JP6835379B1 - Manufacturing method of titanium substrate coated electrode for electrolysis - Google Patents

Manufacturing method of titanium substrate coated electrode for electrolysis Download PDF

Info

Publication number
JP6835379B1
JP6835379B1 JP2020191669A JP2020191669A JP6835379B1 JP 6835379 B1 JP6835379 B1 JP 6835379B1 JP 2020191669 A JP2020191669 A JP 2020191669A JP 2020191669 A JP2020191669 A JP 2020191669A JP 6835379 B1 JP6835379 B1 JP 6835379B1
Authority
JP
Japan
Prior art keywords
titanium substrate
coating
platinum group
electrode
metal compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020191669A
Other languages
Japanese (ja)
Other versions
JP2022080540A (en
Inventor
松本 聡
松本  聡
吉田 裕紀
裕紀 吉田
健司 松前
健司 松前
弘基 石亀
弘基 石亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishifuku Metal Industry Co Ltd
Original Assignee
Ishifuku Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishifuku Metal Industry Co Ltd filed Critical Ishifuku Metal Industry Co Ltd
Priority to JP2020191669A priority Critical patent/JP6835379B1/en
Application granted granted Critical
Publication of JP6835379B1 publication Critical patent/JP6835379B1/en
Publication of JP2022080540A publication Critical patent/JP2022080540A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemically Coating (AREA)

Abstract

【課題】担持物量の均一化を図れ、所定の電極性能を発揮する電解用チタン基体被覆電極の製造方法を提供する。【解決手段】電極基体をなすチタン基体の上に、白金族金属化合物および/または白金族金属以外の金属化合物と、溶剤とを含む塗布液を塗布する塗布工程と、前記塗布液が塗布された前記チタン基体を乾燥して前記溶剤を蒸発させる乾燥工程と、前記乾燥工程後の前記チタン基体を酸素含有ガス雰囲気中で加熱して塗布された前記金属化合物を熱分解して金属および/または金属酸化物に変化させる熱分解工程と、を含む電解用チタン基体被覆電極の製造方法において、前記塗布工程、前記乾燥工程、前記熱分解工程を複数回繰り返すとともに、前記塗布工程は、白金族金属化合物および/または白金族金属以外の金属化合物を比誘電率29〜50、かつ、表面張力0.029〜0.050Nm-1の溶剤に溶解させた塗布液に電圧14〜16kVを印加し、プラスに帯電させた塗布液をノズルから押し出し、斥力で前記塗布液量の99%以上を粒径80〜200μmの霧状にして、接地された前記チタン基体表面に付着させる。【選択図】なしPROBLEM TO BE SOLVED: To provide a method for manufacturing a titanium substrate-coated electrode for electrolysis, which can make the amount of a carrier uniform and exhibit a predetermined electrode performance. SOLUTION: A coating step of applying a coating solution containing a platinum group metal compound and / or a metal compound other than a platinum group metal and a solvent onto a titanium substrate forming an electrode substrate, and the coating solution are applied. A drying step of drying the titanium substrate to evaporate the solvent, and heating the titanium substrate after the drying step in an oxygen-containing gas atmosphere to thermally decompose the applied metal compound to form a metal and / or metal. In the method for producing a titanium substrate-coated electrode for electrolysis including a thermal decomposition step of changing to an oxide, the coating step, the drying step, and the thermal decomposition step are repeated a plurality of times, and the coating step is a platinum group metal compound. And / or a coating solution prepared by dissolving a metal compound other than a platinum group metal in a solvent having a relative dielectric constant of 29 to 50 and a surface tension of 0.029 to 0.050 Nm-1 was positively charged by applying a voltage of 14 to 16 kV. The coating liquid is pushed out from the nozzle, and 99% or more of the coating liquid amount is atomized with a particle size of 80 to 200 μm by a repulsive force and adhered to the grounded surface of the titanium substrate. [Selection diagram] None

Description

本発明は、電解用チタン基体被覆電極の製造方法に関する。さらに詳しくは、白金族金属塩を含む溶液をチタン基体上に塗布、乾燥、熱分解して電極触媒層を形成させる形式の電解用チタン基体被覆電極の製造方法に関する。 The present invention relates to a method for manufacturing a titanium substrate-coated electrode for electrolysis. More specifically, the present invention relates to a method for producing a titanium substrate-coated electrode for electrolysis in which a solution containing a platinum group metal salt is applied onto a titanium substrate, dried, and thermally decomposed to form an electrode catalyst layer.

電解用チタン基体被覆電極の製造方法としては、めっき法、スパッタリング法、熱分解法(触媒成分を含む溶液を塗布、乾燥、熱分解する)等が存在する。 As a method for producing a titanium substrate-coated electrode for electrolysis, there are a plating method, a sputtering method, a thermal decomposition method (coating, drying, and thermal decomposition of a solution containing a catalyst component).

特許文献1には、酸化イリジウムと、酸化タンタルの金属酸化物からなる混合金属酸化物から構成される外層を設けるために、塩化イリジウム酸のブタノール溶液と塩化タンタルのエタノール溶液を所定量混合し、塗布液を調製した後、この塗布液を所定量塗布、焼成することが記載されている。従来、この塗布はおもに刷毛塗りの方法によって行われていた。 In Patent Document 1, a predetermined amount of a butanol solution of iridium chloride and an ethanol solution of tantalum chloride are mixed in order to provide an outer layer composed of a mixed metal oxide composed of iridium oxide and a metal oxide of tantalum oxide. It is described that after preparing a coating solution, a predetermined amount of this coating solution is applied and fired. Conventionally, this coating has been performed mainly by a brush coating method.

特開平2−190491Japanese Patent Application Laid-Open No. 2-190491

大板のチタン基体を用いて塗布・乾燥・熱分解で被覆電極を製造しプレス抜きして小片形状の電極を得る場合において、特に金属換算で白金族金属平均担持物量が0.2g・dm-2以下の触媒層を刷毛塗り、浸漬等の塗布方法で製造する場合、1つの小片形状の担持物量を平均担持物量で除した値がばらつくことから、設計寿命が得られる担持物の下限量を下回らないように平均担持物量を多くする必要があり、製造コストが増加してしまう問題があった。
また、静電塗布は、塗布された液の斥力で液の偏りを抑制し膜が均一化するが、霧状にした塗布液の表面積が大きく、空気中の水分による加水分解等の影響を受け、所定の電極性能が得られない問題があった。
塗布液に高電圧を印加すると、溶剤がプラスに帯電し、ノズルから押し出された時、斥力によって微細粒子に分離して下側の接地されたチタン基体表面に付着する。通常、塗布液を霧状にして空気と接触させると、空気中の水分による加水分解等の影響を強く受けて、作製した電極の耐久性が著しく悪化してしまう問題があった。
When a coated electrode is manufactured by coating, drying, and thermal decomposition using a large titanium substrate and pressed to obtain a small piece-shaped electrode, the average amount of platinum group metal carrier supported is 0.2 g · dm -2, especially in terms of metal. When the following catalyst layers are manufactured by a coating method such as brush coating or dipping, the value obtained by dividing the amount of one small piece of carrier by the average amount of carrier varies, so that the design life is less than the lower limit of the carrier that can be obtained. There is a problem that the production cost increases because it is necessary to increase the average amount of the carrier so as not to prevent it.
In electrostatic coating, the repulsive force of the applied liquid suppresses the bias of the liquid and makes the film uniform, but the surface area of the atomized coating liquid is large and is affected by hydrolysis due to moisture in the air. However, there is a problem that the predetermined electrode performance cannot be obtained.
When a high voltage is applied to the coating liquid, the solvent is positively charged, and when it is pushed out from the nozzle, it is separated into fine particles by repulsive force and adheres to the lower grounded titanium substrate surface. Usually, when the coating liquid is atomized and brought into contact with air, there is a problem that the durability of the produced electrode is significantly deteriorated due to the strong influence of hydrolysis or the like due to the moisture in the air.

