JP6837558B2 - 自車両の制御方法及び自車両の制御システム - Google Patents
自車両の制御方法及び自車両の制御システム Download PDFInfo
- Publication number
- JP6837558B2 JP6837558B2 JP2019534767A JP2019534767A JP6837558B2 JP 6837558 B2 JP6837558 B2 JP 6837558B2 JP 2019534767 A JP2019534767 A JP 2019534767A JP 2019534767 A JP2019534767 A JP 2019534767A JP 6837558 B2 JP6837558 B2 JP 6837558B2
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- track
- feasible
- probability
- environment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 78
- 230000033001 locomotion Effects 0.000 claims description 116
- 230000008859 change Effects 0.000 claims description 26
- 230000006870 function Effects 0.000 claims description 16
- 230000001133 acceleration Effects 0.000 claims description 13
- 238000011156 evaluation Methods 0.000 claims description 8
- 230000004044 response Effects 0.000 claims description 5
- 238000012423 maintenance Methods 0.000 claims description 4
- 238000012549 training Methods 0.000 description 17
- 238000010586 diagram Methods 0.000 description 13
- 230000007704 transition Effects 0.000 description 9
- 238000013528 artificial neural network Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 230000009471 action Effects 0.000 description 7
- 238000013459 approach Methods 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 230000006399 behavior Effects 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000003066 decision tree Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000007637 random forest analysis Methods 0.000 description 3
- 238000005315 distribution function Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000012706 support-vector machine Methods 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000007635 classification algorithm Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/166—Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/08—Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
- B60W30/095—Predicting travel path or likelihood of collision
- B60W30/0956—Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W50/00—Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
- B60W50/08—Interaction between the driver and the control system
- B60W50/14—Means for informing the driver, warning the driver or prompting a driver intervention
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0015—Planning or execution of driving tasks specially adapted for safety
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0027—Planning or execution of driving tasks using trajectory prediction for other traffic participants
- B60W60/00272—Planning or execution of driving tasks using trajectory prediction for other traffic participants relying on extrapolation of current movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0027—Planning or execution of driving tasks using trajectory prediction for other traffic participants
- B60W60/00274—Planning or execution of driving tasks using trajectory prediction for other traffic participants considering possible movement changes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W60/00—Drive control systems specially adapted for autonomous road vehicles
- B60W60/001—Planning or execution of driving tasks
- B60W60/0027—Planning or execution of driving tasks using trajectory prediction for other traffic participants
- B60W60/00276—Planning or execution of driving tasks using trajectory prediction for other traffic participants for two or more other traffic participants
