放弁の開弁圧が安定化された、信頼性の高い鉛蓄電池用の排気栓および鉛蓄電池を提供するものである。   The present invention solves the above-described problem, and suppresses clogging of a porous filter having a function as a frame arrester, and the opening pressure of a pressure release valve arranged in parallel with the porous filter is reduced. A stabilized exhaust plug for a lead storage battery and a lead storage battery are provided.

前記した課題を解決するために、本発明の請求項1の発明は、鉛蓄電池の液口に装着され、内部に排気構造を有した鉛蓄電池用の排気栓であって、前記排気栓は、前記液口に装着した状態で電解液面に向かって垂下する第1の排気筒と、前記第1の排気筒の電池内側方向の一端に配置された底壁と、前記第1の排気筒の電池外側方向の一端に配置された中壁と、前記中壁の中心領域から前記底壁に向けて垂下する軸と、前記軸から前記第1の排気筒の内壁に向けて放射状に配置され、前記第1の排気筒内を少なくともn(n≧4)個の排気室に分割するn枚の区画壁を備え、前記底壁は、前記電解液面に対して傾斜角θ(0°<θ<90°)を有し、隣接しあう前記排気室は、前記区画壁と前記底壁の間に配置された間隙を介して互いに連通し、複数の前記排気室の中で最も前記電解液面に近接する排気室に対応する前記第1の排気筒に第1の開口部を有し、前記中壁の、前記第1の開口部に対応する排気室から少なくとも一つの他の排気室を隔てた位置に配置された排気室に対応する部位に前記中壁を貫通する第2の開口部と第3の開口部を有し、前記中壁の電池外側方向の底面に対向するとともに前記第2の開口部を覆うよう配置された多孔質フィルタと、前記第3の開口部に連通するとともに、前記中壁から電池外側方向に突出するよう形成された第2の排気筒と、前記第2の排気筒に装着されたキャップ状弁体とからなる圧力開放弁を有し、前記第2の開口部の前記多孔質フィルタに対向する側の開口面積Sは、前記多孔質フィルタの底面積D未満に制限され、前記第3の開口部2fの開口面積は、第2の排気筒6の内周面積より小さく制限され、前記キャップ状弁体および前記多孔質フィルタを多い、かつガス排出のための第4の開口部を有した上蓋を備えた鉛蓄電池用の排気栓を示すものである。   In order to solve the above-mentioned problem, the invention of claim 1 of the present invention is an exhaust plug for a lead storage battery that is attached to a liquid port of a lead storage battery and has an exhaust structure therein. A first exhaust pipe that hangs down toward the electrolyte surface in a state attached to the liquid port, a bottom wall disposed at one end of the first exhaust pipe in the battery inner direction, and a first exhaust pipe A middle wall disposed at one end in the battery outer direction, a shaft hanging from the central region of the middle wall toward the bottom wall, and radially disposed from the shaft toward the inner wall of the first exhaust stack; The first exhaust cylinder includes n partition walls that divide the interior of the first exhaust cylinder into at least n (n ≧ 4) exhaust chambers, and the bottom wall has an inclination angle θ (0 ° <θ with respect to the electrolyte surface). <90 °) and the adjacent exhaust chambers communicate with each other via a gap disposed between the partition wall and the bottom wall The first exhaust cylinder corresponding to the exhaust chamber closest to the electrolyte surface among the plurality of exhaust chambers has a first opening, and corresponds to the first opening of the inner wall A second opening and a third opening penetrating through the middle wall at a portion corresponding to the exhaust chamber disposed at a position separating at least one other exhaust chamber from the exhaust chamber, and the middle wall A porous filter arranged to face the bottom surface in the battery outer direction and to cover the second opening, and to communicate with the third opening and to protrude from the inner wall toward the battery outer side An opening on the side of the second opening facing the porous filter, the pressure relief valve comprising a second exhaust cylinder and a cap-like valve body attached to the second exhaust cylinder The area S is limited to be less than the bottom area D of the porous filter, and the third opening The opening area of the portion 2f is limited to be smaller than the inner peripheral area of the second exhaust pipe 6, and includes an upper cover having a large number of the cap-shaped valve body and the porous filter and a fourth opening for gas discharge. The exhaust plug for lead acid batteries provided with this is shown.

また、本発明の請求項2の発明は、請求項1の鉛蓄電池用の排気栓において、さらに、前記圧力開放弁の開弁圧は、前記多孔質フィルタの圧力損失の初期値よりも高く設定されたことを特徴とする。   Further, the invention according to claim 2 of the present invention is the exhaust plug for the lead storage battery according to claim 1, wherein the valve opening pressure of the pressure release valve is set higher than the initial value of the pressure loss of the porous filter. It is characterized by that.

また、本発明の請求項3の発明は、請求項1もしくは2に記載の鉛蓄電池用の排気栓において、前記開口面積Sは、前記底面積Dの20%以下に制限したことを特徴とする。   According to a third aspect of the present invention, in the lead-acid battery exhaust plug according to the first or second aspect, the opening area S is limited to 20% or less of the bottom area D. .

また、本発明の請求項4の発明は、請求項1、2もしくは3の構成を有した排気栓を備えた鉛蓄電池を示すものである。   The invention of claim 4 of the present invention shows a lead-acid battery provided with an exhaust plug having the configuration of claim 1, 2 or 3.

また、本発明の請求項5の発明は、請求項4の鉛蓄電池において、正極および負極の格子体のいずれか一方がアンチモンを含む鉛合金からなる鉛蓄電池を示すものである。   Further, the invention of claim 5 of the present invention is the lead storage battery of claim 4, wherein either one of the positive electrode and the negative electrode lattice is made of a lead alloy containing antimony.

本発明によれば、鉛蓄電池に装着される排気栓に内蔵した多孔質フィルタの目詰まりを抑制するとともに、多孔質フィルタに目詰まりが発生した場合に動作する圧力開放弁の動作を安定化させることにより、信頼性に優れた鉛蓄電池用の排気栓およびこれを備えた鉛蓄電池を提供できるという、顕著な効果を奏する。   According to the present invention, the clogging of the porous filter built in the exhaust plug attached to the lead storage battery is suppressed, and the operation of the pressure release valve that operates when the clogging of the porous filter occurs is stabilized. By this, there exists a remarkable effect that the exhaust plug for lead acid batteries excellent in reliability and a lead acid battery provided with the same can be provided.