そこで本発明の目的は、担持物量の均一化を図れ、所定の電極性能を発揮する電解用チタン基体被覆電極の製造方法を提供することである。 Therefore, an object of the present invention is to provide a method for producing a titanium substrate-coated electrode for electrolysis, which can make the amount of a carrier uniform and exhibit predetermined electrode performance.

本発明者らは、上記の課題を達成すべく鋭意検討した結果、静電塗布の方法において、高電圧印加と特定の溶剤を用いて霧状にする塗布液の粒径を特異的に大きくすることで、霧状の塗布液と空気中の水分の接触による影響を抑制できることを見出し、本発明に至った。
すなわち、高電圧印加するとともに、比誘電率29〜50、かつ、表面張力0.029〜0.050Nm-1の溶剤を用いて、霧状の塗布液の粒径を特異的に大きくすることで、空気中の水分の影響を抑制し、小片形状の個々の電極の担持物量のばらつきが少なくなることにより、個々の電極の寿命特性の安定化を図ることができる本製造方法を開発した。
As a result of diligent studies to achieve the above problems, the present inventors specifically increase the particle size of the coating liquid to be atomized by applying a high voltage and using a specific solvent in the electrostatic coating method. As a result, they have found that the influence of contact between the mist-like coating liquid and the moisture in the air can be suppressed, and have reached the present invention.
That is, by applying a high voltage and using a solvent having a relative permittivity of 29 to 50 and a surface tension of 0.029 to 0.050 Nm- 1 , the particle size of the mist-like coating liquid is specifically increased in the air. We have developed this manufacturing method that can stabilize the life characteristics of individual electrodes by suppressing the influence of moisture and reducing the variation in the amount of carried on each of the small piece-shaped electrodes.

すなわち上記課題は、
電極基体をなすチタン基体の上に、白金族金属化合物および/または白金族金属以外の金属化合物と、溶剤とを含む塗布液を塗布する塗布工程と、
前記塗布液が塗布された前記チタン基体を乾燥して前記溶剤を蒸発させる乾燥工程と、
前記乾燥工程後の前記チタン基体を酸素含有ガス雰囲気中で加熱して塗布された前記金属化合物を熱分解して金属および/または金属酸化物に変化させる熱分解工程と、を含む電解用チタン基体被覆電極の製造方法において、
前記塗布工程、前記乾燥工程、前記熱分解工程を複数回繰り返す(これらの工程を含む一連の工程を複数回繰り返す)とともに、
前記塗布工程は、白金族金属化合物および/または白金族金属以外の金属化合物を比誘電率29〜50、かつ、表面張力0.029〜0.050Nm-1の溶剤に溶解させた塗布液に電圧14〜16kVを印加し、プラスに帯電させた塗布液をノズルから押し出し、斥力で前記塗布液量の99%以上を粒径80〜200μmの霧状にして、接地された前記前処理工程後のチタン基体表面に付着させる工程であることを特徴とする電解用チタン基体被覆電極の製造方法、によって達成される。
That is, the above problem is
A coating step of applying a coating solution containing a platinum group metal compound and / or a metal compound other than a platinum group metal and a solvent onto a titanium substrate forming an electrode substrate.
A drying step of drying the titanium substrate to which the coating liquid is applied to evaporate the solvent, and
A titanium substrate for electrolysis including a thermal decomposition step of heating the titanium substrate after the drying step in an oxygen-containing gas atmosphere to thermally decompose the applied metal compound into a metal and / or a metal oxide. In the method of manufacturing a coated electrode
The coating step, the drying step, and the thermal decomposition step are repeated a plurality of times (a series of steps including these steps are repeated a plurality of times).
In the coating step, the voltage is 14 to 16 kV in a coating solution prepared by dissolving a platinum group metal compound and / or a metal compound other than the platinum group metal in a solvent having a relative permittivity of 29 to 50 and a surface tension of 0.029 to 0.050 Nm- 1. Is applied, and the positively charged coating liquid is pushed out from the nozzle, and 99% or more of the coating liquid amount is atomized with a particle size of 80 to 200 μm by repulsive force, and the surface of the titanium substrate after the pretreatment step is grounded. It is achieved by a method for manufacturing a titanium substrate-coated electrode for electrolysis, which is a step of adhering to a metal.

また、前記塗布液の前記溶剤が、2エトキシエタノールまたはその50wt%以下を低級アルコールに置換した溶剤を含むようにしてもよい。 Further, the solvent of the coating liquid may contain 2ethoxyethanol or a solvent in which 50 wt% or less thereof is replaced with a lower alcohol.

また、前記塗布工程において、ノズルの内径が0.1〜0.3mm、押し出す塗布液量が0.01〜0.03mL/secであるようにしてもよい。 Further, in the coating step, the inner diameter of the nozzle may be 0.1 to 0.3 mm, and the amount of the coating liquid to be extruded may be 0.01 to 0.03 mL / sec.

また、前記電解用チタン基体被覆電極の白金族金属の担持物量が金属換算で0.2g・dm-2以下であり、かつ、
前記電解用チタン基体被覆電極をプレス抜きして小片形状の電極を得るプレス加工工程をさらに含む、ようにしてもよい。
Further, the amount of the platinum group metal carried by the titanium substrate-coated electrode for electrolysis is 0.2 g · dm -2 or less in terms of metal, and
A press working step of pressing out the titanium substrate-coated electrode for electrolysis to obtain a small piece-shaped electrode may be further included.

また、上記の製造方法において、前記チタン基体は長方形の板状であり、前記塗布工程において、前記チタン基体の長方形の長辺のそれぞれに所定の空隙を介して誘電体の板が並行に設置された状態で、塗布液を塗布するようにしてもよい。 Further, in the above manufacturing method, the titanium substrate has a rectangular plate shape, and in the coating step, dielectric plates are installed in parallel on each of the long sides of the rectangle of the titanium substrate through predetermined voids. The coating liquid may be applied in this state.

本発明に従うと、担持物量の均一化を図れ、所定の電極性能を発揮する電解用チタン基体被覆電極の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for producing a titanium substrate-coated electrode for electrolysis, which can make the amount of a carrier uniform and exhibit predetermined electrode performance.

すなわち高電圧印加と特定の溶剤を用いて、霧状の帯電した塗布液の粒径を大きくすることで、担持物量の均一化と電極の寿命特性の安定化とを両立させることができる。特定の溶剤とは、例えば、2エトキシエタノールまたはその50wt%以下を低級アルコールに置換した溶剤である。大板のチタン基体を用いて静電塗布・乾燥・熱分解法で被覆電極を製造しプレス抜きして小片形状の電極を得る場合、小片形状の電極の担持物量のばらつきが少なくなるため、平均担持物量を減らしても最小担持物量が必要な担持物量を確保できるため、製造コストを削減することができる。
また平均担持物量をハケ塗りと同じにする場合、静電塗布方法による小片形状の下限の担持物量が増えることから、電極寿命を延ばすことが可能になる。すなわち材料コスト増によらないで設計寿命を延ばすことができる。ここでいう設計寿命とは、下限の担持物量の電極の寿命である。特に金属換算で白金族金属担持物量が0.2g・dm-2以下の触媒層を製造する場合、上記効果が顕著となる。
That is, by applying a high voltage and using a specific solvent to increase the particle size of the mist-like charged coating liquid, it is possible to achieve both uniform support and stabilization of electrode life characteristics. The specific solvent is, for example, a solvent in which 2ethoxyethanol or 50 wt% or less thereof is replaced with a lower alcohol. When a coated electrode is manufactured by electrostatic coating, drying, and thermal decomposition using a large plate titanium substrate and pressed to obtain a small piece-shaped electrode, the amount of supported material on the small piece-shaped electrode is small, so the average Even if the amount of the carrier is reduced, the minimum amount of the carrier can secure the required amount of the carrier, so that the manufacturing cost can be reduced.
Further, when the average amount of the carrier is the same as that of the brush coating, the lower limit amount of the small piece shape by the electrostatic coating method increases, so that the electrode life can be extended. That is, the design life can be extended without increasing the material cost. The design life referred to here is the life of the electrode having the lower limit of the amount of the carrier. In particular, when a catalyst layer having a platinum group metal carrier amount of 0.2 g · dm -2 or less in terms of metal is produced, the above effect becomes remarkable.

以下、本発明の電解用チタン基体被覆電極の製造方法をさらに詳細に説明する。 Hereinafter, the method for producing the titanium substrate-coated electrode for electrolysis of the present invention will be described in more detail.

〈電極基体〉
本発明において使用される電極基体の材質としては、JIS1種またはJIS2種相当のチタンが挙げられる。例えば、大板のチタン基体 (t 0.5mm×w 500mm×l 1000mm) を電極基材として用いることができる。
<Electrode substrate>
Examples of the material of the electrode substrate used in the present invention include titanium equivalent to JIS Class 1 or JIS Class 2. For example, a large plate titanium substrate (t 0.5 mm × w 500 mm × l 1000 mm) can be used as an electrode substrate.

〈チタン基体の前処理工程〉
チタン基体は密着性向上のため、必要に応じて前処理工程で基体表面を処理する。前処理工程は、例えば、以下の酸処理、水素化チタン処理、酸化チタンの形成という処理のいずれか一以上をとることができる。
<Titanium substrate pretreatment process>
In order to improve the adhesion of the titanium substrate, the surface of the substrate is treated in a pretreatment step as necessary. The pretreatment step can take any one or more of the following acid treatment, titanium hydride treatment, and titanium oxide formation, for example.

(酸処理)
上記の如き電極基体には、通常行われているように、予め酸処理をするのが望ましい。そのような前処理の好適具体例としては以下に述べるものが挙げられる。先ず、前述したチタン基体表面を常法に従い、例えばアルコール、アセトン等で洗浄し及び/又はアルカリ溶液中での電解により脱脂した後、フッ化水素濃度が1〜20重量%のフッ化水素酸又はフッ化水素酸と硝酸、硫酸等の他の酸との混酸で処理することにより、チタン基体表面の酸化膜を除去するとともにチタン結晶粒界単位の粗面化を行う。該酸処理は、チタン基体の表面状態に応じて常温ないし約40℃の温度において数分間ないし十数分間行うことができる。
(Acid treatment)
It is desirable that the electrode substrate as described above is preliminarily acid-treated as is usually performed. Preferable specific examples of such pretreatment include those described below. First, the surface of the titanium substrate described above is washed with, for example, alcohol, acetone, etc. and / or degreased by electrolysis in an alkaline solution according to a conventional method, and then hydrofluoric acid having a hydrogen fluoride concentration of 1 to 20% by weight or By treating with a mixed acid of hydrofluoric acid and other acids such as nitric acid and sulfuric acid, the oxide film on the surface of the titanium substrate is removed and the surface of the titanium crystal grain boundary unit is roughened. The acid treatment can be carried out at room temperature to about 40 ° C. for several minutes to ten and several minutes depending on the surface condition of the titanium substrate.

(水素化チタン処理)
このように酸処理されたチタン基体表面を濃硫酸と接触させて、該チタン結晶粒界内部表面を突起状に細かく粗面化するとともに該チタン基体表面に水素化チタンの薄い層を形成する。使用する濃硫酸は一般に40〜80重量%、好ましくは50〜60重量%の濃度のものが適当であり、この濃硫酸には必要により、処理の安定化を図る目的で少量の硫酸ナトリウム、その他の硫酸塩等を添加してもよい。該濃硫酸との接触は通常チタン基体を濃硫酸の浴中に浸漬することにより行うことができ、その際の浴温は一般に約100〜約150℃、好ましくは約110〜約130℃の範囲内の温度とすることができ、また浸漬時間は通常約0.5〜約10分間、好ましくは約1〜約3分間で十分である。この硫酸処理により、チタン結晶粒界内部表面を突起状に細かく粗面化するとともに、チタン基体の表面にごく薄い水素化チタンの被膜を形成させることができる。硫酸処理されたチタン基体は硫酸浴から取り出し、好ましくは窒素、アルゴン等の不活性ガス雰囲気中で急冷してチタン基体の表面温度を約60℃以下に低下させる。この急冷には洗浄も兼ねて大量の冷水を用いるのが適当である。
(Titanium hydride treatment)
The surface of the titanium substrate treated with acid in this way is brought into contact with concentrated sulfuric acid to finely roughen the inner surface of the titanium crystal grain boundaries in a protruding shape and to form a thin layer of titanium hydride on the surface of the titanium substrate. The concentrated sulfuric acid used is generally 40 to 80% by weight, preferably 50 to 60% by weight, and if necessary, a small amount of sodium sulfate or the like is used for the purpose of stabilizing the treatment. Sulfate and the like may be added. Contact with the concentrated sulfuric acid can usually be performed by immersing the titanium substrate in a bath of concentrated sulfuric acid, and the bath temperature at that time is generally in the range of about 100 to about 150 ° C., preferably about 110 to about 130 ° C. The temperature can be set to the inside temperature, and the immersion time is usually about 0.5 to about 10 minutes, preferably about 1 to about 3 minutes. By this sulfuric acid treatment, the inner surface of the titanium crystal grain boundaries can be finely roughened like protrusions, and a very thin titanium hydride film can be formed on the surface of the titanium substrate. The sulfuric acid-treated titanium substrate is taken out of the sulfuric acid bath and rapidly cooled in an atmosphere of an inert gas such as nitrogen or argon to lower the surface temperature of the titanium substrate to about 60 ° C. or lower. It is appropriate to use a large amount of cold water for this rapid cooling, which also serves as cleaning.

このようにしてごく薄い水素化チタンの被膜層を表面に形成せしめたチタン基体は、希フッ化水素酸又は希フッ化物水溶液(例えば、フッ化ナトリウム、フッ化カリウム等の水溶液)中で浸漬処理して該水素化チタン被膜を生長させ、該被膜の均一化及び安定化を図る。ここで使用しうる希フッ化水素酸又は希フッ化物水溶液中のフッ化水素の濃度は、一般に0.05〜3重量%、好ましくは0.3〜1重量%の範囲内とすることができ、また、これらの溶液による浸漬処理の際の温度は、一般に10〜40℃、好ましくは20〜30℃の範囲とすることができる。該処理はチタン基体表面に、通常0.5〜10ミクロン、好ましくは1〜3ミクロンの厚さの水素化チタンの均一被膜が形成されるまで行うことができる。この水素化チタン(TiHy、ここでyは1.5〜2の数である)は水素化の程度に応じて灰褐色から黒褐色を呈するので、上記範囲の厚さの水素化チタン被膜の生成は、経験的に該基体表面の色調の変化を標準色源との明度対比によってコントロールすることができる。 The titanium substrate having a very thin titanium hydride film layer formed on the surface in this way is immersed in a dilute hydrofluoric acid or dilute fluoride aqueous solution (for example, an aqueous solution of sodium fluoride, potassium fluoride, etc.). Then, the titanium hydride film is grown to make the film uniform and stable. The concentration of hydrogen fluoride in the dilute hydrofluoric acid or dilute fluoride aqueous solution that can be used here can be generally in the range of 0.05 to 3% by weight, preferably 0.3 to 1% by weight. Further, the temperature at the time of the immersion treatment with these solutions can be generally in the range of 10 to 40 ° C, preferably 20 to 30 ° C. The treatment can be carried out until a uniform film of titanium hydride having a thickness of usually 0.5 to 10 microns, preferably 1 to 3 microns is formed on the surface of the titanium substrate. Since this titanium hydride (TiHy, where y is a number of 1.5 to 2) exhibits a grayish brown to dark brown color depending on the degree of hydrogenation, the formation of a titanium hydride film having a thickness in the above range is not possible. Empirically, the change in color tone on the surface of the substrate can be controlled by contrasting the brightness with a standard color source.

(酸化チタンの形成)
上記のチタン基体は、次いで必要により、大気中で加熱する。この加熱は一般に約300〜約600℃、好ましくは約300〜約400℃の温度で10分〜4時間程度加熱することにより行うことができる。この加熱により水素化チタンの被膜の層を熱分解して、該層中の水素化チタンを実質的にほとんどチタン金属に戻し、チタン基体表面にごく薄い導電性の酸化チタンが形成される。この酸化チタンの厚さは一般に10〜100nm、好ましくは20〜60nmの範囲内にあるのが好適であり、また、酸化チタンの組成はTiOx としてxが一般に1<x<2、特に1.9<x<2の範囲にあるのが望ましい。また別法として、チタン基体は、上記の如き加熱を行わずに直接次の工程に付してもよい。この場合には、次工程での熱分解処理時にチタン基体表面の水素化チタンの被膜の層は、チタン金属及び低酸化状態の酸化チタンに変換される。このようにして、電気伝導性のある酸化チタン(不働態化膜)が形成され化学的安定性を高めることができる。
(Formation of titanium oxide)
The titanium substrate is then heated in the air, if necessary. This heating can be generally carried out by heating at a temperature of about 300 to about 600 ° C., preferably about 300 to about 400 ° C. for about 10 minutes to 4 hours. By this heating, the layer of the titanium hydride film is thermally decomposed, and the titanium hydride in the layer is substantially returned to the titanium metal, and a very thin conductive titanium oxide is formed on the surface of the titanium substrate. The thickness of the titanium oxide is generally preferably in the range of 10 to 100 nm, preferably 20 to 60 nm, and the composition of titanium oxide is such that x is generally 1 <x <2, particularly 1.9 as TiOx. It is desirable that it is in the range of <x <2. Alternatively, the titanium substrate may be directly subjected to the next step without heating as described above. In this case, the layer of the titanium hydride film on the surface of the titanium substrate is converted into titanium metal and titanium oxide in a low oxidation state during the thermal decomposition treatment in the next step. In this way, electrically conductive titanium oxide (passivation film) is formed, and chemical stability can be enhanced.

チタン基体の前処理工程は以上に限定されず、種々の処理工程を採用することができる。 The pretreatment step of the titanium substrate is not limited to the above, and various treatment steps can be adopted.

チタン基体の前処理工程としては、ブラスト処理による表面積拡大、粗面化を採用することができる。酸洗については他の酸、例えば熱シュウ酸、濃塩酸等で行うことができる。 As the pretreatment step of the titanium substrate, surface area expansion and roughening by blasting can be adopted. Pickling can be performed with other acids such as hot oxalic acid and concentrated hydrochloric acid.

次に塗布工程・乾燥工程・熱分解工程を複数回、例えば3回繰り返して電極触媒層を作製する。 Next, the coating step, the drying step, and the thermal decomposition step are repeated a plurality of times, for example, three times to prepare an electrode catalyst layer.

電極触媒層の作製では、塗布液に用いる金属化合物としては、白金族金属化合物のみの場合、白金族金属化合物および白金族金属以外の金属化合物の場合がある。 In the preparation of the electrode catalyst layer, the metal compound used in the coating liquid may be a platinum group metal compound only, a platinum group metal compound, or a metal compound other than the platinum group metal.

電極によっては、チタン基体の上に中間層を設け、その中間層の上に電極触媒層を作製する場合もある。その場合、塗布工程・乾燥工程・熱分解工程を1回または複数回繰り返して中間層を作製する。 Depending on the electrode, an intermediate layer may be provided on the titanium substrate, and an electrode catalyst layer may be formed on the intermediate layer. In that case, the coating step, the drying step, and the thermal decomposition step are repeated once or a plurality of times to prepare an intermediate layer.

中間層を作製する場合には、塗布液に用いる金属化合物としては、白金族金属化合物のみの場合、白金族以外の金属化合物のみの場合、白金族金属化合物および白金族以外の金属化合物の場合がある。 When the intermediate layer is produced, the metal compound used in the coating liquid may be only a platinum group metal compound, only a non-platinum group metal compound, or a platinum group metal compound or a non-platinum group metal compound. is there.

すなわち、電極基体上に電極触媒層を作製する場合、中間層をあらかじめ作製してその上に電極触媒層を作製する場合も含め、塗布液は、白金族金属化合物および/または白金族金属以外の金属化合物と、溶剤とを含む。 That is, when the electrode catalyst layer is formed on the electrode substrate, the coating liquid is other than the platinum group metal compound and / or the platinum group metal, including the case where the intermediate layer is prepared in advance and the electrode catalyst layer is formed on the intermediate layer. Includes metal compounds and solvents.

〈塗布液〉
塗布液は白金族金属化合物および/または白金族金属以外の金属化合物と、比誘電率29〜50、かつ、表面張力0.029〜0.050Nm-1の溶剤を含む。溶剤としては、例えば、2エトキシエタノール、ジメチルスルホキシド、エチレングリコール、ジメチルホルムアミドの少なくとも一つを含む溶剤を用いることができる。また、それらの溶剤の50wt%以下を低級アルコールに置換した溶剤を用いることができる。
例えば、2エトキシエタノールまたはその50wt%以下を低級アルコールに置換した溶剤を用いることができる。低級アルコールとしては、エタノール、イソプロピルアルコール、ブタノールの少なくとも一つを含むことができる。また、白金族金属以外の金属化合物を含んでもよい。
<Coating liquid>
The coating liquid contains a platinum group metal compound and / or a metal compound other than the platinum group metal, and a solvent having a relative permittivity of 29 to 50 and a surface tension of 0.029 to 0.050 Nm-1. As the solvent, for example, a solvent containing at least one of 2ethoxyethanol, dimethyl sulfoxide, ethylene glycol, and dimethylformamide can be used. Further, a solvent in which 50 wt% or less of those solvents is replaced with a lower alcohol can be used.
For example, a solvent in which 2ethoxyethanol or 50 wt% or less thereof is replaced with a lower alcohol can be used. The lower alcohol can include at least one of ethanol, isopropyl alcohol and butanol. Further, a metal compound other than the platinum group metal may be contained.

白金族金属化合物、白金族金属以外の金属化合物としては、例えば、白金化合物、イリジウム化合物およびタンタル化合物を用いることができる。ここで、白金化合物、イリジウム化合物およびタンタル化合物は、所定の条件下で分解してそれぞれ白金および酸化イリジウムおよび酸化タンタルに転化しうる化合物であり、白金化合物としては、塩化白金酸、塩化白金、ジニトロジアンミン白金等が挙げられる。また、イリジウム化合物としては、塩化イリジウム酸、塩化イリジウム、塩化イリジウム酸カリウム等が挙げられる。さらに、タンタル化合物としては、例えば、塩化タンタル、タンタルエトキシド等が挙げられる。 As the platinum group metal compound and the metal compound other than the platinum group metal, for example, a platinum compound, an iridium compound and a tantalum compound can be used. Here, the platinum compound, the iridium compound, and the tantalum compound are compounds that can be decomposed under predetermined conditions and converted into platinum, iridium oxide, and tantalum oxide, respectively, and examples of the platinum compound include platinum chloride acid, platinum chloride, and dinitro. Examples include diammine platinum. Examples of the iridium compound include iridium chloride, iridium chloride, potassium iridium chloride and the like. Further, examples of the tantalum compound include tantalum chloride, tantalum ethoxide and the like.

〈塗布液の塗布工程〉
チタン基体の前処理工程後のチタン基体表面に、電圧14〜16kVが印加されプラスに帯電した上記塗布液を内径0.1〜0.3mmのノズルから塗布液量0.01〜0.03mL/secで押し出し、斥力で前記塗布液量の99%以上を粒径80〜200μm、好ましくは100〜200μmの霧状にして、接地されたチタン基体表面に付着させる。
<Applying process of coating liquid>
A voltage of 14 to 16 kV was applied to the surface of the titanium substrate after the pretreatment step of the titanium substrate, and the positively charged coating liquid was extruded from a nozzle with an inner diameter of 0.1 to 0.3 mm at a coating liquid volume of 0.01 to 0.03 mL / sec, and repulsive force was applied. 99% or more of the coating liquid amount is atomized with a particle size of 80 to 200 μm, preferably 100 to 200 μm, and adhered to the grounded titanium substrate surface.

霧状にする塗布液の粒径を大きくするには、溶剤の比誘電率と表面張力が大きく関与すると考えられるが、塗布液として白金族金属化合物を溶解可能であることが不可欠である。 It is considered that the relative permittivity of the solvent and the surface tension are greatly involved in increasing the particle size of the coating liquid to be atomized, but it is indispensable that the platinum group metal compound can be dissolved as the coating liquid.

表1に2エトキシエタノール等の比誘電率および表面張力の値を示す。 Table 1 shows the relative permittivity and surface tension values of 2ethoxyethanol and the like.

Figure 0006835379
Figure 0006835379

塗布液の粒径が80μm未満と小さくなると、空気中の水分による加水分解等の影響を受け易くなってしまう。一方、粒径が200μmを越えると、チタン基体端部ではみ出し量が多くなり塗布効率が悪くなってしまう。 When the particle size of the coating liquid is smaller than 80 μm, it is easily affected by hydrolysis or the like due to moisture in the air. On the other hand, if the particle size exceeds 200 μm, the amount of protrusion at the end of the titanium substrate increases and the coating efficiency deteriorates.

また、上記の製造方法において、チタン基体は長方形の板状であり、塗布工程において、チタン基体の長方形の長辺のそれぞれに所定の空隙を介して誘電体の板が並行に設置された状態で、塗布液を塗布することができる。 Further, in the above manufacturing method, the titanium substrate has a rectangular plate shape, and in the coating process, dielectric plates are installed in parallel on each of the long sides of the rectangle of the titanium substrate through predetermined voids. , The coating liquid can be applied.

塗布工程を行うための静電塗布装置では、ノズルは、チタン基体に対して、相対的に移動しながら塗布液をノズルから押し出してチタン基体上に塗布する。塗布工程において、チタン基体上にのみ均一に塗布することが好ましく、それ以外の装置部位またはチタン基体側面、裏側に付着することはできるだけ避けたい。 In the electrostatic coating device for performing the coating step, the nozzle pushes out the coating liquid from the nozzle while moving relative to the titanium substrate to apply the coating liquid onto the titanium substrate. In the coating process, it is preferable to apply evenly only on the titanium substrate, and it is desired to avoid adhering to other parts of the device or the side surface and the back surface of the titanium substrate as much as possible.

そこで、塗布工程において、長方形の板状であるチタン基体の長方形の長辺のそれぞれに所定の空隙を介して遮蔽板を置くことが考えられるが遮蔽板として金属板を置くと、正電位(14〜16kV)のノズルからでる電気力線は、金属であるチタン基体に垂直に入射するが、ノズル直下にない遮蔽板の金属にも垂直に入力するため、チタン基体以外の遮蔽板の部分の電気力線も密になる。そこで、遮蔽板を誘電体にする。誘電体の比誘電率は例えば2〜10とする。誘電体として、例えば、アクリル板を用いる。ノズルからでる電気力線は、ノズル直下にない誘電体へは垂直に入射せず斜めに入射するのでチタン基体以外の遮蔽板の部分の電気力線は相対的に疎になる。そのため、塗布液はチタン基体以外へ到達する比率が減少し、その結果チタン基体側面、裏側に付着する比率は減少する。 Therefore, in the coating process, it is conceivable to place a shielding plate on each of the long sides of the rectangle of the titanium substrate, which is a rectangular plate, via a predetermined gap. However, when a metal plate is placed as the shielding plate, a positive potential (14) ~ 16kV) The lines of electric force emitted from the nozzle are vertically incident on the metal titanium substrate, but since they are also input vertically to the metal of the shielding plate that is not directly under the nozzle, the electricity of the shielding plate other than the titanium substrate is charged. The lines of force also become dense. Therefore, the shielding plate is made of a dielectric material. The relative permittivity of the dielectric is, for example, 2 to 10. As the dielectric, for example, an acrylic plate is used. Since the lines of electric force emitted from the nozzle do not vertically enter the dielectric material that is not directly under the nozzle but enter diagonally, the lines of electric force of the portion of the shielding plate other than the titanium substrate are relatively sparse. Therefore, the ratio of the coating liquid reaching other than the titanium substrate decreases, and as a result, the ratio of the coating liquid adhering to the side surface and the back side of the titanium substrate decreases.

〈乾燥工程〉
このようにして白金族金属化合物、白金族金属以外の金属化合物および溶剤を含む塗布液が塗布されたチタン基体は、一般に、約20〜約100℃の範囲内の比較的低温で乾燥させ、溶剤の多くまたは大部分を蒸発させる。例えば室温で乾燥する。
<Drying process>
The titanium substrate to which the coating liquid containing the platinum group metal compound, the metal compound other than the platinum group metal, and the solvent is coated is generally dried at a relatively low temperature in the range of about 20 to about 100 ° C. and the solvent. Evaporate much or most of the solvent. For example, dry at room temperature.

〈熱分解工程〉
乾燥工程後のチタン基体を酸素含有ガス雰囲気中で加熱して塗布された前記金属化合物を熱分解して金属および/または金属酸化物に変化させる。
<Pyrolysis process>
The titanium substrate after the drying step is heated in an oxygen-containing gas atmosphere to thermally decompose the applied metal compound and change it into a metal and / or a metal oxide.

具体的には、乾燥工程後のチタン基体を酸素含有ガス雰囲気中、例えば空気中で加熱する。加熱は、例えば電気炉、ガス炉、赤外線炉等の適当な加熱炉中で、一般に約450〜約650℃、好ましくは約500〜約600℃の範囲内の温度とすることができる。加熱時間は、基体の大きさに応じて、大体3分〜30分間程度とすることができる。例えば、550℃の大気中で10分間加熱することができる。この加熱により、白金族金属化合物、白金族金属以外の金属化合物は熱分解することにより、金属、金属酸化物、または金属と金属酸化物の複合体が形成される。 Specifically, the titanium substrate after the drying step is heated in an oxygen-containing gas atmosphere, for example, in air. The heating can be carried out in a suitable heating furnace such as an electric furnace, a gas furnace, an infrared furnace or the like in a temperature generally in the range of about 450 to about 650 ° C, preferably about 500 to about 600 ° C. The heating time can be about 3 to 30 minutes depending on the size of the substrate. For example, it can be heated in the air at 550 ° C for 10 minutes. By this heating, the platinum group metal compound and the metal compound other than the platinum group metal are thermally decomposed to form a metal, a metal oxide, or a composite of the metal and the metal oxide.

〈プレス加工工程〉
上記の電極触媒層が形成された大板のチタン基体をプレス抜きして、所定寸法の小片形状の電極を作製する。
<Pressing process>
The large titanium substrate on which the electrode catalyst layer is formed is pressed out to prepare a small piece-shaped electrode having a predetermined size.

電極触媒層においては、白金族金属担持物量は特に限定されず種々の白金族金属担持物量の電極を製造することができる。特に、本件製造方法では、金属換算で白金族金属平均担持物量が0.2g・dm-2以下の電極を製造するのに好適である。すなわち、本件製造方法では、大板のチタン基体を用いて塗布・乾燥・熱分解で被覆電極を製造した後、プレス抜きして作製した小片形状の個々の電極の担持物量のばらつきが少なくなるため、平均担持物量を減らしても必要な担持物量を確保できるためである。また、平均担持物量を同じにする場合、刷毛塗りの場合よりも小片形状個々の電極の下限の担持物量が増えることから、設計寿命を延ばすことが可能になるからである。 In the electrode catalyst layer, the amount of the platinum group metal carrier is not particularly limited, and electrodes having various platinum group metal carriers can be produced. In particular, the present production method is suitable for producing an electrode having an average amount of platinum group metal carrier of 0.2 g · dm -2 or less in terms of metal. That is, in the present manufacturing method, after the coated electrode is manufactured by coating, drying, and thermal decomposition using a large plate titanium substrate, the amount of the carrier of each small piece-shaped electrode manufactured by pressing is reduced. This is because the required amount of carrier can be secured even if the average amount of carrier is reduced. Further, when the average carrier amount is the same, the lower limit carrier amount of each of the small piece-shaped electrodes is increased as compared with the case of brush coating, so that the design life can be extended.

以下、本発明を実施例によりさらに具体的に説明する。 Hereinafter, the present invention will be described in more detail with reference to Examples.

(実施例1)
JIS1種相当の大板のチタン板(t 0.5mm×w 500mm×l 1000mm)をアルコール洗浄後、20℃の8wt%フッ化水素酸水溶液中で2分間、そして120℃の60wt%硫酸水溶液中で3分間処理した。次いで、チタン基体を硫酸水溶液から取り出し、冷水を噴霧し急冷した。さらに、20℃の0.3wt%フッ化水素酸水溶液中に2分間浸漬した後水洗した。水洗後、400℃の大気中で1時間加熱処理して、チタン基体表面に薄い酸化チタンの中間層を形成させた。
(Example 1)
After washing a large titanium plate (t 0.5 mm x w 500 mm x l 1000 mm) equivalent to JIS Class 1 with alcohol, in an 8 wt% hydrofluoric acid aqueous solution at 20 ° C for 2 minutes, and in a 60 wt% sulfuric acid aqueous solution at 120 ° C. Treated for 3 minutes. Then, the titanium substrate was taken out from the sulfuric acid aqueous solution, and cold water was sprayed and rapidly cooled. Further, it was immersed in a 0.3 wt% hydrofluoric acid aqueous solution at 20 ° C. for 2 minutes and then washed with water. After washing with water, it was heat-treated in the air at 400 ° C. for 1 hour to form a thin titanium oxide intermediate layer on the surface of the titanium substrate.

次いで、塩化イリジウム酸とタンタルエトキシドを用いて、イリジウム濃度60g/L(イリジウム:タンタル=1:1)に調整した2エトキシエタノール塗布液に15kVの電圧を印加し、プラスに帯電した塗布液を0.025mL/secでφ0.2mmのノズルから下方に置き接地された上記チタン基体に向けて押し出した。押し出された塗布液は、斥力により霧状の粒子(粒径は表1参照)となり、チタン基体表面の中間層に付着させた。この際、ノズルを100mm/secで移動させ、チタン基体上面の中間層全体に付着させた。次に、室温で乾燥し、さらに550℃の大気中で10分間加熱した。この塗布・乾燥・熱分解を3回繰り返した後、実施例1の電極を作製した。 Next, a voltage of 15 kV was applied to a 2ethoxyethanol coating solution adjusted to an iridium concentration of 60 g / L (iridium: tantalum = 1: 1) using iridium chloride and tantalum ethoxydo to apply a positively charged coating solution. It was placed downward from a φ0.2 mm nozzle at 0.025 mL / sec and extruded toward the grounded titanium substrate. The extruded coating liquid became mist-like particles (see Table 1 for particle size) by repulsive force and adhered to the intermediate layer on the surface of the titanium substrate. At this time, the nozzle was moved at 100 mm / sec and adhered to the entire intermediate layer on the upper surface of the titanium substrate. It was then dried at room temperature and further heated in the air at 550 ° C for 10 minutes. After repeating this coating, drying, and thermal decomposition three times, the electrode of Example 1 was prepared.

(実施例2)
塗布液の溶剤を2エトキシエタノール:イソプロピルアルコール=1:1(重量比)の溶剤にする以外は実施例1と同じにした実施例2の電極を作製した。
(Example 2)
The electrode of Example 2 was prepared in the same manner as in Example 1 except that the solvent of the coating liquid was 2ethoxyethanol: isopropyl alcohol = 1: 1 (weight ratio).

(比較例1)
塗布液の溶剤をエタノールにし、Ir濃度30g/Lに変え、塗布・乾燥熱分解を6回繰り返す以外は実施例1と同じにした比較例1の電極を作製した。
(Comparative Example 1)
The electrode of Comparative Example 1 was prepared in the same manner as in Example 1 except that the solvent of the coating liquid was ethanol, the Ir concentration was changed to 30 g / L, and the coating / drying pyrolysis was repeated 6 times.

(比較例2)
塗布液の溶剤をブタノールにし、1回の塗布量23mlをハケで塗布する以外は実施例1と同じにした比較例2の電極を作製した。
(Comparative example 2)
The electrode of Comparative Example 2 was prepared in the same manner as in Example 1 except that the solvent of the coating liquid was butanol and a single coating amount of 23 ml was applied with a brush.

上記霧状の塗布液の粒径は、霧状の粒子を撮影し、画像解析ソフトで求めた。その結果を表2に示す。 The particle size of the mist-like coating liquid was determined by photographing the mist-like particles with image analysis software. The results are shown in Table 2.

このようにして得られた電極をプレス抜きして、660枚の小片形状(t 0.5mm×w 15mm×l 40mm)の電極を作製した。それらのIr担持物量をケイ光X線膜厚計で測定し、最小担持物量、最大担持物量、平均担持物量、標準偏差を求めた。 The electrodes thus obtained were pressed out to prepare 660 small piece-shaped (t 0.5 mm × w 15 mm × l 40 mm) electrodes. The amount of these Ir carriers was measured with a Keiko X-ray film thickness meter, and the minimum carrier amount, the maximum carrier amount, the average carrier amount, and the standard deviation were determined.

それら結果を表2に示す。 The results are shown in Table 2.

加えて、実施例1,2及び比較例1,2の最小のIr担持物量の小片電極を室温、1M H2SO4+1M Na2SO4水溶液中、200A・dm-2の加速試験で電解したときの寿命を表3に示す。ここで寿命は、セル電圧が初期の電圧の2倍になるまでの時間をいう。 In addition, the small piece electrodes of Examples 1 and 2 and Comparative Examples 1 and 2 having the minimum amount of Ir carrier were electrolyzed in an accelerated test of 200 A · dm -2 in a 1 M H 2 SO 4 + 1 M Na 2 SO 4 aqueous solution at room temperature. Table 3 shows the life when it is used. Here, the life means the time until the cell voltage becomes twice the initial voltage.

Figure 0006835379
Figure 0006835379

Figure 0006835379
Figure 0006835379

最小のIr担持量の小片電極において、2エトキシエタノールを溶剤に用いた実施例1および、2エトキシエタノールの50wt%をイソプロピルアルコールに置換したものを溶剤に用いた実施例2はエタノールを溶剤に用いた比較例1に比べて電極寿命が長い。加えて、最小のIr担持量の小片電極において、実施例1,2は、刷毛で塗布した比較例2と比べても電極寿命が長い。また、実施例1の塗布液量の99%以上を占める粒径は100〜200μm、実施例2の塗布液量の99%以上を占める粒径は80〜180μmと、比較例1の粒径は20μm以下であったのに比べ大きく、空気中の水分による加水分解等の影響を抑制でき、電極寿命が長くなったと考える。
更に、実施例1、2は、ハケで塗布した比較例2に比べて小片電極のIr担持物量の標準偏差が小さく、触媒層の担持物量のばらつきをおさえられ、均一化が図れていて、平均担持量が約9割と少ないにもかかわらず、最小Ir担持量を多くすることができるため、最小のIr担持量の小片電極の寿命は長くなった。
In Example 1 in which 2ethoxyethanol was used as a solvent and in Example 2 in which 50 wt% of 2ethoxyethanol was replaced with isopropyl alcohol in a small piece electrode having a minimum Ir carrying amount, ethanol was used as a solvent. The electrode life is longer than that of Comparative Example 1. In addition, in the small piece electrode with the minimum Ir-carrying amount, Examples 1 and 2 have a longer electrode life than Comparative Example 2 coated with a brush. Further, the particle size occupying 99% or more of the coating liquid amount of Example 1 is 100 to 200 μm, and the particle size occupying 99% or more of the coating liquid amount of Example 2 is 80 to 180 μm, and the particle size of Comparative Example 1 is It is considered that the electrode life was extended because the influence of hydrolysis due to moisture in the air could be suppressed, which was larger than that of 20 μm or less.
Further, in Examples 1 and 2, the standard deviation of the amount of the Ir carrier of the small piece electrode is smaller than that of Comparative Example 2 coated with a brush, the variation in the amount of the carrier of the catalyst layer is suppressed, and the uniformity is achieved, and the average. Although the supported amount is as small as about 90%, the minimum Ir-supported amount can be increased, so that the life of the small piece electrode with the minimum Ir-supported amount is extended.

Claims (5)