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/58—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
- G06V20/584—Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of vehicle lights or traffic lights
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/01—Detecting movement of traffic to be counted or controlled
- G08G1/0104—Measuring and analyzing of parameters relative to traffic conditions
- G08G1/0108—Measuring and analyzing of parameters relative to traffic conditions based on the source of data
- G08G1/0112—Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/403—Image sensing, e.g. optical camera
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2420/00—Indexing codes relating to the type of sensors based on the principle of their operation
- B60W2420/40—Photo, light or radio wave sensitive means, e.g. infrared sensors
- B60W2420/408—Radar; Laser, e.g. lidar
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2540/00—Input parameters relating to occupants
- B60W2540/215—Selection or confirmation of options
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/40—Dynamic objects, e.g. animals, windblown objects
- B60W2554/402—Type
- B60W2554/4029—Pedestrians
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2554/00—Input parameters relating to objects
- B60W2554/80—Spatial relation or speed relative to objects
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/05—Big data
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2556/00—Input parameters relating to data
- B60W2556/25—Data precision
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/0278—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Human Computer Interaction (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Computational Linguistics (AREA)
- General Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Traffic Control Systems (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Description
Claims (17)
- 他車両として表される一組の車両と自車両とが道路を共有する環境内において、前記自車両の運動を制御する方法であって、該方法は、該方法を実施する記憶された命令と結合されたプロセッサを使用し、該命令は、該プロセッサによって実行されるとき、該方法の少なくともいくつかのステップを実行し、該方法は、
軌道に従って前記環境内で前記自車両の運動を制御するステップと、
前記自車両の前記運動の状態及び前記環境のマップによって前記自車両の運転領域を規定し、前記運転領域内を走行する仮想車両の各々の実現可能な軌道を決定するステップと、
前記環境内を走行する前記一組の車両内の各車両の運動を示す時系列信号を生成するステップと、
前記自車両の前記軌道を使用して、各々の実現可能な軌道が前記自車両の前記軌道と交差する確率を決定するステップと、
前記時系列信号を使用して、各々の実現可能な軌道が少なくとも1つの車両によって追従される確率を決定するステップと、
前記実現可能な軌道が前記自車両の軌道と交差する確率と、前記実現可能な軌道が少なくとも1つの車両によって追従される確率との組み合わせとして、各々の実現可能な軌道のリスクレベルを決定するステップと、
前記実現可能な軌道の前記リスクレベルの評価に応じて、前記自車両の前記軌道を調整するステップと、
を含む、方法。 - 前記軌道及び前記実現可能な軌道が、前記一組の車両の可能な状態の確率密度関数から生成される、請求項1に記載の方法。
- 前記実現可能な軌道は、仮想車両の運動の運動学的モデルを使用して決定され、
一組の運転意図から選択された異なる運転意図で走行する前記仮想車両の、前記環境の異なる位置における異なる速度に対して前記実現可能な軌道を生成するステップ、
を含む、請求項1に記載の方法。 - 前記仮想車両の位置は、前記環境のマップに従って選択され、
前記一組の運転意図は、左折意図、右折意図、直進走行意図、左車線変更意図、右車線変更意図、ブレーキ意図、加速意図、及び速度維持意図のうちの1つ又は組み合わせを含み、
前記実現可能な軌道は、前記仮想車両を前記自車両の前記運転領域内に移動させる、前記環境によって許容される異なる運転意図を実行する各々の仮想車両に対して決定される、請求項3に記載の方法。 - 誤差のマージン内で前記車両の前記時系列信号と一致する実現可能な軌道のサブセットに車両を割り当てるステップと、
前記実現可能な軌道によって表される運転意図に関する統計に基づいて、前記サブセットから各々の実現可能な軌道に前記車両が追従する確率を決定するステップと、
を更に含む、請求項1に記載の方法。 - 少なくとも1つの実現可能な軌道は、前記誤差のマージンを規定する前記実現可能な軌道に続く前記車両の可能な状態の確率密度を含む、請求項5に記載の方法。
- 前記環境内の現在の道路交通状態を使用して前記車両の運動を分類するために前記車両の前記時系列信号を分類して、前記車両の運転意図を生成するステップと、
前記サブセットからの前記実現可能な軌道の前記車両の意図との整合性に基づいて前記サブセットからの各実現可能な軌道の確率を更新するステップと、
を更に含む、請求項5に記載の方法。 - 前記組み合わせは、前記実現可能な軌道が前記自車両の前記軌道と交差する確率と、前記実現可能な軌道が少なくとも1つの車両によって追従される確率との加重平均を含む、請求項1に記載の方法。