本発明の鉛蓄電池用の排気栓を示す図The figure which shows the exhaust plug for lead acid batteries of this invention 本発明の鉛蓄電池用の排気栓の断面を示す図The figure which shows the cross section of the exhaust plug for lead acid batteries of this invention 本発明の鉛蓄電池用の排気栓の他の断面を示す図The figure which shows the other cross section of the exhaust plug for lead acid batteries of this invention 本発明の鉛蓄電池を示す図The figure which shows the lead acid battery of this invention 比較例の鉛蓄電池用の排気栓の断面を示す図The figure which shows the cross section of the exhaust plug for lead acid batteries of a comparative example

(本発明の第1の実施形態)
以下、本発明の第1の実施形態による鉛蓄電池用の排気栓の構成を説明する。本発明の排気栓1は、図4に示す鉛蓄電池11の液口12に装着され、内部に排気構造を有したものである。図1は、排気栓1の外観を示す図であり、図4に示す鉛蓄電池の液口12との装着構造をその外周に有する。図1には、この装着構造として、液口12に螺合するねじ部1aを配置した例を示したが、他の装着構造であってよい。
(First embodiment of the present invention)
Hereinafter, the structure of the exhaust plug for a lead storage battery according to the first embodiment of the present invention will be described. The exhaust plug 1 of the present invention is attached to the liquid port 12 of the lead storage battery 11 shown in FIG. 4 and has an exhaust structure inside. FIG. 1 is a view showing the appearance of the exhaust plug 1, and has a mounting structure on the outer periphery of the lead storage battery with the liquid port 12 shown in FIG. 4. Although FIG. 1 shows an example in which the screw portion 1a that is screwed into the liquid port 12 is arranged as the mounting structure, other mounting structures may be used.

本発明の排気栓1は、液口に装着されることによって、電解液面(図1に示した仮想線A)に向かって垂下する第1の排気筒2を有する。図2は、本発明の鉛蓄電池用の排気栓1の断面を示す図である。図3は、図2において、排気栓1をB−B´線で切断した際の断面を示す図である。   The exhaust plug 1 of the present invention has a first exhaust pipe 2 that hangs down toward the electrolyte surface (the phantom line A shown in FIG. 1) by being attached to the liquid port. FIG. 2 is a view showing a cross section of the exhaust plug 1 for the lead storage battery of the present invention. FIG. 3 is a view showing a cross section when the exhaust plug 1 is cut along the line BB ′ in FIG. 2.

図2に示したように、第1の排気筒2の電池内側方向の一端、すなわち、電解液面方向に突出端部に、電解液面に対して傾斜角θ(0°<θ<90°)を有した底壁3が配置される。また、第1の排気筒2の他方の一端には中壁4を備える。なお、このθの選択は、排気室2bの内部で結露した液滴が重力によって自然落下し、第1の開口部2dに導かれるに十分な角度であればよく、例として、20°〜45°の範囲とすることができる。   As shown in FIG. 2, an inclination angle θ (0 ° <θ <90 °) with respect to the electrolyte surface at one end of the first exhaust stack 2 in the battery inner direction, that is, at an end protruding in the electrolyte surface direction. ) Is disposed. Further, the other end of the first exhaust pipe 2 is provided with a middle wall 4. The selection of θ may be an angle that is sufficient for the droplets condensed in the exhaust chamber 2b to spontaneously fall due to gravity and be guided to the first opening 2d. It can be in the range of °.

中壁4の中心領域から底壁3に向けて垂下する軸5を有し、図4に示したように、軸5から第1の排気筒2の内壁2aに向けて放射状に配置された4枚の区画壁5aを有する。したがって、排気筒2の内部空間は4枚の区画壁5aによって、4個の排気室2b−1,2b−2,2b−3に区画される。なお、図3では、排気室2b−1の一つ、2つの排気室2b−2の二つ、排気室2b−3の一つで構成され、これらを総称して排気室2bとしている。   4 has a shaft 5 that hangs down from the central region of the middle wall 4 toward the bottom wall 3, and is arranged radially from the shaft 5 toward the inner wall 2a of the first exhaust pipe 2, as shown in FIG. A single partition wall 5a is provided. Therefore, the internal space of the exhaust tube 2 is partitioned into four exhaust chambers 2b-1, 2b-2, and 2b-3 by the four partition walls 5a. In FIG. 3, one exhaust chamber 2 b-1, two exhaust chambers 2 b-2, and one exhaust chamber 2 b-3 are collectively referred to as an exhaust chamber 2 b.

図3では、区画壁5aの数nを4枚としたが、nは4以上であればよく、さらに好ましくは、4以上の偶数枚数である。したがって、排気筒2の内部空間は、n(n≧4)以上の区画壁5aによって、n個の排気室2bに区画される。排気室2bの数を4以上とすることにより、電池から排出されるべきガスは、少なくとも2枚の区画壁5aに衝突するため、ガス中に含まれる電解液滴を効率的に除去可能である。排気室2bの数を2とした場合には、ガスの経路上の区画壁5aは一枚となるため、電解液滴の除去に十分でない。また、排気室2bの数を5以上としてもよいが、構造が複雑となるため、実質的には4個が最も適切である。   In FIG. 3, the number n of the partition walls 5a is four, but n may be four or more, and more preferably an even number of four or more. Therefore, the internal space of the exhaust tube 2 is partitioned into n exhaust chambers 2b by partition walls 5a of n (n ≧ 4) or more. By setting the number of exhaust chambers 2b to 4 or more, the gas to be discharged from the battery collides with at least two partition walls 5a, so that the electrolytic droplets contained in the gas can be efficiently removed. . When the number of the exhaust chambers 2b is 2, the partition wall 5a on the gas path is one, which is not sufficient for removing electrolytic droplets. Although the number of exhaust chambers 2b may be five or more, the number of exhaust chambers 2b is substantially appropriate because the structure is complicated.

そして、隣接しあう排気室2bの間は、区画壁5aと底壁3の間に配置された間隙2cを介して互いに連通している。そして、排気室2bの中で最も電解液面に近接する、すなわち、傾斜する底壁3の最下部を含む排気室2b−1において、第1の排気筒2にこの排気室2b−1と排気栓1の電池側の空間に開口する第1の開口部2dを有する。   The adjacent exhaust chambers 2b communicate with each other through a gap 2c disposed between the partition wall 5a and the bottom wall 3. In the exhaust chamber 2b-1 that is closest to the electrolyte surface in the exhaust chamber 2b, that is, including the lowermost portion of the inclined bottom wall 3, the exhaust chamber 2b-1 and the exhaust gas are exhausted to the first exhaust cylinder 2. There is a first opening 2d that opens into the space on the battery side of the plug 1.

