JP6832816B2 - Composite particles for forming a water- and oil-repellent coating film, a method for producing the same, and a method for forming a water- and oil-repellent coating film using the composite particles. - Google Patents

Composite particles for forming a water- and oil-repellent coating film, a method for producing the same, and a method for forming a water- and oil-repellent coating film using the composite particles. Download PDF

Info

Publication number
JP6832816B2
JP6832816B2 JP2017171132A JP2017171132A JP6832816B2 JP 6832816 B2 JP6832816 B2 JP 6832816B2 JP 2017171132 A JP2017171132 A JP 2017171132A JP 2017171132 A JP2017171132 A JP 2017171132A JP 6832816 B2 JP6832816 B2 JP 6832816B2
Authority
JP
Japan
Prior art keywords
particles
resin
oil
water
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017171132A
Other languages
Japanese (ja)
Other versions
JP2019044121A (en
Inventor
雄介 戸崎
雄介 戸崎
金枝 正敦
正敦 金枝
山下 行也
行也 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Aerosil Co Ltd
Original Assignee
Nippon Aerosil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Aerosil Co Ltd filed Critical Nippon Aerosil Co Ltd
Priority to JP2017171132A priority Critical patent/JP6832816B2/en
Publication of JP2019044121A publication Critical patent/JP2019044121A/en
Application granted granted Critical
Publication of JP6832816B2 publication Critical patent/JP6832816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、表面張力の高い水に対する撥水性を保持しつつ、表面張力の低いサラダ油、シリコーンオイル等に対して撥油性のある塗膜を形成するための複合粒子及びその製造方法並びにこの複合粒子を用いた撥水性と撥油性(以下、撥水撥油性ということもある。)のある塗膜を形成する方法に関するものである。 The present invention relates to composite particles for forming an oil-repellent coating film against salad oil, silicone oil, etc. with low surface tension while maintaining water repellency against water having high surface tension, a method for producing the same, and the composite particles. The present invention relates to a method for forming a coating film having water repellency and oil repellency (hereinafter, also referred to as water repellency and oil repellency).

従来、この種の塗膜として、撥水性及び撥油性を付与するために材料の表面に形成される塗膜が開示されている(例えば、特許文献1参照。)。この塗膜は、金属酸化物複合粒子を含有し、この金属酸化物複合粒子は、金属酸化物粒子と、その表面に形成されたポリフルオロアルキルメタクリレート樹脂を含む被覆層とを含み、金属酸化物複合粒子のフッ素含有量(重量%)を金属酸化物粒子の表面積(m2/g)で除した値が0.025〜0.180である、ことを特徴とする。この塗膜は、金属酸化物複合粒子の炭素含有量(重量%)を金属酸化物粒子の表面積(m2/g)で除した値が0.05〜0.400であることが好ましく、また金属酸化物粒子の平均一次粒子径が5〜50nmであることが好ましく、更に金属酸化物粒子が酸化ケイ素粒子、酸化アルミニウム粒子及び酸化チタン粒子の少なくとも1種であることが好ましい特徴がある。特許文献1に示される塗膜によれば、水との接触角が142度以上、オリーブオイルとの接触角が138度以上であって、優れた撥水性及び撥油性をより確実に得ることができる。 Conventionally, as this type of coating film, a coating film formed on the surface of a material for imparting water repellency and oil repellency has been disclosed (see, for example, Patent Document 1). This coating film contains metal oxide composite particles, and the metal oxide composite particles include metal oxide particles and a coating layer containing a polyfluoroalkyl methacrylate resin formed on the surface of the metal oxide composite particles. The value obtained by dividing the fluorine content (% by weight) of the composite particles by the surface area (m 2 / g) of the metal oxide particles is 0.025 to 0.180. In this coating film, the value obtained by dividing the carbon content (% by weight) of the metal oxide composite particles by the surface area (m 2 / g) of the metal oxide particles is preferably 0.05 to 0.400. The average primary particle size of the metal oxide particles is preferably 5 to 50 nm, and the metal oxide particles are preferably at least one of silicon oxide particles, aluminum oxide particles, and titanium oxide particles. According to the coating film shown in Patent Document 1, the contact angle with water is 142 degrees or more and the contact angle with olive oil is 138 degrees or more, so that excellent water repellency and oil repellency can be obtained more reliably. it can.

特許第5242841号公報(請求項1〜請求項4、段落[0012]、段落[0103]の表2)Japanese Patent No. 5242841 (Table 2 of claims 1 to 4, paragraph [0012], paragraph [0103])

しかしながら、特許文献1に記載された塗膜は、オリーブオイルに対しては撥油性を示すものの、オリーブオイルよりも表面張力の低いサラダ油やシリコーンオイルに対しては、十分な撥油性を示すことができなかった。 However, although the coating film described in Patent Document 1 exhibits oil repellency to olive oil, it may exhibit sufficient oil repellency to salad oil and silicone oil having a lower surface tension than olive oil. could not.

本発明の目的は、表面張力の高い水に対する撥水性を保持しつつ、表面張力の低いサラダ油、シリコーンオイル等に対する撥油性のある撥水撥油性塗膜形成用複合粒子及びその製造方法並びにこの複合粒子を用いた撥水撥油性塗膜の形成方法を提供することにある。 An object of the present invention is a composite particle for forming a water- and oil-repellent coating film, which has oil repellency against salad oil, silicone oil, etc., which has a low surface tension while maintaining water repellency against water having a high surface tension, a method for producing the same, and a composite thereof. It is an object of the present invention to provide a method for forming a water-repellent and oil-repellent coating film using particles.

本発明の第1の観点は、平均一次粒子径が5〜100nmである無機粒子の表面にフルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂を含む被覆層が形成された樹脂被覆粒子が複数凝集して構成され、フッ素含有量が1.5〜7.5質量%であり、かつ体積基準の平均粒径(D50)が1〜100μmである撥水撥油性塗膜形成用複合粒子である。 The first aspect of the present invention is composed of a plurality of resin-coated particles in which a coating layer containing a fluoroalkyl acrylate resin or a fluoroacrylate resin is formed on the surface of inorganic particles having an average primary particle size of 5 to 100 nm. , The composite particles for forming a water-repellent oil-repellent coating film having a fluorine content of 1.5 to 7.5% by mass and a volume-based average particle size (D 50) of 1 to 100 μm.

本発明の第2の観点は、第1の観点に基づく発明であって、前記複合粒子の炭素含有量が2.0〜10.0質量%である複合粒子である。 The second aspect of the present invention is an invention based on the first aspect, which is a composite particle having a carbon content of 2.0 to 10.0% by mass of the composite particle.

本発明の第3の観点は、第1又は第2の観点に基づく発明であって、前記無機粒子が酸化物、水酸化物、フッ化物、窒化物及び複合酸化物からなる群より選ばれた1種又は2種以上の粒子である複合粒子である。 The third aspect of the present invention is an invention based on the first or second aspect, and the inorganic particles are selected from the group consisting of oxides, hydroxides, fluorides, nitrides and composite oxides. It is a composite particle which is one kind or two or more kinds of particles.

本発明の第4の観点は、第3の観点に基づく発明であって、前記無機粒子が乾式粒子である複合粒子である。 A fourth aspect of the present invention is an invention based on the third aspect, which is a composite particle in which the inorganic particles are dry particles.

本発明の第5の観点は、平均一次粒子径が5〜100nmである無機粒子を反応槽に入れ、前記反応槽内で前記無機粒子を不活性ガス雰囲気下で撹拌しながらフルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂を含む液を、噴霧量が前記無機粒子100質量部に対して前記樹脂成分が7.5〜25.0質量部になるように、噴霧しながら150〜220℃の温度で30〜120分間熱処理して、前記無機粒子の表面をフルオロアルキルアクリレート樹脂層又はフルオロアクリレート樹脂層で被覆することにより樹脂被覆粒子を形成するとともに前記樹脂被覆粒子を凝集して、第1ないし第4のいずれかの観点の撥水撥油性塗膜形成用複合粒子を製造する方法である。 A fifth aspect of the present invention is to put inorganic particles having an average primary particle size of 5 to 100 nm into a reaction vessel, and to stir the inorganic particles in the reaction vessel under an inert gas atmosphere while using a fluoroalkyl acrylate resin or A liquid containing a fluoroacrylate resin is sprayed from 30 to 220 ° C. at a temperature of 150 to 220 ° C. while spraying so that the amount of the resin component is 7.5 to 25.0 parts by mass with respect to 100 parts by mass of the inorganic particles. The surface of the inorganic particles is heat-treated for 120 minutes to form resin-coated particles by coating the surface of the inorganic particles with a fluoroalkyl acrylate resin layer or a fluoroacrylate resin layer, and the resin-coated particles are aggregated to form any of the first to fourth particles. This is a method for producing composite particles for forming a water-repellent and oil-repellent coating film from this viewpoint.

本発明の第6の観点は、第1ないし第4のいずれかの観点の撥水撥油性塗膜形成用複合粒子或いは第5の観点の方法で製造された撥水撥油性塗膜形成用複合粒子を溶媒に、溶媒100質量%に対して前記複合粒子を10〜20質量%の割合で、分散させて分散液を調製し、前記分散液を基材表面に塗布して撥水撥油性塗膜を形成する方法である。 The sixth aspect of the present invention is the water-repellent oil-repellent coating film-forming composite particles of any one of the first to fourth aspects or the water-repellent oil-repellent coating film-forming composite produced by the method of the fifth aspect. The composite particles are dispersed in a solvent at a ratio of 10 to 20% by mass with respect to 100% by mass of the solvent to prepare a dispersion liquid, and the dispersion liquid is applied to the surface of the substrate to apply a water-repellent oil-repellent coating. It is a method of forming a film.

本発明の第7の観点は、第6の観点に基づく発明であって、前記形成された撥水撥油性塗膜に対する、水の接触角が25℃で110度以上、サラダ油の接触角が25℃で120度以上、シリコーンオイルの接触角が25℃で60度以上である撥水撥油性塗膜の形成方法である。 The seventh aspect of the present invention is the invention based on the sixth aspect, in which the contact angle of water with respect to the formed water-repellent oil-repellent coating film is 110 degrees or more at 25 ° C., and the contact angle of salad oil is 25. This is a method for forming a water- and oil-repellent coating film having a contact angle of silicone oil of 120 degrees or more at ° C. and 60 degrees or more at 25 ° C.

本発明の第1の観点に基づく発明では、平均一次粒子径が5〜100nmの無機粒子がフルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂を含む被覆層で被覆されて樹脂被覆粒子が形成される。無機粒子の平均一次粒子径が5〜100nmであることにより樹脂被覆粒子が凝集した単一の複合粒子の表面に、図1(a)に示すように数nm〜数十nm間隔の凹凸構造(近似的なフラクタル構造)が形成される。また平均粒径(D50)が1〜100μmの単一の複合粒子が一列に並んだ状態では、図1(b)に示すように、複合粒子間には数十μm間隔の凹凸構造(近似的なフラクタル構造)が形成される。こうした階層的な凹凸構造が物理的に複合粒子に撥水撥油性を発現させる。一方、無機粒子が特許文献1に示されるポリフルオロアルキルメタクリレート樹脂と異なるフルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂で被覆されるため、化学的に複合粒子に撥水撥油性を発現させる。 In the invention based on the first aspect of the present invention, inorganic particles having an average primary particle diameter of 5 to 100 nm are coated with a coating layer containing a fluoroalkyl acrylate resin or a fluoroacrylate resin to form resin-coated particles. As shown in FIG. 1A, an uneven structure having an interval of several nm to several tens of nm is formed on the surface of a single composite particle in which resin-coated particles are aggregated because the average primary particle size of the inorganic particles is 5 to 100 nm. Approximate fractal structure) is formed. Further, in a state where single composite particles having an average particle size (D 50 ) of 1 to 100 μm are lined up in a row, as shown in FIG. 1 (b), there is an uneven structure (approximate) between the composite particles at intervals of several tens of μm. Fractal structure) is formed. Such a hierarchical uneven structure physically causes the composite particles to exhibit water and oil repellency. On the other hand, since the inorganic particles are coated with a fluoroalkyl acrylate resin or a fluoroacrylate resin different from the polyfluoroalkyl methacrylate resin shown in Patent Document 1, the composite particles are chemically exhibited to have water and oil repellency.

本発明のフルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂では、アクリレートが特許文献1のメタクリレートのメチル基と比べて、(1) 遊離基(フリーラジカル)の発生が促進されるとともに、(2) 化学構造式における結合部の回転が容易で分子運動性が高くなる。これらの効果から、表面張力を低下させる能力の高いフルオロアルキル基(以下、Rf基ともいう。)がより微細な無機粒子の表面に高い密着力で結合し、無機粒子を被覆する被覆層を形成する。複合粒子のフッ素含有量を所定の範囲にすることもあって、結果として複合粒子を含む分散液で形成した塗膜は、表面張力がオリーブオイルよりも低いサラダ油、シリコーンオイル等の液体を弾くことができる。また複合粒子の平均粒径(D50)を所定の範囲にすることにより、上記物理的な効果に加えて、複合粒子を含む分散液で形成した塗膜は、所望の厚さで均一になり、優れた撥水撥油性を発現する。 In the fluoroalkyl acrylate resin or fluoroacrylate resin of the present invention, the acrylate promotes the generation of (1) free radicals (free radicals) and (2) the chemical structural formula as compared with the methyl group of methacrylate in Patent Document 1. The connection part is easy to rotate and the molecular motility is increased. Due to these effects, fluoroalkyl groups (hereinafter, also referred to as Rf groups) having a high ability to reduce surface tension are bonded to the surface of finer inorganic particles with high adhesion to form a coating layer that coats the inorganic particles. To do. The fluorine content of the composite particles may be within a predetermined range, and as a result, the coating film formed of the dispersion liquid containing the composite particles repels liquids such as salad oil and silicone oil, which have a lower surface tension than olive oil. Can be done. Further, by setting the average particle size (D 50 ) of the composite particles within a predetermined range, in addition to the above physical effects, the coating film formed of the dispersion liquid containing the composite particles becomes uniform with a desired thickness. , Exhibits excellent water and oil repellency.

本発明の第2の観点に基づく発明では、複合粒子の炭素含有量を所定の範囲にすることにより、複合粒子を含む分散液で形成した塗膜は、より優れた撥水撥油性を発揮する。 In the invention based on the second aspect of the present invention, by setting the carbon content of the composite particles within a predetermined range, the coating film formed of the dispersion liquid containing the composite particles exhibits more excellent water and oil repellency. ..

本発明の第3の観点に基づく発明では、無機粒子として、シリカを初めとした酸化物粒子以外に、水酸化物、フッ化物、窒化物、複合酸化物等の粒子を用いた場合でも、複合粒子を含む分散液で形成した塗膜は、優れた撥水撥油性を発揮する。 In the invention based on the third aspect of the present invention, even when particles such as hydroxide, fluoride, nitride, and composite oxide are used as the inorganic particles in addition to oxide particles such as silica, the composite is used. A coating film formed of a dispersion liquid containing particles exhibits excellent water and oil repellency.

本発明の第4の観点に基づく発明では、無機粒子が乾式粒子である場合には、乾式粒子が凝集した複合粒子において、より優れた撥水撥油性を発揮する。 In the invention based on the fourth aspect of the present invention, when the inorganic particles are dry particles, the composite particles in which the dry particles are aggregated exhibit more excellent water and oil repellency.

本発明の第5の観点に基づく発明では、無機粒子を不活性ガス雰囲気中で撹拌しながら、フルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂を含む液を、無機粒子100質量部に対して樹脂成分が所定の噴霧量になるように、噴霧しながら熱処理することにより、無機粒子の表面が所定の厚さでフルオロアルキルアクリレート樹脂層又はフルオロアクリレート樹脂層で均一に被覆され、樹脂被覆粒子が形成される。また撹拌により樹脂被覆粒子が凝集して複合粒子を製造することができる。 In the invention based on the fifth aspect of the present invention, the resin component is determined with respect to 100 parts by mass of the inorganic particles in a liquid containing a fluoroalkyl acrylate resin or a fluoroacrylate resin while stirring the inorganic particles in an inert gas atmosphere. By heat-treating while spraying so as to have the spray amount of, the surface of the inorganic particles is uniformly coated with the fluoroalkyl acrylate resin layer or the fluoroacrylate resin layer with a predetermined thickness, and the resin-coated particles are formed. Further, the resin-coated particles can be aggregated by stirring to produce composite particles.

本発明の第6の観点に基づく発明では、本発明の複合粒子を所定の割合で溶媒に分散させて分散液を調製し、この分散液を基材表面に塗布することにより撥水撥油性に優れた塗膜を形成することができる。 In the invention based on the sixth aspect of the present invention, the composite particles of the present invention are dispersed in a solvent at a predetermined ratio to prepare a dispersion liquid, and the dispersion liquid is applied to the surface of the substrate to obtain water and oil repellency. An excellent coating film can be formed.

本発明の第7の観点に基づく発明では、形成された塗膜に対する、水の接触角が25℃で110度以上、サラダ油の接触角が25℃で120度以上、シリコーンオイルの接触角が25℃で60度以上であるため、表面張力の低い油(オイル)に対しても優れた撥水撥油性を発揮する。 In the invention based on the seventh aspect of the present invention, the contact angle of water with respect to the formed coating film is 110 degrees or more at 25 ° C, the contact angle of salad oil is 120 degrees or more at 25 ° C, and the contact angle of silicone oil is 25. Since the temperature is 60 ° C. or higher, it exhibits excellent water and oil repellency even for oils with low surface tension.

本発明の実施形態の撥水撥油性塗膜形成用複合粒子の模式図である。図1(a)は単一の複合粒子の模式図であり、図1(b)は複数の複合粒子が一列に並んだ状態の模式図であり、図1(c)は一列に並んだ複数の複合粒子の階層的な凹凸構造を示す模式図である。It is a schematic diagram of the composite particle for forming a water-repellent oil-repellent coating film of the embodiment of this invention. 1 (a) is a schematic diagram of a single composite particle, FIG. 1 (b) is a schematic diagram of a state in which a plurality of composite particles are arranged in a row, and FIG. 1 (c) is a schematic diagram of a plurality of composite particles arranged in a row. It is a schematic diagram which shows the hierarchical uneven structure of the composite particle of. 実施例6の複合粒子を用いた塗膜表面におけるシリコーンオイルの撥油性を接触角で示す写真図である。It is a photographic figure which shows the oil-repellent property of the silicone oil on the coating film surface using the composite particle of Example 6 by the contact angle. 比較例2の複合粒子を用いた塗膜表面におけるシリコーンオイルの撥油性を接触角で示す写真図である。It is a photographic figure which shows the oil-repellent property of the silicone oil on the coating film surface using the composite particle of the comparative example 2 by the contact angle. 実施例3の複合粒子をSEMにて観察した倍率3,000倍の写真図である。It is a photographic figure of 3,000 times magnification which observed the composite particle of Example 3 by SEM. 比較例10のフルオロアルキルアクリレート樹脂のみからなる粒子のSEMにて観察した倍率3,000倍の写真図である。It is a photographic figure of 3,000 times magnification observed by SEM of the particles made of only the fluoroalkyl acrylate resin of Comparative Example 10. 実施例1〜8の複合粒子を用いた塗膜表面における水の撥水性、サラダ油及びシリコーンオイルの各撥油性を接触角で示す写真図である。It is a photographic figure which shows the water repellency of water on the coating film surface using the composite particles of Examples 1-8, and the oil repellency of salad oil and silicone oil by the contact angle.

次に本発明を実施するための形態を説明する。 Next, a mode for carrying out the present invention will be described.

〔無機粒子〕
本発明の撥水撥油性塗膜形成用複合粒子を構成する無機粒子は、平均一次粒子径が5〜100nm、好ましくは10〜50nm、より好ましくは12〜30nmである。平均一次粒子径が下限値の5nm未満では、後述するように、無機粒子から複合粒子を作製したときに、複合粒子の表面が凹凸構造(近似的なフラクタル構造)にならず、複合粒子表面が撥水撥油性にならない不具合があり、上限値の100nmを超えると、隣り合う複合粒子間の空間距離が大きくなり過ぎてしまい、複合粒子による近似的フラクタル構造を取りにくくなり、撥水撥油性を発揮し難い不具合が発生する。無機粒子の平均一次粒子径は、一般的な走査型電子顕微鏡(例えば、日本電子株式会社製 型式名:JSM-7001F等)を用いて50,000倍で無機粒子を撮影した後、その写真図中の無機粒子について、無作為に50個以上の粒子径を測定してその平均を求めた値である。この無機粒子は凝集粒子であることが近似的フラクタル構造を形成するので、好ましい。
[Inorganic particles]
The inorganic particles constituting the water- and oil-repellent coating film-forming composite particles of the present invention have an average primary particle diameter of 5 to 100 nm, preferably 10 to 50 nm, and more preferably 12 to 30 nm. When the average primary particle diameter is less than the lower limit of 5 nm, the surface of the composite particle does not have an uneven structure (approximate fractal structure) when the composite particle is produced from the inorganic particle, and the surface of the composite particle becomes There is a problem that it does not become water- and oil-repellent, and if it exceeds the upper limit of 100 nm, the space distance between adjacent composite particles becomes too large, and it becomes difficult to obtain an approximate fractal structure due to the composite particles, resulting in water- and oil-repellent properties. Problems that are difficult to demonstrate occur. The average primary particle size of the inorganic particles is 50,000 times larger than that of the inorganic particles using a general scanning electron microscope (for example, model name: JSM-7001F manufactured by JEOL Ltd.). It is a value obtained by randomly measuring 50 or more particle diameters of the inorganic particles inside and calculating the average thereof. It is preferable that the inorganic particles are aggregated particles because they form an approximate fractal structure.

この無機粒子を例示すれば、酸化物、水酸化物、フッ化物、窒化物及び複合酸化物からなる群より選ばれた1種又は2種以上の粒子である。具体的には、こうした粒子としては、シリカ、チタニア、アルミナ、酸化カルシウム、酸化ジルコニウム、酸化亜鉛、フッ化マグネシウム、天然スメクタイト、合成スメクタイト、バーミキュライト、錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化スズ(ATO)、酸化錫、酸化インジウム、酸化カドミウム、酸化アンチモン、水酸化アルミニウム、フッ化カルシウム、フッ化マグネシウム、窒化アルミニウム、窒化ホウ素、シリカとチタニアの複合酸化物等が例示される。また無機粒子は乾式粒子であることが好ましい。乾式粒子とは気相法で製造された粒子である。この中でも、乾式シリカ粒子、乾式チタニア粒子、乾式アルミナ粒子が好ましい。乾式シリカ粒子としては、ケイ素ハロゲン化合物の蒸気相酸化により生成されるシリカであって、四塩化ケイ素等のケイ素化合物や金属ケイ素を火炎中、例えば酸水素火炎中で燃焼して製造される(噴霧火炎法で製造される)ヒュームドシリカが、溶媒を使用せず、乾燥時に凝集粒子を生成しないため、好ましい。 Examples of these inorganic particles are one or more particles selected from the group consisting of oxides, hydroxides, fluorides, nitrides and composite oxides. Specifically, these particles include silica, titania, alumina, calcium oxide, zinc oxide, zinc oxide, magnesium fluoride, natural smectite, synthetic smectite, vermiculite, tin-doped indium oxide (ITO), and antimony-doped tin oxide (ITO). Examples thereof include tin oxide, indium oxide, cadmium oxide, antimony oxide, aluminum hydroxide, calcium fluoride, magnesium fluoride, aluminum nitride, boron nitride, and composite oxides of silica and titania. Further, the inorganic particles are preferably dry particles. Dry particles are particles produced by the vapor phase method. Among these, dry silica particles, dry titania particles, and dry alumina particles are preferable. The dry silica particles are silica produced by vapor phase oxidation of a silicon halogen compound, and are produced by burning a silicon compound such as silicon tetrachloride or metallic silicon in a flame, for example, an acid hydrogen flame (spraying). Fumed silica (produced by the flame method) is preferable because it does not use a solvent and does not generate agglomerated particles when dried.