- 前記調整するステップは、
前記リスクレベルが閾値を超える実現可能な軌道を選択するステップと、
前記実現可能な軌道のリスクを示す情報を前記自車両の運転者に与えるステップと、
前記運転者から受信した入力コマンドに応答して前記軌道を調整するステップと、
を含む、請求項1に記載の方法。 - 前記調整するステップは、
前記リスクレベルが閾値を超える実現可能な軌道を選択するステップと、
前記実現可能な軌道のリスクを示す情報を前記自車両の衝突回避モジュールに提出するステップと、
前記衝突回避モジュールから受信した入力コマンドに応答して前記軌道を調整するステップと、
を含む、請求項1に記載の方法。 - 他車両として表される一組の車両と自車両とが道路を共有する環境内において、前記自車両の運動を制御する該自車両の制御システムであって、
軌道に従って、前記環境内での前記自車両の運動を制御するコントローラーと、
前記環境内を走行する前記一組の車両内の各車両の運動を示す時系列信号を生成する少なくとも1つのセンサーと、
脅威評価器であって、
前記自車両の運動状態及び前記環境のマップによって前記自車両の運転領域を規定し、前記運転領域内を走行する仮想車両の各々の実現可能な軌道を決定し、
前記実現可能な軌道が前記自車両の前記軌道と交差する確率と、前記実現可能な軌道が少なくとも1つの車両によって追従される確率との組み合わせとして、各々の実現可能な軌道のリスクレベルを決定する、
プロセッサを備える、脅威評価器と、
前記実現可能な軌道の前記リスクレベルの評価に応じて、前記自車両の前記軌道を調整するモーションプランナーと、
を備える、制御システム。 - 前記環境の前記マップと、仮想車両の運動の運動学的モデルと、左折意図、右折意図、直進意図、左車線変更意図、右車線変更意図、ブレーキ意図、加速意図、及び速度維持意図のうちの1つ又はそれらの組み合わせを含む一組の運転意図とを記憶するメモリを更に含み、
前記脅威評価器は、前記環境の異なる場所で各仮想車両について前記実現可能な軌道を生成し、一組の運転意図から選択された異なる運転意図で走行して各々の仮想車両を前記自車両の前記運転領域内に移動させる、請求項11に記載の制御システム。 - 前記脅威評価器は、
誤差のマージン内で前記時系列信号と整合する実現可能な軌道のサブセットに各車両を割り当て、
前記サブセット内の前記実現可能な軌道の数及び前記実現可能な軌道によって表される運転意図に関する統計に基づいて、前記サブセットから各々の実現可能な軌道に前記車両が追従する前記確率を決定する、請求項11に記載の制御システム。 - 少なくとも1つの実現可能な軌道が、前記誤差のマージンを規定する前記実現可能な軌道に追従する前記車両の可能な状態の確率密度を含む、請求項13に記載の制御システム。
- 方法を実行するプロセッサによって実行可能なプログラムを具現化した非一時的コンピューター可読記憶媒体であって、前記方法は、
軌道に従って環境内で自車両の運動を制御することと、
前記自車両の運動状態及び前記環境のマップによって前記自車両の運転領域を規定し、前記運転領域内を走行する仮想車両の各々の実現可能な軌道を決定することと、
前記自車両に配置された少なくとも1つのセンサーを使用して、前記環境内を走行する車両の組内の各車両の運動を示す時系列信号を生成することと、
前記自車両の前記軌道を使用して、各々の実現可能な軌道が前記自車両の前記軌道と交差する確率を決定することと、
前記時系列信号を使用して、各々の実現可能な軌道が少なくとも1つの車両によって追従される確率を決定することと、
前記実現可能な軌道が前記自車両の前記軌道と交差する前記確率と、前記実現可能な軌道が少なくとも1つの車両によって追従される前記確率との組み合わせとして、各々の実現可能な軌道のリスクレベルを決定することと、
前記実現可能な軌道の前記リスクレベルの評価に応じて、前記自車両の前記軌道を調整することと、
を含む、媒体。 - 前記方法は、
左折意図、右折意図、直進意図、左車線変更意図、右車線変更意図、ブレーキ意図、加速意図、及び速度維持意図のうちの1つ又はそれらの組み合わせを含む一組の運転意図から選択された異なる運転意図で走行する前記仮想車両の、前記環境の異なる場所における異なる速度に対して前記実現可能な軌道を生成することと、
誤差のマージン内で車両の前記時系列信号と整合する実現可能な軌道のサブセットに前記車両を割り当てることと、
前記実現可能な軌道によって表される運転意図に関する統計に基づいて、前記サブセットからの各々の実現可能な軌道を前記車両が追従する前記確率を決定することと、
を更に含む、請求項15に記載の媒体。 - 前記方法は、
前記環境内の道路交通を使用して前記車両の前記時系列信号を分類して、前記車両の運転意図を生成することと、
前記サブセットからの前記実現可能な軌道と前記車両の意図との整合性に基づいて前記サブセットからの各々の実現可能な軌道の前記確率を更新することと、
を更に含む、請求項16に記載の媒体。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/471,665 | 2017-03-28 | ||
US15/471,665 US10324469B2 (en) | 2017-03-28 | 2017-03-28 | System and method for controlling motion of vehicle in shared environment |
PCT/JP2017/037770 WO2018179539A1 (en) | 2017-03-28 | 2017-10-12 | Method for controlling host vehicle and control system of host vehicle |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020514158A JP2020514158A (ja) | 2020-05-21 |
JP6837558B2 true JP6837558B2 (ja) | 2021-03-03 |
Family
ID=60388104
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019534767A Active JP6837558B2 (ja) | 2017-03-28 | 2017-10-12 | 自車両の制御方法及び自車両の制御システム |
Country Status (3)
Country | Link |
---|---|
US (1) | US10324469B2 (ja) |
JP (1) | JP6837558B2 (ja) |
WO (1) | WO2018179539A1 (ja) |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10769453B2 (en) * | 2017-05-16 | 2020-09-08 | Samsung Electronics Co., Ltd. | Electronic device and method of controlling operation of vehicle |
WO2018212538A1 (en) * | 2017-05-16 | 2018-11-22 | Samsung Electronics Co., Ltd. | Electronic device and method of detecting driving event of vehicle |