一方、中壁4の、第1の開口部2dが形成された排気室2b−1から少なくとも一つの他の排気室2b−2を隔てた位置に配置された排気室2b−3に対応する部位に、この中壁4を貫通する第2の開口部2eと第3の開口部2fを有する。   On the other hand, a portion of the middle wall 4 corresponding to the exhaust chamber 2b-3 disposed at a position separating the at least one other exhaust chamber 2b-2 from the exhaust chamber 2b-1 in which the first opening 2d is formed. In addition, a second opening 2e and a third opening 2f penetrating the inner wall 4 are provided.

本発明の排気栓1は、中壁4の電池外側方向の底面4aに対向し、かつ第2の開口部2eを覆うよう配置された多孔質フィルタ10を備える。さらに、第3の開口部2fの周囲に中壁4から電池外側方向、すなわち、第1の排気筒2の突出方向とは反対側の方向に突出するよう形成された第2の排気筒6を有する。   The exhaust plug 1 of the present invention includes a porous filter 10 disposed so as to face the bottom surface 4a of the inner wall 4 in the battery outer side direction and cover the second opening 2e. Further, a second exhaust pipe 6 formed so as to protrude from the middle wall 4 around the third opening 2f in the battery outer side direction, that is, in the direction opposite to the protruding direction of the first exhaust pipe 2 is provided. Have.

第2の排気筒6の先端には、キャップ状弁体7が装着され、第2の排気筒6とキャップ状弁体7で電池内圧が上昇した際に開放される圧力開放弁8を構成する。なお、圧力開放弁8の、第2の排気筒6からの脱落を防止するための上蓋9を有する。上蓋9には、ガス排出のための第4の開口部9aを有する。図2に示したように、上蓋9は、キャップ状弁体7とともに多孔質フィルタ10の上面を覆う構成としているが、これらを個別に設ける、すなわち、キャップ状弁体7を覆う上蓋9と多孔質フィルタ10の上面を覆う別の上蓋(図示せず)を設けてもよい。その際、多孔質フィルタ10の上面を覆う別の上蓋にガス排出のための開口部を設ける。   A cap-shaped valve body 7 is attached to the tip of the second exhaust cylinder 6, and the second exhaust cylinder 6 and the cap-shaped valve body 7 constitute a pressure release valve 8 that is opened when the battery internal pressure rises. . The pressure release valve 8 has an upper lid 9 for preventing the pressure release valve 8 from dropping from the second exhaust pipe 6. The upper lid 9 has a fourth opening 9a for discharging gas. As shown in FIG. 2, the upper lid 9 is configured to cover the upper surface of the porous filter 10 together with the cap-shaped valve body 7. However, these are provided individually, that is, the upper lid 9 and the porous cover covering the cap-shaped valve body 7. Another upper lid (not shown) that covers the upper surface of the quality filter 10 may be provided. At that time, an opening for discharging gas is provided in another upper cover that covers the upper surface of the porous filter 10.

本発明の排気栓1のガス排気経路を説明する。電池内部で発生した電解液飛沫を含むガスは、第1の排気筒2に開口する第1の開口部2dから排気室2b−1に入る。その後、間隙2cを通過して、隣接する排気室2b−2にガスが導入される。その際、ガスの流れは区画壁5aに衝突するため、区画壁5aの表面に電解液飛沫の一部が結露する。結露した電解液膜は、時間とともに成長し、電解液滴となって区画壁5aから傾斜した底壁3を伝って、第1の開口部2dに導かれた後、第1の排気筒2から落下してバルクの電解液に還流される。なお、排気室2b−1内に電解液が滞留しないよう、排気室2b−1の最下部を含むよう、第1の開口部2dが形成される。   The gas exhaust path of the exhaust plug 1 of the present invention will be described. The gas containing the electrolyte droplet generated inside the battery enters the exhaust chamber 2b-1 through the first opening 2d that opens in the first exhaust cylinder 2. Thereafter, gas passes through the gap 2c and is introduced into the adjacent exhaust chamber 2b-2. At this time, since the gas flow collides with the partition wall 5a, a part of the electrolyte droplet is condensed on the surface of the partition wall 5a. The condensed electrolyte film grows with time, becomes electrolytic droplets, travels along the bottom wall 3 inclined from the partition wall 5a, is guided to the first opening 2d, and then from the first exhaust pipe 2. Drop and return to bulk electrolyte. The first opening 2d is formed so as to include the lowermost part of the exhaust chamber 2b-1 so that the electrolyte does not stay in the exhaust chamber 2b-1.

間隙2cを通過して排気室2b−1から排気室2b−2に移動したガスはさらに、排気室2b−2に隣接する排気室2b−3に間隙2cを介して移動する。その際、排気室2b−2と排気室2b−3との間の区画壁5aにガスが衝突し、その際に、ガス中に残存する電解液飛沫の大部分が区画壁5aの表面で結露して、ガス中の電解液飛沫が除去される。   The gas that has passed through the gap 2c and moved from the exhaust chamber 2b-1 to the exhaust chamber 2b-2 further moves to the exhaust chamber 2b-3 adjacent to the exhaust chamber 2b-2 via the gap 2c. At that time, the gas collides with the partition wall 5a between the exhaust chamber 2b-2 and the exhaust chamber 2b-3, and at that time, most of the electrolyte droplet remaining in the gas is condensed on the surface of the partition wall 5a. Thus, the electrolyte splash in the gas is removed.

区画壁5aの表面に結露した電解液は、区画壁5aを伝って重力により落下し、区画壁5aの下部を含む領域に設けられた間隙2cから底壁3を伝って排気室2b−1に移動し、第1の開口部2dより電解液面に落下する。なお、結露した電解液滴が、排気室2b−2および排気室2b−3に滞留せず、バルクの電解液への落下するよう、排気室2b−2および排気室2b−3の最下部を含む位置に間隙2cを形成する。   The electrolytic solution condensed on the surface of the partition wall 5a falls by gravity through the partition wall 5a, and travels from the gap 2c provided in the region including the lower portion of the partition wall 5a to the exhaust chamber 2b-1 through the bottom wall 3. It moves and falls to the electrolyte surface from the first opening 2d. It should be noted that the condensed electrolytic droplets do not stay in the exhaust chamber 2b-2 and the exhaust chamber 2b-3 but fall to the bulk electrolyte so that the lowermost portions of the exhaust chamber 2b-2 and the exhaust chamber 2b-3 The gap 2c is formed at the position including it.