〔フルオロ(アルキル)アクリレート樹脂を含む被覆層〕
本発明の撥水撥油性塗膜形成用複合粒子を構成する無機粒子の表面に形成される被覆層は、フルオロ(アルキル)アクリレート樹脂、即ちフルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂を含む。本発明の特徴ある点は、特許文献1に示されるポリフルオロアルキルメタクリレート樹脂と異なるフルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂を被覆層とすることにある。特許文献1の「メタクリレート」を本発明の「アクリレート」にすることにより、前述したように、(1) 遊離基(フリーラジカル)の発生が促進されるとともに、(2) 化学構造式における結合部の回転が容易で分子運動性が高くなる。これらの効果から、表面張力を低下させる能力の高いRf基がより微細な無機粒子の表面に高い密着力で結合し、無機粒子を被覆する被覆層を形成する。無機粒子とこの被覆層を有する樹脂被覆粒子が凝集した複合粒子を含む分散液で形成した塗膜は、表面張力がオリーブオイルよりも低いサラダ油、シリコーンオイル等の液体を弾くことができる。特許文献1に示されるポリフルオロアルキルメタクリレート樹脂を被覆層とする複合粒子を含む分散液で、また本発明の(ポリ)フルオロアルキルアクリレート樹脂を被覆層とする複合粒子を含む分散液で、それぞれガラス板に塗布したときのガラス板上の塗膜と各液滴との接触角の比較を次の表1に示す。
[Coating layer containing fluoro (alkyl) acrylate resin]
The coating layer formed on the surface of the inorganic particles constituting the water- and oil-repellent coating film-forming composite particles of the present invention contains a fluoro (alkyl) acrylate resin, that is, a fluoroalkyl acrylate resin or a fluoroacrylate resin. A feature of the present invention is that the coating layer is a fluoroalkyl acrylate resin or a fluoroacrylate resin different from the polyfluoroalkyl methacrylate resin shown in Patent Document 1. By changing the "methacrylate" of Patent Document 1 to the "acrylate" of the present invention, as described above, (1) the generation of free radicals (free radicals) is promoted, and (2) the bond portion in the chemical structural formula is promoted. It is easy to rotate and the molecular mobility is high. From these effects, the Rf group having a high ability to reduce the surface tension is bonded to the surface of the finer inorganic particles with a high adhesive force to form a coating layer for coating the inorganic particles. The coating film formed of the dispersion liquid containing the inorganic particles and the composite particles in which the resin coating particles having the coating layer are aggregated can repel liquids such as salad oil and silicone oil having a surface tension lower than that of olive oil. A dispersion liquid containing composite particles having a polyfluoroalkyl methacrylate resin as a coating layer shown in Patent Document 1 and a dispersion liquid containing composite particles having a (poly) fluoroalkyl acrylate resin as a coating layer of the present invention, respectively, glass. Table 1 below shows a comparison of the contact angles between the coating film on the glass plate and each droplet when applied to the plate.

フルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂としては、エチル2−フルオロアクリレート、フェニル2−フルオロアクリレート、3−フルオロプロピルアクリレート、2.2−ジフルオロエチルアクリレート、メチル3.3−ジフルオロアクリレート、2−フルオロエチルアクリレート、メチル2−フルオロアクリレート、1H,1H−パーフルオロノニルアクリレート、メチル2,3,3−トリフルオロアクリレート、ペンタフルオロベンジルアクリレート、ペンタフルオロフェニルアクリレート、tert−ブチル2−フルオロアクリレート、メチル2−フルオロアクリレート、ヘキサフルオロイソプロピルアクリレート、メチル3−(4−フルオロフェニル)アクリレート、3−(トリフルオロメチル)ベンジルアクリレート、1H,1H−パーフルオロオクチルアクリレート、2,2,2−トリフルオロエチルアクリレート、ヘプタフルオロイソプロピルアクリレート、2−(パーフルオロブチル)エチルアクリレート、ヘキサフルオロビスフェノール A ジアクリレート、1H,1H−ペンタフルオロプロピルアクリレート、2,2,2−トリフルオロエチル−2−フルオロアクリレート、メチル3−(2,4−ジフルオロフェニル)アクリレート、エチル(2E)−3−(4−フルオロフェニル)アクリレート、2,2,2−トリクロロエチル−2−フルオロアクリレート、1H,1H−ペンタフルオロブチル−2−フルオロアクリレート、メチル2−(トリフルオロメチル)アクリレート、2,2,3,3−テトラフルオロプロピルアクリレート、tert−ブチル2−(トリフルオロメチル)アクリレート、(E)−メチル3−(2,5−ジフルオロフェニル)アクリレート、(E)−メチル3−(3,5−ジフルオロフェニル)アクリレート、1H,1H,7H−ドデカフルオロフェニルアクリレート、2,2,3,4,4,4−ヘキサフルオロブチルアクリレート等が挙げられる。またフルオロアルキルアクリレート又はフルオロアクリレートの市販品として、例えば、製品名「CHEMINOX FAAC−4」、「CHEMINOX FAAC−6」(以上、ユニマテック社製)、製品名「TG−8111」、「TG−8731」、「GMW−605」(以上、ダイキン工業社製)、製品名「CB71445188」、「CB51457934」、「CB3449325」(以上、Maya High Purity Chemicals社製)、「AB279005」、「AB358507」、「AB358573」、「AB103903」(以上、Abcr GmbH&Co.,KG製)、「474487」、「474347」、「474355」、「474428」、「470961」、「474452」、「474401」、「443751」(以上、Sigma−Aldrich社製)、「ADE000791」、「ADE000110」、「ADE001060」、「553867」、「698385」(以上、Sigma−RBI社製)等が挙げられる。なお、本発明のフルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂のフルオロアルキルアクリレート又はフルオロアクリレートはモノマーに限らず、ポリマーをも含む。 Examples of the fluoroalkyl acrylate resin or fluoroacrylate resin include ethyl 2-fluoroacrylate, phenyl2-fluoroacrylate, 3-fluoropropyl acrylate, 2.2-difluoroethyl acrylate, methyl 3.3-difluoroacrylate, and 2-fluoroethyl acrylate. , Methyl 2-fluoroacrylate, 1H, 1H-perfluorononyl acrylate, methyl 2,3,3-trifluoroacrylate, pentafluorobenzyl acrylate, pentafluorophenyl acrylate, tert-butyl 2-fluoroacrylate, methyl 2-fluoroacrylate , Hexafluoroisopropyl acrylate, methyl 3- (4-fluorophenyl) acrylate, 3- (trifluoromethyl) benzyl acrylate, 1H, 1H-perfluorooctyl acrylate, 2,2,2-trifluoroethyl acrylate, heptafluoroisopropyl Acrylate, 2- (perfluorobutyl) ethyl acrylate, hexafluorobisphenol A diacrylate, 1H, 1H-pentafluoropropyl acrylate, 2,2,2-trifluoroethyl-2-fluoroacrylate, methyl 3- (2,4) -Difluorophenyl) acrylate, ethyl (2E) -3- (4-fluorophenyl) acrylate, 2,2,2-trichloroethyl-2-fluoroacrylate, 1H, 1H-pentafluorobutyl-2-fluoroacrylate, methyl 2 -(Trifluoromethyl) acrylate, 2,2,3,3-tetrafluoropropyl acrylate, tert-butyl 2- (trifluoromethyl) acrylate, (E) -methyl 3- (2,5-difluorophenyl) acrylate, Examples thereof include (E) -methyl 3- (3,5-difluorophenyl) acrylate, 1H, 1H, 7H-dodecafluorophenyl acrylate, 2,2,3,4,4,4-hexafluorobutyl acrylate and the like. Further, as commercially available products of fluoroalkyl acrylate or fluoroacrylate, for example, product names "CHEMINOX FAAC-4", "CHEMINOX FAAC-6" (all manufactured by Unimatec), product names "TG-8111", "TG-8731". , "GMW-605" (above, manufactured by Daikin Industries, Ltd.), product names "CB71445188", "CB51457934", "CB3449325" (above, manufactured by Maya High Purity Chemicals), "AB279005", "AB3558507", "AB35857" , "AB103903" (above, manufactured by Abcr GmbH & Co., KG), "474487", "474347", "474355", "474428", "470961", "474452", "474401", "443751" (above, Sigma) -Aldrich), "ADE000791", "ADE000110", "ADE001060", "553867", "689385" (all manufactured by Sigma-RBI) and the like. The fluoroalkyl acrylate resin or the fluoroalkyl acrylate or fluoroacrylate of the fluoroacrylate resin of the present invention is not limited to the monomer, but also includes a polymer.

〔撥水撥油性塗膜形成用複合粒子〕
図1(a)に示すように、本発明の撥水撥油性塗膜形成用複合粒子10は、無機粒子11の表面にフルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂を含む被覆層12が形成された樹脂被覆粒子13が複数凝集して構成される。複合粒子の体積基準の平均粒径(D50)は1〜100μm、好ましくは5〜20μmである。複合粒子の体積基準の平均粒径(D50)は一般的なレーザー回折/散乱式による粒子径分布測定装置(例えば、堀場製作所社製LAシリーズ(型番:LA-920)等)により測定する。上述した無機粒子の平均一次粒子径が5〜100nmであることにより、図1(a)に示すように、複合粒子の表面には数nm〜数十nmの凹凸構造(近似的なフラクタル構造)が形成される。更に複合粒子の平均粒径(D50)が1〜100μmであることにより、図1(b)に示すように、複数の複合粒子10、10,…、が一列に並んだ状態で、複合粒子間に数十μmの空間を形成し、図1(c)に示すように、並んだ複数の複合粒子表面の凹凸構造が階層的になり、これらの複合粒子表面が撥水撥油性を呈するようになる。複合粒子の平均粒径 (D50)が1μm未満又は100μmを超えると、複合粒子表面に凹凸構造(近似的なフラクタル構造)が形成されなくなる。
[Composite particles for forming water- and oil-repellent coating films]
As shown in FIG. 1A, the water- and oil-repellent coating film-forming composite particles 10 of the present invention are resins in which a coating layer 12 containing a fluoroalkyl acrylate resin or a fluoroacrylate resin is formed on the surface of the inorganic particles 11. A plurality of coated particles 13 are aggregated and formed. The volume-based average particle size (D 50) of the composite particles is 1 to 100 μm, preferably 5 to 20 μm. The volume-based average particle size (D 50 ) of a composite particle is measured by a general laser diffraction / scattering type particle size distribution measuring device (for example, LA series (model number: LA-920) manufactured by HORIBA, Ltd.). Since the average primary particle size of the above-mentioned inorganic particles is 5 to 100 nm, as shown in FIG. 1 (a), the surface of the composite particle has an uneven structure (approximate fractal structure) of several nm to several tens of nm. Is formed. Further, since the average particle size (D 50 ) of the composite particles is 1 to 100 μm, as shown in FIG. 1 (b), the composite particles are in a state where a plurality of composite particles 10, 10, ... Are arranged in a row. A space of several tens of μm is formed between them, and as shown in FIG. 1C, the uneven structure of the surfaces of the plurality of composite particles arranged side by side becomes hierarchical, and the surfaces of these composite particles exhibit water and oil repellency. become. If the average particle size (D 50 ) of the composite particles is less than 1 μm or exceeds 100 μm, an uneven structure (approximate fractal structure) is not formed on the surface of the composite particles.

また複合粒子におけるフッ素含有量は、複合粒子100質量%に対して1.5〜7.5質量%、好ましくは3.0〜7.5質量%、より好ましくは3.0〜6.0質量%である。また複合粒子における炭素含有量は、複合粒子100質量%に対して2.0〜10.0質量%、好ましくは4.0〜8.0質量%、より好ましくは3.5〜6.0質量%である。フッ素含有量が1.5質量%未満では、所望の撥水撥油性が得られない。また炭素含有量が2.0質量%未満では、複合粒子表面に十分なフッ素樹脂成分がコーティングされにくく、撥水撥油機能が発揮されにくい。更にフッ素含有量の上限値を7.5質量%とするのは、7.5質量%を超えても複合粒子の撥水撥油機能は不変であり、過剰のフッ素樹脂の使用を回避するためである。また炭素含有量が10.0質量%を超えると、複合粒子粉体に含まれる炭素含有量が多すぎることに起因して粉塵爆発のおそれがある。本発明では、優れた撥水撥油性を達成するためにフッ素含有量を所定の範囲内に設定し、更により優れた撥水撥油性を実現するためには炭素含有量も所定の範囲内に設定することが好ましい。これらの所定の範囲は、無機粒子の表面を被覆するフルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂の多寡に依存する。 The fluorine content of the composite particles is 1.5 to 7.5% by mass, preferably 3.0 to 7.5% by mass, and more preferably 3.0 to 6.0% by mass with respect to 100% by mass of the composite particles. %. The carbon content of the composite particles is 2.0 to 10.0% by mass, preferably 4.0 to 8.0% by mass, and more preferably 3.5 to 6.0% by mass with respect to 100% by mass of the composite particles. %. If the fluorine content is less than 1.5% by mass, the desired water and oil repellency cannot be obtained. Further, when the carbon content is less than 2.0% by mass, it is difficult to coat the surface of the composite particle with a sufficient fluororesin component, and it is difficult to exhibit the water- and oil-repellent function. Furthermore, the reason why the upper limit of the fluorine content is set to 7.5% by mass is that the water- and oil-repellent function of the composite particles does not change even if it exceeds 7.5% by mass, and excessive use of fluororesin is avoided. Is. If the carbon content exceeds 10.0% by mass, there is a risk of dust explosion due to the excessive carbon content contained in the composite particle powder. In the present invention, the fluorine content is set within a predetermined range in order to achieve excellent water and oil repellency, and the carbon content is also within a predetermined range in order to achieve even better water and oil repellency. It is preferable to set it. These predetermined ranges depend on the amount of fluoroalkyl acrylate resin or fluoroacrylate resin that coats the surface of the inorganic particles.

