JP6837558B2 - 自車両の制御方法及び自車両の制御システム - Google Patents

自車両の制御方法及び自車両の制御システム Download PDF

Info

Publication number
JP6837558B2
JP6837558B2 JP2019534767A JP2019534767A JP6837558B2 JP 6837558 B2 JP6837558 B2 JP 6837558B2 JP 2019534767 A JP2019534767 A JP 2019534767A JP 2019534767 A JP2019534767 A JP 2019534767A JP 6837558 B2 JP6837558 B2 JP 6837558B2
Authority
JP
Japan
Prior art keywords
vehicle
track
feasible
probability
environment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019534767A
Other languages
English (en)
Other versions
JP2020514158A (ja
Inventor
バーントープ、カール
一秀 岡本
一秀 岡本
ディ・カイラノ、ステファノ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JP2020514158A publication Critical patent/JP2020514158A/ja
Application granted granted Critical
Publication of JP6837558B2 publication Critical patent/JP6837558B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0027Planning or execution of driving tasks using trajectory prediction for other traffic participants
    • B60W60/00272Planning or execution of driving tasks using trajectory prediction for other traffic participants relying on extrapolation of current movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0027Planning or execution of driving tasks using trajectory prediction for other traffic participants
    • B60W60/00274Planning or execution of driving tasks using trajectory prediction for other traffic participants considering possible movement changes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0027Planning or execution of driving tasks using trajectory prediction for other traffic participants
    • B60W60/00276Planning or execution of driving tasks using trajectory prediction for other traffic participants for two or more other traffic participants
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/584Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of vehicle lights or traffic lights
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo, light or radio wave sensitive means, e.g. infrared sensors
    • B60W2420/408Radar; Laser, e.g. lidar
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/215Selection or confirmation of options
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/402Type
    • B60W2554/4029Pedestrians
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/05Big data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/25Data precision
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Computational Linguistics (AREA)
  • General Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Traffic Control Systems (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本発明は、概して、自律運転及び先進運転者支援システムに関し、より詳細には、共有された環境内を走行する他の車両の運動によって生じるリスクを考慮して車両の運動を制御することに関する。
信頼性の高い位置特定及び運動予測は、自律運転及び先進運転支援システム(ADAS)の重要な構成要素である。例えば、自律走行車及びADASの1つの構成要素にモーションプランナーがある。これは、周囲の情報を取得し、多くの場合、移動障害物がある場合に目的位置に向かって誘導するための軌道プロファイルを計算する。別の例として、車線変更システム等のADASは、現時点でも将来の或る時点でも、他の車両の位置に関する正確な情報を必要とする。
そのために、現代の自動車は時々、衝突警報又は回避を可能にするために使用される物体検出センサー及び他の能動的安全アプリケーションを使用する脅威の評価及び/又は衝突回避システムを含む。物体検出センサーは、例えば、短距離レーダー、長距離レーダー、画像処理を備えたカメラ、レーザー又はLiDAR、超音波等の多くの技術のいずれかを使用することができる。物体検出センサーは、自車両の経路内の車両及び他の物体を検出し、アプリケーションソフトウェアが、物体検出情報を使用して警告を発したり、必要に応じて行動を起こしたりする。多くの車両において、物体検出センサーは、車両のフロントバンパー又は他のダッシュボード内に直接一体化されている。
しかしながら、動いている車両の運動に関する情報を用いても、脅威評価及び/又は衝突回避は困難な作業である。例えば、特許文献1に記載のシステムは、最適な車両状態を生成し、それらの最適状態に基づいて脅威の評価を生成することにより、脅威の評価を検討している。しかしながら、最適な経路を計算することは、特に複雑な環境では、計算上不可能になる可能性がある。
特許文献2では、脅威の評価は、車両の運動動特性と検出された物体の複数の戻り走査点とを用い、自車両の予測経路と交差する各々の検出された物体の危険度を計算する、自車両の予測軌道に基づいている。しかしながら、各車両を予測することは、関心領域内に多くの検出された物体があるときには計算上不可能である。
米国特許第8543261号 米国特許出願公開第2016/0109571号
したがって、共有された環境内における他の車両の運動によってもたらされるリスクを計算上効率的な方法で推定するシステム及び方法が必要とされている。
いくつかの実施の形態は、自車両と共有される環境内を走行する車両が、自車両の軌道と交差する軌道に沿って移動しているときにのみ自車両に対して脅威をもたらすという認識に基づく。しかしながら、この記述を逆にすると、自車両の軌道と交差する仮想軌道は、その仮想軌道に沿って走行する別の車両がある場合にのみ自車両にとって脅威となるという理解につながることができる。
いくつかの実施の形態は、自車両に対する他の車両の運動の危険性を評価するのではなく、自車両に対する軌道の危険性を評価することが可能であり、計算上より効率的であるという認識に基づく。これは、運転可能領域、道路交通、及び/又は環境のマップによって課せられる実現可能な軌道の数が限られているためである。これらの実現可能な軌道は計算上効率的な方法で事前計算することができ、移動中の車両について全ての可能な軌道を生成するのではなく車両が事前計算された軌道を追従するかどうかを試験する方が容易である。このようにして、最適な軌道を生成する問題は、割り当て及び/又は分類の問題と置き換えられ、これは計算上より効率的である。
いくつかの実施の形態は、実現可能な軌道と自車両の軌道との交差は確率論的に決定され得るという認識に基づく。このようにして、実現可能な軌道は、運転可能領域のより広い空間を網羅する確率密度関数によって表すことができ、それによって生成する実現可能な軌道の数を減らすことができる。同様に、実現可能な軌道への車両の割り当てもまた、運動の測定値の不確実性、車両の運転者の運転意図の急激な変化の可能性、及び複数の軌道に属するセグメントに沿った運動の可能性を表すために確率論的に決定され得る。
そのために、いくつかの実施の形態は、実現可能な軌道が自車両の軌道と交差する確率と、実現可能な軌道が少なくとも1つの車両によって追従される確率との組み合わせとして、実現可能な軌道のリスクレベルを決定する。
いくつかの実施の形態は、車両が実現可能な軌道を追従する確率が、その車両が追従するのに利用可能な実現可能な軌道の数に依存するという理解に基づく。例えば、車両の運動の車線を変更する軌道を車両が追従する確率は、車両に現在の車線内でその進路を維持させる軌道の利用可能性に依存する。そのために、いくつかの実施の形態は、異なる運転意図で移動する仮想車両の、環境の異なる場所における異なる速度に対して実現可能な軌道を生成する。