排気室2b−2から排気室2b−3に移行した時点で、排気室2b−3中のガスは電解液の飛沫の大部分が除去されているが、排気室2b−3において区画壁5aおよび内壁2aと接触することによって、さらに電解液の飛沫が除去される。その後、ガスは、第2の開口部2eを介し、多孔質フィルタ10を通過し、第4の開口部9aを介して最終的に電池外に排出される。多孔質フィルタ10と中壁4との間には空隙4bが配置されている。空隙4bに対向する中壁4の面は、第2の開口部2eに向かって一方的に下方に傾斜している。なお、第2の開口部2eは、多孔質フィルタ10の外周に近接した位置に配置される。   At the time of transition from the exhaust chamber 2b-2 to the exhaust chamber 2b-3, the gas in the exhaust chamber 2b-3 has most of the droplets of the electrolyte removed, but in the exhaust chamber 2b-3, the partition walls 5a and By coming into contact with the inner wall 2a, splashes of the electrolyte are further removed. Thereafter, the gas passes through the porous filter 10 through the second opening 2e, and is finally discharged out of the battery through the fourth opening 9a. A gap 4 b is disposed between the porous filter 10 and the inner wall 4. The surface of the intermediate wall 4 facing the gap 4b is unilaterally inclined downward toward the second opening 2e. Note that the second opening 2 e is disposed at a position close to the outer periphery of the porous filter 10.

本発明の排気栓1は、中壁4によって多孔質フィルタ10の大部分が排気室2b−3より隔離される。多孔質フィルタ10と排気室2b−3との間は、多孔質フィルタ10の底面積D未満に開口面積が小さく制限された第2の開口部2eによって連通している。より好ましくは、第2の開口部2eの多孔質フィルタ10に対向する側の開口面積Sは、多孔質フィルタ10の底面積Dの20%以下に制限される。このような構成によれば、多孔質フィルタ10の大部分は、直接、第2の開口部2eに対向していない。したがって、ガス中に微量の電解液滴が残存していた場合でも、その電解液滴は、多孔質フィルタ10の第2の開口部2eに対向する部位に衝突し、この部位で電解液滴が結露する。電解液滴が除去されたガスは、空隙4bを拡散し、殆んどが、前記した部位を除く部位で多孔質フィルタ10を通過して電池外に放出される。   In the exhaust plug 1 of the present invention, most of the porous filter 10 is isolated from the exhaust chamber 2 b-3 by the inner wall 4. The porous filter 10 and the exhaust chamber 2b-3 communicate with each other through a second opening 2e whose opening area is limited to be smaller than the bottom area D of the porous filter 10. More preferably, the opening area S on the side facing the porous filter 10 of the second opening 2 e is limited to 20% or less of the bottom area D of the porous filter 10. According to such a configuration, most of the porous filter 10 does not directly face the second opening 2e. Therefore, even when a small amount of electrolytic droplets remain in the gas, the electrolytic droplets collide with a portion facing the second opening 2e of the porous filter 10, and the electrolytic droplets are formed at this portion. Condensation. The gas from which the electrolytic droplets have been removed diffuses in the gap 4b, and most of the gas passes through the porous filter 10 at portions other than the aforementioned portions and is released outside the battery.

したがって、多孔質フィルタ10の目詰まりを、故意に第2の開口部2eとの対向面で進行させるため、他の部位は殆んど目詰まりが進行しないため多孔質フィルタ10の全体としての目詰まりを回避できる。   Therefore, the clogging of the porous filter 10 is intentionally caused to proceed on the surface facing the second opening 2e. Therefore, the clogging of the porous filter 10 as a whole is prevented because the clogging of the other portions hardly progresses. Clogging can be avoided.

なお、第2の開口部2eの多孔質フィルタ10に対向する側の開口面積Sは、前記したように、多孔質フィルタ10の底面積Dの20%以下に制限することが好ましい。このD/Sの比率が20%を超えると、多孔質フィルタ10の目詰まりの進行がより均一化されるため、多孔質フィルタ10の寿命が低下し、好ましくない。   Note that the opening area S on the side facing the porous filter 10 of the second opening 2e is preferably limited to 20% or less of the bottom area D of the porous filter 10 as described above. If the ratio of D / S exceeds 20%, the progress of clogging of the porous filter 10 is made more uniform, which is not preferable because the life of the porous filter 10 is reduced.

一方で、D/Sの比率の下限は、第2の開口部2eの径の絶対値と、通気速度との関係によって決定付けられる。充電時のガス発生速度に対して、第2の開口部2eの径が過小であると、電池内圧が上昇し、好ましくないため、電池内圧の過大な上昇をもたらさない程度の開口面積を確保する必要がある。一般的な始動用鉛蓄電池の例としては、50Ahあたり、1.0mm2〜2.0mm2の開口面積を確保すればよい。 On the other hand, the lower limit of the D / S ratio is determined by the relationship between the absolute value of the diameter of the second opening 2e and the ventilation rate. If the diameter of the second opening 2e is excessively small with respect to the gas generation speed during charging, the battery internal pressure increases, which is not preferable. Therefore, an opening area that does not cause an excessive increase in the battery internal pressure is ensured. There is a need. Examples of common starter lead storage battery per 50 Ah, may be secured to the opening area of 1.0mm 2 ~2.0mm 2.

本発明の排気栓1は、中壁4にさらに第3の開口部2fとこれに対応して設けた第2の排気筒6およびこれに装着されたキャップ状弁体7を有する。前記した多孔質フィルタ10の目詰まりが進行し、電池内圧が上昇した場合、キャップ状弁体7が上方に移動し、キャップ状弁体7と第2の排気筒6との間に形成された隙間を介してガス排出がなされ、電池内圧上昇が緩和される。   The exhaust plug 1 of the present invention further has a third opening 2f in the middle wall 4 and a second exhaust cylinder 6 provided corresponding to the third opening 2f and a cap-like valve body 7 attached thereto. When clogging of the porous filter 10 described above progresses and the battery internal pressure rises, the cap-shaped valve body 7 moves upward and is formed between the cap-shaped valve body 7 and the second exhaust cylinder 6. Gas is discharged through the gap, and the battery internal pressure rise is alleviated.

本発明では、第2の排気筒6の底部には中壁4が突出した状態となり、第3の開口部2fの開口面積が第2の排気筒6の内周の面積よりも小さく制限されるため、排気室2b−3の内部のガスに微量の電解液滴が存在しても、中壁4が衝突壁となって、第2の排気筒6の内部への電解液滴の拡散が抑制される。したがって、キャップ状弁体7と第2の排気筒6への電解液滴の付着が抑制されるため、圧力開放弁8の開閉弁圧が安定化し、多孔質フィルタ10の目詰まりが進行した場合にも、適正な電池内圧で開弁し、電池の変形・破損をもたらすような電池内圧の過大な上昇が抑制される。   In the present invention, the middle wall 4 protrudes from the bottom of the second exhaust pipe 6, and the opening area of the third opening 2 f is limited to be smaller than the area of the inner periphery of the second exhaust pipe 6. Therefore, even if a small amount of electrolytic droplets are present in the gas inside the exhaust chamber 2b-3, the inner wall 4 becomes a collision wall, and the diffusion of the electrolytic droplets into the second exhaust cylinder 6 is suppressed. Is done. Therefore, since the adhesion of electrolytic droplets to the cap-shaped valve body 7 and the second exhaust cylinder 6 is suppressed, the on-off valve pressure of the pressure release valve 8 is stabilized, and the clogging of the porous filter 10 proceeds. In addition, an excessive increase in the battery internal pressure that opens the valve at an appropriate battery internal pressure and causes deformation or breakage of the battery is suppressed.