US10591920B2 (en) * | 2017-05-24 | 2020-03-17 | Qualcomm Incorporated | Holistic planning with multiple intentions for self-driving cars |
JP6666304B2 (ja) * | 2017-06-02 | 2020-03-13 | 本田技研工業株式会社 | 走行制御装置、走行制御方法、およびプログラム |
US10007269B1 (en) | 2017-06-23 | 2018-06-26 | Uber Technologies, Inc. | Collision-avoidance system for autonomous-capable vehicle |
US10217028B1 (en) * | 2017-08-22 | 2019-02-26 | Northrop Grumman Systems Corporation | System and method for distributive training and weight distribution in a neural network |
US10629080B2 (en) * | 2017-08-31 | 2020-04-21 | Uatc Llc | Autonomous vehicles featuring vehicle intention system |
US10515321B2 (en) * | 2017-09-11 | 2019-12-24 | Baidu Usa Llc | Cost based path planning for autonomous driving vehicles |
KR102463720B1 (ko) * | 2017-12-18 | 2022-11-07 | 현대자동차주식회사 | 차량의 경로 생성 시스템 및 방법 |
EP3514648B1 (en) * | 2018-01-22 | 2023-09-06 | Continental Autonomous Mobility Germany GmbH | Method and apparatus for detecting a boundary in an envi-ronment of an object |
US11687079B2 (en) * | 2018-01-26 | 2023-06-27 | Uatc, Llc | Methods, devices, and systems for analyzing motion plans of autonomous vehicles |
US11203353B2 (en) * | 2018-03-09 | 2021-12-21 | Mitsubishi Heavy Industries, Ltd. | Steering control system, steering system, car, steering control method and recording medium |
WO2019203946A1 (en) * | 2018-04-17 | 2019-10-24 | Hrl Laboratories, Llc | Programming model for a bayesian neuromorphic compiler |
US11511745B2 (en) * | 2018-04-27 | 2022-11-29 | Huawei Technologies Co., Ltd. | Method and system for adaptively controlling object spacing |
DE102018207102A1 (de) * | 2018-05-08 | 2019-11-14 | Robert Bosch Gmbh | Verfahren zur Ermittlung der Trajektorienfolgegenauigkeit |
EP3794571A4 (en) * | 2018-05-16 | 2022-01-26 | Notraffic Ltd. | SYSTEM AND METHOD FOR USING V2X COMMUNICATION AND SENSOR DATA |
DE102018117561A1 (de) * | 2018-07-20 | 2020-01-23 | Zf Active Safety Gmbh | Verfahren zum automatisierten Vermeiden einer Kollision |
US11256260B2 (en) * | 2018-10-05 | 2022-02-22 | Waymo Llc | Generating trajectories for autonomous vehicles |
US11048253B2 (en) | 2018-11-21 | 2021-06-29 | Waymo Llc | Agent prioritization for autonomous vehicles |
US10919543B2 (en) * | 2019-01-30 | 2021-02-16 | StradVision, Inc. | Learning method and learning device for determining whether to switch mode of vehicle from manual driving mode to autonomous driving mode by performing trajectory-based behavior analysis on recent driving route |
EP3693943B1 (en) * | 2019-02-05 | 2024-05-29 | Honda Research Institute Europe GmbH | Method for assisting a person in acting in a dynamic environment and corresponding system |
CN109885943B (zh) * | 2019-02-26 | 2023-05-16 | 百度在线网络技术(北京)有限公司 | 行车决策的预测方法、装置、存储介质和终端设备 |
US11364936B2 (en) * | 2019-02-28 | 2022-06-21 | Huawei Technologies Co., Ltd. | Method and system for controlling safety of ego and social objects |
US20200310422A1 (en) * | 2019-03-26 | 2020-10-01 | GM Global Technology Operations LLC | Cognitive processor feedforward and feedback integration in autonomous systems |
US11688293B2 (en) * | 2019-03-29 | 2023-06-27 | Volvo Car Corporation | Providing educational media content items based on a determined context of a vehicle or driver of the vehicle |
JP7251352B2 (ja) * | 2019-06-26 | 2023-04-04 | 株式会社デンソー | 運転支援装置、運転支援方法、及びプログラム |
US11124196B2 (en) * | 2019-07-02 | 2021-09-21 | Mitsubishi Electric Research Laboratories, Inc. | Receding horizon state estimator |