いくつかの実施の形態は、車両が実現可能な軌道を追従する確率が、この種の軌道の使用統計に依存するという理解に基づく。例えば、一般的に、車両は、車線を変更するのではなく、現在の移動車線内での運動を維持することの方が多い。したがって、車両が車線軌道の変更と現在の運動軌道の維持との両方に属するセグメントを走行するとき、車両がその現在の車線に留まる可能性が高い。
そのために、いくつかの実施の形態は、仮想車両の現在の状態と整合する仮想車両の運転者の異なる運転インデントを使用して実現可能な軌道を生成し、実現可能な軌道によって表される運転意図に関する統計に基づいて各実現可能な軌道の確率を決定する。例えば、異なる種類の軌道の使用の統計は、異なる軌道に沿った車両の運動の履歴データに基づいて決定することができる。
いくつかの実施の形態は、車両の運転者が直接的又は間接的に運転意図を示すことができるという認識に基づく。例えば、左折信号は、左折するか又は車線を左に切り替えるという運転者の意図の直接的な指標として役立つことができる。そのような信号がないことは、そのような意図がないことの間接的な指標である。
しかしながら、いくつかの実施の形態は、現在の道路交通と組み合わせた車両の現在の運動もまた、車両の運転者の運転意図を推定するために使用され得るという認識に基づく。例えば、車両が前方の車両との距離を近づけるように加速する場合、その加速は、車両が車線を変更しようとしていることの指標となり得る。しかしながら、加速している車両の前に空きスペースがある場合、車線変更の施策は可能性が低い。別の例として、車両の動きが突然の旋回(swirl)を含むとき、その旋回は、サイドミラーをチェックする運転者が施策を考えていることの指標であり得る。
そのために、いくつかの実施の形態は、環境内の道路交通を使用して車両の運動を分類して車両の運転意図を生成し、実現可能な軌道と生成された車両の意図との整合性に基づいて実現可能な軌道の確率を更新する。異なる実施の形態では、この分類は訓練されたニューラルネットワーク、サポートベクトルマシン、及び/又はディープディシジョンツリーを使用して行われる。
したがって、1つの実施の形態は、一組の車両と共有される環境内を走行する自車両を制御する方法であって、本方法は、本方法を実施する記憶された命令と結合されたプロセッサを使用し、命令は、プロセッサによって実行されるとき、本方法の少なくともいくつかのステップを実行する、方法を開示する。本方法は、軌道に従って環境内で自車両の運動を制御することと、自車両の運動の状態及び環境のマップによって規定される自車両の運転領域内を走行する仮想車両の一組の実現可能な軌道を決定することと、環境内を走行する一組の車両内の各車両の運動を示す時系列信号を生成することと、自車両の軌道を使用して、各々の実現可能な軌道が自車両の軌道と交差する確率を決定することと、時系列信号を使用して、各々の実現可能な軌道が少なくとも1つの車両によって追従される確率を決定することと、実現可能な軌道が自車両の軌道と交差する確率と、実現可能な軌道が少なくとも1つの車両によって追従される確率との組み合わせとして、各々の実現可能な軌道のリスクレベルを決定することと、実現可能な軌道のリスクレベルの評価に応じて、自車両の軌道を調整することとを含む。
別の実施の形態は、一組の車両と共有される環境内を走行する自車両の運動を制御する自車両の制御システムであって、軌道に従って、環境内での自車両の運動を制御するコントローラーと、環境内を走行する一組の車両内の各車両の運動を示す時系列信号を生成する少なくとも1つのセンサーと、脅威評価器であって、自車両の運動状態及び環境のマップによって規定される自車両の運転領域内を走行する仮想車両の一組の実現可能な軌道を決定し、実現可能な軌道が自車両の軌道と交差する確率と、実現可能な軌道が少なくとも1つの車両によって追従される確率との組み合わせとして、各々の実現可能な軌道のリスクレベルを決定するプロセッサを備える、脅威評価器と、実現可能な軌道のリスクレベルの評価に応じて、自車両の軌道を調整するモーションプランナーとを備える、制御システムを開示する。
更に別の実施の形態は、方法を実行するプロセッサによって実行可能なプログラムを具現化した非一時的コンピューター可読記憶媒体を開示する。本方法は、軌道に従って環境内で自車両の運動を制御することと、自車両の運動状態及び環境のマップによって規定される自車両の運転領域内を走行する仮想車両の一組の実現可能な軌道を決定することと、自車両に配置された少なくとも1つのセンサーを使用して、環境内を走行する車両の組内の各車両の運動を示す時系列信号を生成することと、自車両の軌道を使用して、各々の実現可能な軌道が自車両の軌道と交差する確率を決定することと、時系列信号を使用して、各々の実現可能な軌道が少なくとも1つの車両によって追従される確率を決定することと、実現可能な軌道が自車両の軌道と交差する確率と、実現可能な軌道が少なくとも1つの車両によって追従される確率との組み合わせとして、各々の実現可能な軌道のリスクレベルを決定することと、実現可能な軌道のリスクレベルの評価に応じて、自車両の軌道を調整することとを含む。
いくつかの実施の形態によって用いられるいくつかの原理を説明する概略図である。 いくつかの実施の形態に係る、一組の車両と共有される環境内を走行する自車両を制御する方法のフローチャートである。 いくつかの実施の形態に係る、自車両を制御する制御システムのブロック図である。 1つの実施の形態に係る脅威評価器の一般的な構造を示す図である。 自車両の運動の一例を示す図である。 いくつかの実施の形態によって使用される一組の異なる運転意図を示す図である。 他の車両と共有される環境内における自車両の運動の一例を示す図である。 異なる実施の形態に係る、図3Aの車両の運動をグループ化する一例を示す図である。 異なる実施の形態に係る、図3Aの車両の運動をグループ化する一例を示す図である。 いくつかの実施の形態に係る、実現可能な軌道のサブセットに車両を割り当てる方法の例示的な一実施態様のフローチャートである。 いくつかの実施の形態に係る、時間成分を正規化することによって軌道を位置合わせする概略図である。 いくつかの実施の形態に係る、軌道を比較する一例を示す図である。 いくつかの実施の形態に係る、軌道を比較する一例を示す図である。 1つの実施の形態に係る、データベースに記憶された異なる軌道の例を示す図である。 異なる時点における図5Aのシナリオに係る運動を示す図である。 異なる時点における図5Aのシナリオに係る運動を示す図である。 1つの実施の形態に係る、確率密度関数を使用して車両の運動をモデル化する一例を示す図である。 いくつかの実施の形態に係る、実現可能な軌道を生成する方法のフローチャートである。 いくつかの実施の形態に係る、車両の運動を規定する状態遷移のグラフである。 1つの実施の形態に係る、サンプリングされた状態の組を決定することの例示的な一実施態様のフローチャートである。 いくつかの実施の形態に係る、状態遷移の確率を決定する方法のフローチャートである。 いくつかの実施の形態に係る、確率分布関数の個々のセクションごとに1つの状態を生成する方法の反復の簡略概略図である。 図6Eの最初の反復における5つの状態の可能な割り当て確率を示す図である。 いくつかの実施の形態によって用いられるいくつかの原理に係る、実現可能な軌道が自車両の軌道と交差する確率の決定を説明する概略図である。 1つの実施の形態に係る、総確率密度を使用して実現可能な軌道を決定することを示す概略図である。 いくつかの実施の形態に係る、車両のステアリングホイールの操舵軌道と車両の加速度軌道とを含む時系列信号の概略図である。 いくつかの実施の形態に係る、各々の実現可能な軌道が追従される確率を更新するための方法の例示的な一実施態様のフローチャートである。 1つの実施の形態によって考慮される一組の運転意図の一例を示す図である。 いくつかの実施の形態に係るニューラルネットワークの訓練の概略図である。 1つの実施の形態に係る、訓練のためにデータセットを分割する方法の図である。
図1Aは、いくつかの実施の形態によって用いられるいくつかの原理を説明する概略図を示す。図1Aの一例を考察すると、この例では以後自車両として示される車両010が、2車線道路上の左車線を走行する。車両は、手動運転車両、自律車両、又は自動モードで運転される車両とすることができる。自車両010は、左車線内の安定した進路011を維持しようとしている。自車両010は、道路の右車線を走行する他の車両090と道路を共有する。現在時刻における位置及び速度は、例えば、カメラ又はレーダー等の自車両に取り付けられたセンサーによって、又は全地球測位システム(GPS)によって、又は車車間通信によって測定することができる。しかしながら、他の車両090の将来の位置及び速度は、現時点では未知である。したがって、他の車両090が自車両010に対する脅威であるかどうかを知るためには、090の将来の運動を決定する必要がある。
脅威評価は、自動車の運転者に到来するリスクを警告するために、又は自動運転の場合には前の反復で決定された軌道を調整するために使用することができる。自車両が共有環境内でナビゲートするときは、前後の車両、左右の車両に注意を払う必要があり、どの車線を走行するかを決定する必要がある。したがって、脅威評価は、今後数秒間に他の車両がどこにいるのかを計算し、したがって自車両との衝突のリスクも計算する。
他の車両の運動を予測するための可能な方法は、例えば、衝突のリスクを最小にすることに関して、他の車両090がその乗り心地を最適化することを望むことを仮定することである。その結果、図1Aにおいて、衝突のリスクを最小にする他の車両の将来の運動は、これも自車両010が行うことになると仮定して、右車線に留まる運動080である。この手法では、図1Aでは、その意図された運動に沿って自車両010を脅かすことはない。
しかしながら、他の車両がリスクを最小限に抑えることを望むというこの仮定は当てはまらないこともあり得る。さらに、自車両010の近傍に他の車両が多数存在する場合、全ての車両について最適化することは困難な作業となる。別の可能性は、オンライン又は先験的に、車両が実行することができる可能な動作050、060、及び070の組を生成することである。その場合、他の車両090の自車両010に対する脅威を評価することは、他の車両090が生成された運動に沿って又は近くに移動する可能性があるかどうかを調査することになる。このようにすることによって、他の車両の脅威を評価するという問題は、リアルタイムでは不可能であり得る軌道を最適化するという問題から、他の車両090を任意の軌道050、060、070に割り当てることに変換される。つまり、最適化タスクは割り当て又は分類タスクに置き換えられる。注目すべきことに、最適化の数は、障害物の数、すなわち自車両と共有される環境内を走行する他の車両の数と共に増加し、計算複雑度は更に加速的に増加する。一方、割り当てには生成された軌道の有限の組があり、それは他の車両の数よりも速く複雑度を増すことはない。そのために、いくつかの実施の形態の目標は、分類され、生成された軌道に割り当てられる一組の他の車両との共有環境内において車両を制御するシステム及び方法を提供することである。