なお、本発明における圧力開放弁8の開弁圧は、多孔質フィルタ10の圧力損失の初期値よりも高く設定することが好ましい。このような構成によれば、多孔質フィルタ10の目詰まりがない、初期状態においては、圧力開放弁8の開弁が行なわれないため、多孔質フィルタ10を介さないガス排出が抑制される。圧力開放弁8の開弁は、多孔質フィルタ10の目詰まりが進行した場合であって、電池内圧が許容できない電池変形、あるいは電池の破損を発生しうる程度に上昇した際に行なわれる。   Note that the valve opening pressure of the pressure release valve 8 in the present invention is preferably set higher than the initial value of the pressure loss of the porous filter 10. According to such a configuration, in the initial state where the porous filter 10 is not clogged, the pressure release valve 8 is not opened, and thus gas discharge without passing through the porous filter 10 is suppressed. The pressure release valve 8 is opened when the clogging of the porous filter 10 has progressed and the battery internal pressure has increased to such an extent that unacceptable battery deformation or battery damage can occur.

(本発明の第2の実施形態)
図4は、本発明の第2の実施形態による鉛蓄電池11を示す破載図である。前記した本発明の排気栓1を液口12に装着したものである。本発明によれば、防爆性能を有するとともに、多孔質フィルタ10が目詰まりした場合にも電池の内圧上昇による不具合を抑制でき、信頼性に優れた鉛蓄電池を提供できる。
(Second embodiment of the present invention)
FIG. 4 is a broken view showing a lead storage battery 11 according to the second embodiment of the present invention. The above-described exhaust plug 1 of the present invention is attached to the liquid port 12. ADVANTAGE OF THE INVENTION According to this invention, while having explosion-proof performance, even when the porous filter 10 is clogged, the malfunction by the internal pressure rise of a battery can be suppressed, and the lead storage battery excellent in reliability can be provided.

また、正極および負極の格子体のいずれか一方がアンチモンを含む鉛合金からなる鉛蓄電池に本発明を適用することがより好ましい。格子体にアンチモンを含む鉛蓄電池は、電解液に溶出したアンチモンが電解液滴とともに多孔質フィルタ10の目詰まりを発生させやすい。本発明では、アンチモンを格子体に含む場合でも多孔質フィルタ10の目詰まりを長期間抑制しつつ、目詰まりした際には、圧力開放弁8が動作し、電池内圧の上昇による不具合を抑制できる。   Further, it is more preferable to apply the present invention to a lead storage battery in which either one of the positive electrode and the negative electrode lattice body is made of a lead alloy containing antimony. In the lead storage battery containing antimony in the lattice body, antimony eluted in the electrolytic solution easily causes clogging of the porous filter 10 together with the electrolytic droplets. In the present invention, even when antimony is included in the lattice, the clogging of the porous filter 10 is suppressed for a long time, and when clogged, the pressure release valve 8 operates to suppress problems due to an increase in battery internal pressure. .

以下、実施例により、本発明の効果を説明する。   Hereinafter, the effects of the present invention will be described with reference to examples.

本発明例および比較例による鉛蓄電池(JIS D5301における80D26形始動用鉛蓄電池)を製作し、各鉛蓄電池に振動を加えながら高温環境下で充電した時の多孔質フィルタ10の目詰まりの度合いおよび圧力開放弁8の機能低下の度合いを評価した。   The lead storage battery according to the present invention and the comparative example (80D26 type start lead storage battery in JIS D5301) was manufactured, and the degree of clogging of the porous filter 10 when charged in a high temperature environment while applying vibration to each lead storage battery and The degree of functional deterioration of the pressure release valve 8 was evaluated.

正負の両極板は、鉛−カルシウム合金の格子体を準備し、これらの格子体に鉛粉と水と硫酸等からなる活物質ペーストを充填して得た。   The positive and negative bipolar plates were obtained by preparing lead-calcium alloy lattices and filling these lattices with an active material paste composed of lead powder, water, sulfuric acid, and the like.

セパレータはポリエチレン樹脂にシリカ、鉱物油を添加した微多孔膜を使用し、これを袋状として負極板を包む形とした。   The separator used was a microporous membrane in which silica and mineral oil were added to polyethylene resin, and this was made into a bag shape to enclose the negative electrode plate.

本発明例の電池Aは、前記した第1の実施形態で説明した構造の排気栓1である。多孔質フィルタ10として、電池Aに排気栓1を取り付けた状態で、500cm3/分の流量で空気をセル室に流したとき、電池内部の圧力が大気圧に対して+1kPaとなるもの、すなわち圧力損失が1kPaとなるものを準備した。多孔質フィルタ10はポリプロピレンの粒体を焼結処理したものであり、直径18mm、厚み5mmの円柱状のものとした。 The battery A of the present invention example is the exhaust plug 1 having the structure described in the first embodiment. As the porous filter 10, when air is flowed into the cell chamber at a flow rate of 500 cm 3 / min with the exhaust plug 1 attached to the battery A, the pressure inside the battery becomes +1 kPa with respect to atmospheric pressure, that is, A pressure loss of 1 kPa was prepared. The porous filter 10 is obtained by sintering polypropylene particles, and has a cylindrical shape with a diameter of 18 mm and a thickness of 5 mm.

電池Aのセルにおいて、前記と同様、セル室に500cm3/分の流量の空気を流したときにおける圧力開放弁8の開弁圧は20kPaであり、前記した多孔質フィルタ10の圧力損失よりも高い。また、セル室への空気の流入を停止した際、電池内圧は時間とともに低下するが、電池内圧が5kPaにまで低下した時点で圧力開放弁8が閉じ、その後は、多孔質フィルタ10を通気して、電池内圧が大気圧まで復元する構成である。キャップ状弁体7は、その内径が第2の排気筒6の外径よりも4%短いクロロピレンゴム製のものである。 In the cell of the battery A, the valve opening pressure of the pressure release valve 8 when air having a flow rate of 500 cm 3 / min is passed through the cell chamber is 20 kPa, which is higher than the pressure loss of the porous filter 10 described above. high. Further, when the inflow of air into the cell chamber is stopped, the battery internal pressure decreases with time, but when the battery internal pressure decreases to 5 kPa, the pressure release valve 8 is closed, and then the porous filter 10 is vented. Thus, the battery internal pressure is restored to atmospheric pressure. The cap-shaped valve body 7 is made of chloropyrene rubber whose inner diameter is 4% shorter than the outer diameter of the second exhaust cylinder 6.