電極基体をなすチタン基体の上に、白金族金属化合物および/または白金族金属以外の金属化合物と、溶剤とを含む塗布液を塗布する塗布工程と、
前記塗布液が塗布された前記チタン基体を乾燥して前記溶剤を蒸発させる乾燥工程と、
前記乾燥工程後の前記チタン基体を酸素含有ガス雰囲気中で加熱して塗布された前記金属化合物を熱分解して金属および/または金属酸化物に変化させる熱分解工程と、を含む電解用チタン基体被覆電極の製造方法において、
前記塗布工程、前記乾燥工程、前記熱分解工程を複数回繰り返すとともに、
前記塗布工程は、白金族金属化合物および/または白金族金属以外の金属化合物を比誘電率29〜50、かつ、表面張力0.029〜0.050Nm-1の溶剤に溶解させた塗布液に電圧14〜16kVを印加し、プラスに帯電させた塗布液をノズルから押し出し、斥力で前記塗布液量の99%以上を粒径80〜200μmの霧状にして、接地された前記チタン基体表面に付着させる工程であることを特徴とする電解用チタン基体被覆電極の製造方法。
A coating step of applying a coating solution containing a platinum group metal compound and / or a metal compound other than a platinum group metal and a solvent onto a titanium substrate forming an electrode substrate.
A drying step of drying the titanium substrate to which the coating liquid is applied to evaporate the solvent, and
A titanium substrate for electrolysis including a thermal decomposition step of heating the titanium substrate after the drying step in an oxygen-containing gas atmosphere to thermally decompose the applied metal compound into a metal and / or a metal oxide. In the method of manufacturing a coated electrode
The coating step, the drying step, and the thermal decomposition step are repeated a plurality of times, and
In the coating step, the voltage is 14 to 16 kV in a coating solution prepared by dissolving a platinum group metal compound and / or a metal compound other than the platinum group metal in a solvent having a relative permittivity of 29 to 50 and a surface tension of 0.029 to 0.050 Nm- 1. Is applied, and the positively charged coating liquid is pushed out from the nozzle, and 99% or more of the coating liquid amount is atomized with a particle size of 80 to 200 μm by repulsive force and adhered to the grounded titanium substrate surface. A method for manufacturing a titanium substrate-coated electrode for electrolysis, which is characterized by the above.
前記塗布液の前記溶剤が、2エトキシエタノールまたはその50wt%以下を低級アルコールに置換した溶剤を含むことを特徴とする請求項1に記載の電解用チタン基体被覆電極の製造方法。 The method for producing a titanium substrate-coated electrode for electrolysis according to claim 1, wherein the solvent of the coating liquid contains 2ethoxyethanol or a solvent in which 50 wt% or less thereof is replaced with a lower alcohol. 前記塗布工程において、ノズルの内径が0.1〜0.3mm、押し出す塗布液量が0.01〜0.03mL/secであることを特徴とする請求項1又は2に記載の電解用チタン基体被覆電極の製造方法。 The method for producing a titanium substrate-coated electrode for electrolysis according to claim 1 or 2, wherein in the coating step, the inner diameter of the nozzle is 0.1 to 0.3 mm and the amount of the coating liquid to be extruded is 0.01 to 0.03 mL / sec. 前記電解用チタン基体被覆電極の白金族金属の担持物量が金属換算で0.2g・dm-2以下であり、かつ、
前記電解用チタン基体被覆電極をプレス抜きして小片形状の電極を得るプレス加工工程をさらに含む、
ことを特徴とする請求項1〜3のいずれかに記載の電解用チタン基体被覆電極の製造方法。
The amount of platinum group metal carried by the titanium substrate-coated electrode for electrolysis is 0.2 g · dm -2 or less in terms of metal, and
Further including a press working step of pressing out the titanium substrate-coated electrode for electrolysis to obtain a small piece-shaped electrode.
The method for manufacturing a titanium substrate-coated electrode for electrolysis according to any one of claims 1 to 3.
前記チタン基体は長方形の板状であり、
前記塗布工程において、前記チタン基体の長方形の長辺のそれぞれに所定の空隙を介して誘電体の板が並行に設置された状態で、塗布液を塗布することを特徴とする請求項1〜4のいずれかに記載の電解用チタン基体被覆電極の製造方法。
The titanium substrate has a rectangular plate shape and has a rectangular plate shape.
Claims 1 to 4 are characterized in that, in the coating step, the coating liquid is applied in a state where dielectric plates are installed in parallel on each of the long sides of the rectangle of the titanium substrate via predetermined voids. The method for manufacturing a titanium substrate-coated electrode for electrolysis according to any one of.
JP2020191669A 2020-11-18 2020-11-18 Manufacturing method of titanium substrate coated electrode for electrolysis Active JP6835379B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020191669A JP6835379B1 (en) 2020-11-18 2020-11-18 Manufacturing method of titanium substrate coated electrode for electrolysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020191669A JP6835379B1 (en) 2020-11-18 2020-11-18 Manufacturing method of titanium substrate coated electrode for electrolysis

Publications (2)

Publication Number Publication Date
JP6835379B1 true JP6835379B1 (en) 2021-02-24
JP2022080540A JP2022080540A (en) 2022-05-30

Family

ID=74665143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020191669A Active JP6835379B1 (en) 2020-11-18 2020-11-18 Manufacturing method of titanium substrate coated electrode for electrolysis

Country Status (1)

Country Link
JP (1) JP6835379B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1293319B1 (en) * 1997-07-10 1999-02-16 De Nora Spa METHOD FOR THE APPLICATION OF A CATALYTIC COATING TO A METALLIC SUBSTRATE
JP7075562B2 (en) * 2017-01-23 2022-05-26 国立大学法人山梨大学 Method and device for forming electrode catalyst layer by electrospray method
WO2019039793A1 (en) * 2017-08-23 2019-02-28 주식회사 엘지화학 Anode for electrolysis and manufacturing method therefor
CN110318068B (en) * 2019-06-03 2021-02-09 江阴市宏泽氯碱设备制造有限公司 Anode coating for ion-exchange membrane electrolyzer

Also Published As

Publication number Publication date
JP2022080540A (en) 2022-05-30

Similar Documents

Publication Publication Date Title
AU735872B2 (en) Ultrasonically coated substrate for use in a capacitor and method of manufacture
KR100554588B1 (en) Electrode for Generation of Hydrogen
WO2015033989A1 (en) Production method for electrode for electrolysis
JP4813925B2 (en) Manufacturing method of fine structure and fine structure
JP2505563B2 (en) Electrode for electrolysis
Szkoda et al. Semi-transparent ordered TiO2 nanostructures prepared by anodization of titanium thin films deposited onto the FTO substrate
JP4768478B2 (en) Manufacturing method of fine structure and fine structure
JP5992208B2 (en) Method for manufacturing thermoelectric conversion element
JP2505560B2 (en) Electrode for electrolysis
JPH02247393A (en) Electrolytic electrode with durability and its production
JP6835379B1 (en) Manufacturing method of titanium substrate coated electrode for electrolysis
CN109534460B (en) Titanium electrode and preparation method and application thereof
JP2023095833A (en) Electrode for chlorine generation
JP6604880B2 (en) Ozone generating electrode
WO2004087992A2 (en) Method for the formation of a coating of metal oxides on an electrically-conducting substrate, resultant activated cathode and use thereof for the electrolysis of aqueous solutions of alkaline metal chlorides
JP2004006685A (en) Method of manufacturing aluminum material for electrode of electrolytic capacitor, method of manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JP4226930B2 (en) Aluminum material for electrolytic capacitor electrode, etched aluminum material for electrolytic capacitor electrode, and electrolytic capacitor
JP4170797B2 (en) Method for manufacturing electrolytic capacitor electrode aluminum material, electrolytic capacitor electrode aluminum material, and electrolytic capacitor electrode manufacturing method
JPH0653088A (en) Aluminum electrode for electrolytic capacitor and its manufacture
JP2003293196A (en) Electrode for electrolysis and production method therefor
JP4308556B2 (en) Aluminum material for electrolytic capacitor electrode, method for producing electrolytic capacitor electrode material, and electrolytic capacitor
US4448803A (en) Process for manufacturng a polychelate coating
JP4629312B2 (en) Method for producing aluminum material for electrolytic capacitor electrode and method for producing electrode material for electrolytic capacitor
CN114807958A (en) Proton exchange membrane electrode with high specific surface area and preparation method thereof
JP3541955B2 (en) Method of manufacturing electrode for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201118

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201118

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20210113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210121

R150 Certificate of patent or registration of utility model

Ref document number: 6835379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250