それゆえに、いくつかの実施の形態は、自車両と共有される環境内を走行する車両は、車両が自車両の軌道と交差する軌道に沿って移動しているときにのみ自車両に対して脅威をもたらすという認識に基づく。しかしながら、この記述を逆にすると、自車両の軌道と交差する仮想軌道は、その仮想軌道に沿って走行する別の車両がある場合にのみ自車両にとって脅威となるという理解につながることができる。
図1Bは、いくつかの実施の形態に従って以後他の車両と表される一組の車両と共有される環境内を走行する自車両を制御する方法のフローチャートを示す。本方法は、本方法を実施する記憶された命令と結合されたプロセッサを使用し、命令は、プロセッサによって実行されると、本方法の少なくともいくつかのステップを実行する。方法110は、予め決定された所望の軌道109に従って環境内での自車両の運動を制御する。制御110は、自車両の所望の軌道109に対応する自車両の軌道111を生成する。いくつかの例では、軌道109及び111は同じであり得るが、モデル化及び検知の誤差、並びに軌道を表す際の数値精度の誤差のために、軌道109及び111は逸脱し得る。
次に、本方法は、自車両の運転領域内を走行する仮想車両の一組の実現可能な軌道を決定し(120)、実際の車両の運動に対する制約、例えば、車両の機械的構成に起因する制約又は道路の境界及びその他の物理的に正当な制約に起因する制約を満たす一組の軌道121を生成する。例えば、実際の車両で使用することができる制限されたステアリングの作動は、実現可能な軌道に制約を加える可能性がある。次に、本方法は、車両の軌道111を使用して、実現可能な軌道の各々が自車両の将来の軌道と交差する確率を決定する(130)。本方法は、自車両に取り付けられた少なくとも1つのセンサー139を使用して、環境内を走行する車両の運動を示す時系列信号を生成する(140)。測定値は、自車両からのカメラ測定値又はレーザー/LIDAR測定値を含むことができる。測定値は、車車間通信の測定値を含むことができ、測定値はGPSデータを含むことができる。測定シーケンスの長さは、すべての車両に対して同じでもよく、又は車両ごとに異なってもよい。生成140からの時系列信号141を使用して、本方法は、実現可能な軌道の各々が少なくとも1つの自車両によって追従される確率を決定する(150)。次いで、交差する決定された確率131と、時系列信号141によって示される少なくとも1つの車両が少なくとも1つの仮想軌道を追従する確率151とを使用して、本方法は、実現可能な軌道が自車両の軌道と交差する確率と、実現可能な軌道を少なくとも1つの車両が追従する確率との組み合わせとして、各々の実現可能な軌道のリスクレベルを決定する(160)。最後に、本方法は、リスクレベル161を使用して車両の軌道を調整し(170)、リスクレベルを減少させる、又は完全に除去する。
一組の軌道は、複数の異なる軌道を含むことができる。例えば、1つの実現可能な軌道を右車線の中央に合わせることができ、1つを左車線に合わせることができ、1つを右車線から左車線に変えることができる。軌道は、位置及び進行方向等の状態、並びに自車両の運動の状態に関して規定された位置及び進行方向の時間発展を含む。
図2Aは、いくつかの実施の形態に係る、自車両200を制御する制御システム199のブロック図を示す。車両は、四輪乗用車又は移動ロボット等の自律システムを装備した任意の種類の移動車両とすることができる。車両はまた、制御システム199のコマンドを無効にする外部入力210を受信することができる。そのような場合、車両は半自律型車両である。
制御システム199は、車両の将来の運動に対応する制御入力及び/又は制御入力のシーケンスを決定するモーションプラニングシステム240を備える。例えば、初期状態は、GPSによって決定されるような現在位置、又はGPSとIMUとの組み合わせによって決定される現在位置と現在速度との組み合わせとすることができ、モーションプラニングシステム240の目標は、衝突を回避し、車両の運動に対する特定の制約を満たしながら、目標状態に達する車両の将来の運動を決定することである。目標状態は、内部的に決定することも、外部モジュール290から受信することもできる。目標状態は、脅威評価器220からの情報224に応答して決定することもでき、環境内を移動する一組の車両内の各車両の運動を示す時系列信号を生成する少なくとも1つのセンサーを備える感知システム230からの感知情報231から得られた障害物の運動の脅威221を評価する。例えば、目標位置は、障害物との衝突を回避する位置とすることができる。
制御システム199は、感知システム230によって検出された車両との衝突のリスクレベルを評価することによって、移動する車両の安全領域を決定する脅威評価器220を備える。例えば、脅威評価器220は、全地球測位システム(GPS)情報及び/又は慣性測定ユニット(IMU)を含む感知システム230からの情報231を受信することができる。例えば、IMUは、3軸加速度計(複数の場合もある)、3軸ジャイロスコープ(複数の場合もある)、及び/又は磁力計(複数の場合もある)を含むことができる。IMUは、加速度、速度、方位、及び/又は他の位置関連情報を制御システム199の他の構成要素に提供することができる。
感知情報231に加えて、脅威評価器220は、車両に対して静的障害物、運転可能領域、運転不能領域、又は違法領域等の周囲250に関する情報291を受け取ることができる。その後、この情報を使用して、異なる仮想軌道を制限することができる。情報291はまた、センサー230から、又は例えば車車間通信、若しくは路車間通信(vehicle-to-infrastructure communication)を使用して外部情報290として、又は道路網に関する情報を含むデータベースから受信することもできる。環境に関する情報はマップとして表すことができる。脅威評価器220は、モーションプラニングシステム240によって計算された将来の軌道についての情報244を受け取る。この情報は、位置、進行方向、速度等の自車両の状態を含むことができ、マシンに直接又はリモートに接続されたハードウェア又はソフトウェアから受け取られる。
脅威評価器220は、運動を予測し、また車両及び歩行者等の他の障害物が自車両に衝突するか又は十分に接近するリスクの尺度221も予測する。運動は、少なくとも経路、速度、及び方位/進行方向を含むが、回転速度、加速度、及びステアリング等の更なるエンティティも含むこともできる。さらに、運動は、運動が或る特定の時間内の或る特定の場所にある確率を評価する確率密度関数(PDF)として表すことができる。これに応答して、モーションプラニングシステム240は、それが自車両の将来の運動241を決定するときに脅威尺度及び/又は予測された運動221を考慮に入れる。
1つの実施の形態では、脅威評価器は、自車両の運動状態に対して規定され、環境のマップに関連して自車両の運転領域内を走行する仮想車両の一組の実現可能な軌道を決定する。別の実施の形態では、脅威評価器は、実現可能な軌道が自車両の軌道と交差する確率と、実現可能な軌道が少なくとも1つの車両によって追従される確率との組み合わせとして、各実現可能な軌道のリスクレベルを決定する。
図2Bは、1つの実施の形態に係る脅威評価器220の一般的な構造を示す。脅威評価器220は、脅威評価器220のモジュールを実行する少なくとも1つのプロセッサ270を備える。プロセッサ270は、環境のマップ281及び車両情報282を記憶するメモリ280に接続される(271)。メモリ280はまた、現在時刻までの仮想軌道、又は各々の計算された状態の値、各状態に至るまでの運動を含むが、これらに限定さない仮想軌道のサブセットの少なくとも十分豊富なデータベースも記憶する(283)。さらに、メモリは、典型的な車両の機械的設計を満たす運動学的モデル等の仮想車両の運動のモデルを車両情報282と共に記憶し、メモリは、運転者が作ることができる意図を表す一組の運転意図を記憶する。例えば、一組の意図は、左折意図、右折意図、直進意図、左車線変更意図、右車線変更意図、ブレーキ意図、加速意図、及び速度維持意図のうちの1つ又は組み合わせを含むことができる。
1つの実施の形態は、車両が取ることができる無限の数の軌道があるが、直進、左車線変更、右車線変更等の高レベルの行動の有限の組のみがあるという理解に依存している。これらの行動は無限に多くの軌道をもたらすが、異なる軌道をもたらす決定はそれらの類似性に関してグループ化することができる。したがって、1つの実施の形態では、脅威評価器は、無限に多くの軌道を代表する所定の軌道の有限の組を使用する。これは、自車両の関心領域内に多くの障害物があり、すべての異なる仮想軌道を正確にとらえようとすると計算上の要求が過大となる場合に特に価値がある可能性がある。障害物は、別の車両若しくは歩行者、又は許可された運転車線を区切る線、停止線、イールドサイン(yield sign)、又は運転者若しくは同乗者からの入力からのような違法な運転行動を表す仮想障害物であり得る。
図2Cは、自車両201cが3車線の道路を走行し、同一車線220c内、左車線210c内、及び右車線230c内の他の複数の車両に囲まれている場合の一例を示す。全ての検出された障害物の運動が高精度で予測されるべきである場合、利用可能な計算資源は限られているので、この例の計算コストは過大である。そのために、いくつかの実施の形態は、予測アプローチの精度と同様の精度又は近い精度で、仮想軌道のサブセットに車両を割り当てる。
衝突が起こり得るように、障害物の仮想軌道は、自車両の計算された軌道との交差について探索され、1つの実施の形態は、自車両と衝突すると予測されるそれらの運動に高い衝突確率を割り当てる。1つの実施の形態では、仮想軌道は、車両の運動の運動学的モデルを使用して生成され、速度が異なるとわずかに異なる軌道が生じ、異なる運転意図は一組の運転意図から選択される。
図2Dは、異なる運転意図の可能な組を示す。運転意図の異なる組み合わせを組み合わせることによって、わずかに異なる軌道が得られる。例えば、左折210dと加速270dとを組み合わせると、車両が減速するところで左折し、一方、左折210dと速度維持280dとを組み合わせると、左車線へ曲がるが、異なる経路で左車線に到達する。しかしながら、運転意図の有限の組があり、それは結果として得られる軌道もまた有限の一組の軌道に包含することができることを意味する。