比較例の電池Bは、図6にその断面を示した排気栓13を用いたものであり、多孔質フィルタ10と排気室2b−1との間の中壁4が除去された構成を有する。また、第2の排気筒6の内周がすべて第3の開口部2fに相当する。その他の構成は、電池Aと変わるところはない。   The battery B of the comparative example uses the exhaust plug 13 whose cross section is shown in FIG. 6, and has a configuration in which the inner wall 4 between the porous filter 10 and the exhaust chamber 2b-1 is removed. Further, the entire inner periphery of the second exhaust pipe 6 corresponds to the third opening 2f. Other configurations are the same as the battery A.

なお、本実施例で使用した各電池の電槽の破損に至る内圧は、20°の環境下で150kPである。一般的に鉛蓄電池の電槽と蓋の破損時の内圧は、電池サイズによっても異なるが、概ね100kPa〜200kPaである。   In addition, the internal pressure which leads to the failure | damage of the battery case of each battery used by the present Example is 150 kP in a 20 degree environment. Generally, the internal pressure at the time of breakage of the battery case and lid of the lead storage battery is approximately 100 kPa to 200 kPa, although it varies depending on the battery size.

前記した本発明例の電池Aおよび比較例の電池Bについて、振動試験を行なった。振動試験の条件は、75℃の温度雰囲気下で、電池を充電電圧13.8V(最大充電電流25A)で2000時間連続充電する間、電池に加速度2Gで周波数が15〜33Hzの上下方向の振動を1時間加えた。その後、各電池の多孔質フィルタ10の通気抵抗(500cm3/分のエアー流量のときの圧力損失値)と、圧力開放弁8の開弁圧と閉弁圧を計測した。その結果を表1に示す。 A vibration test was performed on the battery A of the present invention and the battery B of the comparative example. The vibration test was performed under the temperature atmosphere of 75 ° C., while the battery was continuously charged with a charging voltage of 13.8 V (maximum charging current 25 A) for 2000 hours, the battery was vibrated in the vertical direction with an acceleration of 2 G and a frequency of 15 to 33 Hz. For 1 hour. Thereafter, the ventilation resistance (pressure loss value at an air flow rate of 500 cm 3 / min) of the porous filter 10 of each battery, the valve opening pressure and the valve closing pressure of the pressure release valve 8 were measured. The results are shown in Table 1.

Figure 2011171039
Figure 2011171039

本発明例の電池Aでは、多孔質フィルタ10の通気抵抗が初期値に対して増加したが、比較例の電池Bでは、多孔質フィルタ10の目詰まりにより通気抵抗の計測が不能となっていた。また、本発明例の電池Aでは、圧力開放弁8の開弁圧および閉弁圧ともに若干低下していた。一方、比較例の電池Bでは、開弁圧、閉弁圧ともに0kPaであり、電池内圧に関係なく、圧力開放弁8が開いた状態になっていた。   In the battery A of the example of the present invention, the ventilation resistance of the porous filter 10 increased from the initial value, but in the battery B of the comparative example, measurement of the ventilation resistance was impossible due to clogging of the porous filter 10. . Further, in the battery A of the present invention example, both the valve opening pressure and the valve closing pressure of the pressure release valve 8 were slightly reduced. On the other hand, in the battery B of the comparative example, both the valve opening pressure and the valve closing pressure were 0 kPa, and the pressure release valve 8 was open regardless of the battery internal pressure.

比較例の電池Bの多孔質フィルタ10の目詰まりは、充電開始から1800時間後に発生し、脱落活物質の粒やセパレータに残留するオイル分を含んだ電解液の飛沫によって通気性が全く失われていた。したがって、電池内部のガス発生によって、充電時間中は、常時、圧力開放弁8が開く状態となっていた。そして、圧力開放弁8から排出されるガスに電解液の飛沫が含まれるため、飛沫に含まれるオイル分や活物質あるいは硫酸分によってゴムが劣化し、圧力開放弁8としての機能を喪失していた。   The clogging of the porous filter 10 of the battery B of the comparative example occurred 1800 hours after the start of charging, and the air permeability was completely lost due to the droplets of the fallen active material and the electrolytic solution containing the oil remaining in the separator. It was. Therefore, due to gas generation inside the battery, the pressure release valve 8 is always open during the charging time. Since the gas discharged from the pressure release valve 8 contains splashes of the electrolyte, the rubber deteriorates due to the oil, active material, or sulfuric acid contained in the splashes, and the function as the pressure release valve 8 is lost. It was.

圧力開放弁8が常に開いた状態になれば、ガスはフレームアレスタとしての多孔質フィルタ10を介さずに電池外部に放出されるため、引火の原因となりうることは明らかである。   Obviously, if the pressure release valve 8 is always open, the gas is released outside the battery without passing through the porous filter 10 as a flame arrester, and may cause ignition.

一方、本発明例の電池Aでは、多孔質フィルタ10の通気抵抗に若干の上昇と、開弁圧および閉弁圧に若干の低下が認められたが、比較例の電池Bと比べればその変化は軽微であり、ほぼ初期状態を保っていた。   On the other hand, in the battery A of the present invention example, a slight increase in the ventilation resistance of the porous filter 10 and a slight decrease in the valve opening pressure and the valve closing pressure were observed, but the changes were compared with the battery B of the comparative example. Was insignificant and maintained almost the initial state.

次に、上記した電池Aおよび電池Bについて、正極格子体および負極格子体として2.5質量%のアンチモンを含有するものを用いて前記したと同様の振動下での過充電を行なったところ、本発明例の電池Aに対応する電池A´については、表2に示した電池Aと同様の結果が得られた。一方、比較例の電池Bに対応する電池B´については、連続充電750時間で多孔質フィルタ10の目詰まりにより圧力開放弁8が常に開いた状態に陥った。   Next, when the battery A and the battery B described above were overcharged under the same vibration as described above using a positive electrode lattice body and a negative electrode lattice body containing 2.5% by mass of antimony, With respect to the battery A ′ corresponding to the battery A of the example of the present invention, the same result as that of the battery A shown in Table 2 was obtained. On the other hand, with respect to the battery B ′ corresponding to the battery B of the comparative example, the pressure release valve 8 was always opened due to clogging of the porous filter 10 after 750 hours of continuous charging.