本発明の複合粒子中のフッ素含有量は、複合粒子の検体を1000℃の電気炉で焼成し、生成するガスを水蒸気蒸留で回収し、その回収液をイオンクロマトグラフにてフッ素イオンとして検出し、定量することにより求められる。また本発明の複合粒子中の炭素含有量は、複合粒子を有機溶剤で抽出した炭素成分である。具体的には、一般的な炭素分析装置(例えば、SUMIGRAPH NC-22 (株)住化分析センター製等)を用いてこの炭素含有量は次のように測定する。秤量を完了した標準試料及び測定試料の入ったボードを装置にセットし、測定を開始する。測定データ処理プログラムにて最終結果まで自動計算される。そのときに自動計算された炭素量を評価する。炭素量を測定する際には、事前に表面処理された試料をソックスレー抽出を行った試料で測定を行う。ソックスレー抽出は、抽出に用いる溶媒を加熱する毎に蒸留し、試料を入れた部分で受け取り、蒸留された溶媒の量が増えるにつれて、サイホンの原理により必要量以上に溜まった溶媒は全て蒸留前のフラスコに戻るが、その間に試料からの抽出する操作である。 For the fluorine content in the composite particles of the present invention, a sample of the composite particles is fired in an electric furnace at 1000 ° C., the generated gas is recovered by steam distillation, and the recovered liquid is detected as fluorine ions by an ion chromatograph. , Obtained by quantification. The carbon content in the composite particles of the present invention is a carbon component obtained by extracting the composite particles with an organic solvent. Specifically, this carbon content is measured as follows using a general carbon analyzer (for example, manufactured by SUMIGARPH NC-22 Sumika Chemical Analysis Service, Inc.). Set the standard sample that has been weighed and the board containing the measurement sample in the device, and start the measurement. The measurement data processing program automatically calculates the final result. Evaluate the automatically calculated carbon content at that time. When measuring the amount of carbon, a sample that has been surface-treated in advance is measured with a sample that has undergone Soxhlet extraction. In Soxhlet extraction, the solvent used for extraction is distilled every time it is heated, and it is received at the part where the sample is placed. As the amount of distilled solvent increases, all the solvent accumulated in excess of the required amount according to the siphon principle is before distillation. It is an operation to extract from the sample while returning to the flask.

〔撥水撥油性塗膜形成用複合粒子の製造方法〕
本発明の撥水撥油性塗膜形成用の複合粒子は、上述した無機粒子を反応槽に入れ、この反応槽内で無機粒子を窒素ガス、アルゴンガスのような不活性ガス(非酸化性)雰囲気下で撹拌しながらフルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂を含む液を、噴霧量が無機粒子100質量部に対して樹脂成分が7.5〜25.0質量部、好ましくは10.0〜15.0質量部になるように、噴霧しながら150〜220℃、好ましくは180〜200℃の温度で30〜120分間、好ましくは60〜90分間熱処理して、無機粒子の表面をフルオロアルキルアクリレート樹脂層又はフルオロアクリレート樹脂層で被覆することにより樹脂被覆粒子を形成するとともに樹脂被覆粒子を凝集して、製造する。或いは上記フルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂と無機粒子を混合し、溶媒を乾燥させることによって製造する。好ましくは、流動させながら、150〜220℃、好ましくは180〜200℃の温度で乾燥させることによって製造する。
[Manufacturing method of composite particles for forming water- and oil-repellent coating films]
In the composite particles for forming a water- and oil-repellent coating film of the present invention, the above-mentioned inorganic particles are placed in a reaction vessel, and the inorganic particles are subjected to an inert gas (non-oxidizing) such as nitrogen gas and argon gas in the reaction vessel. While stirring in an atmosphere, spray the fluoroalkyl acrylate resin or the liquid containing the fluoroacrylate resin in an amount of 7.5 to 25.0 parts by mass, preferably 10.0 to 15 parts by mass of the resin component with respect to 100 parts by mass of the inorganic particles. The surface of the inorganic particles is treated with a fluoroalkyl acrylate resin at a temperature of 150 to 220 ° C., preferably 180 to 200 ° C. for 30 to 120 minutes, preferably 60 to 90 minutes while spraying so as to be 0.0 parts by mass. It is produced by forming resin-coated particles by coating with a layer or a fluoroacrylate resin layer and aggregating the resin-coated particles. Alternatively, it is produced by mixing the above fluoroalkyl acrylate resin or fluoroacrylate resin with inorganic particles and drying the solvent. It is preferably produced by drying at a temperature of 150 to 220 ° C., preferably 180 to 200 ° C. while flowing.

フルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂を含む液は、樹脂を含む液100質量%に対して液成分を10〜25質量%含む。液成分としては水が好適に用いられる。液成分が下限値未満では、樹脂を含む液の濃度が高すぎて、無機粒子の表面に均一に樹脂層が形成されにくく、上限値を超えると、樹脂を含む液の濃度が低すぎて、噴霧量を増大する必要がある。上記熱処理の温度と時間は、液成分の含有割合に応じて決められるが、熱処理温度が180℃未満又は熱処理時間が30分未満では、無機粒子の表面に樹脂層が殆ど形成されず、また熱処理温度が220℃を超えるか、熱処理時間が120分を超えると、樹脂層が厚くなり過ぎ、いずれの場合でも、撥水撥油性のある複合粒子が得られない。 The liquid containing the fluoroalkyl acrylate resin or the fluoroacrylate resin contains 10 to 25% by mass of the liquid component with respect to 100% by mass of the liquid containing the resin. Water is preferably used as the liquid component. If the liquid component is less than the lower limit, the concentration of the liquid containing the resin is too high, and it is difficult to form a uniform resin layer on the surface of the inorganic particles. If the liquid component exceeds the upper limit, the concentration of the liquid containing the resin is too low. It is necessary to increase the amount of spray. The temperature and time of the heat treatment are determined according to the content ratio of the liquid component, but when the heat treatment temperature is less than 180 ° C. or the heat treatment time is less than 30 minutes, almost no resin layer is formed on the surface of the inorganic particles, and the heat treatment is performed. If the temperature exceeds 220 ° C. or the heat treatment time exceeds 120 minutes, the resin layer becomes too thick, and in either case, water- and oil-repellent composite particles cannot be obtained.

フルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂を含む液の噴霧を、噴霧量が無機粒子100質量部に対して樹脂成分が7.5〜25.0質量部になるように行うのは、噴霧量が7.5質量部未満では、被覆層の厚さが不十分になり、被覆層中のフッ素含有量、炭素含有量が少なく、撥水撥油性を発揮しなくなる。また噴霧量が25.0質量部を超えると、複合粒子表面に覆われたフッ素樹脂成分が過多になり、微粒子によって形成されたフラクタルな構造が樹脂によって相殺(表面がより平滑になって、薄まって)しまい、高い撥油性を発揮しないおそれがある。 The spraying amount of the fluoroalkyl acrylate resin or the liquid containing the fluoroacrylate resin is such that the spray amount is 7.5 to 25.0 parts by mass with respect to 100 parts by mass of the inorganic particles. If it is less than 5.5 parts by mass, the thickness of the coating layer becomes insufficient, the fluorine content and carbon content in the coating layer are low, and the water and oil repellency is not exhibited. When the amount of spray exceeds 25.0 parts by mass, the fluororesin component covered on the surface of the composite particles becomes excessive, and the fractal structure formed by the fine particles is offset by the resin (the surface becomes smoother and thinner). There is a risk that it will not exhibit high oil repellency.

無機粒子を撹拌しながら上記樹脂を含む液を噴霧し加熱処理すると、樹脂を含む液中の液成分が蒸発し、無機粒子の表面にポリフルオロアクリレート樹脂又はフルオロアクリレート樹脂を含む被覆層が形成される。また、例えば、必要に応じて、更に噴霧工程及び熱処理工程からなる一連の工程を1回又は2回以上繰り返し行ってもよい。これにより被覆量の厚さが制御され、フッ素含有量、炭素含有量を所望の範囲に調整することができる。 When the liquid containing the resin is sprayed and heat-treated while stirring the inorganic particles, the liquid components in the liquid containing the resin evaporate, and a coating layer containing the polyfluoroacrylate resin or the fluoroacrylate resin is formed on the surface of the inorganic particles. To. Further, for example, a series of steps including a spraying step and a heat treatment step may be repeated once or twice or more, if necessary. Thereby, the thickness of the coating amount is controlled, and the fluorine content and the carbon content can be adjusted within desired ranges.

〔撥水撥油性塗膜の形成方法〕
本発明の撥水撥油性塗膜は、上述した複合粒子を溶媒に、溶媒100質量%に対して前記複合粒子10〜20質量%の割合で、分散させて分散液を調製し、この分散液を基材表面に塗布することにより、形成される。この分散液には、接着剤(ヒートシール剤等)、着色剤、分散剤、沈降防止剤、粘度調整剤、印刷保護剤等を含ませてもよい。上記溶媒としては、接着剤等を含まない場合には、水又はアルコールが例示される。アルコールとしては、炭素数が1〜4である1種又は2種以上のアルコールが好ましい。接着剤等を含む場合には、溶媒として、アルコール(エタノール)、シクロヘキサン、トルエン、アセトン、IPA、プロピレングリコール、ヘキシレングリコール、ブチルジグリコール、ペンタメチレングリコール、ノルマルペンタン、ノルマルヘキサン、ヘキシルアルコール等の有機溶剤が用いられる。
[Method of forming water- and oil-repellent coating film]
The water- and oil-repellent coating film of the present invention prepares a dispersion liquid by dispersing the above-mentioned composite particles in a solvent at a ratio of 10 to 20% by mass of the composite particles with respect to 100% by mass of the solvent. Is formed by applying to the surface of the substrate. This dispersion may contain an adhesive (heat sealant or the like), a colorant, a dispersant, a settling inhibitor, a viscosity modifier, a print protective agent, or the like. Examples of the solvent include water and alcohol when an adhesive or the like is not contained. As the alcohol, one kind or two or more kinds of alcohols having 1 to 4 carbon atoms are preferable. When an adhesive or the like is contained, the solvent may be alcohol (ethanol), cyclohexane, toluene, acetone, IPA, propylene glycol, hexylene glycol, butyl diglycol, pentamethylene glycol, normal pentane, normal hexane, hexyl alcohol or the like. An organic solvent is used.

接着剤としては、例えば、ポリオレフィン系樹脂、ポリエステル系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、アクリル系樹脂、ビニル系樹脂等の接着剤(特にヒートシール剤)等を挙げることができる。ヒートシール剤としては、より具体的には、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、アイオノマ−樹脂、エチレン−アクリル酸共重合体、エチレン−アクリル酸エチル共重合体、エチレン−メタクリル酸共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−プロピレン共重合体、メチルペンテンポリマ−、ポリブテンポリマ−、ポリエチレン又はポリプロピレン等のポリオレフィン系樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマ−ル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂、ポリ酢酸ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ポリアクリロニトリル樹脂、ポリ塩化ビニル系樹脂、その他の熱接着性樹脂のほか、これらのブレンド樹脂、これらを構成するモノマーの組合せを含む共重合体、変性樹脂等をヒートシール剤として用いることができる。 Examples of the adhesive include adhesives (particularly heat sealants) such as polyolefin resins, polyester resins, polyurethane resins, epoxy resins, acrylic resins, and vinyl resins. More specifically, the heat sealant includes low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear (linear) low-density polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ionoma-resin, and ethylene. -Acrylic acid copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-methyl methacrylate copolymer, ethylene-propylene copolymer, methylpentene polymer, polybutene polymer, polyethylene Alternatively, an acid-modified polyolefin resin, polyvinyl acetate resin, poly (poly), which is obtained by modifying a polyolefin resin such as polypropylene with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, or itaconic acid. Meta) Acrylic resin, polyacrylonitrile resin, polyvinyl chloride resin, other heat-adhesive resins, blended resins of these, copolymers containing combinations of monomers constituting these, modified resins, etc. are heat-sealed agents. Can be used as.

また基材としては、撥水撥油処理を必要とする金属材、プラスチック材、セラミック材、ガラス材、表面加工した木材、加工紙等が挙げられる。基材表面に塗布した分散液を塗布した後、溶媒が水又はアルコールである場合、室温で放置して自然乾燥することにより、基材表面に撥水撥油性塗膜を形成する。分散液に接着成分としてヒートシール剤が含まれる場合、基材表面上の塗膜を150〜250℃程度の範囲内で熱処理することによって、ヒートシール剤を溶融させて塗膜を材料表面に強固に固定することができる。 Examples of the base material include metal materials, plastic materials, ceramic materials, glass materials, surface-processed wood, and processed paper that require water- and oil-repellent treatment. After applying the dispersion liquid applied to the surface of the base material, when the solvent is water or alcohol, it is left at room temperature and naturally dried to form a water- and oil-repellent coating film on the surface of the base material. When the dispersion liquid contains a heat sealant as an adhesive component, the heat sealant is melted by heat-treating the coating film on the surface of the base material in the range of about 150 to 250 ° C. to strengthen the coating film on the material surface. Can be fixed to.

上記基材表面に上記分散液を塗布し、自然乾燥するか、又は所定の温度で乾燥した後、加熱処理して基材表面に塗膜を形成することができる。分散液を基材表面に塗布する方法としては、バーコート法、ダイコート法、スピンコート法又はスプレー法、ドクターブレード法等が例示される。塗膜の厚さは、0.5〜30μmの範囲内で決められる。特に、包装材料としてヒートシール時にヒートシール層中に塗膜が埋め込まれる構成とする場合は、1〜8μm程度とすることが好ましい。 The dispersion liquid can be applied to the surface of the base material and naturally dried, or dried at a predetermined temperature and then heat-treated to form a coating film on the surface of the base material. Examples of the method of applying the dispersion liquid to the surface of the base material include a bar coating method, a die coating method, a spin coating method or a spray method, and a doctor blade method. The thickness of the coating film is determined in the range of 0.5 to 30 μm. In particular, when the packaging material is configured such that the coating film is embedded in the heat seal layer during heat sealing, the thickness is preferably about 1 to 8 μm.

〔撥水撥油性塗膜の性状〕
本発明の撥水撥油性塗膜は、塗膜表面が複合粒子による凹凸構造(近似的なフラクタル構造)を有していることが好ましい。より具体的には、複数の複合粒子が連なることによって形成された空隙と粒子本体により形成される表面を有することが望ましい。これにより、複合粒子が所定の被覆層を有すると相まって、より優れた撥水性と撥油性を発揮することが可能となる。即ち、凹凸構造の表面が前記被覆層により実質的に構成される結果、より優れた撥水性と撥油性を発揮することができる。この場合、凹凸構造の形成に寄与する粒子としては、本発明の効果を妨げない範囲において、複合粒子以外の微粒子を含んでもよい。なお、塗膜表面の凹凸構造は、走査型電子顕微鏡で観察することができる。後記の実施例3を代表例として図4に示す。
[Characteristics of water- and oil-repellent coating film]
The water- and oil-repellent coating film of the present invention preferably has an uneven structure (approximate fractal structure) with composite particles on the surface of the coating film. More specifically, it is desirable to have voids formed by connecting a plurality of composite particles and a surface formed by the particle body. This makes it possible to exhibit more excellent water repellency and oil repellency in combination with the composite particles having a predetermined coating layer. That is, as a result that the surface of the uneven structure is substantially formed by the coating layer, more excellent water repellency and oil repellency can be exhibited. In this case, the particles that contribute to the formation of the uneven structure may include fine particles other than composite particles as long as the effects of the present invention are not impaired. The uneven structure on the surface of the coating film can be observed with a scanning electron microscope. Example 3 described later is shown in FIG. 4 as a representative example.

上記方法で形成された塗膜の撥水撥油性は、塗膜に対する、25℃における水、サラダ油、シリコーンオイルの接触角で示される。本発明の塗膜の撥水撥油性は、水の接触角が25℃で110度以上、サラダ油の接触角が25℃で120度以上、シリコーンオイルの接触角が25℃で60度以上である。 The water and oil repellency of the coating film formed by the above method is indicated by the contact angle of water, salad oil, and silicone oil at 25 ° C. with respect to the coating film. The water and oil repellency of the coating film of the present invention is such that the contact angle of water is 110 degrees or more at 25 ° C, the contact angle of salad oil is 120 degrees or more at 25 ° C, and the contact angle of silicone oil is 60 degrees or more at 25 ° C. ..

次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.

〔20種類の樹脂〕
本発明の実施例1〜15及び比較例1〜12に用いられる合計20種類の樹脂を以下の表2及び表3に示す。表2には、14種類の(ポリ)フルオロ(アルキル)アクリレート樹脂(No.1〜No.14)を、表3には、6種類の(ポリ)フルオロアルキルメタクリレート樹脂(No.21〜No.26)をそれぞれ示す。
[20 types of resin]
A total of 20 types of resins used in Examples 1 to 15 and Comparative Examples 1 to 12 of the present invention are shown in Tables 2 and 3 below. Table 2 shows 14 types of (poly) fluoro (alkyl) acrylate resins (No. 1 to No. 14), and Table 3 shows 6 types of (poly) fluoroalkyl methacrylate resins (No. 21 to No. 14). 26) are shown respectively.

<実施例1>
無機粒子として、前述の例示した走査型電子顕微鏡を用いて求めた平均一次粒子径(以下、平均一次粒子径の測定方法については同じ。)が80〜100nmの乾式シリカであるヒュームドシリカ(日本アエロジル社製:試作品)を用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して、表2に示されるNo.1のフルオロアルキルアクリレート樹脂の水分散液37.5g(液成分濃度:20質量%)を噴霧し、200℃で30分間加熱撹拌した後、室温まで冷却し、樹脂被覆粒子が凝集した複合粒子を作製した。上記樹脂成分の噴霧量は上記シリカ粒子100質量部に対して7.5質量部であった。実施例2以降の樹脂成分の噴霧量は表4に示される。
<Example 1>
As the inorganic particles, fumed silica (Japan), which is a dry silica having an average primary particle diameter (hereinafter, the same applies to the method for measuring the average primary particle diameter) determined by using the scanning electron microscope illustrated above, is 80 to 100 nm. Using Aerodil Co., Ltd .: prototype), this was placed in a reaction vessel, and the No. 1 fluoroalkyl acrylate resin shown in Table 2 was dispersed in water with respect to 100 g of the silica particles while stirring in a nitrogen gas atmosphere. 37.5 g of the liquid (liquid component concentration: 20% by mass) was sprayed, heated and stirred at 200 ° C. for 30 minutes, and then cooled to room temperature to prepare composite particles in which resin-coated particles were aggregated. The spray amount of the resin component was 7.5 parts by mass with respect to 100 parts by mass of the silica particles. The amount of the resin component sprayed after Example 2 is shown in Table 4.

<実施例2>
無機粒子として、平均一次粒子径が40nmの乾式シリカであるヒュームドシリカ(商品名:AEROSIL OX 50、日本アエロジル社製)を用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して表2に示されるNo.2のフルオロアルキルアクリレート樹脂の水分散液50g(液成分濃度:20質量%)を噴霧し、150℃で60分間加熱撹拌した後、室温まで冷却し、樹脂被覆粒子が凝集した複合粒子を作製した。
<Example 2>
As the inorganic particles, fumed silica (trade name: AEROSIL OX 50, manufactured by Nippon Aerosil Co., Ltd.), which is a dry silica having an average primary particle diameter of 40 nm, is used, placed in a reaction vessel, and stirred in a nitrogen gas atmosphere. 50 g (liquid component concentration: 20% by mass) of the aqueous dispersion of No. 2 fluoroalkyl acrylate resin shown in Table 2 is sprayed on 100 g of the silica particles, heated and stirred at 150 ° C. for 60 minutes, and then brought to room temperature. The particles were cooled to prepare composite particles in which the resin-coated particles were aggregated.

<実施例3>
無機粒子として、実施例1と同一の乾式シリカを用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して表2に示されるNo.3のポリフルオロアルキルアクリレート樹脂の水分散液60g(液成分濃度:20質量%)を噴霧し、以下、実施例1と同様にして、複合粒子を作製した。実施例3の複合粒子をSEMにて観察した倍率3,000倍の写真図を図4に示す。
<Example 3>
Using the same dry silica as in Example 1 as the inorganic particles, this was placed in a reaction vessel, and the No. 3 polyfluoroalkyl shown in Table 2 was added to 100 g of the silica particles while stirring under a nitrogen gas atmosphere. 60 g (liquid component concentration: 20% by mass) of an aqueous dispersion of an acrylate resin was sprayed, and composite particles were prepared in the same manner as in Example 1 below. FIG. 4 shows a photograph of the composite particles of Example 3 observed by SEM at a magnification of 3,000.

<実施例4>
無機粒子として、平均一次粒子径が12nmの乾式シリカであるヒュームドシリカ(商品名:AEROSIL 200、日本アエロジル社製)を用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して表2に示されるNo.4のポリフルオロアルキルアクリレート樹脂とNo.6のポリフルオロアクリレート樹脂(No.4:No.6の質量比=2:1)の混合樹脂の水分散液75g(液成分濃度:20質量%)を噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Example 4>
As the inorganic particles, fumed silica (trade name: AEROSIL 200, manufactured by Nippon Aerosil Co., Ltd.), which is a dry silica having an average primary particle diameter of 12 nm, is used, placed in a reaction vessel, and this is stirred in a nitrogen gas atmosphere. Water of a mixed resin of No. 4 polyfluoroalkyl acrylate resin and No. 6 polyfluoroacrylate resin (No. 4: No. 6 mass ratio = 2: 1) shown in Table 2 with respect to 100 g of silica particles. 75 g of the dispersion liquid (liquid component concentration: 20% by mass) was sprayed to prepare composite particles in the same manner as in Example 1.

<実施例5>
無機粒子として、平均一次粒子径が5nmの乾式シリカであるヒュームドシリカ(商品名:AEROSIL 380 S、日本アエロジル社製)を用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して表2に示されるNo.5のポリフルオロアルキルアクリレート樹脂とNo.7のフルオロアルキルアクリレート樹脂(No.5:No.7の質量比=2:1)の混合樹脂の水分散液100g(液成分濃度:20質量%)を噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Example 5>
As the inorganic particles, fumed silica (trade name: AEROSIL 380 S, manufactured by Nippon Aerosil Co., Ltd.), which is a dry silica having an average primary particle diameter of 5 nm, is used, placed in a reaction vessel, and stirred in a nitrogen gas atmosphere. A mixed resin of No. 5 polyfluoroalkyl acrylate resin and No. 7 fluoroalkyl acrylate resin (No. 5: No. 7 mass ratio = 2: 1) shown in Table 2 with respect to 100 g of the silica particles. 100 g of the aqueous dispersion (liquid component concentration: 20% by mass) was sprayed to prepare composite particles in the same manner as in Example 1.

<実施例6>
無機粒子として、平均一次粒子径が30nmの乾式シリカであるヒュームドシリカ(商品名:AEROSIL 50、日本アエロジル社製)を用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して表2に示されるNo.6のポリフルオロアクリレート樹脂とNo.9のフルオロアルキルアクリレート樹脂(No.6:No.9の質量比=1:1)の混合樹脂の水分散液125g(液成分濃度:20質量%)を噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Example 6>
As the inorganic particles, fumed silica (trade name: AEROSIL 50, manufactured by Nippon Aerosil Co., Ltd.), which is a dry silica having an average primary particle diameter of 30 nm, is used, placed in a reaction vessel, and this is stirred in a nitrogen gas atmosphere. Water dispersion of mixed resin of No. 6 polyfluoroacrylate resin and No. 9 fluoroalkyl acrylate resin (No. 6: mass ratio of No. 9 = 1: 1) shown in Table 2 with respect to 100 g of silica particles. 125 g of the liquid (liquid component concentration: 20% by mass) was sprayed to prepare composite particles in the same manner as in Example 1.

<実施例7>
無機粒子として、実施例1と同一の乾式シリカを用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して表2に示されるNo.4のポリフルオロアルキルアクリレート樹脂の水分散液60g(液成分濃度:20質量%)を噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Example 7>
Using the same dry silica as in Example 1 as the inorganic particles, this was placed in a reaction vessel, and the No. 4 polyfluoroalkyl shown in Table 2 was added to 100 g of the silica particles while stirring under a nitrogen gas atmosphere. 60 g (liquid component concentration: 20% by mass) of an aqueous dispersion of an acrylate resin was sprayed, and composite particles were prepared in the same manner as in Example 1 below.

<実施例8>
無機粒子として、平均一次粒子径が20nmの乾式アルミナ(商品名:AEROXIDE Alu 65、日本アエロジル社製)を用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのアルミナ粒子100gに対して表2に示されるNo.9のフルオロアクリレート樹脂とNo.12のフルオロアルキルアクリレート樹脂(No.9:No.12の質量比=1:1)の混合樹脂の水分散液60g(液成分濃度:20質量%)を噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Example 8>
As the inorganic particles, dry alumina (trade name: AEROXIDE Alu 65, manufactured by Nippon Aerodil Co., Ltd.) having an average primary particle diameter of 20 nm was used, and this was placed in a reaction vessel, and the alumina particles were made into 100 g of these alumina particles while stirring in a nitrogen gas atmosphere. On the other hand, 60 g of an aqueous dispersion of a mixed resin of No. 9 fluoroacrylate resin and No. 12 fluoroalkyl acrylate resin (No. 9: No. 12 mass ratio = 1: 1) shown in Table 2 (liquid component). Concentration: 20% by mass) was sprayed to prepare composite particles in the same manner as in Example 1.

<実施例9>
無機粒子として、平均一次粒子径が20nmの乾式チタニア(商品名:AEROXIDE P 25、日本アエロジル社製)を用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのチタニア粒子100gに対して表2に示されるNo.11のフルオロアルキルアクリレート樹脂とNo.14のフルオロアルキルアクリレート樹脂(No.11:No.14の質量比=1:1)の混合樹脂の水分散液60g(液成分濃度:20質量%)を噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Example 9>
As the inorganic particles, dry titania (trade name: AEROXIDE P 25, manufactured by Nippon Aerodil Co., Ltd.) having an average primary particle diameter of 20 nm was used, and this was placed in a reaction vessel, and the titania particles were made into 100 g of the titania particles while stirring in a nitrogen gas atmosphere. On the other hand, 60 g of an aqueous dispersion of a mixed resin of No. 11 fluoroalkyl acrylate resin and No. 14 fluoroalkyl acrylate resin (No. 11: No. 14 mass ratio = 1: 1) shown in Table 2 (liquid). (Component concentration: 20% by mass) was sprayed to prepare composite particles in the same manner as in Example 1.

<実施例10>
無機粒子として、平均一次粒子径が100nmのゾルゲル法で作られた湿式シリカ(日本アエロジル社製:試作品)を用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのゾルゲルシリカ粒子100gに対して、表2に示されるNo.5のフルオロアルキルアクリレート樹脂の水分散液30g(液成分濃度:25質量%)を噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Example 10>
Wet silica (manufactured by Nippon Aerosil Co., Ltd .: prototype) made by the sol-gel method with an average primary particle diameter of 100 nm was used as the inorganic particles, placed in a reaction vessel, and this sol-gel silica was stirred under a nitrogen gas atmosphere. 30 g (liquid component concentration: 25% by mass) of the aqueous dispersion of No. 5 fluoroalkyl acrylate resin shown in Table 2 was sprayed on 100 g of the particles, and the composite particles were subsequently prepared in the same manner as in Example 1. Made.

<実施例11>
無機粒子として、平均一次粒子径が30nmの水酸化アルミニウムを用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこの水酸化アルミニウム粒子100gに対して、表2に示される No.6のポリフルオロアクリレート樹脂とNo.9のフルオロアルキルアクリレート樹脂(No.6:No.9の質量比=1:1)の混合樹脂の水分散液125gを噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Example 11>
As the inorganic particles, aluminum hydroxide having an average primary particle diameter of 30 nm was used, placed in a reaction vessel, and the No. 1 shown in Table 2 was applied to 100 g of the aluminum hydroxide particles while stirring in a nitrogen gas atmosphere. Spray 125 g of an aqueous dispersion of a mixed resin of the polyfluoroacrylate resin of No. 6 and the fluoroalkyl acrylate resin of No. 9 (No. 6: mass ratio of No. 9 = 1: 1), and the same as in Example 1 below. To prepare composite particles.

<実施例12>
無機粒子として、平均一次粒子径が15〜40nmのフッ化カルシウムを用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのフッ化カルシウム粒子100gに対して、表2に示されるNo.9のフルオロアクリレート樹脂とNo.12のフルオロアルキルアクリレート樹脂(No.9:No.12の質量比=1:1)の混合樹脂の水分散液60gを噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Example 12>
As the inorganic particles, calcium fluoride having an average primary particle diameter of 15 to 40 nm is used, placed in a reaction vessel, and shown in Table 2 with respect to 100 g of the calcium fluoride particles while stirring in a nitrogen gas atmosphere. 60 g of an aqueous dispersion of a mixed resin of No. 9 fluoroacrylate resin and No. 12 fluoroalkyl acrylate resin (No. 9: No. 12 mass ratio = 1: 1) was sprayed, and the following is described in Example 1 and In the same manner, composite particles were prepared.

<実施例13>
無機粒子として、平均一次粒子径が5nmのフッ化マグネシウムを用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのフッ化マグネシウム粒子100gに対して、表2に示されるNo.5のポリフルオロアルキルアクリレート樹脂とNo.7のフルオロアルキルアクリレート樹脂(No.5:No.7の質量比=2:1)の混合樹脂の水分散液100gを噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Example 13>
Magnesium fluoride having an average primary particle diameter of 5 nm was used as the inorganic particles, and the particles were placed in a reaction vessel, and the No. 1 shown in Table 2 was applied to 100 g of the magnesium fluoride particles while stirring in a nitrogen gas atmosphere. Spray 100 g of an aqueous dispersion of a mixed resin of the polyfluoroalkyl acrylate resin of No. 5 and the fluoroalkyl acrylate resin of No. 7 (No. 5: No. 7 mass ratio = 2: 1), and the following with Example 1 In the same manner, composite particles were prepared.

<実施例14>
無機粒子として、平均一次粒子径が100nmの窒化ホウ素粒子を用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこの窒化ホウ素粒子100gに対して、表2に示されるNo.1のフルオロアルキルアクリレート樹脂の水分散液37.5g(液成分濃度:20質量%)を噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Example 14>
Boron nitride particles having an average primary particle diameter of 100 nm were used as the inorganic particles, placed in a reaction vessel, and stirred in a nitrogen gas atmosphere with respect to 100 g of the boron nitride particles, No. 1 shown in Table 2. 37.5 g (liquid component concentration: 20% by mass) of the aqueous dispersion of the fluoroalkyl acrylate resin of No. 1 was sprayed, and the composite particles were prepared in the same manner as in Example 1 below.

<実施例15>
無機粒子として、平均一次粒子径が20〜30nmのシリカとチタニアの複合酸化物(日本アエロジル社製:試作品) 用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ/チタニア複合酸化物粒子100gに対して、表2に示されるNo.2のフルオロアルキルアクリレート樹脂の水分散液50g(液成分濃度:20質量%)を噴霧し、以下、実施例2と同様にして、複合粒子を作製した。
<Example 15>
As inorganic particles, a composite oxide of silica and titania with an average primary particle size of 20 to 30 nm (manufactured by Nippon Aerosil Co., Ltd .: prototype) is used, placed in a reaction vessel, and this silica / silica is stirred in a nitrogen gas atmosphere. 50 g (liquid component concentration: 20% by mass) of the aqueous dispersion of No. 2 fluoroalkyl acrylate resin shown in Table 2 was sprayed onto 100 g of the titania composite oxide particles, and the same applies hereinafter to Example 2. , Composite particles were prepared.

<比較例1>
無機粒子として、実施例1と同一の乾式シリカを用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して実施例1と同一の表2に示されるNo.1のフルオロアルキルアクリレート樹脂の水分散液37.5g(液成分濃度:20質量%)を噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Comparative example 1>
As the inorganic particles, the same dry silica as in Example 1 was used, and this was placed in a reaction vessel. Under a nitrogen gas atmosphere, 100 g of the silica particles were stirred and the same No. 2 shown in Table 2 as in Example 1 was used. 37.5 g (liquid component concentration: 20% by mass) of an aqueous dispersion of the fluoroalkyl acrylate resin of .1 was sprayed to prepare composite particles in the same manner as in Example 1.

<比較例2>
無機粒子として、実施例1と同一の乾式シリカを用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して特許文献1に示されるのと同じ表3に示されるNo.22のフルオロアルキルメタクリレートの水分散液37.5g(液成分濃度:20質量%)を噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Comparative example 2>
As the inorganic particles, the same dry silica as in Example 1 was used, and the particles were placed in a reaction vessel, and while stirring under a nitrogen gas atmosphere, 100 g of the silica particles were shown in Table 3 as shown in Patent Document 1. 37.5 g (liquid component concentration: 20% by mass) of the indicated aqueous dispersion of fluoroalkyl methacrylate of No. 22 was sprayed, and composite particles were prepared in the same manner as in Example 1 below.

<比較例3>
無機粒子として、実施例2と同一の乾式シリカを用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して特許文献1に示されるのと同じ表3に示されるNo.23のポリフルオロアルキルメタクリレートの水分散液50g(液成分濃度:20質量%)を噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Comparative example 3>
As the inorganic particles, the same dry silica as in Example 2 was used, and the particles were placed in a reaction vessel, and while stirring under a nitrogen gas atmosphere, 100 g of the silica particles were shown in Table 3 as shown in Patent Document 1. 50 g (liquid component concentration: 20% by mass) of the indicated aqueous dispersion of polyfluoroalkyl methacrylate of No. 23 was sprayed, and hereinafter, composite particles were prepared in the same manner as in Example 1.

<比較例4>
無機粒子として、実施例1と同一の乾式シリカを用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して特許文献1に示されるのと同じ表3に示されるNo.21のフルオロアルキルメタクリレート樹脂とNo.24のポリフルオロアルキルメタクリレート樹脂(No.21:No.24の質量比=1:1)の混合樹脂の水分散液60g(液成分濃度:20質量%)を噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Comparative example 4>
As the inorganic particles, the same dry silica as in Example 1 was used, and the particles were placed in a reaction vessel, and while stirring under a nitrogen gas atmosphere, 100 g of the silica particles were shown in Table 3 as shown in Patent Document 1. 60 g of an aqueous dispersion of a mixed resin of No. 21 fluoroalkyl methacrylate resin and No. 24 polyfluoroalkyl methacrylate resin (No. 21: No. 24 mass ratio = 1: 1) (liquid component concentration: 20). Mass%) was sprayed to prepare composite particles in the same manner as in Example 1.

<比較例5>
無機粒子として、実施例4と同一の乾式シリカを用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して特許文献1に示されるのと同じ表3に示されるNo.22のフルオロアルキルメタクリレート樹脂とNo.26のフルオロアルキルメタクリレート樹脂(No.22:No.26の質量比=2:1)の混合樹脂の水分散液75g(液成分濃度:20質量%)を噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Comparative example 5>
As the inorganic particles, the same dry silica as in Example 4 was used, and the particles were placed in a reaction vessel, and while stirring under a nitrogen gas atmosphere, 100 g of the silica particles were shown in Table 3 as shown in Patent Document 1. 75 g of an aqueous dispersion of a mixed resin of No. 22 fluoroalkyl methacrylate resin and No. 26 fluoroalkyl methacrylate resin (No. 22: No. 26 mass ratio = 2: 1) (liquid component concentration: 20 mass). %) Was sprayed to prepare composite particles in the same manner as in Example 1 below.

<比較例6>
無機粒子として、実施例5と同一の乾式シリカを用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して特許文献1に示されるのと同じ表3に示されるNo.23のポリフルオロアルキルメタクリレート樹脂とNo.25のフルオロアルキルメタクリレート樹脂(No.23:No.25の質量比=2:1)の混合樹脂の水分散液100g(液成分濃度:20質量%)を噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Comparative Example 6>
As the inorganic particles, the same dry silica as in Example 5 was used, and the particles were placed in a reaction vessel, and while stirring under a nitrogen gas atmosphere, 100 g of the silica particles were shown in Table 3 as shown in Patent Document 1. 100 g of an aqueous dispersion of a mixed resin of No. 23 polyfluoroalkyl methacrylate resin and No. 25 fluoroalkyl methacrylate resin (No. 23: No. 25 mass ratio = 2: 1) (liquid component concentration: 20). Mass%) was sprayed to prepare composite particles in the same manner as in Example 1.

<比較例7>
無機粒子として、実施例6と同一の乾式シリカを用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して特許文献1に示されるのと同じ表3に示されるNo.24のポリフルオロアルキルメタクリレート樹脂とNo.25のフルオロアルキルメタクリレート樹脂(No.24:No.25の質量比=2:1)の混合樹脂の水分散液125g(液成分濃度:20質量%)を噴霧し、以下、実施例1と同様にして、複合粒子を作製した。
<Comparative Example 7>
As the inorganic particles, the same dry silica as in Example 6 was used, and the particles were placed in a reaction vessel, and while stirring under a nitrogen gas atmosphere, 100 g of the silica particles were shown in Table 3 as shown in Patent Document 1. 125 g of an aqueous dispersion of a mixed resin of No. 24 polyfluoroalkyl methacrylate resin and No. 25 fluoroalkyl methacrylate resin (No. 24: No. 25 mass ratio = 2: 1) (liquid component concentration: 20). Mass%) was sprayed to prepare composite particles in the same manner as in Example 1.

<比較例8>
無機粒子として、実施例1と同一の乾式シリカを用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して表2に示されるNo.9のフルオロアクリレート樹脂の水分散液60g(液成分濃度:20質量%)を噴霧し、300℃で30分間加熱撹拌した後、室温まで冷却し、樹脂被覆粒子が凝集した複合粒子を作製した。
<Comparative Example 8>
As the inorganic particles, the same dry silica as in Example 1 was used, and this was placed in a reaction vessel, and the fluoroacrylate resin of No. 9 shown in Table 2 was added to 100 g of the silica particles while stirring under a nitrogen gas atmosphere. 60 g (liquid component concentration: 20% by mass) of the aqueous dispersion was sprayed, heated and stirred at 300 ° C. for 30 minutes, and then cooled to room temperature to prepare composite particles in which resin-coated particles were aggregated.

<比較例9>
無機粒子として、実施例1と同一の乾式シリカを用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して表2に示されるNo.13のフルオロアルキルアクリレート樹脂の水分散液60g(液成分濃度:20質量%)を噴霧し、120℃で30分間加熱撹拌した後、室温まで冷却し、樹脂被覆粒子が凝集した複合粒子を作製した。
<Comparative Example 9>
Using the same dry silica as in Example 1 as the inorganic particles, this was placed in a reaction vessel, and the fluoroalkyl acrylate of No. 13 shown in Table 2 was added to 100 g of the silica particles while stirring under a nitrogen gas atmosphere. 60 g (liquid component concentration: 20% by mass) of an aqueous dispersion of resin was sprayed, heated and stirred at 120 ° C. for 30 minutes, and then cooled to room temperature to prepare composite particles in which resin-coated particles were aggregated.

<比較例10>
無機粒子を用いることなく、表2に示されるNo.2のフルオロアルキルアクリレート樹脂の水分散液100g(液成分濃度:20質量%)を、以下、実施例1と同様にして、樹脂粒子を作製した。フルオロアルキルアクリレート樹脂のみからなる粒子のSEMにて観察した倍率3,000倍の写真図を図5に示す。
<Comparative Example 10>
Resin particles were prepared by using 100 g (liquid component concentration: 20% by mass) of an aqueous dispersion of No. 2 fluoroalkyl acrylate resin shown in Table 2 in the same manner as in Example 1 below, without using inorganic particles. did. FIG. 5 shows a photographic diagram of particles made of only fluoroalkyl acrylate resin at a magnification of 3,000 as observed by SEM.

<比較例11>
無機粒子として、実施例1と同一の乾式シリカを用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して表2に示されるNo.11のフルオロアルキルアクリレート樹脂の水分散液37.5g(液成分濃度:20質量%)を噴霧し、200℃で180分間加熱撹拌した後、室温まで冷却し、樹脂被覆粒子が凝集した複合粒子を作製した。
<Comparative Example 11>
Using the same dry silica as in Example 1 as the inorganic particles, this was placed in a reaction vessel, and the fluoroalkyl acrylate of No. 11 shown in Table 2 was added to 100 g of the silica particles while stirring under a nitrogen gas atmosphere. 37.5 g (liquid component concentration: 20% by mass) of an aqueous dispersion of resin was sprayed, heated and stirred at 200 ° C. for 180 minutes, and then cooled to room temperature to prepare composite particles in which resin-coated particles were aggregated.

<比較例12>
無機粒子として、実施例4と同一の乾式シリカを用いて、これを反応槽に入れ、窒素ガス雰囲気下、撹拌しながらこのシリカ粒子100gに対して表2に示されるNo.3のポリフルオロアルキルアクリレート樹脂の水分散液150g(液成分濃度:20質量%)を噴霧し、200℃で180分間加熱撹拌した後、室温まで冷却し、樹脂被覆粒子が凝集した複合粒子を作製した。
<Comparative Example 12>
As the inorganic particles, the same dry silica as in Example 4 was used, and this was placed in a reaction vessel, and the No. 3 polyfluoroalkyl shown in Table 2 was added to 100 g of the silica particles while stirring under a nitrogen gas atmosphere. 150 g (liquid component concentration: 20% by mass) of an aqueous dispersion of acrylate resin was sprayed, heated and stirred at 200 ° C. for 180 minutes, and then cooled to room temperature to prepare composite particles in which resin-coated particles were aggregated.

実施例1〜15及び比較例1〜12における無機粒子の種類と平均一次粒子径、被覆層の樹脂の種類と樹脂液噴霧量の割合を以下の表4に示す。 Table 4 below shows the types and average primary particle diameters of the inorganic particles, the type of resin in the coating layer, and the ratio of the amount of the resin liquid sprayed in Examples 1 to 15 and Comparative Examples 1 to 12.

実施例1〜15及び比較例1〜9、11、12で得られた乾式シリカ、乾式アルミナ、乾式チタニア、湿式シリカ、水酸化アルミニウム、フッ化カルシウム、フッ化マグネシウム、窒化ホウ素、シリカとチタニアの複合酸化物の無機粒子から作られた26種類の複合粒子及び比較例10の樹脂粒子のフッ素含有量、炭素含有量及び体積基準の平均粒径(D50)を前述の例示した方法で測定した。また27種類の複合粒子及び樹脂粒子をそれぞれエタノール100質量%に対して7質量%の割合で添加し、均一に分散させて分散液を調製し、この分散液をガラス板の表面にバーコーターにより塗布し、105℃のオーブン中に20秒間加熱し、厚さ60μmの27種類の塗膜を形成した。そして、27種類の塗膜に対する水の接触角、サラダ油の接触角、シリコーンオイルの接触角を、市販の測定装置(協和界面科学社製 接触角計、「Drop Master DM-301」)を用いて測定した。具体的には、シリンジに25℃のイオン交換水と、サラダ油と、2種類の異なる粘度(300cs、100cs)を有するシリコーンオイルを準備し、静止状態で水、サラダ油、シリコーンオイルが膜表面に触れた後の接触角を測定した。 Of the dry silica, dry alumina, dry titania, wet silica, aluminum hydroxide, calcium fluoride, magnesium fluoride, boron nitride, silica and titania obtained in Examples 1 to 15 and Comparative Examples 1 to 9, 11 and 12. The fluorine content, carbon content and volume-based average particle size (D 50 ) of 26 types of composite particles made from inorganic particles of composite oxide and the resin particles of Comparative Example 10 were measured by the above-exemplified method. .. Further, 27 kinds of composite particles and resin particles were added at a ratio of 7% by mass with respect to 100% by mass of ethanol, respectively, and uniformly dispersed to prepare a dispersion liquid, and this dispersion liquid was applied to the surface of a glass plate by a bar coater. It was applied and heated in an oven at 105 ° C. for 20 seconds to form 27 types of coatings having a thickness of 60 μm. Then, the contact angle of water, the contact angle of salad oil, and the contact angle of silicone oil with respect to 27 types of coating films were measured using a commercially available measuring device (contact angle meter manufactured by Kyowa Interface Science Co., Ltd., "Drop Master DM-301"). It was measured. Specifically, ion-exchanged water at 25 ° C., salad oil, and silicone oil having two different viscosities (300 cs, 100 cs) are prepared in a syringe, and water, salad oil, and silicone oil come into contact with the film surface in a stationary state. After that, the contact angle was measured.

フッ素含有量、炭素含有量及び体積基準の平均粒径(D50)の測定結果を前記の表4に、水、サラダ油、シリコーンオイルの測定結果を以下の表5にそれぞれ示す。また実施例6及び比較例2の塗膜表面におけるシリコーンオイルの撥油性を示す写真図を図2及び図3にそれぞれ示す。更に実施例1〜8の水、サラダ油、100csのシリコーンオイルの各接触角の写真図を図6に示す。 The measurement results of the fluorine content, carbon content and volume-based average particle size (D 50 ) are shown in Table 4 above, and the measurement results of water, salad oil and silicone oil are shown in Table 5 below. Further, FIGS. 2 and 3 show photographic drawings showing the oil repellency of the silicone oil on the coating film surfaces of Example 6 and Comparative Example 2, respectively. Further, FIG. 6 shows a photograph of the contact angles of water, salad oil, and 100 cs of silicone oil of Examples 1 to 8.

図4及び図5から明らかなように、実施例3の複合粒子は無機粒子がいくつか集まって形成されているため、複合粒子表面に微細な凹凸によるフラクタルな表面を有する形態であるのに対して、比較例10の樹脂粒子は樹脂のみで形成されているため、表面は平滑でフラクタルな表面を有しない形態であった。 As is clear from FIGS. 4 and 5, since the composite particles of Example 3 are formed by aggregating several inorganic particles, they have a fractal surface due to fine irregularities on the surface of the composite particles. Since the resin particles of Comparative Example 10 were formed only of resin, the surface was smooth and did not have a fractal surface.

表4及び表5から明らかなように、比較例1では、樹脂成分の噴霧量が5.0質量部であったため、フッ素含有量、炭素含有量が少なくなり、水及びシリコーンオイルの各接触角が低かった。 As is clear from Tables 4 and 5, in Comparative Example 1, since the spray amount of the resin component was 5.0 parts by mass, the fluorine content and the carbon content were reduced, and the contact angles of water and silicone oil were each reduced. Was low.

比較例2〜7では、被覆層が特許文献1に示される(ポリ)フルオロ(アルキル)メタクリレート樹脂で形成されるため、いかなる条件で複合粒子を形成しても、シリコーンオイルは弾かず撥油性は低かった。比較例2の複合粒子のシリコーンオイルに対する撥油性を図3に示す。 In Comparative Examples 2 to 7, since the coating layer is formed of the (poly) fluoro (alkyl) methacrylate resin shown in Patent Document 1, the silicone oil does not repel and the oil repellency is high regardless of the conditions under which the composite particles are formed. It was low. The oil repellency of the composite particles of Comparative Example 2 against silicone oil is shown in FIG.

比較例8では、樹脂を含む液を噴霧後、300℃の高温で熱処理したため、樹脂が熱分解して、撥水撥油性が得られなかった。 In Comparative Example 8, since the liquid containing the resin was sprayed and then heat-treated at a high temperature of 300 ° C., the resin was thermally decomposed and water and oil repellency could not be obtained.

比較例9では、樹脂を含む液を噴霧後、120℃の低温で熱処理したため、樹脂成分の乾燥が十分にされず、水分が複合粒子中に残存している状態であったため、撥水撥油性が得られなかった。 In Comparative Example 9, since the liquid containing the resin was sprayed and then heat-treated at a low temperature of 120 ° C., the resin component was not sufficiently dried and water remained in the composite particles, so that it was water- and oil-repellent. Was not obtained.

比較例10では、樹脂粒子が樹脂のみで形成され、表面は平滑でフラクタルな表面を有しない形態であったため、サラダ油及びシリコーンオイルに対する接触角は75〜77度程度あったが、水に対する接触角は0度であった。 In Comparative Example 10, since the resin particles were formed only of resin and the surface was smooth and did not have a fractal surface, the contact angle with salad oil and silicone oil was about 75 to 77 degrees, but the contact angle with water was about 75 to 77 degrees. Was 0 degrees.

比較例11では、樹脂を含む液を噴霧後、200℃で180分間の長時間熱処理したため、フッ素樹脂(No.11)成分の一部が長時間の熱安定性に乏しく分解して、水とサラダ油に対する接触角はそれぞれ150度、143度であったが、シリコーンオイルに対する接触角は45度程度で低く、撥油性が得られなかった。 In Comparative Example 11, since the liquid containing the resin was sprayed and then heat-treated at 200 ° C. for a long time of 180 minutes, a part of the fluororesin (No. 11) component was poorly decomposed for a long time with poor thermal stability and was decomposed with water. The contact angles with the salad oil were 150 degrees and 143 degrees, respectively, but the contact angles with the silicone oil were as low as about 45 degrees, and oil repellency could not be obtained.

比較例12では、樹脂を含む液を多量に噴霧後熱処理したため、複合粒子表面に覆われたフッ素樹脂成分が過多になり、微粒子によって形成されたフラクタルな構造が表面に覆われる樹脂によって相殺(表面がより平滑になって、構造効果が薄まって)されてしまい、サラダ油に対する接触角は144度であったが、水とシリコーンオイルに対する接触角はそれぞれ100度、40度で低く、高い撥水性、撥油性が得られなかった。 In Comparative Example 12, since a large amount of the liquid containing the resin was sprayed and then heat-treated, the fluororesin component covered on the surface of the composite particles became excessive, and the fractal structure formed by the fine particles was offset by the resin covered on the surface (surface). The contact angle with salad oil was 144 degrees, but the contact angles with water and silicone oil were low at 100 degrees and 40 degrees, respectively, and high water repellency. No oil repellency was obtained.

これに対して、実施例1〜15では、本発明の第5の観点に記載された要件で製造された複合粒子は、無機粒子の種類によらず樹脂液噴霧量が所定量であれば、無機粒子の表面が(ポリ)フルオロ(アルキル)メタクリレート樹脂を含む所定の厚さの被覆層で形成されるため、水及びサラダ油に対する接触角が大きいことは勿論のこと、シリコーンオイルに対しても接触角が大きく、撥水撥油性を示すことが分かった。特に表4、表5及び図2の実施例6から明らかなように、(ポリ)フルオロ(アルキル)アクリレート樹脂量に応じて、ガラス塗膜とシリコーンオイルとの接触角が大きくなるというシリコーンオイルの撥油性効果が高くなることが分かった。 On the other hand, in Examples 1 to 15, the composite particles produced according to the requirements described in the fifth aspect of the present invention have a predetermined amount of resin liquid sprayed regardless of the type of inorganic particles. Since the surface of the inorganic particles is formed of a coating layer having a predetermined thickness containing a (poly) fluoro (alkyl) methacrylate resin, the contact angle with water and salad oil is large, and the contact with silicone oil is also large. It was found that the horns were large and the water and oil repellency was exhibited. In particular, as is clear from Example 6 of Tables 4, 5 and 2, the contact angle between the glass coating film and the silicone oil increases depending on the amount of the (poly) fluoro (alkyl) acrylate resin. It was found that the oil-repellent effect was enhanced.

本発明の撥水撥油性塗膜は、電子材料、建築、輸送機器、事務用品、日用品、台所用品、トイレタリー用品、医療用品等の撥水撥油性を要求される分野で利用される。 The water- and oil-repellent coating film of the present invention is used in fields where water- and oil-repellent properties are required, such as electronic materials, construction, transportation equipment, office supplies, daily necessities, kitchen supplies, toiletry products, and medical supplies.

Claims (7)

平均一次粒子径が5〜100nmである無機粒子の表面にフルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂を含む被覆層が形成された樹脂被覆粒子が複数凝集して構成され、フッ素含有量が1.5〜7.5質量%であり、かつ体積基準の平均粒径(D50)が1〜100μmである撥水撥油性塗膜形成用複合粒子。 A plurality of resin-coated particles in which a coating layer containing a fluoroalkyl acrylate resin or a fluoroacrylate resin is formed on the surface of inorganic particles having an average primary particle size of 5 to 100 nm are aggregated and have a fluorine content of 1.5 to 1. A composite particle for forming a water- and oil-repellent coating film, which is 7.5% by mass and has a volume-based average particle size (D 50) of 1 to 100 μm. 前記複合粒子の炭素含有量が2.0〜10.0質量%である請求項1記載の複合粒子。 The composite particle according to claim 1, wherein the composite particle has a carbon content of 2.0 to 10.0% by mass. 前記無機粒子が酸化物、水酸化物、フッ化物、窒化物及び複合酸化物からなる群より選ばれた1種又は2種以上の粒子である請求項1又は2記載の複合粒子。 The composite particle according to claim 1 or 2, wherein the inorganic particle is one or more particles selected from the group consisting of oxides, hydroxides, fluorides, nitrides and composite oxides. 無機粒子が乾式粒子である請求項3記載の複合粒子。 The composite particle according to claim 3, wherein the inorganic particle is a dry particle. 平均一次粒子径が5〜100nmである無機粒子を反応槽に入れ、前記反応槽内で前記無機粒子を不活性ガス雰囲気下で撹拌しながらフルオロアルキルアクリレート樹脂又はフルオロアクリレート樹脂を含む液を、噴霧量が前記無機粒子100質量部に対して前記樹脂成分が7.5〜25.0質量部になるように、噴霧しながら150〜220℃の温度で30〜120分間熱処理して、前記無機粒子の表面をフルオロアルキルアクリレート樹脂層又はフルオロアクリレート樹脂層で被覆することにより樹脂被覆粒子を形成するとともに前記樹脂被覆粒子を凝集して、請求項1ないし4いずれか1項に記載の撥水撥油性塗膜形成用複合粒子を製造する方法。 Inorganic particles having an average primary particle size of 5 to 100 nm are placed in a reaction vessel, and a liquid containing a fluoroalkyl acrylate resin or a fluoroacrylate resin is sprayed in the reaction vessel while stirring the inorganic particles in an inert gas atmosphere. The inorganic particles are heat-treated at a temperature of 150 to 220 ° C. for 30 to 120 minutes while spraying so that the amount of the resin component is 7.5 to 25.0 parts by mass with respect to 100 parts by mass of the inorganic particles. The water and oil repellency according to any one of claims 1 to 4 is formed by coating the surface of the above with a fluoroalkyl acrylate resin layer or a fluoroacrylate resin layer to form resin-coated particles and agglomerate the resin-coated particles. A method for producing composite particles for forming a coating film. 請求項1ないし4いずれか1項に記載の撥水撥油性塗膜形成用複合粒子或いは請求項5に記載の方法で製造された撥水撥油性塗膜形成用複合粒子を溶媒に、溶媒100質量%に対して前記複合粒子10〜20質量%の割合で、分散させて分散液を調製し、前記分散液を基材表面に塗布して撥水撥油性塗膜を形成する方法。 Solvent 100 using the water-repellent oil-repellent coating film-forming composite particles according to any one of claims 1 to 4 or the water-repellent oil-repellent coating film-forming composite particles produced by the method according to claim 5 as a solvent. A method of preparing a dispersion liquid by dispersing the composite particles at a ratio of 10 to 20% by mass with respect to mass%, and applying the dispersion liquid to the surface of a substrate to form a water-repellent oil-repellent coating film. 前記形成された撥水撥油性塗膜に対する、水の接触角が25℃で110度以上、サラダ油の接触角が25℃で120度以上、シリコーンオイルの接触角が25℃で60度以上である請求項6記載の撥水撥油性塗膜の形成方法。 The contact angle of water with respect to the formed water- and oil-repellent coating film is 110 degrees or more at 25 ° C., the contact angle of salad oil is 120 degrees or more at 25 ° C., and the contact angle of silicone oil is 60 degrees or more at 25 ° C. The method for forming a water- and oil-repellent coating film according to claim 6.
JP2017171132A 2017-09-06 2017-09-06 Composite particles for forming a water- and oil-repellent coating film, a method for producing the same, and a method for forming a water- and oil-repellent coating film using the composite particles. Active JP6832816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017171132A JP6832816B2 (en) 2017-09-06 2017-09-06 Composite particles for forming a water- and oil-repellent coating film, a method for producing the same, and a method for forming a water- and oil-repellent coating film using the composite particles.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017171132A JP6832816B2 (en) 2017-09-06 2017-09-06 Composite particles for forming a water- and oil-repellent coating film, a method for producing the same, and a method for forming a water- and oil-repellent coating film using the composite particles.

Publications (2)

Publication Number Publication Date
JP2019044121A JP2019044121A (en) 2019-03-22
JP6832816B2 true JP6832816B2 (en) 2021-02-24

Family

ID=65815407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017171132A Active JP6832816B2 (en) 2017-09-06 2017-09-06 Composite particles for forming a water- and oil-repellent coating film, a method for producing the same, and a method for forming a water- and oil-repellent coating film using the composite particles.

Country Status (1)

Country Link
JP (1) JP6832816B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112538760A (en) * 2020-11-24 2021-03-23 京准化工技术(上海)有限公司 Six-carbon fluorine-series high-washing-resistance waterproof and oil-proof agent and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011161322A (en) * 2010-02-05 2011-08-25 Mitsubishi Electric Corp Water-repellent member and method of producing the same
JP5242841B1 (en) * 2012-10-13 2013-07-24 日本アエロジル株式会社 Water- and oil-repellent coating films and articles containing the coating films
JP6552186B2 (en) * 2014-11-21 2019-07-31 デクセリアルズ株式会社 Coating composition and super water repellent film
JP2016176036A (en) * 2015-03-20 2016-10-06 三菱マテリアル電子化成株式会社 Surface treatment agent, surface-treated member and method for producing surface-treated member
JP6666144B2 (en) * 2015-12-28 2020-03-13 東洋アルミエコープロダクツ株式会社 Antifouling sheet

Also Published As

Publication number Publication date
JP2019044121A (en) 2019-03-22

Similar Documents

Publication Publication Date Title
Isakov et al. Superhydrophobic antireflection coating on glass using grass-like alumina and fluoropolymer
JP6236454B2 (en) Super hydrophobic powder coating
Tiwari et al. Highly liquid-repellent, large-area, nanostructured poly (vinylidene fluoride)/poly (ethyl 2-cyanoacrylate) composite coatings: particle filler effects
KR101499766B1 (en) Water- and oil-repellent coating film and articles having this coating film
CN104513579B (en) A kind of super hydrophobic coating and preparation method thereof
US5968642A (en) Article having a water-repellent fluororesin surface, and method for manufacturing the same
JP5103702B2 (en) Resin aqueous dispersion composition
Saifaldeen et al. The effect of polar end of long-chain fluorocarbon oligomers in promoting the superamphiphobic property over multi-scale rough Al alloy surfaces
Dupin et al. Efficient synthesis of poly (2-vinylpyridine)− silica colloidal nanocomposite particles using a cationic Azo initiator
NL8000931A (en) FLUOROCARBON PREPARATIONS AND METHOD FOR COATING BY A SPRAY TREATMENT.
JP2015071757A (en) Method of manufacture for graphene fluoropolymer dispersion
JP2013208816A (en) Heat sealing film
JP6832816B2 (en) Composite particles for forming a water- and oil-repellent coating film, a method for producing the same, and a method for forming a water- and oil-repellent coating film using the composite particles.
CN105131779A (en) Ultraviolet curing organic silicon release agent and preparation method thereof
JPH08113756A (en) Production of article having surface of water-repellent fluorine-containing resin
CN109983088A (en) Fluorocarbon polymer coating composition
JP6996897B2 (en) Laminate
JP2010502437A (en) Method of manufacturing a structured release liner
JP6801474B2 (en) Water and oil repellent film
US7779776B2 (en) Polyceramic-coated tool for applying a flowable composition
JP2021146651A (en) Laminate
JP4398043B2 (en) Article having fluororesin coating film and method for producing the same
JP7093197B2 (en) Coating material for natto
JP7176516B2 (en) Water-based paints and coated substrates
JP2011161322A (en) Water-repellent member and method of producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210202

R150 Certificate of patent or registration of utility model

Ref document number: 6832816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250