後述する1つの実施の形態では、無限の数の軌道は、1つの固有の意図の組み合わせから生じる1つの軌道に確率分布関数を割り当てることによって有限の1組の軌道に包含される。軌道が開始される場所、すなわち仮想車両が道路上のどの位置からであるかに応じて、仮想の異なる軌道が感知システムによって観測される車両が追従する軌道となる可能性が多かれ少なかれある。その結果、1つの実施の形態は、自車両に関して異なる場所から開始して実現可能な軌道を生成し、異なる場所はマップによって提供される情報に依存する。例えば、右車線に障害物があり、自車両が左車線にある場合、自車両の前方の位置から発せられる仮想軌道は、車線を変更して加速する可能性が高い一方で、位置が自車両の背後である場合、仮想軌道は減速する可能性が高くなる。
運動241は、ステアリング、ブレーキ、及びスロットル等の車両コマンドを計算するために、車両コントローラー260への入力又は基準軌道として使用される。それらのコマンドは車両のアクチュエーターに送られて予測された運動241に従って車両を動かす。モーションプランナー240に含まれる車両の運動モデルが実際の車両と同じ制御入力を使用する場合、車両は計算された入力を直接使用して制御することができる。例えば、ステアリング及びエンジントルクを適用することによって車両200が制御され、モーションプランナーで使用される運動モデルもまた制御入力としてステアリング及びエンジントルクを使用する場合、これらは車両に直接適用することができ、それによって車両制御システム260を無効にする。しかしながら、モーションプランナー240において使用される車両200の数学的記述は車両の真の運動の単純化であり得るので、車両制御システム260への入力としての運動基準241と共に、制御入力242は代わりにフィードフォワード又は公称制御信号として使用することができる。例えば、加速度は、エンジントルクに比例するようにモデル化することができる。したがって、モーションプラニングシステム240で使用される車両の運動モデルにおいて加速度が入力として使用される場合、加速度は、車両制御システム260へのスケーリングされたフィードフォワード入力として使用され得る。
図2Bの283及び図1Bの120に戻って参照すると、自車両に対する他の車両の記憶された仮想軌道を含むデータベースを維持することができる。例えば、仮想軌道は先験的に生成され、その後ルックアップテーブルを通して考慮され得る。1つの実施の形態は、データベースを使用して、以前に記憶された軌道を、図2Aの感知システム230によって現在測定されている軌道と比較し、図1Bの時系列信号141を生成することができる。本発明で定義される意味において、記憶された仮想軌道のいずれかが現在測定されている車両と類似している場合、記憶された軌道は現在測定されている車両の将来の運動がどうなるかについての情報を与える。そのような類似性チェックの主な利点は、図2Cに戻って参照すると、自車両の関心領域内に多数の車両がある場合、すべての車両の運動を予測する際の計算上の要求が過大であることである。
図3Aは、左車線内の車両310、同車線内の車両320、右車線内の車両330、すなわち合計7台の車両に囲まれた自車両301の運動の一例を示す。これは、ある期間における7台の車両の運動の予測に相当する。しかしながら、実現可能な軌道の生成は、車両を一緒にクラスタリングするという効果をもたらし、それによって計算上の負担を軽減する。
図3Bは、いくつかの実施の形態に係る、領域311によって示される、車両310が互いに類似していると見なされる一例を示す。同様に、領域331で示されるように、車両330も類似していると見なされる。したがって、今や7つではなく3つの車両挙動があり、周囲の車両の運動を予測する際の計算上の要求を効果的に減少させる。
さらに、新しい車両332が関心領域に入る図3Cを考察する。車両332は車両330と類似していると考えられるので、車両332も領域331に属する。領域331内の車両330は333に従って移動し、軌道333は領域331に属する車両を代表する。したがって、1つの実施の形態では、車両332の予測は、メモリ283内の実現可能な軌道333を抽出する問題である。
1つの実施の形態では、実現可能な軌道は、以前に決定された時系列信号から生成される。例えば、時系列信号141は、生成後にメモリに記憶され、次に仮想車両の実現可能な軌道として割り当てられる。更なる実施の形態では、メモリサイズを小さく保つために、長期間にわたって測定された車両が追従する可能性が高いとは考えられなかった実現可能な軌道がメモリから削除される。したがって、車両が追従することがありそうもない実現可能な軌道は、記憶を確保する必要はない。1つの実施の形態では、測定された車両は、ある許容範囲内で測定された車両の時系列信号と整合する実現可能な軌道のサブセットに割り当てられる。
図4Aは、いくつかの実施の形態に係る、測定された車両に実現可能な軌道のサブセットを割り当てる方法499の例示的な一実施態様のフローチャートを示す。割り当ては、進入軌道を仮想軌道と位置合わせし(410)、比較可能な2つの軌道を生成する。本発明のいくつかの実施の形態では、位置合わせは時間成分を正規化することによって行われる。
図4Bは、いくつかの実施の形態に係る時間成分を正規化することによって軌道を位置合わせする概略図を示す。図4Bに示すように、時間成分を正規化することは、可能な限り最良の方法で410bと一致させるために軌道420bを421bに引き伸ばすこととして解釈することができる。例えば、図4Bの縦軸が車両の横方向の位置であり、横軸が縦方向の位置である場合、図4Bは、縦方向の位置を伸ばして410bと一致させると解釈することができる。そのような場合、点ごとの経路が類似していなくても、軌道410bと420bとの間の類似性は高くなる。図4Bに時間の次元を加えることによって、経路に合うように時間を延ばすことができ、その場合、例えば道路上の実際の運転の間の類似性を評価することができる。
次いで、方法420は、どの実現可能な軌道が現在測定されている軌道と類似しているかを判定する。これはいくつかの方法で行うことができる。例えば、1つの実施の形態では、2つの軌道は、以前に規定された距離測定によって測定されるように、その差が閾値を下回る場合、類似していると見なされる。
図4C及び図4Dは、いくつかの実施の形態に係る閾値420cが或る値に固定されている場合の軌道を比較する例を示す。この値は、どのメトリックが使用されるか及び外部効果に応じて、事前に設定することも、リアルタイムで決定することもできる。例えば、シナリオが高速道路運転であり、一般に速度が高い場合、1つの実施の形態は、閾値を都市運転の閾値とは異なるように設定する。図4Cはまた、図4Dに示される3つの軌道410d、430d、及び440dについての最小距離410c、430c、及び440cを示す。この場合、考慮された距離メトリックは、410c及び430cが閾値420cより下であることを与え、これは進入軌道450dを意味する。考慮する軌道の長さは様々であり得る。それは、後退ホライズンの方式において、固定又は適応的に設定できる。次いで、方法430は、進入軌道440dの軌道410d及び430dに対する類似性のレベルを決定する。方法430は、進入軌道がデータベース内の軌道にどの程度類似するかを計算する。
1つの実施の形態は、最小時間コスト経路W={w,...,w,..,w}(ただし、w=(i、j)であり、各々の対(i,j)∈Wは、uとvが位置合わせされていることを示す)を見つけることによって時系列信号U=[u,...,u,...,u]を実現可能な軌道V=[v,...,v,...,v]と比較する。ワープ関数Wは、2つの軌道間の合計距離を最小にし、これは、次のように規定される。
Figure 0006837558
ただし、dU,V(i,j)は、u(i)とv(j)との間の距離の尺度である。距離の尺度は、いくつかあるうちのいずれでも可能である。例えば、それはユークリッド距離測定基準とすることができるか、又はそれは測定基準として正式に適格ではない任意の他の測定基準又は距離の尺度とすることができる。一例として、最小コストは動的計画法の原理D(i,j)=d(i,j)+minDによって計算することができる。ここで、D(i,j)は、は(1,1)から(i,j)までの最小コスト経路のコストであり、D(1,1)=d(1,1)であり、minD=min(D(i,j−1),D(i−1,j),D(i−1,j−1))である。現在測定されているか又は推定されている車両軌道が時々更新されるとき、最小コストは再帰的に見いだされることができる、すなわち、最小コストは仮想軌道と進入軌道の新しい時刻との間の新しい最小コストに追加される。1つの可能性は、類似度を、support(Ui−1,U)=|Ui−1|/|U|と規定することである。ここで、|・|は濃度、iは現在時刻のインデックスである。このサポート関数の出力が閾値より小さい場合、方法420は全データベースを用いて繰り返される。最後に、図4C及び図4Dにおける軌道の組410d及び430dは、430から出力される。
1つの実施の形態は、実現可能な軌道によって表される運転意図に関する統計に基づいて、サブセットから各々の実現可能な軌道を車両が追従する確率を決定する。例えば、3つが左車線変更を意図し、1つが直線走行を意図している軌道のサブセットを決定499が生成する場合、左車線変更の確率は0.75である。別の実施の形態では、過去の車両の意図の記録された履歴は、軌道を追従する確率を重み付けするために生成される。例えば、過去に10台の車両が観測され、そのうち8台が現在の測定車両と類似した位置にあるときに車線を変更した場合、3つの車線変更可能軌道のいずれかを追従する確率は0.8である。
実現可能な軌道のサブセット内に、測定された車両の軌道と類似する軌道が2つ以上ある場合、これらの軌道のいずれかは車両が追従する軌道となり得る可能性がある。したがって、サブセット内に2つ以上の類似の軌道がある場合、これらの軌道のすべてが現在測定されている車両の将来の可能な軌道となり得る。
図5Aは、1つの実施の形態に係る、データベースに記憶された軌道520a及び530a等の合計8つの異なる軌道の例を示す。車両510aが右車線を走行するので、車両510aがシーンに入ると、1つの実施態様では、軌道520aは類似度計算から除外され、したがって、この例では、実現可能な軌道のサブセットは4つの軌道530aを含む。
図5Bは、図5Aと同じシナリオを示すが、後の時点である。ここで、車両510bは左折し始めた。また、他の2つの軌道530bだけがこれを行い、これは、実現可能な軌道のサブセット内の4つの軌道のうち2つのみが、車両が追従する軌道となる非ゼロ確率を有することを意味する。したがって、6つの軌道520bが最初の8つから除外される。
図5Cは、最新の瞬間における同じシナリオを示す。ここで、入ってくる車両510cの運動に類似した唯一の軌道530cがあり、それは残りの7つの軌道520cを除外している。
いくつかの実施の形態では、軌道は、速度及び進行方向を含む、経時的な経路を指すが、軌道の確率分布も含む。すなわち、車両が実現可能な軌道に関連する車両の可能な状態の確率密度内に留まる限り、車両はこの実現可能な軌道に属することができる。
図5Dは、1つの実施の形態に係る確率密度関数を使用して車両の運動をモデル化する一例を示す。図5Dのシナリオでは、測定対象車両510dは自車両530dの後方にある。車線境界540dも示されている。予測には多くの不確定要素がある。例えば、センサーの不確実性又は道路網のマップにおける不確実性は、組み合わされて、測定される車両の位置及び速度に関する不確実性509dと、自車両の位置及び速度に関する不確実性530dとを与える。さらに、実現可能な軌道512dが過去に測定された車両から生成されたとしても、軌道512dが類似していると考えられていたとしても、測定された車両510dが実現可能な軌道を追従することは完全に確かではない。したがって、予測は本質的に更なる不確実性511dを有する。
実現可能な軌道が自動車の運動学的モデルから生成される場合、それらは実現可能な軌道に関して誤差の範囲を規定するために使用できるので、確率分布は重要である。さらに、確率分布を使用して、生成する必要がある実現可能な軌道の数を減らすことができる。軌道が実現可能な軌道の確率密度内にある限り、それはまた、実現可能な軌道と見なすことができる。そのようにすることは、必要とされる実現可能な軌道の数を減らし、計算を減らす。
図5Dに示すように、車両の運動は、車両の状態の確率密度関数512dの形でモデル化され、確率密度関数512dの初期条件509dは、センサーデータから決定することができる。この推論は逆にして、その代わりに、実現可能な軌道を車両の可能な状態の確率密度から生成されるようにモデル化することができ、確率密度は、測定された車両が実現可能な軌道と類似していると見なされるときについての誤差のマージンを規定する。
図6Aは、いくつかの実施の形態に係る、実現可能な軌道を生成する方法699のフローチャートを示す。本方法は、例えば、図2Dで概説される仮想運転者の様々な意図を満たしながら、車両の初期仮想状態から車両の目標車線への車両の動きを特定する状態のシーケンスを反復的に決定する。異なる実施の形態では、初期仮想状態は過去に観測された車両の状態であり、及び/又は初期仮想状態は本方法の以前の反復中に決定された対応する状態である。
運動は、車両の状態を接続する状態遷移によって規定される。各々の状態は、位置、速度、及び車両の進行方向を含む。運動は、例えば、或る期間、所定の反復回数、又は実現可能な軌道が関心領域内にある限り、終了条件が満たされるまで反復的に決定される。自律車両において、終了条件は、モーションプランナー240内の計画ホライズンに関連して設定することができる。手動運転車両の場合、終了条件は、道路区間の視界に関連して設定することができる。図6Aの方法の反復は、以下のステップを含む。
図6Bは、いくつかの実施の形態に係る車両の運動を規定する状態遷移のグラフを示す。本方法は、状態及び遷移が車両の状態に対する静的制約及び動的制約を満たすように、初期状態から開始して、サンプリングされた状態の組、及び対応する状態遷移の組を決定する(600)。例えば、本方法は、障害物690bを回避し、環境のマップからの車両の動きに関する制約630bを満たしながら、状態680bで開始し、図6Bの状態660b及び状態遷移681bを決定する。
図6Cは、1つの実施の形態に係る、サンプリングされた状態の組を決定すること(600)の例示的な一実施態様のフローチャートを示す。決定600は、環境、以前の反復を使用して決定された状態、及び図2Dの意図についての情報を使用する。以前の状態の例は、図6Bのノード680b、670b、620b、及び初期状態600bを含む。
例示的な実施態様は、状態の初期決定601cを実行する。それが本方法の最初の反復である場合、初期状態はそれに関連する不確実性を伴う、車両の現在の仮想状態である。不確実性は信頼区間の形でも、いくつかの可能な場所の形でも構わない。そのようなシナリオは、例えば、感知システムが非常に不確実な測定値を提供する場合、又はマップが不確実である場合に起こる。それ以外の場合、初期状態は本方法の以前の反復によって決定される。
本方法は、車両の運動に関する制約を満たすN個の予測状態の組
Figure 0006837558
をサンプリングする(602c)。ここで、Nは予め決定されているか、又は適応的にされることができる。本発明のいくつかの実施の形態では、状態602cは、動的システムの架空のノイズ源から、すなわちwから、入力の平均値として公称入力uを用いて生成される。例えば、wは、ガウス分布w〜N(u,Q)から生じるものとして選択することができ、又は実現可能な軌道に関連する特定の意図に合わせて調整された確率密度関数(PDF)として選択することができる。
本発明の他の実施の形態では、サンプリングされた状態602cは、図2Dの意図を使用することによって生成される。運転者の意図は前もって知られており、動的システムのノイズ源から生成された状態は、意図をよりよく満たすように修正される。例えば、確率関数q(xk+1|x,yk+1)を用いて状態を生成することができる。ここで、qは、時間インデックスkでの状態と時間インデックスk+1での仕様とを所与とすると、時間インデックスk+1における状態の関数である。
特定の一例として、w及びeの両方が加法的である場合、ガウスPDF、qは、
Figure 0006837558
として選択することができる。ここで、
Figure 0006837558
である。つまり、状態は、動的システムのノイズ源からランダムサンプルとして生成され、車両の数学的記述を通じて伝播され、意図からの偏差を考慮するために決定論的項で修正される。対応する状態は、この修正された項を使用して予測される。
本発明の1つの実施の形態では、サンプリングされた状態802cの生成及び対応する状態の予測はループ内で実行され、ここで反復回数は事前に決定される。別の実施の形態では、状態602cの生成は、時間的に先行する意図された軌道のT個の時間ステップに基づいて行われる。例えば、反復回数Tは、固定ステップ数として決定することができ、又は反復は、感知システム230のセンサーの分解能の関数として決定することができる。602cがT個の時間ステップで実行されると、状態は、時間インデックスk+1から時間インデックスk+Tまでの意図した軌道に対応する全ての位置に従って、すなわち、q(xk+1|x,yk+1,...,yk+T)として生成される。
図6Dは、いくつかの実施の形態に係る、各状態遷移が車両の運動に対する制約を満たす状態への移動を引き起こす確率を決定する方法610dのフローチャートを示す。各状態の確率を決定するとき、意図との状態の整合性が決定され(612d)、各状態の確率が計算される(613d)。
いくつかの実施の形態では、決定612dは、意図/制約のPDF
Figure 0006837558
、次の状態、及び前の反復中に決定された状態の確率
Figure 0006837558
の組み合わせとして行われる。例えば、状態が車両の動的モデルに従って生成される場合、確率は仕様のPDFに比例し、すなわち、
Figure 0006837558
である。別の例として、状態のサンプリングが
Figure 0006837558
に従って行われる場合、確率は意図する軌道のPDFの予測に比例し、すなわち、
Figure 0006837558
である。1つの実施の形態では、確率は、それらがPDFを表すように正規化される。
本発明の1つの実施の形態において、非ゼロであるが低い確率を有する状態は、いくつかの時間ステップにおいて、より高い確率を有する状態と置き換えられる。例えば、1つの実施の形態は、
Figure 0006837558
を生成する確率が
Figure 0006837558
となるように新しい状態の組を生成する。別の実施の形態では、確率の逆二乗和が所定の閾値を下回るたびに置換が行われる。このようにすることで、おそらく良好な状態のみが使用されることが保証される。
状態の決定620はいくつかの方法で行うことができる。例えば、1つの実施の形態は、重み付き平均関数を使用して状態を決定し、状態を
Figure 0006837558
として生成する。別の実施の形態は、状態を最も高い確率を有する状態、すなわち、
Figure 0006837558
として決定する。付加的又は代替的に、1つの実施の形態は、サンプリングされた状態の固定数m<Nにわたって平均することによって状態を決定する。
図6Eは、PDFの個々のセクションごとに1つの状態を生成する方法の反復の簡略概略図を示す。この例では、状態623e及び624eが単一の反復に対して選択されている。少なくとも1回の反復のための複数の状態の選択は、車両の現在の状態を車両の目標状態に接続する運動の組をもたらす。そのために、1つの実施の形態は、運動の組からコスト関数を最適化する運動を選択する。
図6Fは、図6Eの第1の反復における5つの状態の可能な割り当て確率を示す。これらの確率621f、622f、623f、624f、及び625fは、状態621e、622e、623e、624e、及び625eを示すドットのサイズの選択に反映される。
図6Eに戻って参照すると、状態623e及び624eは、初期状態から次の状態への車両の5つのサンプリングされた状態遷移を再び生成する次の反復のための初期状態になる。
図6Gは、いくつかの実施の形態によって用いられるいくつかの原理に従って、実現可能な軌道が自車両の軌道と交差する確率をどのように決定するかを説明する概略図を示す。測定された車両は、車線分割線610gを有する2車線道路上の現在の状態650gにあり、仮想車両620gは右車線にある。左右の車線をそれぞれ追従するというそれぞれの意図660g及び670gを使用することによって、決定699において以前に生成された2つの実現可能な軌道690g及び680gがある。この場合、現在測定されている車両に類似する2つの軌道が実現可能なサブセット内にあるので、2つの実現可能な軌道が存在する。実現可能な軌道は、車両が実現可能な軌道を正確に追従していない可能性があることを説明する確率分布661g及び671gを含む。
図6Hは、1つの実施の形態に係る、総確率密度を使用して実現可能な軌道を決定することを示す概略図を示す。例えば、1つの実施態様では、実現可能な軌道は、総確率密度から、最も高い確率610hを有する軌道として決定される。代替の実施態様では、実現可能な軌道は、密度にわたる集約状態620hとして決定される。付加的又は代替的に、1つの実施の形態では、確率は、特定の時点におけるPDFの大部分630hが自車両の軌道と交差している程度として決定される。例えば、PDF全体が交差している場合、確率は1である。
実現可能な軌道が自車両の意図された軌道と交差する確率は、実現可能な軌道を追従する車両があるかどうか分からないので、実現可能な軌道のリスクレベルを決定するのに十分ではない。図5Aを再び考察すると、そこには、車両510aが追従するべき8つの可能な軌道がある。軌道520aを生成する仮想車両は測定された車両510aと一致しないので、実現可能な軌道のサブセットは530aを含む。530aと自車両の軌道との交差の確率が決定されたと仮定する。次に、1つの実施の形態では、リスクレベルは、実現可能な軌道が自車両の軌道と交差する確率と、実現可能な軌道が少なくとも1つの車両によって追従される確率との組み合わせとして決定される。
1つの実施の形態は、車両の時系列信号を分類して車両の運転意図を生成し、サブセットからの実現可能な軌道と車両の意図との一貫性に基づいてサブセットからの各々の実現可能な軌道の確率を更新する。着想は、以前に観測されたデータを使用して将来行われる決定を予測できるということである。例えば、車線を変更するドライバの特性が何であるかを学習することによって、将来の車線変更が予測できる。
図7Aは、いくつかの実施の形態に係る、車両のステアリングホイールの操舵軌道と車両の加速度軌道とを含む時系列信号の概略図を示す。図7Aの例では、運転者は時点710aで車線変更を開始する。しかしながら、車線変更の前に、少しの間操舵角のわずかな増加720aがあることに留意することができる。これは、例えば、車両の運転者が死角に車両があるかどうかを見るために肩越しに見ていることが原因であり得る。さらに、加速度730aは、車線変更が開始される前にゆっくり増加し始め、次に車線変更を通して維持されることが分かる。したがって、記録されたデータからの情報は将来の意図を予測するために使用することができる。
図7Bは、いくつかの実施の形態に係る、サブセットからの実現可能な軌道と車両の意図との一貫性に基づいて追従されるべきセブセットからの各々の実現可能な軌道の確率を更新する方法799の例示的な一実施態様のフローチャートを示す。決定710は、サブセットから実現可能な軌道を抽出する。次に、本方法は車両の意図を決定する(720)。
図8Aは、1つの実施の形態によって考慮される一組の運転者の意図の一例を示す。この実施の形態は、以下の意図、すなわち、左折する(810)、右折する(820)、直進する(830)、左車線に変更する(840)、右車線に変更する(850)、さらに、ブレーキをかける(860)、加速する(870)、又は速度を維持する(880)、を考慮する。いくつかの実施の形態は、多くの車両の挙動を観察することによって意図を選択する方法を学習する。例えば、1つの実施の形態は、ディープディシジョンツリーに基づくランダムフォレストアルゴリズムを訓練するために既知の意図を有する車両データを使用し、別の実施の形態は、サポートベクトルマシンを訓練し、第3の実施の形態は、ニューラルネットワークを訓練する。
次いで、本方法は、720で決定された意図と整合する軌道の新しいサブセットを決定する(730)。例えば、サブセット内に左折する(810)という意図を有する軌道がない場合、それはサブセットから除外されて新しいサブセットを形成する。最後に、本方法は、実現可能な軌道が車両によって追従される確率を更新する(740)。1つの実施の形態では、確率は、610hから生成された実現可能な軌道の確率610h、すなわち最も可能性の高い軌道の確率によって更新される。別の実施の形態では、更新は、実現可能な軌道のPDF上の加重平均620hによって行われる。
図8Bは、いくつかの実施の形態に係るニューラルネットワークの訓練の概略図を示す。訓練810bは、ニューラルネットワークの挙動820bを生成するために、センサー入力801bのシーケンス及び対応する意図802bの訓練セットを使用する。一般的に、機械学習アルゴリズムを訓練することは、時に「学習」アルゴリズムと呼ばれる訓練アルゴリズムを適用することを含む。訓練セットは、1つ以上の組の入力及び1つ以上の組の出力を含むことができ、入力の各組は一組の出力に対応する。対応する入力の組がニューラルネットワークに入力されると、訓練セット内の出力の組は、例えばニューラルネットワークにとって、生成するのに望ましい出力の組を含む。
例えば、1つの実施の形態は、ニューラルネットワークを訓練する。訓練810bは、一連のセンサーデータ801bを、車両の左車線変更840及び速度変更860、870等の意図にマッピングすることを含む。
訓練データは、車載センサーからの入力時系列信号及び運転者の意図を含むことができる。入力データは、訓練されている現在の意図に従ってラベル付けすることができる。
十分な訓練データを得るためにディープディシジョンツリー、ランダムフォレストを訓練するとき、1つの実施の形態は、訓練のためにスライディングウィンドウアプローチを使用する。例えば、一実施態様は、測定された車両の横方向位置から特徴値、並びに縦方向及び横方向の速度を計算する。直接測定しない場合、これらの変数は、レーダー及びカメラ等のセンサー、GPS、並びにロードマップを使用して、パーティクルフィルター又はカルマンフィルター等のフィルターから推定できる。状態変数及び道路形状から、1つの実施の形態は、正規化された横方向位置、正規化された縦方向の速度、及び横方向の速度を計算する。これらの変数の生データは、例えば、センサーノイズ及びロードマップの不完全性からのノイズの影響を受ける。したがって、ロバスト性に関して、1つの実施の形態は、変数の6つの統計値、すなわち、最小値、最大値、平均値、分散、最初の値と2番目の値との差、及び最後の値と最後から2番目の値との差を計算する。さらに、値の変化を特徴ベクトルに含めるために、1つの実施の形態は、データセットを4つのサブデータセットに分割し、各サブデータセットの同じ統計値を計算する。このようにすることで、ランダムフォレストのロバストな訓練が保証される。
図8Cは、1つの実施の形態に係る、訓練のためにデータセットを分割する方法の図を示す。図8Cの例では、車両810cの運転者は、車線を車線801cから車線802cに変更することを意図している。車両が車線境界850cをtcrossだけ横切り、車両が車線802cの中央840cに到達するまでの時間をtreachとして規定する。ウィンドウはtcross−tで開始し、tcross+tで終了する。分類アルゴリズムが運転者の意図を捉えることができるように、ウィンドウサイズt+tは十分に大きい必要がある。時間ウィンドウ内で、1つの実施の形態は、線860c及び870cに対応する長さtwindowを有するサブウィンドウを移動し、サブウィンドウ内の状態変数から特徴を抽出し、データセットを生成する。各サブウィンドウ内のデータは、データの開始がtcross−tとtreachとの間にある場合は、「車線変更」(すなわち、方向に応じて左に変更(840c)又は右に変更(850c))とラベル付けされ、データの開始がtreachの後の場合は、車線830cに留まる。訓練データに車線変更がない場合、1つの実施の形態は、長さt+tを有するデータセットを抽出し、車線830cに留まるようにすべてのデータセットをラベル付けすることに留意されたい。
1つの実施の形態は、実現可能な軌道が追従するべき実現可能な軌道の確率と交差する確率を取り、これらの確率を一緒に重み付けする。例えば、1つの実施の形態は確率の加重平均を使用する。
本発明のいくつかの実施の形態は、リスクレベルを使用して、自車両の軌道を調整する。例えば、1つの実施の形態では、リスクレベルが或る閾値を上回る場合、車両の実現可能な軌道と自車両のモーションプランナーの軌道との間の衝突までの時間が計算される。1つの実施の形態は、リスクレベルを警告音、ダッシュボード上の信号、又はその両方として車両の運転者への衝突までの時間として与え、次いで、運転者から受信した入力コマンド上のコマンドに応答して軌道を調整する。別の実施の形態では、閾値を超えるリスクレベルは、自車両の衝突回避モジュールに伝播され、衝突回避モジュールから受信した入力コマンドに応答して軌道を調整する。例えば、衝突回避モジュールは、モーションプランナー240、又は車両の別のコントローラー260とすることができる。入力コマンドは、ステアリングホイール及びスロットルコマンドを含み得る。
実現可能な軌道及び関連するPDFは、モーションプランナー内で直接使用できる。例えば、モーションプランナーは、実現可能な軌道が位置するところに行き着く可能性が高いモーションプランを直接破棄することができる。脅威評価器はまた、モーションプランナーからの情報を利用して、実現可能な軌道をより効率的に計算することができる。例えば、自律車両が或る特定の車線内で或る特定の速度で走行すべきであるとモーションプランナーが判断した場合、その車線内に実現可能な軌道の生成に焦点を合わせることがより重要である。
本発明の上記の実施の形態は、数多くの方法のいずれにおいても実現することができる。例えば、それらの実施の形態は、ハードウェア、ソフトウェア又はその組み合わせを用いて実現することができる。ソフトウェアにおいて実現されるとき、そのソフトウェアコードは、単一のコンピューター内に設けられるにしても、複数のコンピューター間に分散されるにしても、任意の適切なプロセッサ、又はプロセッサの集合体において実行することができる。そのようなプロセッサは集積回路として実現することができ、集積回路構成要素内に1つ以上のプロセッサが含まれる。一方、プロセッサは、任意の適切な構成における回路を用いて実現することができる。
付加的又は代替的に、上述の実施の形態は、種々の実施の形態の方法を実行するプロセッサによって実行可能なプログラムを具現化した非一時的コンピューター可読記憶媒体として実現することができる。
また、本明細書において概説される種々の方法又はプロセスは、種々のオペレーティングシステム又はプラットフォームのいずれか1つを利用する1つ以上のプロセッサ上で実行可能であるソフトウェアとしてコード化することができる。さらに、そのようなソフトウェアは、いくつかの適切なプログラミング言語及び/又はプログラミングツール若しくはスクリプト記述ツールのいずれかを用いて書くことができ、フレームワーク又は仮想機械上で実行される実行可能機械語コード又は中間コードとしてコンパイルすることもできる。通常、プログラムモジュールの機能は、種々の実施の形態において望ましいように、組み合わせることもできるし、分散させることもできる。
また、本発明の実施の形態は方法として具現することができ、その一例が提供されてきた。その方法の一部として実行される動作は、任意の適切な方法において順序化することができる。したがって、例示的な実施の形態において順次の動作として示される場合であっても、例示されるのとは異なる順序において動作が実行される実施の形態を構成することもでき、異なる順序は、いくつかの動作を同時に実行することを含むことができる。

Claims (17)

  1. 他車両として表される一組の車両と自車両とが道路を共有する環境内において、前記自車両の運動を制御する方法であって、該方法は、該方法を実施する記憶された命令と結合されたプロセッサを使用し、該命令は、該プロセッサによって実行されるとき、該方法の少なくともいくつかのステップを実行し、該方法は、
    軌道に従って前記環境内で前記自車両の運動を制御するステップと、
    前記自車両の前記運動の状態及び前記環境のマップによって前記自車両の運転領域を規定し、前記運転領域内を走行する仮想車両の各々の実現可能な軌道を決定するステップと、
    前記環境内を走行する前記一組の車両内の各車両の運動を示す時系列信号を生成するステップと、
    前記自車両の前記軌道を使用して、各々の実現可能な軌道が前記自車両の前記軌道と交差する確率を決定するステップと、
    前記時系列信号を使用して、各々の実現可能な軌道が少なくとも1つの車両によって追従される確率を決定するステップと、
    前記実現可能な軌道が前記自車両の軌道と交差する確率と、前記実現可能な軌道が少なくとも1つの車両によって追従される確率との組み合わせとして、各々の実現可能な軌道のリスクレベルを決定するステップと、
    前記実現可能な軌道の前記リスクレベルの評価に応じて、前記自車両の前記軌道を調整するステップと、
    を含む、方法。
  2. 前記軌道及び前記実現可能な軌道が、前記一組の車両の可能な状態の確率密度関数から生成される、請求項1に記載の方法。
  3. 前記実現可能な軌道は、仮想車両の運動の運動学的モデルを使用して決定され、
    一組の運転意図から選択された異なる運転意図で走行する前記仮想車両の、前記環境の異なる位置における異なる速度に対して前記実現可能な軌道を生成するステップ、
    を含む、請求項1に記載の方法。
  4. 前記仮想車両の位置は、前記環境のマップに従って選択され、
    前記一組の運転意図は、左折意図、右折意図、直進走行意図、左車線変更意図、右車線変更意図、ブレーキ意図、加速意図、及び速度維持意図のうちの1つ又は組み合わせを含み、
    前記実現可能な軌道は、前記仮想車両を前記自車両の前記運転領域内に移動させる、前記環境によって許容される異なる運転意図を実行する各々の仮想車両に対して決定される、請求項3に記載の方法。
  5. 誤差のマージン内で前記車両の前記時系列信号と一致する実現可能な軌道のサブセットに車両を割り当てるステップと、
    前記実現可能な軌道によって表される運転意図に関する統計に基づいて、前記サブセットから各々の実現可能な軌道に前記車両が追従する確率を決定するステップと、
    を更に含む、請求項1に記載の方法。
  6. 少なくとも1つの実現可能な軌道は、前記誤差のマージンを規定する前記実現可能な軌道に続く前記車両の可能な状態の確率密度を含む、請求項5に記載の方法。
  7. 前記環境内の現在の道路交通状態を使用して前記車両の運動を分類するために前記車両の前記時系列信号を分類して、前記車両の運転意図を生成するステップと、
    前記サブセットからの前記実現可能な軌道の前記車両の意図との整合性に基づいて前記サブセットからの各実現可能な軌道の確率を更新するステップと、
    を更に含む、請求項5に記載の方法。
  8. 前記組み合わせは、前記実現可能な軌道が前記自車両の前記軌道と交差する確率と、前記実現可能な軌道が少なくとも1つの車両によって追従される確率との加重平均を含む、請求項1に記載の方法。
  9. 前記調整するステップは、
    前記リスクレベルが閾値を超える実現可能な軌道を選択するステップと、
    前記実現可能な軌道のリスクを示す情報を前記自車両の運転者に与えるステップと、
    前記運転者から受信した入力コマンドに応答して前記軌道を調整するステップと、
    を含む、請求項1に記載の方法。
  10. 前記調整するステップは、
    前記リスクレベルが閾値を超える実現可能な軌道を選択するステップと、
    前記実現可能な軌道のリスクを示す情報を前記自車両の衝突回避モジュールに提出するステップと、
    前記衝突回避モジュールから受信した入力コマンドに応答して前記軌道を調整するステップと、
    を含む、請求項1に記載の方法。
  11. 他車両として表される一組の車両と自車両とが道路を共有する環境内において、前記自車両の運動を制御する該自車両の制御システムであって、
    軌道に従って、前記環境内での前記自車両の運動を制御するコントローラーと、
    前記環境内を走行する前記一組の車両内の各車両の運動を示す時系列信号を生成する少なくとも1つのセンサーと、
    脅威評価器であって、
    前記自車両の運動状態及び前記環境のマップによって前記自車両の運転領域を規定し、前記運転領域内を走行する仮想車両の各々の実現可能な軌道を決定し、
    前記実現可能な軌道が前記自車両の前記軌道と交差する確率と、前記実現可能な軌道が少なくとも1つの車両によって追従される確率との組み合わせとして、各々の実現可能な軌道のリスクレベルを決定する、
    プロセッサを備える、脅威評価器と、
    前記実現可能な軌道の前記リスクレベルの評価に応じて、前記自車両の前記軌道を調整するモーションプランナーと、
    を備える、制御システム。
  12. 前記環境の前記マップと、仮想車両の運動の運動学的モデルと、左折意図、右折意図、直進意図、左車線変更意図、右車線変更意図、ブレーキ意図、加速意図、及び速度維持意図のうちの1つ又はそれらの組み合わせを含む一組の運転意図とを記憶するメモリを更に含み、
    前記脅威評価器は、前記環境の異なる場所で各仮想車両について前記実現可能な軌道を生成し、一組の運転意図から選択された異なる運転意図で走行して各々の仮想車両を前記自車両の前記運転領域内に移動させる、請求項11に記載の制御システム。
  13. 前記脅威評価器は、
    誤差のマージン内で前記時系列信号と整合する実現可能な軌道のサブセットに各車両を割り当て、
    前記サブセット内の前記実現可能な軌道の数及び前記実現可能な軌道によって表される運転意図に関する統計に基づいて、前記サブセットから各々の実現可能な軌道に前記車両が追従する前記確率を決定する、請求項11に記載の制御システム。
  14. 少なくとも1つの実現可能な軌道が、前記誤差のマージンを規定する前記実現可能な軌道に追従する前記車両の可能な状態の確率密度を含む、請求項13に記載の制御システム。
  15. 方法を実行するプロセッサによって実行可能なプログラムを具現化した非一時的コンピューター可読記憶媒体であって、前記方法は、
    軌道に従って環境内で自車両の運動を制御することと、
    前記自車両の運動状態及び前記環境のマップによって前記自車両の運転領域を規定し、前記運転領域内を走行する仮想車両の各々の実現可能な軌道を決定することと、
    前記自車両に配置された少なくとも1つのセンサーを使用して、前記環境内を走行する車両の組内の各車両の運動を示す時系列信号を生成することと、
    前記自車両の前記軌道を使用して、各々の実現可能な軌道が前記自車両の前記軌道と交差する確率を決定することと、
    前記時系列信号を使用して、各々の実現可能な軌道が少なくとも1つの車両によって追従される確率を決定することと、
    前記実現可能な軌道が前記自車両の前記軌道と交差する前記確率と、前記実現可能な軌道が少なくとも1つの車両によって追従される前記確率との組み合わせとして、各々の実現可能な軌道のリスクレベルを決定することと、
    前記実現可能な軌道の前記リスクレベルの評価に応じて、前記自車両の前記軌道を調整することと、
    を含む、媒体。
  16. 前記方法は、
    左折意図、右折意図、直進意図、左車線変更意図、右車線変更意図、ブレーキ意図、加速意図、及び速度維持意図のうちの1つ又はそれらの組み合わせを含む一組の運転意図から選択された異なる運転意図で走行する前記仮想車両の、前記環境の異なる場所における異なる速度に対して前記実現可能な軌道を生成することと、
    誤差のマージン内で車両の前記時系列信号と整合する実現可能な軌道のサブセットに前記車両を割り当てることと、
    前記実現可能な軌道によって表される運転意図に関する統計に基づいて、前記サブセットからの各々の実現可能な軌道を前記車両が追従する前記確率を決定することと、
    を更に含む、請求項15に記載の媒体。
  17. 前記方法は、
    前記環境内の道路交通を使用して前記車両の前記時系列信号を分類して、前記車両の運転意図を生成することと、
    前記サブセットからの前記実現可能な軌道と前記車両の意図との整合性に基づいて前記サブセットからの各々の実現可能な軌道の前記確率を更新することと、
    を更に含む、請求項16に記載の媒体。
JP2019534767A 2017-03-28 2017-10-12 自車両の制御方法及び自車両の制御システム Active JP6837558B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/471,665 2017-03-28
US15/471,665 US10324469B2 (en) 2017-03-28 2017-03-28 System and method for controlling motion of vehicle in shared environment
PCT/JP2017/037770 WO2018179539A1 (en) 2017-03-28 2017-10-12 Method for controlling host vehicle and control system of host vehicle

Publications (2)

Publication Number Publication Date
JP2020514158A JP2020514158A (ja) 2020-05-21
JP6837558B2 true JP6837558B2 (ja) 2021-03-03

Family

ID=60388104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019534767A Active JP6837558B2 (ja) 2017-03-28 2017-10-12 自車両の制御方法及び自車両の制御システム

Country Status (3)

Country Link
US (1) US10324469B2 (ja)
JP (1) JP6837558B2 (ja)
WO (1) WO2018179539A1 (ja)

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10769453B2 (en) * 2017-05-16 2020-09-08 Samsung Electronics Co., Ltd. Electronic device and method of controlling operation of vehicle
WO2018212538A1 (en) * 2017-05-16 2018-11-22 Samsung Electronics Co., Ltd. Electronic device and method of detecting driving event of vehicle
US10591920B2 (en) * 2017-05-24 2020-03-17 Qualcomm Incorporated Holistic planning with multiple intentions for self-driving cars
JP6666304B2 (ja) * 2017-06-02 2020-03-13 本田技研工業株式会社 走行制御装置、走行制御方法、およびプログラム
US10007269B1 (en) 2017-06-23 2018-06-26 Uber Technologies, Inc. Collision-avoidance system for autonomous-capable vehicle
US10217028B1 (en) * 2017-08-22 2019-02-26 Northrop Grumman Systems Corporation System and method for distributive training and weight distribution in a neural network
US10629080B2 (en) * 2017-08-31 2020-04-21 Uatc Llc Autonomous vehicles featuring vehicle intention system
US10515321B2 (en) * 2017-09-11 2019-12-24 Baidu Usa Llc Cost based path planning for autonomous driving vehicles
KR102463720B1 (ko) * 2017-12-18 2022-11-07 현대자동차주식회사 차량의 경로 생성 시스템 및 방법
EP3514648B1 (en) * 2018-01-22 2023-09-06 Continental Autonomous Mobility Germany GmbH Method and apparatus for detecting a boundary in an envi-ronment of an object
US11687079B2 (en) * 2018-01-26 2023-06-27 Uatc, Llc Methods, devices, and systems for analyzing motion plans of autonomous vehicles
US11203353B2 (en) * 2018-03-09 2021-12-21 Mitsubishi Heavy Industries, Ltd. Steering control system, steering system, car, steering control method and recording medium
WO2019203946A1 (en) * 2018-04-17 2019-10-24 Hrl Laboratories, Llc Programming model for a bayesian neuromorphic compiler
US11511745B2 (en) * 2018-04-27 2022-11-29 Huawei Technologies Co., Ltd. Method and system for adaptively controlling object spacing
DE102018207102A1 (de) * 2018-05-08 2019-11-14 Robert Bosch Gmbh Verfahren zur Ermittlung der Trajektorienfolgegenauigkeit
EP3794571A4 (en) * 2018-05-16 2022-01-26 Notraffic Ltd. SYSTEM AND METHOD FOR USING V2X COMMUNICATION AND SENSOR DATA
DE102018117561A1 (de) * 2018-07-20 2020-01-23 Zf Active Safety Gmbh Verfahren zum automatisierten Vermeiden einer Kollision
US11256260B2 (en) * 2018-10-05 2022-02-22 Waymo Llc Generating trajectories for autonomous vehicles
US11048253B2 (en) 2018-11-21 2021-06-29 Waymo Llc Agent prioritization for autonomous vehicles
US10919543B2 (en) * 2019-01-30 2021-02-16 StradVision, Inc. Learning method and learning device for determining whether to switch mode of vehicle from manual driving mode to autonomous driving mode by performing trajectory-based behavior analysis on recent driving route
EP3693943B1 (en) * 2019-02-05 2024-05-29 Honda Research Institute Europe GmbH Method for assisting a person in acting in a dynamic environment and corresponding system
CN109885943B (zh) * 2019-02-26 2023-05-16 百度在线网络技术(北京)有限公司 行车决策的预测方法、装置、存储介质和终端设备
US11364936B2 (en) * 2019-02-28 2022-06-21 Huawei Technologies Co., Ltd. Method and system for controlling safety of ego and social objects
US20200310422A1 (en) * 2019-03-26 2020-10-01 GM Global Technology Operations LLC Cognitive processor feedforward and feedback integration in autonomous systems
US11688293B2 (en) * 2019-03-29 2023-06-27 Volvo Car Corporation Providing educational media content items based on a determined context of a vehicle or driver of the vehicle
JP7251352B2 (ja) * 2019-06-26 2023-04-04 株式会社デンソー 運転支援装置、運転支援方法、及びプログラム
US11124196B2 (en) * 2019-07-02 2021-09-21 Mitsubishi Electric Research Laboratories, Inc. Receding horizon state estimator
CN112242069B (zh) * 2019-07-17 2021-10-01 华为技术有限公司 一种确定车速的方法和装置
US11875678B2 (en) 2019-07-19 2024-01-16 Zoox, Inc. Unstructured vehicle path planner
SE544208C2 (en) * 2019-08-23 2022-03-01 Scania Cv Ab Method and control arrangement for vehicle motion planning and control algorithms
US12072678B2 (en) * 2019-09-16 2024-08-27 Honda Motor Co., Ltd. Systems and methods for providing future object localization
US11351996B2 (en) 2019-11-01 2022-06-07 Denso International America, Inc. Trajectory prediction of surrounding vehicles using predefined routes
CN114766022A (zh) * 2019-11-06 2022-07-19 俄亥俄州创新基金会 使用多时域优化的车辆动力学和动力总成控制系统和方法
JP7255460B2 (ja) * 2019-11-15 2023-04-11 トヨタ自動車株式会社 車両制御システム
DE102019219241A1 (de) * 2019-12-10 2021-06-10 Psa Automobiles Sa Verfahren zum Erstellen eines Verkehrsteilnehmeralgorithmus zur Computersimulation von Verkehrsteilnehmern, Verfahren zum Trainieren wenigstens eines Algorithmus für ein Steuergerät eines Kraftfahrzeugs, Computerprogrammprodukt sowie Kraftfahrzeug
US11520342B2 (en) * 2020-03-12 2022-12-06 Pony Ai Inc. System and method for determining realistic trajectories
CN111931968B (zh) * 2020-03-12 2023-12-01 东南大学 一种应用手机gps数据来优化公共自行车站点布局的方法
JP7464425B2 (ja) * 2020-03-31 2024-04-09 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム
US20200262423A1 (en) * 2020-05-08 2020-08-20 Intel Corporation Systems, devices, and methods for risk-aware driving
CN111427369B (zh) * 2020-06-08 2020-11-03 北京三快在线科技有限公司 一种无人车控制方法及装置
JP7287353B2 (ja) * 2020-06-11 2023-06-06 トヨタ自動車株式会社 位置推定装置及び位置推定用コンピュータプログラム
US20210403056A1 (en) * 2020-06-24 2021-12-30 Toyota Research Institute, Inc. Convolution operator selection
US11783178B2 (en) * 2020-07-30 2023-10-10 Toyota Research Institute, Inc. Systems and methods for corridor intent prediction
CN114056347A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 车辆运动状态识别方法及装置
US11753044B2 (en) * 2020-11-18 2023-09-12 Argo AI, LLC Method and system for forecasting reactions of other road users in autonomous driving
FR3118932A1 (fr) * 2021-01-19 2022-07-22 Psa Automobiles Sa Procédé et dispositif de génération d’une trajectoire d’un véhicule autonome
CN112799411B (zh) * 2021-04-12 2021-07-30 北京三快在线科技有限公司 一种无人驾驶设备的控制方法及装置
CN113325754A (zh) * 2021-05-14 2021-08-31 重庆科创职业学院 一种基于车联网的车辆动态信息反馈装置
EP4112411B1 (en) * 2021-07-01 2024-03-27 Zenseact AB Estimation of accident intensity for vehicles
CN113867315B (zh) * 2021-09-24 2023-06-02 同济大学 一种虚实结合的高保真交通流智能车测试平台及测试方法
JPWO2023053165A1 (ja) * 2021-09-28 2023-04-06
US20230331252A1 (en) * 2022-04-15 2023-10-19 Gm Cruise Holdings Llc Autonomous vehicle risk evaluation
US20230339503A1 (en) * 2022-04-26 2023-10-26 Toyota Research Institute, Inc. Producing a trajectory from a diverse set of possible movements
US20240001959A1 (en) * 2022-06-30 2024-01-04 Zoox, Inc. Vehicle motion planner
CN115923845B (zh) * 2023-01-09 2023-05-23 北京科技大学 自动驾驶车辆前向避撞场景下干预型共享控制方法及装置
CN116203964B (zh) * 2023-03-13 2024-02-09 阿波罗智联(北京)科技有限公司 一种控制车辆行驶的方法、设备和装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3864418B2 (ja) 2004-01-28 2006-12-27 マツダ株式会社 車両用画像表示装置
EP1898232B1 (en) 2006-09-08 2010-09-01 Ford Global Technologies, LLC Method and system for collision avoidance
DE102007019991A1 (de) 2007-04-27 2008-10-30 Robert Bosch Gmbh Vermeidung eines Auffahrunfalls bei einem automatischen Bremseingriff eines Fahrzeugsicherheitssystems
WO2010101749A1 (en) 2009-03-05 2010-09-10 Massachusetts Institute Of Technology Predictive semi-autonomous vehicle navigation system
US9633564B2 (en) 2012-09-27 2017-04-25 Google Inc. Determining changes in a driving environment based on vehicle behavior
US9250324B2 (en) 2013-05-23 2016-02-02 GM Global Technology Operations LLC Probabilistic target selection and threat assessment method and application to intersection collision alert system
US9478363B2 (en) 2013-08-28 2016-10-25 Florida State University Research Foundation, Inc. Flexible electrical devices and methods
EP2950294B1 (en) 2014-05-30 2019-05-08 Honda Research Institute Europe GmbH Method and vehicle with an advanced driver assistance system for risk-based traffic scene analysis
EP3091370B1 (en) 2015-05-05 2021-01-06 Volvo Car Corporation Method and arrangement for determining safe vehicle trajectories

Also Published As

Publication number Publication date
US20180284785A1 (en) 2018-10-04
JP2020514158A (ja) 2020-05-21
WO2018179539A1 (en) 2018-10-04
US10324469B2 (en) 2019-06-18

Similar Documents

Publication Publication Date Title
JP6837558B2 (ja) 自車両の制御方法及び自車両の制御システム
JP7069345B2 (ja) 車両の制御システム及び車両の運動を制御する制御方法
JP6837570B2 (ja) 車両の横方向運動を制御するシステム及び方法
JP7444874B2 (ja) 方法、非一時的コンピュータ可読媒体、および、車両
US11822337B2 (en) Autonomous vehicles featuring machine-learned yield model
US11710303B2 (en) Systems and methods for prioritizing object prediction for autonomous vehicles
CN112840350B (zh) 自动驾驶车辆规划和预测
US10571916B2 (en) Control method for autonomous vehicles
WO2021222375A1 (en) Constraining vehicle operation based on uncertainty in perception and/or prediction
EP3802260A1 (en) Gridlock solver for motion planning system of an autonomous vehicle
US11860634B2 (en) Lane-attention: predicting vehicles' moving trajectories by learning their attention over lanes
JP2024530638A (ja) ツリー検索を使用する車両軌道制御
US11673584B2 (en) Bayesian Global optimization-based parameter tuning for vehicle motion controllers
US20240043034A1 (en) Method and system for conditional operation of an autonomous agent
CN113366400A (zh) 自动驾驶车辆的动态成本函数的实现方法
US20240001966A1 (en) Scenario-based training data weight tuning for autonomous driving
US20230053243A1 (en) Hybrid Performance Critic for Planning Module's Parameter Tuning in Autonomous Driving Vehicles
US20240157944A1 (en) Reinforcement learning for autonomous lane change

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210209

R150 Certificate of patent or registration of utility model

Ref document number: 6837558

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250