このことからも、格子体にアンチモンを含む場合は、特に本発明の構成が有効であることがわかる。   This also shows that the configuration of the present invention is particularly effective when the lattice contains antimony.

上記した振動試験が終了した後の各電池の防爆特性試験(電池工業会規格 SBA S1003の8.3.15項で定める防爆特性試験)を充電電流別に行った。この試験は、電池を充電しながら排気栓1および排気栓13の排気孔(図2および図5における第4の開口部9aに相当)上に強制的に火花を発生させ、電池への内部引火の有無を確認するものである。充電電流は5Aからスタートし引火がなければ5A毎上昇させ、最大を30Aとした。引火が発生した時点で試験終了とした。この試験結果を表2に示す。   An explosion-proof property test (explosion-proof property test defined in Section 8.3.15 of Battery Industry Association Standard SBA S1003) after each of the above vibration tests was performed for each charging current. In this test, a spark is forcibly generated on the exhaust hole (corresponding to the fourth opening 9a in FIGS. 2 and 5) of the exhaust plug 1 and the exhaust plug 13 while charging the battery, and the internal ignition to the battery is performed. It is to confirm the presence or absence of. The charging current started from 5A and increased every 5A if there was no ignition, and the maximum was 30A. The test was terminated when ignition occurred. The test results are shown in Table 2.

Figure 2011171039
Figure 2011171039

表2に示した結果より、本発明例の電池Aおよび電池A´は多孔質フィルタ10の通気抵抗(圧力損失)が圧力開放弁8の開弁圧および閉弁圧よりも低いため、電池内で発生するガスは多孔質フィルタ10を介して排出される。したがって、多孔質フィルタ10により電池内部への火の引き込みはブロックできる。一方、比較例の電池Bおよび電池B´は多孔質フィルタ10の目詰まりによって通気性が失われるため、ガスは圧力開放弁8を介して排出される。電池Bおよび電池B´は前述したように圧力開放弁8の気密性が損なわれているため、低電流でも電池外部の火点から電池内部に引火した。   From the results shown in Table 2, the battery A and the battery A ′ of the example of the present invention have the ventilation resistance (pressure loss) of the porous filter 10 lower than the valve opening pressure and the valve closing pressure of the pressure release valve 8, so The gas generated in is exhausted through the porous filter 10. Therefore, the drawing of fire into the battery can be blocked by the porous filter 10. On the other hand, the batteries B and B ′ of the comparative example lose their breathability due to clogging of the porous filter 10, so that the gas is discharged through the pressure release valve 8. As described above, since the airtightness of the pressure release valve 8 was impaired in the battery B and the battery B ′, the battery B and the battery B ′ ignited from the fire point outside the battery even inside the battery.

以上、実施例からもわかるように、本発明例の構成によれば、多孔質フィルタ10の目詰まり目詰まりを抑制するとともに、多孔質フィルタ10に並列に配置された圧力開放弁が安定して動作するため、信頼性に優れた鉛蓄電池用の排気栓およびこれを備えた鉛蓄電池を提供できるという、顕著な効果を奏する。   As described above, as can be seen from the examples, according to the configuration of the example of the present invention, the clogging of the porous filter 10 is suppressed, and the pressure release valve arranged in parallel with the porous filter 10 is stabilized. Since it operates, there is a remarkable effect that it is possible to provide an exhaust plug for a lead storage battery excellent in reliability and a lead storage battery including the exhaust plug.

本発明は、電池内部にフリーの電解液を有し、液口に排気栓を装着した形式の鉛蓄電池に好適である。   INDUSTRIAL APPLICABILITY The present invention is suitable for a lead storage battery of a type having a free electrolytic solution inside the battery and mounting an exhaust plug on the liquid port.

1 排気栓
1a ねじ部
2 第1の排気筒
2a 内壁
2b,2b−1,2b−2,2b−3 排気室
2c 間隙
2d 第1の開口部
2e 第2の開口部
2f 第3の開口部
3 底壁
4 中壁
4a 底面
4b 空隙
5 軸
5a 区画壁
6 第2の排気筒
7 キャップ状弁体
8 圧力開放弁
9 上蓋
9a 第4の開口部
10 多孔質フィルタ
11 鉛蓄電池
12 液口
13 排気栓
DESCRIPTION OF SYMBOLS 1 Exhaust plug 1a Screw part 2 1st exhaust pipe 2a Inner wall 2b, 2b-1, 2b-2, 2b-3 Exhaust chamber 2c Gap 2d 1st opening part 2e 2nd opening part 2f 3rd opening part 3 Bottom wall 4 Middle wall 4a Bottom surface 4b Gap 5 Axis 5a Partition wall 6 Second exhaust cylinder 7 Cap-shaped valve body 8 Pressure release valve 9 Upper lid 9a Fourth opening 10 Porous filter 11 Lead storage battery 12 Liquid port 13 Exhaust plug

Claims (5)