CN112242069B (zh) * | 2019-07-17 | 2021-10-01 | 华为技术有限公司 | 一种确定车速的方法和装置 |
US11875678B2 (en) | 2019-07-19 | 2024-01-16 | Zoox, Inc. | Unstructured vehicle path planner |
SE544208C2 (en) * | 2019-08-23 | 2022-03-01 | Scania Cv Ab | Method and control arrangement for vehicle motion planning and control algorithms |
US12072678B2 (en) * | 2019-09-16 | 2024-08-27 | Honda Motor Co., Ltd. | Systems and methods for providing future object localization |
US11351996B2 (en) | 2019-11-01 | 2022-06-07 | Denso International America, Inc. | Trajectory prediction of surrounding vehicles using predefined routes |
CN114766022A (zh) * | 2019-11-06 | 2022-07-19 | 俄亥俄州创新基金会 | 使用多时域优化的车辆动力学和动力总成控制系统和方法 |
JP7255460B2 (ja) * | 2019-11-15 | 2023-04-11 | トヨタ自動車株式会社 | 車両制御システム |
DE102019219241A1 (de) * | 2019-12-10 | 2021-06-10 | Psa Automobiles Sa | Verfahren zum Erstellen eines Verkehrsteilnehmeralgorithmus zur Computersimulation von Verkehrsteilnehmern, Verfahren zum Trainieren wenigstens eines Algorithmus für ein Steuergerät eines Kraftfahrzeugs, Computerprogrammprodukt sowie Kraftfahrzeug |
US11520342B2 (en) * | 2020-03-12 | 2022-12-06 | Pony Ai Inc. | System and method for determining realistic trajectories |
CN111931968B (zh) * | 2020-03-12 | 2023-12-01 | 东南大学 | 一种应用手机gps数据来优化公共自行车站点布局的方法 |
JP7464425B2 (ja) * | 2020-03-31 | 2024-04-09 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、及びプログラム |
US20200262423A1 (en) * | 2020-05-08 | 2020-08-20 | Intel Corporation | Systems, devices, and methods for risk-aware driving |
CN111427369B (zh) * | 2020-06-08 | 2020-11-03 | 北京三快在线科技有限公司 | 一种无人车控制方法及装置 |
JP7287353B2 (ja) * | 2020-06-11 | 2023-06-06 | トヨタ自動車株式会社 | 位置推定装置及び位置推定用コンピュータプログラム |
US20210403056A1 (en) * | 2020-06-24 | 2021-12-30 | Toyota Research Institute, Inc. | Convolution operator selection |
US11783178B2 (en) * | 2020-07-30 | 2023-10-10 | Toyota Research Institute, Inc. | Systems and methods for corridor intent prediction |
CN114056347A (zh) * | 2020-07-31 | 2022-02-18 | 华为技术有限公司 | 车辆运动状态识别方法及装置 |
US11753044B2 (en) * | 2020-11-18 | 2023-09-12 | Argo AI, LLC | Method and system for forecasting reactions of other road users in autonomous driving |
FR3118932A1 (fr) * | 2021-01-19 | 2022-07-22 | Psa Automobiles Sa | Procédé et dispositif de génération d’une trajectoire d’un véhicule autonome |
CN112799411B (zh) * | 2021-04-12 | 2021-07-30 | 北京三快在线科技有限公司 | 一种无人驾驶设备的控制方法及装置 |
CN113325754A (zh) * | 2021-05-14 | 2021-08-31 | 重庆科创职业学院 | 一种基于车联网的车辆动态信息反馈装置 |
EP4112411B1 (en) * | 2021-07-01 | 2024-03-27 | Zenseact AB | Estimation of accident intensity for vehicles |
CN113867315B (zh) * | 2021-09-24 | 2023-06-02 | 同济大学 | 一种虚实结合的高保真交通流智能车测试平台及测试方法 |
JPWO2023053165A1 (ja) * | 2021-09-28 | 2023-04-06 | ||
US20230331252A1 (en) * | 2022-04-15 | 2023-10-19 | Gm Cruise Holdings Llc | Autonomous vehicle risk evaluation |
US20230339503A1 (en) * | 2022-04-26 | 2023-10-26 | Toyota Research Institute, Inc. | Producing a trajectory from a diverse set of possible movements |
US20240001959A1 (en) * | 2022-06-30 | 2024-01-04 | Zoox, Inc. | Vehicle motion planner |
CN115923845B (zh) * | 2023-01-09 | 2023-05-23 | 北京科技大学 | 自动驾驶车辆前向避撞场景下干预型共享控制方法及装置 |
CN116203964B (zh) * | 2023-03-13 | 2024-02-09 | 阿波罗智联(北京)科技有限公司 | 一种控制车辆行驶的方法、设备和装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3864418B2 (ja) | 2004-01-28 | 2006-12-27 | マツダ株式会社 | 車両用画像表示装置 |