鉛蓄電池の液口に装着され、内部に排気構造を有した鉛蓄電池用の排気栓であって、
前記排気栓は、
前記液口に装着した状態で、電解液面に向かって垂下する第1の排気筒と、
前記第1の排気筒の電池内側方向の一端に配置された底壁と、
前記第1の排気筒の電池外側方向の一端に配置された中壁と、
前記中壁の中心領域から前記底壁に向けて垂下する軸と、
前記軸から前記第1の排気筒の内壁に向けて放射状に配置され、前記第1の排気筒内を少なくともn(n≧4)個の排気室に分割するn枚の区画壁を備え、
前記底壁は、前記電解液面に対して傾斜角θ(0°<θ<90°)を有し、
隣接しあう前記排気室は、前記区画壁と前記底壁の間に配置された間隙を介して互いに連通し、
複数の前記排気室の中で最も前記電解液面に近接する排気室に対応する前記第1の排気筒に第1の開口部を有し、
前記中壁の、前記第1の開口部に対応する排気室から少なくとも一つの他の排気室を隔てた位置に配置された排気室に対応する部位に前記中壁を貫通する第2の開口部と第3の開口部を有し、
前記中壁の電池外側方向の底面に対向するとともに前記第2の開口部を覆うよう配置された多孔質フィルタと、
前記第3の開口部に連通するとともに、前記中壁から電池外側方向に突出するよう形成された第2の排気筒と、
前記第2の排気筒に装着されたキャップ状弁体とからなる圧力開放弁を有し、
前記第2の開口部の前記多孔質フィルタに対向する側の開口面積Sは、前記多孔質フィルタの底面積D未満に制限され、
前記第3の開口部2fの開口面積は、第2の排気筒6の内周面積より小さく制限され、
前記キャップ状弁体および前記多孔質フィルタを多い、かつガス排出のための第4の開口部を有した上蓋を備えた鉛蓄電池用の排気栓。
An exhaust plug for a lead storage battery that is attached to the liquid port of the lead storage battery and has an exhaust structure inside,
The exhaust plug is
A first exhaust pipe that hangs down toward the electrolyte surface in a state of being attached to the liquid port;
A bottom wall disposed at one end of the first exhaust stack in the battery inner direction;
An inner wall disposed at one end of the first exhaust stack in the battery outer direction;
An axis depending from the central region of the middle wall toward the bottom wall;
N partition walls arranged radially from the shaft toward the inner wall of the first exhaust pipe and dividing the inside of the first exhaust pipe into at least n (n ≧ 4) exhaust chambers;
The bottom wall has an inclination angle θ (0 ° <θ <90 °) with respect to the electrolyte surface,
The adjacent exhaust chambers communicate with each other via a gap disposed between the partition wall and the bottom wall,
The first exhaust tube corresponding to the exhaust chamber closest to the electrolyte surface among the plurality of exhaust chambers has a first opening;
A second opening that penetrates the middle wall in a portion corresponding to the exhaust chamber disposed at a position separating at least one other exhaust chamber from the exhaust chamber corresponding to the first opening of the middle wall. And a third opening,
A porous filter arranged to face the bottom surface of the inner wall in the battery outer side direction and cover the second opening;
A second exhaust pipe that communicates with the third opening and is formed to protrude from the inner wall toward the battery outer side;
A pressure release valve comprising a cap-like valve body mounted on the second exhaust pipe;
The opening area S on the side facing the porous filter of the second opening is limited to less than the bottom area D of the porous filter,
The opening area of the third opening 2f is limited to be smaller than the inner peripheral area of the second exhaust pipe 6,
An exhaust plug for a lead storage battery comprising an upper lid having a large number of the cap-shaped valve body and the porous filter and having a fourth opening for discharging gas.
前記圧力開放弁の開弁圧は、前記多孔質フィルタの圧力損失の初期値よりも高く設定されたことを特徴とする請求項1に記載の鉛蓄電池用の排気栓。 The exhaust plug for a lead storage battery according to claim 1, wherein the valve opening pressure of the pressure release valve is set higher than the initial value of the pressure loss of the porous filter. 前記開口面積Sは、前記底面積Dの20%以下に制限したことを特徴とする請求項1もしくは2に記載の鉛蓄電池用の排気栓。 3. The lead-acid battery exhaust plug according to claim 1, wherein the opening area S is limited to 20% or less of the bottom area D. 4. 請求項1、2もしくは3の鉛蓄電池用の排気栓を備えた鉛蓄電池。 A lead acid battery comprising the exhaust plug for the lead acid battery according to claim 1, 2 or 3. 正極および負極の格子体のいずれか一方がアンチモンを含む鉛合金からなる請求項4に記載の鉛蓄電池。 The lead acid battery according to claim 4, wherein either one of the positive electrode and the negative electrode lattice body is made of a lead alloy containing antimony.
JP2010032202A 2010-02-17 2010-02-17 Vent plug for lead-acid battery and lead-acid battery Pending JP2011171039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010032202A JP2011171039A (en) 2010-02-17 2010-02-17 Vent plug for lead-acid battery and lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010032202A JP2011171039A (en) 2010-02-17 2010-02-17 Vent plug for lead-acid battery and lead-acid battery

Publications (1)

Publication Number Publication Date
JP2011171039A true JP2011171039A (en) 2011-09-01

Family

ID=44684968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010032202A Pending JP2011171039A (en) 2010-02-17 2010-02-17 Vent plug for lead-acid battery and lead-acid battery

Country Status (1)

Country Link
JP (1) JP2011171039A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882577A (en) * 2014-02-28 2015-09-02 株式会社杰士汤浅国际 Lead storage battery, and motorcycle carrying lead storage battery
JP2017152162A (en) * 2016-02-23 2017-08-31 株式会社Gsユアサ Electricity storage device
JP2023506412A (en) * 2019-12-13 2023-02-16 メルセデス・ベンツ グループ アクチェンゲゼルシャフト Particle separator for battery pack and battery pack with particle separator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104882577A (en) * 2014-02-28 2015-09-02 株式会社杰士汤浅国际 Lead storage battery, and motorcycle carrying lead storage battery
CN104882577B (en) * 2014-02-28 2019-08-27 株式会社杰士汤浅国际 Lead storage battery and motorcycle equipped with the lead storage battery
JP2017152162A (en) * 2016-02-23 2017-08-31 株式会社Gsユアサ Electricity storage device
US10665837B2 (en) 2016-02-23 2020-05-26 Gs Yuasa International Ltd. Energy storage apparatus
JP2023506412A (en) * 2019-12-13 2023-02-16 メルセデス・ベンツ グループ アクチェンゲゼルシャフト Particle separator for battery pack and battery pack with particle separator
JP7318133B2 (en) 2019-12-13 2023-07-31 メルセデス・ベンツ グループ アクチェンゲゼルシャフト Particle separator for battery pack and battery pack with particle separator

Similar Documents

Publication Publication Date Title
WO2009130740A1 (en) Lead storage battery
JP2008235055A (en) Lead acid storage cell
JP2006294290A (en) Lead storage battery
JP2011171039A (en) Vent plug for lead-acid battery and lead-acid battery
JP5145707B2 (en) Lead acid battery
JP5838382B2 (en) Lead acid battery
JPH11501146A (en) Maintenance-free lead-acid battery regulated by a leak-proof valve
JP2003045380A (en) Battery
JP6347102B2 (en) Method for manufacturing power storage device
JP5125040B2 (en) Lead acid battery
CN102403467B (en) Anti-explosion secondary battery
JPS61161656A (en) Vent plug for storage battery
JP4887649B2 (en) Control valve type lead acid battery
JP4715091B2 (en) Lead acid battery
JP2010205572A (en) Lead acid battery
JP5082185B2 (en) Lead acid battery
WO2021054163A1 (en) Vent plug for lead storage battery and lead storage battery
JP6855970B2 (en) Lead-acid battery
EP4037076A1 (en) Power storage pack
CN209169311U (en) Battery component
RU175674U1 (en) BATTERY COVER
JP2007157612A (en) Lead-acid battery
JP4552375B2 (en) Lead acid battery
WO2022224884A1 (en) Lead storage battery
JP2020017460A (en) Lead storage battery