EP1898232B1 (en) | 2006-09-08 | 2010-09-01 | Ford Global Technologies, LLC | Method and system for collision avoidance |
DE102007019991A1 (de) | 2007-04-27 | 2008-10-30 | Robert Bosch Gmbh | Vermeidung eines Auffahrunfalls bei einem automatischen Bremseingriff eines Fahrzeugsicherheitssystems |
WO2010101749A1 (en) | 2009-03-05 | 2010-09-10 | Massachusetts Institute Of Technology | Predictive semi-autonomous vehicle navigation system |
US9633564B2 (en) | 2012-09-27 | 2017-04-25 | Google Inc. | Determining changes in a driving environment based on vehicle behavior |
US9250324B2 (en) | 2013-05-23 | 2016-02-02 | GM Global Technology Operations LLC | Probabilistic target selection and threat assessment method and application to intersection collision alert system |
US9478363B2 (en) | 2013-08-28 | 2016-10-25 | Florida State University Research Foundation, Inc. | Flexible electrical devices and methods |
EP2950294B1 (en) | 2014-05-30 | 2019-05-08 | Honda Research Institute Europe GmbH | Method and vehicle with an advanced driver assistance system for risk-based traffic scene analysis |
EP3091370B1 (en) | 2015-05-05 | 2021-01-06 | Volvo Car Corporation | Method and arrangement for determining safe vehicle trajectories |
-
2017
- 2017-03-28 US US15/471,665 patent/US10324469B2/en active Active
- 2017-10-12 WO PCT/JP2017/037770 patent/WO2018179539A1/en active Application Filing
- 2017-10-12 JP JP2019534767A patent/JP6837558B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
US20180284785A1 (en) | 2018-10-04 |
JP2020514158A (ja) | 2020-05-21 |
WO2018179539A1 (en) | 2018-10-04 |
US10324469B2 (en) | 2019-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6837558B2 (ja) | 自車両の制御方法及び自車両の制御システム | |
JP7069345B2 (ja) | 車両の制御システム及び車両の運動を制御する制御方法 | |
JP6837570B2 (ja) | 車両の横方向運動を制御するシステム及び方法 | |
JP7444874B2 (ja) | 方法、非一時的コンピュータ可読媒体、および、車両 | |
US11822337B2 (en) | Autonomous vehicles featuring machine-learned yield model | |
US11710303B2 (en) | Systems and methods for prioritizing object prediction for autonomous vehicles | |
CN112840350B (zh) | 自动驾驶车辆规划和预测 | |
US10571916B2 (en) | Control method for autonomous vehicles | |
WO2021222375A1 (en) | Constraining vehicle operation based on uncertainty in perception and/or prediction | |
EP3802260A1 (en) | Gridlock solver for motion planning system of an autonomous vehicle | |
US11860634B2 (en) | Lane-attention: predicting vehicles' moving trajectories by learning their attention over lanes | |
JP2024530638A (ja) | ツリー検索を使用する車両軌道制御 | |
US11673584B2 (en) | Bayesian Global optimization-based parameter tuning for vehicle motion controllers | |
US20240043034A1 (en) | Method and system for conditional operation of an autonomous agent | |
CN113366400A (zh) | 自动驾驶车辆的动态成本函数的实现方法 | |
US20240001966A1 (en) | Scenario-based training data weight tuning for autonomous driving | |
US20230053243A1 (en) | Hybrid Performance Critic for Planning Module's Parameter Tuning in Autonomous Driving Vehicles | |
US20240157944A1 (en) | Reinforcement learning for autonomous lane change |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200623 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200824 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210112 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210209 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6837558 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |