JP6832728B2 - A method for estimating the production status of organic copper compounds and copper sulfide in oil-containing cables by insulating oil analysis, and a method for diagnosing the risk of abnormal occurrence of oil-containing cables. - Google Patents

A method for estimating the production status of organic copper compounds and copper sulfide in oil-containing cables by insulating oil analysis, and a method for diagnosing the risk of abnormal occurrence of oil-containing cables. Download PDF

Info

Publication number
JP6832728B2
JP6832728B2 JP2017017098A JP2017017098A JP6832728B2 JP 6832728 B2 JP6832728 B2 JP 6832728B2 JP 2017017098 A JP2017017098 A JP 2017017098A JP 2017017098 A JP2017017098 A JP 2017017098A JP 6832728 B2 JP6832728 B2 JP 6832728B2
Authority
JP
Japan
Prior art keywords
oil
copper
amount
tan
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017017098A
Other languages
Japanese (ja)
Other versions
JP2018124185A (en
Inventor
中出 雅彦
雅彦 中出
健郎 松井
健郎 松井
杉本 修
修 杉本
茂樹 永原
茂樹 永原
淳也 羽田
淳也 羽田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Tokyo Densetsu Service Co Ltd
Original Assignee
Tokyo Electric Power Co Inc
Tokyo Densetsu Service Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Tokyo Densetsu Service Co Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP2017017098A priority Critical patent/JP6832728B2/en
Publication of JP2018124185A publication Critical patent/JP2018124185A/en
Application granted granted Critical
Publication of JP6832728B2 publication Critical patent/JP6832728B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、絶縁油分析による油入りケーブル中の有機銅化合物および硫化銅の生成状況の推定方法、並びに油入りケーブルの異常発生の危険度の診断方法に関する。 The present invention relates to a method for estimating the production status of an organic copper compound and copper sulfide in an oil-containing cable by insulating oil analysis, and a method for diagnosing the risk of abnormal occurrence of the oil-containing cable.

油入り変圧器などの油入り電気機器は、油入り電気機器の銅部品と絶縁油中の硫黄成分の反応により導電性の硫化銅が生成(硫化腐食)し、絶縁破壊を引き起こすために油入り電気機器に致命的な損傷を及ぼす場合があることが知られている。絶縁油中の推定硫黄成分としては、絶縁油中に含まれている硫黄成分や、絶縁紙等の部材から溶出する溶出硫黄成分や、絶縁油に後添加する酸化防止剤等の添加硫黄成分が考えられる。 In oil-containing electrical equipment such as oil-containing transformers, conductive copper sulfide is generated (sulfide corrosion) by the reaction between the copper parts of the oil-containing electrical equipment and the sulfur component in the insulating oil, and oil is contained in order to cause dielectric breakdown. It is known that it can cause fatal damage to electrical equipment. The estimated sulfur components in the insulating oil include the sulfur component contained in the insulating oil, the eluted sulfur component eluted from the members such as insulating paper, and the added sulfur component such as the antioxidant added to the insulating oil. Conceivable.

大型変圧器などの油入り電気機器では、絶縁体として油浸紙を使用するため、この油浸絶縁紙に硫化銅が付着したときはコイル間で短絡が発生し、破壊されることになり、海外では絶縁破壊事例として報告されている。また、同じ絶縁体として油浸紙を使用している油入りケーブルの劣化は、非常に緩やかであると考えられてきたが、近年経年油入りケーブル線路における絶縁破壊事例も確認されている。ただし、絶縁破壊要因が硫化銅生成という報告はされていない。 Oil-filled electrical equipment such as large transformers use oil-impregnated paper as an insulator, so if copper sulfide adheres to this oil-impregnated insulating paper, a short circuit will occur between the coils and it will be destroyed. It has been reported overseas as a case of dielectric breakdown. In addition, it has been thought that the deterioration of oil-filled cables that use oil-impregnated paper as the same insulator is very gradual, but in recent years, dielectric breakdown cases in oil-filled cable lines have been confirmed. However, it has not been reported that the cause of dielectric breakdown is copper sulfide formation.

硫化銅生成に関わる反応メカニズムは、絶縁油中に添加された酸化防止剤ジベンジルジスルフィド(以下、「DBDS」と略称することがある。)との関係で詳細に検討されている。すなわち、DBDSがコイル銅に吸着し、次に、DBDSがコイル銅と反応してDBDS−銅錯体を生成し、さらに、DBDS−銅錯体がベンジルラジカル及びベンジルスルフェニルラジカルと硫化銅へと分解する反応が起こるためと報告されている(例えば、特許文献1〜3を参照)。 The reaction mechanism involved in the formation of copper sulfide has been investigated in detail in relation to the antioxidant dibenzyldisulfide (hereinafter, may be abbreviated as "DBDS") added to the insulating oil. That is, DBDS is adsorbed on coiled copper, then DBDS reacts with coiled copper to form a DBDS-copper complex, which is further decomposed into benzyl radicals, benzylsulphenyl radicals and copper sulfide. It has been reported that the reaction occurs (see, for example, Patent Documents 1 to 3).

特許文献1および特許文献2では、稼動中の変圧器から絶縁油を採取し、DBDSやその分解物、副生成物などを分析して硫化銅の生成を予測し、油入り電気機器の異常発生の危険度を診断する方法を開示している。また、特許文献3では、絶縁油が空気雰囲気下にある場合に、絶縁油中のジベンジルスルホキシドの濃度を測定し、該濃度に基づいて、硫化銅の生成量を推定する方法を開示している。 In Patent Document 1 and Patent Document 2, insulating oil is collected from an operating transformer, and DBDS, its decomposition products, by-products, etc. are analyzed to predict the formation of copper sulfide, resulting in an abnormality in oil-containing electrical equipment. Discloses a method for diagnosing the degree of risk of. Further, Patent Document 3 discloses a method of measuring the concentration of dibenzyl sulfoxide in the insulating oil when the insulating oil is in an air atmosphere and estimating the amount of copper sulfide produced based on the concentration. There is.

しかしながら、上記の診断方法は、絶縁油中にDBDSが添加されていることが不可欠であり、基本的にDBDSを添加していない絶縁油を用いている油入りケーブルの場合は、絶縁油中のDBDS−銅錯体生成量から絶縁油中の硫化銅生成量を推定できない問題点がある。また、従来、油入りケーブルの点検技術としては、絶縁油の誘電正接(tanδ)測定や、絶縁油中のガスを分析し、部分放電(絶縁油の局所的な絶縁破壊)により生成される可燃性ガス量を、劣化度合いの目安とする油中ガス分析が一般的であり、有機銅化合物や硫化銅の生成状況から危険度を診断する方法は実施されていない。 However, in the above diagnostic method, it is indispensable that DBDS is added to the insulating oil, and in the case of an oil-filled cable that basically uses an insulating oil to which DBDS is not added, it is in the insulating oil. There is a problem that the amount of copper sulfide produced in the insulating oil cannot be estimated from the amount of DBDS-copper complex produced. In addition, conventionally, as an inspection technique for oil-containing cables, the dielectric normal contact (tan δ) of the insulating oil is measured, the gas in the insulating oil is analyzed, and the combustible is generated by partial discharge (local dielectric breakdown of the insulating oil). Oil gas analysis using the amount of sex gas as a measure of the degree of deterioration is common, and a method of diagnosing the degree of risk from the production status of organic copper compounds and copper sulfide has not been implemented.

特開2010−010439号公報JP-A-2010-010439 特開2012−156232号公報Japanese Unexamined Patent Publication No. 2012-156232 特開2014−045212号公報JP-A-2014-045212

本発明は、前記従来の課題に鑑みてなされたものであり、油入りケーブル中の有機銅化合物および硫化銅の生成状況を推定し、当該方法で推定された有機銅化合物および硫化銅の生成状況に基づいて、油入りケーブルの異常発生の危険度を評価する診断方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned conventional problems, and estimates the production status of the organic copper compound and copper sulfide in the oil-containing cable, and the production status of the organic copper compound and copper sulfide estimated by the method. It is an object of the present invention to provide a diagnostic method for evaluating the risk of abnormal occurrence of an oil-containing cable based on the above.

前記課題を解決するため、本発明者らは鋭意検討した。その結果、絶縁油を使用した油入りケーブルの解体調査結果より、当該油入りケーブル中においても硫化銅が生成すること;硫化銅の生成原因と思われる絶縁油中の溶解銅量(以下、油中溶解銅量という。)と絶縁油の誘電正接(tanδ)との間に相関関係が認められること;有機銅化合物および硫化銅生成時には、油中溶解銅量と誘電正接(tanδ)の経時変化を示したトレンドグラフにおいてそれぞれの値が極大値をとった後に減少する傾向があること;有機銅化合物および硫化銅の生成時には絶縁油中に可燃性ガスが発生し、絶縁油中の可燃性ガス総量(Total Combustible Gas:TCG)が増加すること;に着目した。
そして、油入りケーブルから採取した絶縁油の油中溶解銅量、誘電正接(tanδ)及び可燃性ガス量(TCG)から有機銅化合物および硫化銅の生成状況を推定することができ、当該方法で推定された有機銅化合物および硫化銅の生成状況に基づいて、油入りケーブルの異常発生の危険度を診断することが可能であることを見出し、本発明を完成するに至った。
In order to solve the above problems, the present inventors have diligently studied. As a result, based on the results of dismantling of oil-containing cables using insulating oil, copper sulfide is also produced in the oil-containing cable; the amount of molten copper in the insulating oil that is thought to be the cause of copper sulfide formation (hereinafter referred to as oil). A correlation is observed between the amount of dissolved copper in the oil and the dielectric tangent (tan δ) of the insulating oil; the change over time between the amount of dissolved copper in the oil and the dielectric tangent (tan δ) during the production of organic copper compounds and copper sulfide. In the trend graph showing, each value tends to decrease after reaching the maximum value; flammable gas is generated in the insulating oil during the formation of the organic copper compound and copper sulfide, and the flammable gas in the insulating oil. We focused on the increase in total amount (Total Copper Gas: TCG);
Then, the production status of the organic copper compound and copper sulfide can be estimated from the amount of dissolved copper in the oil, the dielectric positive contact (tan δ) and the amount of flammable gas (TCG) of the insulating oil collected from the oil-containing cable, and this method can be used. We have found that it is possible to diagnose the risk of abnormal occurrence of oil-containing cables based on the estimated production status of organic copper compounds and copper sulfide, and have completed the present invention.

すなわち、本発明の硫化銅生成状況の推定方法は、
絶縁油を使用した油入りケーブルにおいて、該ケーブル内における有機銅化合物および硫化銅の生成状況を推定する方法であって、
前記油入りケーブルの使用経過に応じて、該ケーブルから絶縁油を採取して、該絶縁油の油中溶解銅量、誘電正接(tanδ)および可燃性ガス総量(TCG)を測定し、得られた測定値に基づき、油中溶解銅量および誘電正接(tanδ)の少なくとも一方と可燃性ガス総量(TCG)の経時変化を示すトレンドグラフを作成する工程1と、
前記工程1で得られた測定値に基づき、下記式(1)により、最大油中溶解銅量を求める工程2を含み、
作成されたトレンドグラフにおいて、油中溶解銅量もしくは誘電正接(tanδ)の値が極大値を示した後に減少して行く期間を、有機銅化合物および硫化銅の生成期と推定し、前記工程2で求めた最大油中溶解銅量と、前記トレンドグラフで示される有機銅化合物および硫化銅の生成期における可燃性ガス総量(TCG)の最大値から、油入りケーブル内における有機銅化合物および硫化銅の生成状況を推定することを特徴とする。
[Cu]max=(tanδmax−tanδ)×{[Cu]/(tanδ−tanδ)}・・・(1)
(ただし、上記式(1)において、[Cu]maxは、最大油中溶解銅量であり、tanδmaxは、前記工程1で作成された誘電正接(tanδ)のトレンドグラフから導いた極大値であり、tanδは、油入りケーブルの使用開始前における絶縁油(新品の絶縁油)の誘電正接(tanδ)の値であり、tanδおよび[Cu]はそれぞれ、油入りケーブルの使用開始後のある時点における絶縁油の誘電正接(tanδ)および油中溶解銅量の各値である。)
That is, the method for estimating the copper sulfide production state of the present invention is
A method for estimating the production status of an organic copper compound and copper sulfide in an oil-containing cable using insulating oil.
Insulating oil is sampled from the cable according to the progress of use of the oil-containing cable, and the amount of dissolved copper in the oil, the dielectric normal contact (tan δ) and the total amount of flammable gas (TCG) of the insulating oil are measured and obtained. Step 1 of creating a trend graph showing changes over time in at least one of the amount of dissolved copper in oil and the dielectric positive contact (tan δ) and the total amount of flammable gas (TCG) based on the measured values.
Including step 2 of determining the maximum amount of dissolved copper in oil by the following formula (1) based on the measured value obtained in step 1.
In the created trend graph, the period during which the amount of dissolved copper in oil or the value of dielectric tangent (tan δ) reaches the maximum value and then decreases is estimated as the production period of the organic copper compound and copper sulfide. From the maximum amount of dissolved copper in oil obtained in 1 and the maximum value of the total amount of flammable gas (TCG) in the production period of the organic copper compound and copper sulfide shown in the trend graph, the organic copper compound and copper sulfide in the oil-filled cable It is characterized by estimating the generation status of.
[Cu] max = (tanδ max -tanδ 0) × {[Cu] / (tanδ-tanδ 0)} ··· (1)
(However, in the above formula (1), [Cu] max is the maximum amount of dissolved copper in oil, and tanδ max is the maximum value derived from the trend graph of dielectric loss tangent (tanδ) prepared in step 1. Yes, tan δ 0 is the value of the dielectric loss tangent (tan δ) of the insulating oil (new insulating oil) before the start of use of the oil-containing cable, and tan δ and [Cu] are the values after the start of use of the oil-containing cable, respectively. It is each value of the dielectric loss tangent (tan δ) of the insulating oil and the amount of molten copper in the oil at the time point.

このような本発明の有機銅化合物および硫化銅の生成状況の推定方法は、油入りケーブルを構成する導体が、絶縁油中の炭化水素や非炭化水素化合物と反応し、銅錯体もしくは銅化合物として絶縁油中に溶解し、当該銅錯体が高電界領域にある補強絶縁層の絶縁紙に誘電泳動により凝集し、銅触媒として絶縁油の酸化や銅錯体もしくは銅化合物との結合反応を促進させ、有機銅化合物を生成する、ひいては硫化銅を生成し、この有機銅化合物もしくは硫化銅が高電界領域に誘電泳動し、絶縁紙上に凝集堆積するとの推定に基づいている。
また、油入りケーブル使用前の絶縁油について、誘電正接(tanδ)と油中溶解銅量との間に直線性の正の相関が認められるため、上記式(1)に基づき、最大油中溶解銅量が算出でき、該最大油中溶解銅量は大きいほど、有機銅化合物および硫化銅の生成量が多くなるとの推定に基づいている。
In the method for estimating the production status of the organic copper compound and copper sulfide of the present invention, the conductor constituting the oil-containing cable reacts with the hydrocarbon or non-hydrogen compound in the insulating oil to form a copper complex or a copper compound. It dissolves in the insulating oil, and the copper complex aggregates on the insulating paper of the reinforcing insulating layer in the high electric field region by dielectric migration, and promotes the oxidation of the insulating oil and the bonding reaction with the copper complex or copper compound as a copper catalyst. It is based on the presumption that an organic copper compound is produced, and thus copper sulfide is produced, and this organic copper compound or copper sulfide is dielectrically migrated to a high electric field region and aggregated and deposited on insulating paper.
Further, regarding the insulating oil before using the oil-containing cable, a positive linear correlation is observed between the dielectric positive contact (tan δ) and the amount of dissolved copper in the oil. Therefore, the maximum dissolution in the oil is based on the above formula (1). The amount of copper can be calculated, and it is estimated that the larger the maximum amount of dissolved copper in oil, the larger the amount of organic copper compound and copper sulfide produced.

また、油中溶解銅量と誘電正接(tanδ)のトレンドは相関する。いずれのパラメータを使用しても有機銅化合物および硫化銅の生成状況を推定することが可能である。蓄積データ量、信頼性の高さ、データ処理のし易さ等を考慮して任意に選択できる。 In addition, the amount of dissolved copper in oil and the trend of dielectric loss tangent (tan δ) correlate. It is possible to estimate the production status of the organic copper compound and copper sulfide using any of the parameters. It can be arbitrarily selected in consideration of the amount of stored data, high reliability, ease of data processing, and the like.

また、本発明の硫化銅生成状況の推定方法においては、
前記工程1で得られた測定値および前記工程2で求めた最大油中溶解銅量に基づき、最大油中溶解銅量からの減少量を求める工程3をさらに含み、
前記工程3で求めた最大油中溶解銅量からの減少量をさらに用いて、油入りケーブル内における有機銅化合物および硫化銅の生成状況を推定することが好ましい。
Further, in the method for estimating the copper sulfide production state of the present invention,
Further including step 3 for obtaining the amount of decrease from the maximum amount of dissolved copper in oil based on the measured value obtained in the step 1 and the maximum amount of dissolved copper in oil obtained in the step 2.
It is preferable to estimate the production status of the organic copper compound and copper sulfide in the oil-containing cable by further using the amount of decrease from the maximum amount of dissolved copper in oil obtained in step 3.

また、本発明の硫化銅生成状況の推定方法においては、
前記工程1で得られた測定値に基づき、油中溶解銅量に対する誘電正接(tanδ)の比を求める工程4をさらに含み、
前記工程4で求めた油中溶解銅量に対する誘電正接(tanδ)の比をさらに用いて、油入りケーブル内における有機銅化合物および硫化銅の生成状況を推定することが好ましい。
Further, in the method for estimating the copper sulfide production state of the present invention,
Further including step 4 for determining the ratio of dielectric loss tangent (tan δ) to the amount of dissolved copper in oil based on the measured value obtained in step 1.
It is preferable to further use the ratio of the dielectric loss tangent (tan δ) to the amount of dissolved copper in oil obtained in step 4 to estimate the production status of the organic copper compound and copper sulfide in the oil-containing cable.

また、本発明の診断方法は、
絶縁油を使用した油入りケーブルにおいて、該ケーブル内における異常発生の危険度を評価する診断方法であって、
前記油入りケーブルの使用経過に応じて、該ケーブルから絶縁油を採取して、該絶縁油の油中溶解銅量、誘電正接(tanδ)および可燃性ガス総量(TCG)を測定し、得られた測定値に基づき、油中溶解銅量および誘電正接(tanδ)の少なくとも一方と可燃性ガス総量(TCG)の経時変化を示すトレンドグラフを作成する工程1と、
前記工程1で得られた測定値に基づき、下記式(1)により、最大油中溶解銅量を求める工程2と、
前記工程1で得られた測定値および前記工程2で求めた最大油中溶解銅量に基づき、最大油中溶解銅量からの減少量を求める工程3と、
前記工程1で得られた測定値に基づき、油中溶解銅量に対する誘電正接(tanδ)の比を求める工程4と、を含み、
前記工程1で作成されたトレンドグラフで示される油中溶解銅量および誘電正接(tanδ)の少なくとも一方が減少過程または減少後ほぼ定常状態にある油入りケーブルを、要診断と評価し、
前記要診断と評価された油入りケーブルについて、(a)前記工程2で求めた最大油中溶解銅量と、(b)前記トレンドグラフで示される有機銅化合物および硫化銅の生成期における可燃性ガス総量(TCG)の最大値と、(c)前記工程3で求めた最大油中溶解銅量からの減少量と、(d)前記工程4で求めた油中溶解銅量に対する誘電正接(tanδ)の比を、予め設定しておいた各基準値に基づき評価し、前記危険度を評価することを特徴とする。
[Cu]max=(tanδmax−tanδ)×{[Cu]/(tanδ−tanδ)}・・・(1)
(ただし、上記式(1)において、[Cu]maxは、最大油中溶解銅量であり、tanδmaxは、前記工程1で作成された誘電正接(tanδ)のトレンドグラフから導いた極大値であり、tanδは、油入りケーブルの使用開始前における絶縁油(新品の絶縁油)の誘電正接(tanδ)の値であり、tanδおよび[Cu]はそれぞれ、油入りケーブルの使用開始後のある時点における絶縁油の誘電正接(tanδ)および油中溶解銅量の各値である。)
Moreover, the diagnostic method of this invention
This is a diagnostic method for evaluating the risk of abnormalities occurring in an oil-filled cable using insulating oil.
Insulating oil is sampled from the cable according to the progress of use of the oil-containing cable, and the amount of dissolved copper in the oil, the dielectric normal contact (tan δ) and the total amount of flammable gas (TCG) of the insulating oil are measured and obtained. Step 1 of creating a trend graph showing changes over time in at least one of the amount of dissolved copper in oil and the dielectric positive contact (tan δ) and the total amount of flammable gas (TCG) based on the measured values.
Based on the measured values obtained in the above step 1, the step 2 in which the maximum amount of dissolved copper in oil is obtained by the following formula (1), and
Based on the measured value obtained in the step 1 and the maximum amount of dissolved copper in oil obtained in the step 2, the amount of decrease from the maximum amount of dissolved copper in oil is obtained in step 3 and
Including step 4 of determining the ratio of dielectric loss tangent (tan δ) to the amount of dissolved copper in oil based on the measured value obtained in step 1.
An oil-filled cable in which at least one of the amount of dissolved copper in oil and the dielectric loss tangent (tan δ) shown in the trend graph prepared in step 1 is in a nearly steady state during or after the decrease is evaluated as requiring diagnosis.
Regarding the oil-containing cable evaluated as requiring diagnosis, (a) the maximum amount of dissolved copper in oil obtained in the step 2 and (b) flammability during the production period of the organic copper compound and copper sulfide shown in the trend graph. The maximum value of the total amount of gas (TCG), (c) the amount of decrease from the maximum amount of dissolved copper in oil obtained in the step 3, and (d) the dielectric tangent (tan δ) with respect to the amount of dissolved copper in the oil obtained in the step 4. ) Is evaluated based on each preset reference value, and the degree of risk is evaluated.
[Cu] max = (tanδ max -tanδ 0) × {[Cu] / (tanδ-tanδ 0)} ··· (1)
(However, in the above formula (1), [Cu] max is the maximum amount of dissolved copper in oil, and tanδ max is the maximum value derived from the trend graph of dielectric loss tangent (tanδ) prepared in step 1. Yes, tan δ 0 is the value of the dielectric loss tangent (tan δ) of the insulating oil (new insulating oil) before the start of use of the oil-containing cable, and tan δ and [Cu] are the values after the start of use of the oil-containing cable, respectively. It is each value of the dielectric loss tangent (tan δ) of the insulating oil and the amount of molten copper in the oil at the time point.

また、本発明の診断方法においては(a)前記工程2で求めた最大油中溶解銅量と、(b)前記トレンドグラフで示される有機銅化合物および硫化銅の生成期における可燃性ガス総量(TCG)の最大値との両方が、予め設定しておいた各基準値を超える場合を、前記危険度がより高いと評価することが好ましい。 Further, in the diagnostic method of the present invention, (a) the maximum amount of dissolved copper in oil obtained in the step 2 and (b) the total amount of flammable gas in the production period of the organic copper compound and copper sulfide shown in the trend graph ( When both the maximum value of TCG) and the maximum value exceed each preset reference value, it is preferable to evaluate that the risk level is higher.

なお、油中溶解銅量は、有機銅化合物および硫化銅の生成要因となる銅量を表す指標であるため、有機銅化合物および硫化銅の生成に直結する因子である。また、可燃性ガス総量(TCG)量は、絶縁油溶存ガスの増加を表す指標であるため、部分放電の危険性を評価する上で重要である。 Since the amount of dissolved copper in oil is an index showing the amount of copper that is a factor in the production of the organic copper compound and copper sulfide, it is a factor directly linked to the production of the organic copper compound and copper sulfide. In addition, the total amount of flammable gas (TCG) is an index showing an increase in the dissolved gas of insulating oil, and is therefore important in evaluating the risk of partial discharge.

本発明の有機銅化合物および硫化銅の生成状況の推定方法によれば、トレンドグラフで示される油中溶解銅量もしくは誘電正接(tanδ)の値が、極大値を示した後に、減少して行く期間を、有機銅化合物および硫化銅の生成期と推定するので、油入りケーブルから採取した絶縁油の油中溶解銅量もしくは誘電正接(tanδ)の値から、有機銅化合物および硫化銅の生成状況を推定することが可能になる。
また、本発明の診断方法によれば、油中ガス分析(部分放電や熱劣化により発生したガスのトレンド傾向診断)、絶縁油の電気特性の低下傾向診断(tanδ、TCG、体積抵抗率、AC耐圧測定)、水の浸入診断(水分量測定)等による従来の診断方法とは異なる観点で、硫化銅生成メカニズムに基づいて診断するので、ジベンジルジスルフィドを添加していない絶縁油を使用した油入りケーブルについても劣化診断が可能になる。
According to the method for estimating the production status of the organic copper compound and copper sulfide of the present invention, the amount of dissolved copper in oil or the value of the dielectric tangent (tan δ) shown in the trend graph shows a maximum value and then decreases. Since the period is estimated to be the production period of the organic copper compound and copper sulfide, the production status of the organic copper compound and copper sulfide is based on the amount of dissolved copper in the oil or the value of the dielectric constant tangent (tan δ) of the insulating oil collected from the oil-containing cable. Can be estimated.
Further, according to the diagnostic method of the present invention, gas analysis in oil (diagnosis of trend tendency of gas generated by partial discharge or thermal deterioration), diagnosis of decrease tendency of electrical characteristics of insulating oil (tan δ, TCG, volume resistance, AC) Oil using insulating oil to which dibenzyldisulfide is not added because the diagnosis is made based on the copper sulfide formation mechanism from a viewpoint different from the conventional diagnostic methods such as pressure resistance measurement) and water infiltration diagnosis (water content measurement). Deterioration diagnosis is also possible for incoming cables.

さらに、絶縁油の誘電正接(tanδ)と絶縁油中の可燃性ガス総量(TCG)の測定データを使用するので、油入りケーブル稼働時より蓄積してきた測定データからトレンドグラフを作成することができる。さらに、上記式(1)によれば、絶縁油の誘電正接(tanδ)の最大値から、最大油中溶解銅量を容易に算出でき、生成期における可燃性ガス総量(TCG)の最大値や、最大油中溶解銅量からの減少量、油中溶解銅量に対する誘電正接(tanδ)の比と共に、解体した油入りケーブルにおける硫化銅生成範囲の広狭データと関連付けることで、危険度を評価、診断することができる。 Furthermore, since the measurement data of the dielectric loss tangent (tan δ) of the insulating oil and the total amount of flammable gas (TCG) in the insulating oil are used, a trend graph can be created from the measurement data accumulated from the operation of the oil-filled cable. .. Further, according to the above formula (1), the maximum amount of molten copper in oil can be easily calculated from the maximum value of the dielectric tangent (tan δ) of the insulating oil, and the maximum value of the total amount of flammable gas (TCG) in the production period and the maximum value. The risk is evaluated by associating with the wide and narrow data of the copper sulfide production range in the disassembled oil-filled cable, along with the amount of decrease from the maximum amount of dissolved copper in oil and the ratio of the dielectric tangent (tan δ) to the amount of dissolved copper in oil. Can be diagnosed.

従って、運転開始から30〜40年を迎える油入りケーブルについて、従来の蓄積データを活用しながら、手軽に精度よく診断することができる。 Therefore, it is possible to easily and accurately diagnose an oil-containing cable, which has been in operation for 30 to 40 years, while utilizing the conventional accumulated data.

OFケーブルの(a)断面図と(b)接続部構造の一例を示す図である。It is a figure which shows an example of (a) cross-sectional view and (b) connection part structure of an OF cable. ケーブルコア部の有機銅化合物、硫化銅生成例を示す図である。(a);オイルギャップに沿って生成された例を示す写真である。(b);ケーブルコア(絶縁紙全体)に生成された例を示す写真である。It is a figure which shows the example of the organic copper compound and copper sulfide production of a cable core part. (A); It is a photograph which shows the example generated along the oil gap. (B); It is a photograph which shows the example generated in the cable core (the whole insulating paper). 解体調査した経年OFケーブルの補強層での有機銅化合物、硫化銅生成傾向を示す図である。It is a figure which shows the tendency of organic copper compound, copper sulfide formation in the reinforcing layer of the aged OF cable which was dismantled and investigated. 解体調査した経年OFケーブルの補強層での有機銅化合物、硫化銅生成傾向を示す図である。It is a figure which shows the tendency of organic copper compound, copper sulfide formation in the reinforcing layer of the aged OF cable which was dismantled and investigated. tanδ、TCGの経時変化を示すトレンドグラフの一例を示す図である。It is a figure which shows an example of the trend graph which shows the time-dependent change of tan δ, TCG. 油中溶解銅量とtanδの相関図である。It is a correlation diagram of the amount of dissolved copper in oil and tan δ. OFケーブルに使用前の絶縁油を用いて銅棒から銅を溶解させた絶縁油における、油中溶解銅量とtanδの相関図である。It is a correlation diagram of the amount of dissolved copper in oil and tan δ in the insulating oil in which copper is dissolved from a copper rod using the insulating oil before use for the OF cable. 油中溶解銅量と解体調査結果との関係図である。It is a relationship diagram between the amount of dissolved copper in oil and the dismantling survey result. 油中溶解銅量とtanδ、有機銅化合物の凝集力の相関図である。It is a correlation diagram of the amount of dissolved copper in oil, tan δ, and the cohesive force of an organic copper compound. トレンドグラフ形状別の油中溶解銅量、tanδ、TCG、H量を示す図である。It is a figure which shows the amount of dissolved copper in oil, tan δ, TCG, H 2 amount by the shape of the trend graph.

以下、本発明による油入りケーブル(以下、OFケーブルと記す)内における有機銅化合物および硫化銅の生成状況の推定方法、ならびに、異常発生の危険度を評価する診断方法を詳細に説明する。 Hereinafter, a method for estimating the production status of an organic copper compound and copper sulfide in an oil-containing cable (hereinafter referred to as an OF cable) according to the present invention, and a diagnostic method for evaluating the risk of abnormal occurrence will be described in detail.

≪OFケーブルにおける劣化状況≫
OFケーブルの一例を図1に示す。図1(a)はOFケーブルの断面図、図1(b)はOFケーブル接続部構造を示したものである。OFケーブルは、単に油浸絶縁紙を絶縁体としただけでは、温度変化による絶縁油の圧力低下で絶縁油中に気泡が生じ、要求特性を満足しないため、導体(または金属被)の内側に油通路を設け、絶縁油に大気圧以上の圧力を外部に設置した油槽によって常時加え、高電界強度にも耐えられるように設計されている。OFケーブルの絶縁体は、図1(b)に示すように、テープ状の絶縁紙を巻き付けて絶縁油を含浸させることで構成される。その際、曲げ特性を向上させるために、通常、絶縁紙はラップさせず、ギャップを均等に設けて構成されている。
≪Deterioration status of OF cable≫
An example of the OF cable is shown in FIG. FIG. 1A shows a cross-sectional view of an OF cable, and FIG. 1B shows an OF cable connection portion structure. In the OF cable, if the oil-impregnated insulating paper is simply used as an insulator, bubbles are generated in the insulating oil due to the pressure drop of the insulating oil due to the temperature change, and the required characteristics are not satisfied. Therefore, the OF cable is inside the conductor (or metal cover). It is designed to withstand high electric field strength by providing an oil passage and constantly applying a pressure of atmospheric pressure or higher to the insulating oil by an oil tank installed outside. As shown in FIG. 1B, the insulator of the OF cable is configured by wrapping a tape-shaped insulating paper and impregnating it with insulating oil. At that time, in order to improve the bending characteristics, the insulating paper is usually not wrapped and the gaps are evenly provided.

OFケーブルの絶縁性能が低下する要因は、過熱による絶縁紙重合度の低下、振動・熱伸縮による損傷・変形・絶縁体の崩れ、負圧、漏油、絶縁油特性異常などが考えられており、従来より、各種点検技術が報告、実施されている。点検技術としては、例えば、油中ガス分析技術(部分放電や熱劣化により発生したガスのトレンド傾向診断)、絶縁油の電気特性(tanδ、TCG、体積抵抗率、AC耐圧測定)の低下傾向を診断する技術、水の浸入診断(水分量測定)等が存在する。 Factors that reduce the insulation performance of the OF cable are considered to be a decrease in the degree of polymerization of the insulating paper due to overheating, damage / deformation / collapse of the insulator due to vibration / thermal expansion / contraction, negative pressure, oil leakage, and abnormal insulation oil characteristics. , Various inspection techniques have been reported and implemented conventionally. As inspection technology, for example, gas analysis technology in oil (diagnosis of trend tendency of gas generated by partial discharge or thermal deterioration), electrical characteristics of insulating oil (tan δ, TCG, volumetric resistance, AC withstand voltage measurement) tend to decrease. There are techniques for diagnosing, water infiltration diagnosis (water content measurement), and the like.

OFケーブルの電気特性はAC電圧に対し裕度をもっているが、コアずれ等により絶縁紙のずれや損傷により欠陥が存在する場合、過電圧の侵入により欠陥部で部分放電が発生してガスが発生し、それが繰り返される場合には欠陥部にボイドとして存在する可能性がある。さらに、ボイドは絶縁耐力が著しく低いため、AC電圧の印加により部分放電が継続することも考えられる。 The electrical characteristics of the OF cable have a margin with respect to the AC voltage, but if there is a defect due to the displacement or damage of the insulating paper due to core displacement, etc., partial discharge will occur at the defective part due to the intrusion of overvoltage and gas will be generated. , If it is repeated, it may exist as a void in the defective part. Further, since the void has a remarkably low dielectric strength, it is conceivable that partial discharge will continue when an AC voltage is applied.

図2は、実設備で30年以上運転された経年OFケーブルを撤去し、解体調査を行った結果、ケーブルコア(ケーブル絶縁体)において、オイルギャップに沿ってスジ状に生成堆積した有機銅化合物や硫化銅(図2(a))、あるいは、ケーブルコア(絶縁紙)全体に点状の有機銅化合物や硫化銅(図2(b))が生成堆積した例を示した写真である。ケーブルコア部の有機銅化合物や硫化銅は、セミストップ下部のケーブルコア部に最も生成堆積する傾向がある。 Figure 2 shows the organic copper compound that was formed and deposited in a streak shape along the oil gap in the cable core (cable insulator) as a result of removing the aged OF cable that had been operated for more than 30 years in the actual equipment and conducting a disassembly survey. It is a photograph showing an example in which punctate organic copper compounds and copper sulfide (FIG. 2 (b)) were formed and deposited on the entire cable core (insulating paper) or copper sulfide (FIG. 2 (a)). Organocopper compounds and copper sulfide in the cable core tend to form and deposit most in the cable core below the semi-stop.

また、図3に示すように、ギャップ部に最も生成堆積するが、絶縁紙全体に生成堆積するケースもある。有機銅化合物や硫化銅は、ケーブルコア部の外層〜内層〜中層の順に生成堆積していくが、絶縁破壊したケーブルでは中層付近まで有機銅化合物や硫化銅が生成堆積していた例も存在する。 Further, as shown in FIG. 3, most of the formation and deposition occur in the gap portion, but there are cases where the formation and deposition occur in the entire insulating paper. Organocopper compounds and copper sulfide are formed and deposited in the order of outer layer to inner layer to middle layer of the cable core, but there are cases where organic copper compounds and copper sulfide are formed and deposited up to the vicinity of the middle layer in cables with dielectric breakdown. ..

図4は、絶縁破壊につながる可能性のある生成状況の一例を示したものである。図4に示すように、上下のオイルギャップが互いに近かったりつながったりした状況の場所で硫化銅が中層まで生成堆積すると、硫化銅生成堆積部も内外層から中層までつながることになる。これにより、絶縁性能が著しく低下し、絶縁破壊に至る可能性が大きくなる。 FIG. 4 shows an example of a generation situation that may lead to dielectric breakdown. As shown in FIG. 4, when copper sulfide is formed and deposited up to the middle layer in a place where the upper and lower oil gaps are close to each other or connected to each other, the copper sulfide formation and depositing portion is also connected from the inner and outer layers to the middle layer. As a result, the insulation performance is significantly reduced, and the possibility of dielectric breakdown increases.

≪OFケーブル中の硫化銅生成メカニズム≫
従来からのDBDSを添加した絶縁油中での硫化銅の生成は、DBDSと導体の銅が反応し、DBDS−銅錯体が絶縁油中に拡散し、油中拡散したDBDS−銅錯体が絶縁紙に吸着し、熱エネルギーにより分解されることで硫化銅が生成する、というメカニズムによるものと推定されている。
≪Copper sulfide formation mechanism in OF cable≫
In the conventional production of copper sulfide in insulating oil to which DBDS is added, DBDS reacts with copper in the conductor, the DBDS-copper complex diffuses into the insulating oil, and the DBDS-copper complex diffused in the oil becomes the insulating paper. It is presumed that this is due to the mechanism that copper sulfide is produced by adsorbing to copper and decomposing it by thermal energy.

一方、本発明では、OFケーブル中の硫化銅の生成は、(i)導体と絶縁油が反応し、(ii)銅錯体もしくは銅化合物として絶縁油中に溶解し、(iii)溶解した銅錯体もしくは銅化合物が誘電泳動により高電界領域に凝集し、(iv)銅触媒として絶縁油の酸化や銅錯体もしくは銅化合物との結合反応を促進させ、高分子状の有機銅化合物を生成し、(v)生成した有機銅化合物は高電界領域に誘電泳動によりさらに凝集し、高電界領域に凝集した銅錯体、銅化合物あるいは有機銅化合物が、絶縁紙あるいは絶縁油中に含まれる硫黄成分と反応することで硫化銅が生成する、というメカニズムによると推定している。そして、本発明では、銅錯体、銅化合物あるいは有機銅化合物と反応する硫黄成分は、DBDSのように絶縁油中に添加される成分とは限らず、絶縁紙の製造時に用いられた硫黄化合物に由来する硫黄成分や、絶縁油の原料である石油等に由来する硫黄成分も含まれると想定している。 On the other hand, in the present invention, in the formation of copper sulfide in the OF cable, (i) the conductor reacts with the insulating oil, (ii) is dissolved in the insulating oil as a copper complex or a copper compound, and (iii) the dissolved copper complex is formed. Alternatively, the copper compound aggregates in the high electric field region by dielectric migration, and (iv) promotes the oxidation of the insulating oil and the bonding reaction with the copper complex or the copper compound as a copper catalyst to produce a high molecular weight organic copper compound. v) The produced organic copper compound is further aggregated in the high electric field region by dielectric migration, and the copper complex, copper compound or organic copper compound aggregated in the high electric field region reacts with the sulfur component contained in the insulating paper or insulating oil. It is presumed that this is due to the mechanism by which copper sulfide is produced. In the present invention, the sulfur component that reacts with the copper complex, the copper compound, or the organic copper compound is not limited to the component added to the insulating oil like DBDS, but is the sulfur compound used in the production of the insulating paper. It is assumed that the sulfur component derived from it and the sulfur component derived from petroleum, which is a raw material of insulating oil, are also contained.

また、上記メカニズムでは、銅錯体もしくは銅化合物が絶縁油と反応して、高分子状の有機銅化合物が生成されると推定している。このような有機銅化合物は、分子量が大きい固体物質であり、高電界領域に誘電泳動により凝集しケーブルコア部等に堆積して、硫化銅と同様、絶縁性能の低下や、絶縁破壊を招く原因と想定される。 Further, in the above mechanism, it is presumed that the copper complex or the copper compound reacts with the insulating oil to produce a polymer-like organic copper compound. Such an organic copper compound is a solid substance having a large molecular weight, and agglomerates in a high electric field region by dielectrophoresis and deposits on a cable core or the like, which causes deterioration of insulation performance and dielectric breakdown like copper sulfide. Is assumed.

すなわち、本発明による硫化銅生成メカニズムは、DBDSのような硫黄化合物を添加しない絶縁油の場合でも、反応速度は非常に遅いが、時間を掛けて有機銅化合物および硫化銅が生成するとの想定に基づいており、銅+絶縁油+高電界の3条件が、有機銅化合物および硫化銅の生成に必要であると推定している。 That is, the copper sulfide formation mechanism according to the present invention assumes that an organic copper compound and copper sulfide are formed over time, although the reaction rate is very slow even in the case of an insulating oil to which a sulfur compound is not added, such as DBDS. Based on this, it is estimated that the three conditions of copper + insulating oil + high electric field are necessary for the formation of organic copper compounds and copper sulfide.

≪硫化銅生成メカニズムに基づく診断法≫
上記のOFケーブル中の硫化銅生成メカニズムによれば、(ii)銅錯体もしくは銅化合物が絶縁油中に溶解する状態になると、油中溶解銅量及び絶縁油の誘電正接(tanδ)が増加し、その後、(iii)銅錯体もしくは銅化合物が高電界領域に凝集した時点で溶解量は最大値となり、やがて、(iv)有機銅化合生成及び(v)硫化銅生成にともなって、油中溶解銅量及び絶縁油の誘電正接(tanδ)が減少する。
≪Diagnostic method based on copper sulfide formation mechanism≫
According to the copper sulfide formation mechanism in the OF cable described above, (ii) when the copper complex or copper compound is dissolved in the insulating oil, the amount of dissolved copper in the oil and the dielectric positive contact (tan δ) of the insulating oil increase. After that, when (iii) the copper complex or copper compound aggregates in the high electric field region, the amount of dissolution reaches the maximum value, and eventually, (iv) dissolution in oil with the formation of organic copper compound and (v) formation of copper sulfide. The amount of copper and the dielectric tangent (tan δ) of the insulating oil are reduced.

一方、銅錯体の生成反応、有機銅化合物および硫化銅の生成反応にともなって発生するガスは絶縁油に吸収されるため、油中ガス濃度が増加し、油中の可燃性ガス総量(TCG)の測定値が増大する。 On the other hand, the gas generated by the formation reaction of the copper complex and the formation reaction of the organic copper compound and copper sulfide is absorbed by the insulating oil, so that the gas concentration in the oil increases and the total amount of flammable gas (TCG) in the oil increases. The measured value of is increased.

図5は、上記のOFケーブル中の硫化銅生成メカニズムに基づく、絶縁油の誘電正接(tanδ)と油中の可燃性ガス総量(TCG)の増減を経時変化として示したトレンドグラフの一例である。 FIG. 5 is an example of a trend graph showing the increase / decrease in the dielectric loss tangent (tan δ) of the insulating oil and the total amount of combustible gas (TCG) in the oil based on the copper sulfide formation mechanism in the OF cable over time. ..

ここで、誘電正接(tanδ)のトレンドグラフは油中溶解銅量のトレンドと相関する。すなわち、油中溶解銅量および誘電正接(tanδ)のトレンドグラフ(図5)より、これらの特性値の「減少」期が、有機銅化合物および硫化銅の生成期(なお、図5中では「硫化銅生成期」と省略して記載している)に相当し、これらの特性値(絶対値)が大きいと、有機銅化合物および硫化銅になる油中溶解銅量が多いことから、有機銅化合物および硫化銅の生成量は多くなる、と推定することができる。よって、トレンドグラフで示される油中溶解銅量もしくは誘電正接(tanδ)の最大値から、OFケーブル内における有機銅化合物および硫化銅の生成状況を推定することが可能となる。 Here, the trend graph of dielectric loss tangent (tan δ) correlates with the trend of the amount of dissolved copper in oil. That is, from the trend graph (FIG. 5) of the amount of dissolved copper in oil and the dielectric tangent (tan δ), the “decrease” period of these characteristic values is the production period of the organic copper compound and copper sulfide (note that in FIG. 5, “ (It is abbreviated as "copper sulfide formation period"), and if these characteristic values (absolute values) are large, the amount of dissolved copper in the oil that becomes the organic copper compound and copper sulfide is large, so organic copper It can be estimated that the amount of compound and copper sulfide produced will be high. Therefore, it is possible to estimate the production status of the organic copper compound and copper sulfide in the OF cable from the maximum amount of dissolved copper in oil or the dielectric loss tangent (tan δ) shown in the trend graph.

<診断に必要な特性値の測定と分析>
図6は、油中溶解銅量と誘電正接(tanδ)の相関図の一例である。模擬試験として、OFケーブルに使用前の絶縁油を用いて、銅棒から銅を溶解させた絶縁油と銅化合物を溶解させた絶縁油について、油中溶解銅量の異なる絶縁油を作製し、各絶縁油について油中溶解銅量と誘電正接(tanδ)値を測定し、得られた測定値をプロットして近似直線を引き、相関係数を求めたものである。また、合わせて実設備から採油した絶縁油について、油中溶解銅量とtanδ値を測定し、得られた測定値をプロットしたものである。
<Measurement and analysis of characteristic values required for diagnosis>
FIG. 6 is an example of a correlation diagram between the amount of dissolved copper in oil and the dielectric loss tangent (tan δ). As a mock test, using the insulating oil before use for the OF cable, insulating oil with different amounts of dissolved copper in the oil was prepared for the insulating oil in which copper was dissolved from the copper rod and the insulating oil in which the copper compound was dissolved. For each insulating oil, the amount of dissolved copper in the oil and the dielectric tangent (tan δ) value were measured, the obtained measured values were plotted, an approximate straight line was drawn, and the correlation coefficient was obtained. In addition, the amount of dissolved copper in the oil and the tan δ value were measured for the insulating oil collected from the actual equipment, and the obtained measured values were plotted.

図6の結果より、銅や銅化合物を溶解させた絶縁油においては、油中溶解銅量と誘電正接(tanδ)の相関係数はいずれも0.9以上であり、相関係数0.9以上より直線性を確認できた。 From the results of FIG. 6, in the insulating oil in which copper or a copper compound is dissolved, the correlation coefficient between the amount of dissolved copper in the oil and the dielectric tangent (tan δ) is 0.9 or more, and the correlation coefficient is 0.9. From the above, the linearity was confirmed.

図7は、図6の結果より、OFケーブルに使用前の絶縁油を用いて、銅棒から銅を溶解させた絶縁油の測定結果について、両軸を整数にしたグラフである。
図7より、油中溶解銅量と誘電正接の関係を示す近似直線の近似式は、一次式により表すことができることが確認できた。
これらの知見に基づき、本発明者らは、下記式(1)により、tanδ値の過去最大値から最大油中溶解銅量を推定できることを見出した。
[Cu]max=(tanδmax−tanδ)×{[Cu]/(tanδ−tanδ)}・・・(1)
上記式(1)において、tanδmaxは、誘電正接(tanδ)の過去最大値であり、tanδは、新品の絶縁油の誘電正接(tanδ)の値であり、tanδおよび[Cu]はそれぞれ、使用開始後の実設備から、ある時点で採油した絶縁油の誘電正接(tanδ)および油中溶解銅量の各値である。
FIG. 7 is a graph in which both axes are integers for the measurement result of the insulating oil in which copper is dissolved from the copper rod by using the insulating oil before use for the OF cable from the result of FIG.
From FIG. 7, it was confirmed that the approximate expression of the approximate straight line showing the relationship between the amount of dissolved copper in oil and the dielectric loss tangent can be expressed by a linear expression.
Based on these findings, the present inventors have found that the maximum amount of dissolved copper in oil can be estimated from the past maximum value of the tan δ value by the following formula (1).
[Cu] max = (tanδ max -tanδ 0) × {[Cu] / (tanδ-tanδ 0)} ··· (1)
In the above formula (1), tan δ max is the record maximum value of dielectric loss tangent (tan δ), tan δ 0 is the value of dielectric loss tangent (tan δ) of new insulating oil, and tan δ and [Cu] are respectively. These are the values of the dielectric loss tangent (tan δ) of the insulating oil collected at a certain point in time and the amount of molten copper in the oil from the actual equipment after the start of use.

上記式(1)によれば、新品の絶縁油の誘電正接(tanδ)の値と、実設備から採油した絶縁油の、過去の誘電正接(tanδ)の最大値と、ある時点(例えば、直近の測定時点)における誘電正接(tanδ)および油中溶解銅量の各値から、容易に実設備の最大油中溶解銅量を算出でき、これにより有機銅化合物および硫化銅の生成状況を推定することが可能となる。
すなわち、最大油中溶解銅量が大きい場合には、有機銅化合物および硫化銅になる油中溶解銅量が多いため、有機銅化合物および硫化銅の生成量は多くなる、と推定することができる。また、最大油中溶解銅量と直近の測定時の油中溶解銅量との差(最大油中溶解銅量からの減少量)が大きい場合には、その測定時において、既に有機銅化合物および硫化銅が多量に生成量している、と推定することができる。
According to the above formula (1), the value of the dielectric tangent (tan δ) of the new insulating oil, the maximum value of the past dielectric tangent (tan δ) of the insulating oil collected from the actual equipment, and a certain time point (for example, the latest). The maximum amount of molten copper in oil can be easily calculated from the values of dielectric tangent (tan δ) and the amount of dissolved copper in oil at the time of measurement), and the production status of organic copper compounds and copper sulfide can be estimated from this. It becomes possible.
That is, when the maximum amount of dissolved copper in oil is large, it can be estimated that the amount of organic copper compound and copper sulfide produced is large because the amount of dissolved copper in oil that becomes the organic copper compound and copper sulfide is large. .. If the difference between the maximum amount of dissolved copper in oil and the amount of dissolved copper in oil at the latest measurement (the amount of decrease from the maximum amount of dissolved copper in oil) is large, the organic copper compound and the amount of copper dissolved in oil are already present at the time of measurement. It can be estimated that a large amount of copper sulfide is produced.

また、本発明者らは、実設備の解体調査結果より、図8に示すように、誘電正接(tanδ)の値が油中溶解銅量に対して、相関直線より高い値の絶縁油を使用している設備では、設備中の多箇所に有機銅化合物および硫化銅が生成していること、また、補強層の広範囲、ケーブルコアの内外層から中層付近まで有機銅化合物および硫化銅が生成していることを確認している。 Further, as shown in FIG. 8, the present inventors used an insulating oil having a value of dielectric tangent (tan δ) higher than the correlation line with respect to the amount of molten copper in the oil, based on the results of the dismantling survey of the actual equipment. In the equipment, organic copper compounds and copper sulfide are generated in many places in the equipment, and organic copper compounds and copper sulfide are generated in a wide range of the reinforcing layer, from the inner and outer layers of the cable core to the vicinity of the middle layer. I have confirmed that.

なお、図8に示すように、設備中の多箇所に有機銅化合物および硫化銅が生成していた設備の誘電正接(tanδ)のプロットは、誘電正接(tanδ)(%)と油中溶解銅量(ppm)の相関を表す直線(傾き0.9(%/ppm)の直線)より上の部分に存在する。 As shown in FIG. 8, the plot of the dielectric tangent (tan δ) of the equipment in which the organic copper compound and copper sulfide were generated at many places in the equipment shows the dielectric tangent (tan δ) (%) and the molten copper in oil. It exists above the straight line (straight line with a slope of 0.9 (% / ppm)) representing the correlation of quantity (ppm).

つまり、0.9(%/ppm)を基準値と設定した場合、未知の絶縁油について測定した油中溶解銅量と誘電正接(tanδ)の比が基準値より大きい場合(測定値が直線より上の部分に存在する場合)は、設備中の多くの箇所に有機銅化合物および硫化銅が生成していると推定することが可能である。反対に、油中溶解銅量と誘電正接(tanδ)の比が基準値より小さい場合(測定値が直線より下の部分に存在する場合)は、有機銅化合物および硫化銅の生成は設備中の狭い範囲に留まると推定することが可能である。 That is, when 0.9 (% / ppm) is set as the reference value, the ratio of the amount of dissolved copper in oil measured for unknown insulating oil to the dielectric tangent (tan δ) is larger than the reference value (measured value is from a straight line). (If present in the upper part), it is possible to presume that organic copper compounds and copper sulfide are produced in many places in the facility. On the contrary, when the ratio of the amount of dissolved copper in oil to the dielectric loss tangent (tan δ) is smaller than the reference value (when the measured value is below the straight line), the production of organic copper compound and copper sulfide is in the facility. It is possible to estimate that it will stay in a narrow range.

<診断>
診断に際しては、「診断I」、「診断II」の順で評価を実施する。
<Diagnosis>
At the time of diagnosis, evaluation is carried out in the order of "diagnosis I" and "diagnosis II".

最初の「診断I」では、有機銅化合物および硫化銅の生成期に該当する設備を抽出する。
該当設備の抽出に際しては、誘電正接(tanδ)のトレンドグラフ形状を、表1の4種類に分類し、それぞれについて、有機銅化合物および硫化銅の生成状況を推定し、有機銅化合物および硫化銅の生成期およびその前後にある設備を抽出する。
In the first "diagnosis I", the equipment corresponding to the production stage of the organic copper compound and copper sulfide is extracted.
When extracting the relevant equipment, the trend graph shapes of dielectric tangent (tan δ) are classified into four types in Table 1, and the production status of organic copper compounds and copper sulfide is estimated for each of them, and the organic copper compounds and copper sulfide Extract the equipment in and before and after the production period.

そして、診断必要性の項目が「要診断」のときは、次の「診断II」を行うようにする。「要警戒」のときは、「診断I」の測定評価のインターバルを短くし、グラフが減少傾向(有機銅化合物および硫化銅の生成期)になったら、改めて「診断II」を行うのがよい。「必要無し」のときは、通常ペースで「診断I」の測定評価を行えばよい。 Then, when the item requiring diagnosis is "diagnosis required", the next "diagnosis II" is performed. When "Caution required", it is better to shorten the measurement and evaluation interval of "Diagnosis I" and perform "Diagnosis II" again when the graph shows a decreasing tendency (organocopper compound and copper sulfide production period). .. When it is "not necessary", the measurement and evaluation of "diagnosis I" may be performed at a normal pace.

すなわち、本発明の油入りケーブル内における異常発生の危険度を評価する診断方法では、工程1として、油入りケーブルから採取した絶縁油について、油中溶解銅量と誘電正接(tanδ)と可燃性ガス総量(TCG)を測定して、各測定値に基づいて、油中溶解銅量および誘電正接(tanδ)の少なくとも一方と、可燃性ガス量(TCG)の経時変化を示すトレンドグラフを作成する。 That is, in the diagnostic method for evaluating the risk of abnormality occurrence in the oil-containing cable of the present invention, as step 1, the insulating oil collected from the oil-containing cable has the amount of dissolved copper in the oil, the dielectric loss tangent (tan δ), and flammability. The total amount of gas (TCG) is measured, and based on each measured value, a trend graph showing at least one of the amount of dissolved copper in oil and the dielectric loss tangent (tan δ) and the time course of the amount of flammable gas (TCG) is created. ..

そして、工程1で作成されたトレンドグラフで示される油中溶解銅量および誘電正接(tanδ)の少なくとも一方が、極大値を示した後に減少過程または減少後ほぼ定常状態にある油入りケーブルを抽出し、該ケーブルについては、有機銅化合物および硫化銅が生成している状態にあると推定できるため、要診断と評価するのがよい。 Then, after at least one of the amount of dissolved copper in oil and the dielectric loss tangent (tan δ) shown in the trend graph created in step 1 shows a maximum value, an oil-containing cable that is in a decreasing process or in an almost steady state after the decrease is extracted. However, since it can be estimated that the organic copper compound and copper sulfide are produced in the cable, it is preferable to evaluate it as requiring diagnosis.

次の「診断II」では、有機銅化合物および硫化銅の生成状況から、設備危険度を診断する。
すなわち、油入りケーブルから採取した絶縁油について測定した、油中溶解銅量、誘電正接(tanδ)および可燃性ガス総量(TCG)の値を用いて、(a)最大油中溶解銅量、(b)可燃性ガス総量(TCG)の最大値、(c)最大油中溶解銅量からの減少量および(d)溶解銅量に対する誘電正接(tanδ)の比を算出し、各項目の値を下記評価基準に基づき評価し、該評価結果から下記診断基準に基づき設備の危険度を診断する。
In the next "Diagnosis II", the equipment risk is diagnosed from the production status of the organic copper compound and copper sulfide.
That is, using the values of the amount of dissolved copper in oil, the dielectric tangent (tan δ) and the total amount of flammable gas (TCG) measured for the insulating oil collected from the oil-containing cable, (a) the maximum amount of dissolved copper in oil, ( b) Calculate the maximum value of the total amount of flammable gas (TCG), (c) the amount of decrease from the maximum amount of dissolved copper in oil, and (d) the ratio of the dielectric tangent (tan δ) to the amount of dissolved copper, and set the value of each item. Evaluate based on the following evaluation criteria, and diagnose the risk of equipment based on the following diagnostic criteria from the evaluation results.

ここで、(a)最大油中溶解銅量は、下記式(1)に基づき算出する。ただし、下記式(1)において、tanδmaxは、工程1で作成された誘電正接(tanδ)のトレンドグラフから導いた極大値であり、tanδは、油入りケーブルの使用開始前における絶縁油(新品の絶縁油)の誘電正接(tanδ)の値であり、tanδおよび[Cu]はそれぞれ、油入りケーブルの使用開始後のある時点における絶縁油の誘電正接(tanδ)および油中溶解銅量の各値である。なお、油入りケーブルの使用開始後のある時点とは、直近の(診断を行う際の)測定時点であることが好ましいが、有機銅化合物および硫化銅の生成期における過去の任意の測定時点であってもよい。
[Cu]max=(tanδmax−tanδ)×{[Cu]/(tanδ−tanδ)}・・・(1)
最大油中溶解銅量が大きいと、有機銅化合物および硫化銅になる油中溶解銅量が多いことから、有機銅化合物および硫化銅の生成量は多い、と推定することができる。
Here, (a) the maximum amount of molten copper in oil is calculated based on the following formula (1). However, in the following equation (1), tan δ max is the maximum value derived from the trend graph of the dielectric loss tangent (tan δ) created in step 1, and tan δ 0 is the insulating oil (tan δ 0) before the start of use of the oil-containing cable. It is the value of the dielectric loss tangent (tan δ) of the new insulating oil), and tan δ and [Cu] are the dielectric loss tangent (tan δ) of the insulating oil and the amount of molten copper in the oil at a certain point after the start of use of the oil-containing cable, respectively. Each value. It should be noted that the time point after the start of use of the oil-containing cable is preferably the most recent measurement time point (at the time of diagnosis), but at any time point in the past during the production period of the organic copper compound and copper sulfide. There may be.
[Cu] max = (tanδ max -tanδ 0) × {[Cu] / (tanδ-tanδ 0)} ··· (1)
When the maximum amount of dissolved copper in oil is large, the amount of dissolved copper in oil that becomes the organic copper compound and copper sulfide is large, so it can be estimated that the amount of organic copper compound and copper sulfide produced is large.

また、(b)可燃性ガス総量(TCG)の最大値は、工程1で作成された可燃性ガス総量(TCG)のトレンドグラフから導かれる、有機銅化合物および硫化銅の生成期(STEP2および3)における、可燃性ガス総量の最大値である。
可燃性ガス総量(TCG)の最大値が大きいと、有機銅化合物および硫化銅になる油中溶解銅量が多いことから、有機銅化合物および硫化銅の生成量は多い、と推定することができる。
Further, (b) the maximum value of the total amount of flammable gas (TCG) is derived from the trend graph of the total amount of flammable gas (TCG) prepared in step 1, and the production period of the organic copper compound and copper sulfide (STEP 2 and 3). ) Is the maximum value of the total amount of flammable gas.
When the maximum value of the total amount of flammable gas (TCG) is large, the amount of dissolved copper in the oil that becomes the organic copper compound and copper sulfide is large, so it can be estimated that the amount of the organic copper compound and copper sulfide produced is large. ..

また、(c)最大油中溶解銅量からの減少量は、工程1で作成された可燃性ガス総量(TCG)のトレンドグラフから導かれる、有機銅化合物および硫化銅の生成期以降(STEP2および3)のある時点における絶縁油の油中溶解銅量([Cu])と、最大溶解銅量([Cu]max)との差([Cu]maxー[Cu])である。なお、有機銅化合物および硫化銅の生成期以降(STEP2および3)のある時点とは、直近の(診断を行う際の)測定時点である(以下において同じ)。
有機銅化合物および硫化銅の生成期以降のある時点における油中溶解銅量が、最大油中溶解銅量から大幅に減少している(減少量が大きい)場合には、その時点で、既に有機銅化合物および硫化銅が多量に生成量している、と推定することができる。
Further, (c) the amount of decrease from the maximum amount of dissolved copper in oil is derived from the trend graph of the total amount of flammable gas (TCG) prepared in step 1 after the production period of the organic copper compound and copper sulfide (STEP2 and). 3) is the difference ([Cu] max- [Cu]) between the amount of dissolved copper in oil ([Cu]) of the insulating oil at a certain point in time and the maximum amount of molten copper ([Cu] max). It should be noted that a certain time point after the production period of the organic copper compound and copper sulfide (STEPs 2 and 3) is the most recent measurement time point (when making a diagnosis) (the same applies hereinafter).
If the amount of dissolved copper in oil at a certain point after the production period of the organic copper compound and copper sulfide is significantly reduced from the maximum amount of dissolved copper in oil (the amount of decrease is large), it is already organic at that point. It can be estimated that a large amount of copper compound and copper sulfide are produced.

また、(d)油中溶解銅量に対する誘電正接(tanδ)の比は、有機銅化合物および硫化銅の生成期以降(STEP2および3)のある時点における絶縁油の油中溶解銅量([Cu])と誘電正接(tanδ)の比([Cu]/tanδ)である。
有機銅化合物および硫化銅の生成期以降のある時点において、油中溶解銅量と誘電正接(tanδ)の比が、基準値より大きい場合は、その時点で、既に設備中の多くの箇所に有機銅化合物および硫化銅が生成していると推定することができる。
Further, (d) the ratio of the dielectric loss tangent (tan δ) to the amount of dissolved copper in oil is the amount of dissolved copper in oil ([Cu) of the insulating oil at a certain time after the production period of the organic copper compound and copper sulfide (STEP 2 and 3). ]) To the dielectric loss tangent (tan δ) ([Cu] / tan δ).
If the ratio of the amount of dissolved copper in oil to the dielectric tangent (tan δ) is larger than the reference value at a certain point after the production period of the organic copper compound and copper sulfide, at that point, it is already organic in many places in the facility. It can be estimated that copper compounds and copper sulfide are produced.

(各項目の評価基準)
上記各項目について算出した値を、表2に示す評価基準で判定する。
なお、上記基準値は一例であり、その数値の設定については後述する。
(Evaluation criteria for each item)
The values calculated for each of the above items are determined by the evaluation criteria shown in Table 2.
The above reference value is an example, and the setting of the numerical value will be described later.

(診断基準)
表2の各項目について判定した結果に基づいて、表3に示す基準で設備危険度(下記A〜Dの4区分)を診断する。なお、本発明の診断方法では、上記診断Iにおいて、誘電正接(tanδ)のトレンド形状が、STEP0および1に分類されたものは、最終的な診断結果をDとする。
(Diagnostic criteria)
Based on the results of judgment for each item in Table 2, the equipment risk level (4 categories A to D below) is diagnosed according to the criteria shown in Table 3. In the diagnostic method of the present invention, in the above diagnosis I, if the trend shape of the dielectric loss tangent (tan δ) is classified into STEP 0 and STEP 1, the final diagnosis result is D.

診断IIに際しては、上記評価項目(a)〜(d)にいくつ該当するかを評価するのが好ましい。上記診断基準は、絶縁油を使用した油入りケーブルの解体調査結果とも相関性がある。
特に、評価項目(a)および(b)は、有機銅化合物および硫化銅の生成量と相関するため、この両方に該当する場合はよりリスクが高いと推察され、最も危険度が高いランクAは評価項目(a)および(b)の両方に該当することが前提となる。
上記の順で危険度を評価しランク付けすることにより、設備の危険度を比較的シンプルに判断することができ、また絶縁油を使用した油入りケーブルの解体調査結果とも一致した結果が得られる。
In diagnosis II, it is preferable to evaluate how many of the above evaluation items (a) to (d) are applicable. The above diagnostic criteria also correlate with the results of dismantling surveys of oil-filled cables using insulating oil.
In particular, since the evaluation items (a) and (b) correlate with the amount of organic copper compound and copper sulfide produced, it is presumed that the risk is higher when both of them are applicable, and the highest risk rank A is It is premised that both evaluation items (a) and (b) are applicable.
By evaluating and ranking the risk levels in the above order, the risk level of equipment can be judged relatively simply, and results that are consistent with the results of dismantling surveys of oil-filled cables using insulating oil can be obtained. ..

なお、部分放電発生状況を推定は、「補足診断」として実施する。
図5に示した絶縁油の誘電正接(tanδ)、可燃性ガス総量(TCG)の経時変化を示すトレンドグラフを用い、診断Iにより表1にある有機銅化合物および硫化銅の生成状況が、有機銅化合物および硫化銅生成後と抽出された設備(STEP3に分類されるもの)について、誘電正接(tanδ)の減少後の可燃性ガス総量(TCG)の最大値から、予め設定した可燃性ガス総量(TCG)の基準値に対する大小、を評価する。
図5に示す例では、誘電正接(tanδ)の減少後である測定日2010以降で、可燃性ガス総量(TCG)140ppm以上のときに、部分放電発生設備と診断することで、部分放電発生状況を推定することができる。
The partial discharge occurrence status is estimated as a "supplementary diagnosis".
Using the trend graph showing the change over time of the dielectric normal contact (tan δ) and the total amount of flammable gas (TCG) of the insulating oil shown in FIG. 5, the production status of the organic copper compound and copper sulfide shown in Table 1 is determined by Diagnosis I. For copper compounds and equipment extracted after copper sulfide formation (classified in STEP3), the total amount of flammable gas set in advance from the maximum value of the total amount of flammable gas (TCG) after the decrease in dielectric tangent (tan δ). Evaluate the magnitude of (TCG) with respect to the reference value.
In the example shown in FIG. 5, the partial discharge generation status is determined by diagnosing the partial discharge generation equipment when the total amount of flammable gas (TCG) is 140 ppm or more after the measurement date 2010 after the decrease of the dielectric loss tangent (tan δ). Can be estimated.

また、硫化銅生成困難および危険設備の推定は、「補足診断」として実施する。
この補足診断では、上述の油中溶解銅量の測定に合わせて、油中硫黄量を測定する。
油中硫黄量の測定で、採取した絶縁油から硫黄成分が検出されなかった設備については、絶縁油中に含まれる硫黄成分との反応による硫化銅の生成は起こらないと考えることができる。しかし、このような設備でも、絶縁紙中や、その他OFケーブルの材料中に含まれる硫黄成分との反応により、硫化銅が生成する可能性はあるが、このような硫化銅の生成は、絶縁油中に含まれる硫黄成分との反応による硫化銅の生成量に比べて極めて少ない。そのため、このような設備は、硫化銅の生成量が少ない、硫化銅生成困難設備と推定することができる。
また、絶縁油として、製造時に硫黄が多く含まれる鉱物油を使用していない設備については、絶縁紙中やその他OFケーブルの材料中に含まれる硫黄成分が絶縁油中に移行することで、上記測定時に油中硫黄量が高い値を示す場合がある。この場合、その測定時以降は、硫化銅が生成し易くなるため、硫化銅の生成量が多くなる設備と推定することができる。
以上のことから、油中溶解銅量の測定に合わせ油中硫黄量を測定し、硫黄が検出されない設備では、硫化銅生成による絶縁性能の著しい低下は起き難くなるため、硫化銅生成による異常発生の危険度は下がると診断できる。また、絶縁油に鉱物油を使用していない設備において、油中硫黄量が多い場合は、硫化銅生成による絶縁性能の著しい低下が起き易くなるため、硫化銅生成による異常発生の危険度は上がると診断できる。
In addition, estimation of difficult copper sulfide formation and dangerous equipment will be carried out as a "supplementary diagnosis".
In this supplementary diagnosis, the amount of sulfur in oil is measured in accordance with the above-mentioned measurement of the amount of dissolved copper in oil.
It can be considered that copper sulfide is not produced by the reaction with the sulfur component contained in the insulating oil in the equipment where the sulfur component was not detected in the collected insulating oil by the measurement of the amount of sulfur in the oil. However, even in such equipment, copper sulfide may be produced by the reaction with the sulfur component contained in the insulating paper or other materials of the OF cable, but such production of copper sulfide is insulating. It is extremely small compared to the amount of copper sulfide produced by the reaction with the sulfur component contained in the oil. Therefore, such equipment can be presumed to be equipment that is difficult to produce copper sulfide because the amount of copper sulfide produced is small.
For equipment that does not use mineral oil, which contains a large amount of sulfur during manufacturing, as the insulating oil, the sulfur component contained in the insulating paper and other materials of the OF cable is transferred to the insulating oil. The amount of sulfur in oil may show a high value at the time of measurement. In this case, since copper sulfide is likely to be produced after the measurement, it can be estimated that the equipment produces a large amount of copper sulfide.
From the above, in equipment where the amount of sulfur in oil is measured in accordance with the measurement of the amount of dissolved copper in oil and sulfur is not detected, it is unlikely that the insulation performance will be significantly reduced due to copper sulfide formation. It can be diagnosed that the risk of In addition, in equipment that does not use mineral oil as insulating oil, if the amount of sulfur in the oil is large, the insulation performance is likely to deteriorate significantly due to the formation of copper sulfide, and the risk of abnormal occurrence due to the formation of copper sulfide increases. Can be diagnosed.

次に、本発明による診断法による効果の確認結果を具体的に説明するが、本発明は以下の実施例にのみ限定されるものではない。 Next, the result of confirming the effect of the diagnostic method according to the present invention will be specifically described, but the present invention is not limited to the following examples.

(1)本診断法よる効果の確認(表4参照)
実設備(OFケーブル17線)について、本発明の診断方法に基づいて診断した推定診断結果と、解体調査結果とを比較した。結果を表4に示す。なお、本発明の診断方法に基づく推定診断と、解体調査は、それぞれ以下の方法で行った。
(1) Confirmation of the effect of this diagnostic method (see Table 4)
For the actual equipment (OF cable 17 wires), the estimated diagnosis result diagnosed based on the diagnosis method of the present invention and the dismantling investigation result were compared. The results are shown in Table 4. The presumptive diagnosis based on the diagnostic method of the present invention and the disassembly survey were carried out by the following methods, respectively.

<本発明の診断方法に基づく推定診断>
まず、各実設備から採取した試料油について、以下の測定方法にて、誘電正接(tanδ)および可燃性ガス総量(TCG)を測定し、得られた測定値に基づき、誘電正接(tanδ)と可燃性ガス総量(TCG)の経時変化を示すトレンドグラフを作成した。
次に、各実設備について作成した誘電正接(tanδ)のトレンドの形状を、上記表1の4種類に分類した(診断I)。
<Estimated diagnosis based on the diagnostic method of the present invention>
First, for the sample oil collected from each actual facility, the dielectric loss tangent (tan δ) and the total amount of flammable gas (TCG) were measured by the following measurement methods, and based on the obtained measured values, the dielectric loss tangent (tan δ) was obtained. A trend graph showing the time course of the total amount of flammable gas (TCG) was created.
Next, the shape of the dielectric loss tangent (tan δ) trend created for each actual equipment was classified into the four types shown in Table 1 above (diagnosis I).

さらに、誘電正接のトレンド形状がSTEP2および3に分類された実設備(OFケーブル17線)について、以下の測定方法で油中溶解銅量を測定し、該測定値と、上記で測定した誘電正接(tanδ)および可燃性ガス総量(TCG)の値を用いて、(a)最大油中溶解銅量、(b)可燃性ガス総量(TCG)の最大値、(c)最大油中溶解銅量からの減少量および(d)溶解銅量に対する誘電正接(tanδ)の比を算出した。 Further, for the actual equipment (OF cable 17 wires) in which the trend shape of the dielectric loss tangent is classified into STEPs 2 and 3, the amount of dissolved copper in oil is measured by the following measurement method, and the measured value and the dielectric loss tangent measured above are measured. Using the values of (tan δ) and total flammable gas (TCG), (a) maximum amount of dissolved copper in oil, (b) maximum value of total flammable gas (TCG), (c) maximum amount of dissolved copper in oil. The ratio of the dielectric loss tangent (tan δ) to the amount of decrease from (d) the amount of molten copper was calculated.

次に、各実設備について算出した(a)最大油中溶解銅量、(b)可燃性ガス総量(TCG)の最大値、(c)最大油中溶解銅量からの減少量および(d)油中溶解銅量に対する誘電正接(tanδ)を、上記表2の評価基準で評価し、該評価結果から上記表3の診断基準に基づき設備危険度を診断した(診断II)。 Next, (a) the maximum amount of dissolved copper in oil, (b) the maximum value of the total amount of flammable gas (TCG), (c) the amount of decrease from the maximum amount of dissolved copper in oil, and (d) calculated for each actual facility. The dielectric loss tangent (tan δ) with respect to the amount of dissolved copper in oil was evaluated by the evaluation criteria in Table 2 above, and the equipment risk was diagnosed based on the diagnostic criteria in Table 3 above from the evaluation results (diagnosis II).

(測定条件)
上記各種測定は、以下の手順で行った。
・誘電正接(tanδ)の測定
各実設備から採取した試料油50mlを液体用電極に入れ80℃に加熱し、1000V印加しtanδ測定器により測定した。
(Measurement condition)
The above-mentioned various measurements were carried out according to the following procedure.
-Measurement of dielectric loss tangent (tan δ) 50 ml of sample oil collected from each actual equipment was placed in a liquid electrode, heated to 80 ° C., 1000 V was applied, and measurement was performed with a tan δ measuring device.

・可燃性ガス総量(TCG)の測定
各実設備から採取した試料油の入った油採取注射器(200ml)をガスサンプリング装置にセットして、ガスクロマトグラフにより油中ガスを分離抽出し分析した。
-Measurement of total flammable gas amount (TCG) An oil sampling syringe (200 ml) containing sample oil collected from each actual facility was set in a gas sampling device, and the gas in the oil was separated and extracted by a gas chromatograph and analyzed.

・油中溶解銅量および油中硫黄量の測定
各実設備から採取した試料油をキシレンにより10倍希釈し、調整溶液を作製し、該溶液を誘導結合プラズマ(ICP)発光分析装置により分析した。検量線用標準溶液の調整は、市販の油性銅含有標準溶液をブランク油とキシレンにより順に希釈して調整した標準溶液を用いた。
-Measurement of the amount of dissolved copper in oil and the amount of sulfur in oil The sample oil collected from each actual facility was diluted 10-fold with xylene to prepare a prepared solution, and the solution was analyzed by an inductively coupled plasma (ICP) emission spectrometer. .. For the preparation of the standard solution for the calibration curve, a standard solution prepared by diluting a commercially available oil-based copper-containing standard solution with blank oil and xylene in order was used.

<解体調査>
解体調査は、実設備の補強絶縁紙の沿面および内部、ケーブル絶縁紙の最内外層および内部の層について、有機銅化合物および硫化銅生成部である絶縁紙上の黒色部の生成様相と生成場所を目視確認することにより実施し、下記診断基準に基づき評価した。
また、有機銅化合物および硫化銅の生成確認は、電子顕微鏡と蛍光X線分析装置により、絶縁紙上の黒色化部で銅(Cu)と硫黄(S)の両方が検出される場所を特定し、その特定場所について、有機銅化合物はフーリエ変換赤外分光光度計(FTIR)により、赤外吸収スペクトルから絶縁油と酸化生成物および硫黄化合物の吸収ピークが検出されたことで確認し、硫化銅は顕微ラマン分光装置により硫化銅のラマンスペクトルが検出されたことで確認した。
<Dismantling survey>
In the dismantling survey, the appearance and location of the black part on the insulating paper, which is the organic copper compound and copper sulfide producing part, were investigated for the creeping surface and inside of the reinforcing insulating paper of the actual equipment, the innermost outer layer and the inner layer of the cable insulating paper. It was carried out by visual confirmation and evaluated based on the following diagnostic criteria.
To confirm the production of organic copper compounds and copper sulfide, an electron microscope and a fluorescent X-ray analyzer were used to identify the location where both copper (Cu) and sulfur (S) were detected in the blackened part on the insulating paper. At that specific location, the organic copper compound was confirmed by the Fourier transform infrared spectrophotometer (FTIR), which detected absorption peaks of insulating oil, oxidation products and sulfur compounds from the infrared absorption spectrum, and copper sulfide was confirmed. It was confirmed that the Raman spectrum of copper sulfide was detected by the microscopic Raman spectrometer.

(診断基準)
A:補強絶縁紙の内部もしくはケーブル絶縁紙内部の層に、シワやオイルギャップ、端部を超える黒色部がある。
B:補強絶縁紙の沿面もしくはケーブル絶縁紙の最内外層に、シワやオイルギャップ、端部を超える黒色部がある。もしくは、補強絶縁紙の内部もしくはケーブル絶縁紙内部の層の、シワやオイルギャップ、端部に黒色部がある。
C:補強絶縁紙の沿面もしくはケーブル絶縁紙の最内外層に、シワやオイルギャップ、端部に黒色部がある。
D:黒色部はなし。
(Diagnostic criteria)
A: There are wrinkles, oil gaps, and black parts beyond the edges in the inner layer of the reinforcing insulating paper or the inner layer of the cable insulating paper.
B: There are wrinkles, oil gaps, and black parts beyond the edges on the creeping surface of the reinforcing insulating paper or on the innermost and outer layers of the cable insulating paper. Alternatively, there are wrinkles, oil gaps, and black edges on the inside of the reinforcing insulating paper or the inner layer of the cable insulating paper.
C: There are wrinkles, oil gaps, and black parts at the ends along the creeping surface of the reinforcing insulating paper or on the innermost and outer layers of the cable insulating paper.
D: There is no black part.

表4では、実設備の解体調査結果に対して、本発明の診断方法に基づく診断結果が、過小評価(路線名:JH線3LB23)であったものと、過大評価(路線名:RH線1R511)であったものがそれぞれ1設備ずつあったが、その他は解体調査結果と、本発明の診断結果は一致しており、全体としての整合率は88%程度と非常に高かった。
これらの結果から、本発明の診断方法によれば、実設備の解体調査結果に対応する結果が得られることが確認された。また、本発明の診断方法によれば、解体調査のように実設備を解体して試験する必要はなく、OFケーブルから試験油を採取するだけで、各測定評価を行うことができ、比較的簡便に実設備の危険度を診断することができる。
In Table 4, the diagnostic results based on the diagnostic method of the present invention were underestimated (route name: JH line 3LB23) and overestimated (route name: RH line 1R511) with respect to the dismantling survey results of the actual equipment. ), But the other equipment was the same as the dismantling survey result and the diagnostic result of the present invention, and the overall consistency rate was as high as about 88%.
From these results, it was confirmed that according to the diagnostic method of the present invention, a result corresponding to the result of the dismantling investigation of the actual equipment can be obtained. Further, according to the diagnostic method of the present invention, it is not necessary to disassemble and test the actual equipment as in the dismantling survey, and each measurement and evaluation can be performed only by collecting the test oil from the OF cable, which is relatively relatively. The risk level of actual equipment can be easily diagnosed.

(2)本診断法と硫化銅生成メカニズムの相関確認
実設備の解体調査試験及び各評価試験により、下記の通り、本発明の診断方法が硫化銅生成メカニズムと相関があることを確認した。
(イ)最大油中溶解銅量の算出(図6参照)
銅棒から銅を溶解させた油中溶解銅量が異なる絶縁油(試料絶縁油)と、異なる量の銅化合物を溶解させた絶縁油(銅化合物溶解試料絶縁油)と、実設備から採取した絶縁油について、油中溶解銅量とtanδを測定した結果を図6に示す。
なお、試料絶縁油の油中溶解銅量は、銅棒を浸漬した絶縁油を窒素雰囲気下80℃で加熱し、経時で適時サンプリングを行い上記のICP発光分光分析により測定した。銅化合物溶解試料絶縁油の油中溶解銅量は、市販の銅化合物試薬(アルキルベンゼンスルホン酸銅あるいはオレイン酸銅)を適宜濃度に溶解した後、その後に上記の方法にてICP発光分光分析により測定した。tanδは、誘電正接測定器を用いて測定した。
(2) Confirmation of correlation between this diagnostic method and the copper sulfide formation mechanism It was confirmed by the dismantling investigation test of the actual equipment and each evaluation test that the diagnostic method of the present invention has a correlation with the copper sulfide formation mechanism as follows.
(B) Calculation of maximum amount of dissolved copper in oil (see Fig. 6)
Insulating oil with different amounts of dissolved copper in oil (sample insulating oil) in which copper was dissolved from a copper rod, insulating oil in which different amounts of copper compound were dissolved (copper compound dissolved sample insulating oil), and samples collected from actual equipment. FIG. 6 shows the results of measuring the amount of dissolved copper in the oil and tan δ for the insulating oil.
The amount of dissolved copper in the sample insulating oil was measured by heating the insulating oil in which the copper rod was immersed at 80 ° C. in a nitrogen atmosphere, sampling timely over time, and performing the above ICP emission spectroscopic analysis. The amount of dissolved copper in the oil of the copper compound-dissolved sample insulating oil is measured by ICP emission spectroscopic analysis by the above method after dissolving a commercially available copper compound reagent (copper alkylbenzene sulfonate or copper oleate) at an appropriate concentration. did. tan δ was measured using a dielectric loss tangent measuring device.

図6より、銅溶解試料絶縁油では、油中溶解銅量とtanδ値に直線性を示す相関が認められるが、実設備では、油中溶解銅量が同じでも設備によってtanδ値が異なることがわかる。絶縁油の劣化(水分含有や熱劣化)によりtanδ値は増加するが、OFケーブルで絶縁油の劣化が起きることは稀である。一方、図6には、銅化合物を溶解した銅溶解試料絶縁油であっても、用いた銅化合物の種類により油中溶解銅量とtanδ値の相関を示す直線の傾き(相関係数)が異なることが示されており、このことは絶縁油中に溶解している銅化合物の形態によりtanδの値が影響されることを表している。したがって、実設備で油中溶解銅量が同じでも誘電正接(tanδ)の値が異なるのは、油中溶解銅の形態が設備毎に異なることが最大要因であると考えられる。
また、図6は両対数グラフであるが、図7より両軸を整数により表した場合、近似直線は一次式により示すことができる。
以上のことから、油中溶解銅量とtanδ値の関係式を用いて、tanδ値から油中溶解銅量を算出することが可能であること、そして、設備毎に絶縁油中に溶解している銅の形態が異なるため、設備毎に最大溶解銅量を算出する必要があることがわかる。
本発明者らが見出した上記式(1)によれば、各設備の絶縁油の、過去のtanδ最大値と、現時点のtanδ値および油中溶解銅量、新品の絶縁油のtanδ値を用いて、設備毎の最大油中溶解銅量を算出できる。
From FIG. 6, in the copper-dissolved sample insulating oil, a correlation showing a linearity between the amount of dissolved copper in oil and the tan δ value is observed, but in actual equipment, the tan δ value may differ depending on the equipment even if the amount of dissolved copper in oil is the same. Understand. Although the tan δ value increases due to deterioration of the insulating oil (moisture content and thermal deterioration), deterioration of the insulating oil rarely occurs in the OF cable. On the other hand, in FIG. 6, even in the case of the copper-dissolved sample insulating oil in which the copper compound is dissolved, the slope of a line (correlation coefficient) showing the correlation between the amount of dissolved copper in the oil and the tan δ value is shown depending on the type of copper compound used. It has been shown to be different, indicating that the value of tan δ is affected by the morphology of the copper compound dissolved in the insulating oil. Therefore, it is considered that the reason why the value of dielectric loss tangent (tan δ) is different even if the amount of molten copper in oil is the same in the actual equipment is that the form of the molten copper in oil is different for each equipment.
Further, although FIG. 6 is a log-log graph, when both axes are represented by integers from FIG. 7, the approximate straight line can be shown by a linear equation.
From the above, it is possible to calculate the amount of dissolved copper in oil from the tan δ value using the relational expression between the amount of dissolved copper in oil and the tan δ value, and it is dissolved in the insulating oil for each facility. It can be seen that it is necessary to calculate the maximum amount of molten copper for each facility because the form of copper is different.
According to the above formula (1) found by the present inventors, the past maximum tan δ value of the insulating oil of each equipment, the current tan δ value, the amount of dissolved copper in the oil, and the tan δ value of the new insulating oil are used. Therefore, the maximum amount of molten copper in oil for each facility can be calculated.

(ロ)有機銅化合物および硫化銅の生成期の推定
本発明で提唱するOFケーブル中の硫化銅生成メカニズムによれば、有機銅化合物および硫化銅の生成に伴うOFケーブルの危険度との関係を、次のように、油中溶解銅量と関連付けて説明することができる。
(i)導体と絶縁油が反応する。この段階では油中溶解銅量は変化しない。
(ii)銅が銅錯体もしくは銅化合物として絶縁油中に溶解すると、油中溶解銅量が次第に増加していき、やがて時間とともに溶解停止になる。
(iii)溶解した銅錯体もしくは銅化合物は、高電界領域において、誘電泳動により絶縁体(絶縁紙)油隙部に凝集する。
(iv)さらに、銅錯体もしくは銅化合物が高電界領域に凝集することで、絶縁体油隙部における銅錯体もしくは銅化合物による触媒効果が増大する。
(v)触媒媒効果の増大により、油が酸素や硫黄、そして銅錯体もしくは銅化合物と結合して急激に劣化し、絶縁体油隙部に高分子状の有機銅化合物が生成する。この段階から油中溶解銅量は減少し始める。
(vi)有機銅化合物もまた誘電泳動により高電界領域に凝集するため、銅錯体もしくは銅化合物、有機銅化合物が絶縁紙中あるいは絶縁油中の硫黄(本来的に絶縁油に含まれている硫黄)と反応して硫化銅が生成する。硫化銅生成に伴って油中溶解銅量は次第に減少する。
(vii)油隙部に硫化銅が生成すると、油中溶解銅量は減少した状態となり、油隙部の硫化銅によって部分放電発生という事態に陥る。
(B) Estimating the formation period of organic copper compounds and copper sulfide According to the copper sulfide formation mechanism in the OF cable proposed in the present invention, the relationship with the risk of the OF cable associated with the formation of organic copper compounds and copper sulfide is determined. , Can be described in relation to the amount of dissolved copper in oil as follows.
(I) The conductor reacts with the insulating oil. At this stage, the amount of dissolved copper in oil does not change.
(Ii) When copper is dissolved in insulating oil as a copper complex or copper compound, the amount of dissolved copper in the oil gradually increases, and the dissolution is eventually stopped with time.
(Iii) The dissolved copper complex or copper compound aggregates in the oil gap portion of the insulator (insulating paper) by dielectrophoresis in the high electric field region.
(Iv) Furthermore, the agglomeration of the copper complex or copper compound in the high electric field region increases the catalytic effect of the copper complex or copper compound in the insulator oil gap.
(V) Due to the increase in the catalytic medium effect, the oil binds to oxygen, sulfur, and a copper complex or a copper compound and rapidly deteriorates, and a polymer-like organic copper compound is formed in the insulator oil gap. From this stage, the amount of dissolved copper in oil begins to decrease.
(Vi) Since the organic copper compound also aggregates in the high electric field region by dielectric migration, the copper complex or the copper compound and the organic copper compound are sulfur in the insulating paper or the insulating oil (sulfur originally contained in the insulating oil). ) To produce copper sulfide. The amount of dissolved copper in oil gradually decreases with the formation of copper sulfide.
(Vii) When copper sulfide is generated in the oil gap, the amount of dissolved copper in the oil is reduced, and the copper sulfide in the oil gap causes a partial discharge.

油中溶解銅量とtanδ値は相関があることから、tanδトレンドと油中溶解銅量トレンドにも相関があると言える。また、上記のように推定した硫化銅生成メカニズムから、有機銅化合物および硫化銅が生成すると油中の溶解銅量が減少することから、tanδ値も減少することになる。
以上のことから、tanδトレンドが減少した場合は、有機銅化合物および硫化銅の生成により溶解銅量が減少したものと判断することができる。
Since there is a correlation between the amount of dissolved copper in oil and the tan δ value, it can be said that there is also a correlation between the tan δ trend and the trend of the amount of dissolved copper in oil. Further, from the copper sulfide formation mechanism estimated as described above, when the organic copper compound and copper sulfide are formed, the amount of dissolved copper in the oil decreases, so that the tan δ value also decreases.
From the above, when the tan δ trend decreases, it can be determined that the amount of dissolved copper has decreased due to the formation of the organic copper compound and copper sulfide.

(ハ)硫化銅生成箇所・生成量からの設備危険度診断
[1]油中溶解銅量と有機銅化合物および硫化銅の生成量の関係
硫化銅生成メカニズムより、油中溶解銅量が多いほど、有機銅化合物および硫化銅の生成量も多くなると言える。
以上のことから、最大油中溶解銅量が多い設備で、有機銅化合物および硫化銅の生成量は多くなると判断することができる。
(C) Equipment risk diagnosis from the location and amount of copper sulfide produced [1] Relationship between the amount of dissolved copper in oil and the amount of organic copper compounds and copper sulfide produced The greater the amount of dissolved copper in oil, the more copper sulfide is produced. It can be said that the amount of organic copper compounds and copper sulfide produced also increases.
From the above, it can be judged that the production amount of the organic copper compound and copper sulfide is large in the equipment having a large amount of dissolved copper in the maximum oil.

[2]tanδ、油中溶解銅量と有機銅化合物および硫化銅の生成箇所の関係(表5、図8参照)
図8に、tanδ、油中溶解銅量と有機銅化合物および硫化銅の生成箇所の関係図を示す。図8は、解体調査を行った実設備における油中溶解銅量とtanδの関係をグラフに表し、tanδと油中溶解銅量の比が0.9となるように直線を引いたものである。
さらに、解体調査結果から、有機銅化合物および硫化銅の生成箇所が多箇所(有機銅化合物および硫化銅の生成が広範囲)の設備について、グラフのプロット11箇所(試料名:A〜K)を○で囲み、tanδと油中溶解銅量の比を求めた結果を表5に示した。
その結果、有機銅化合物および硫化銅の生成箇所が多箇所の設備については、tanδと油中溶解銅量の比の最低値(試料名:K)が「0.95」で、比0.9の直線より上部にプロットされた。
[2] Relationship between tan δ, the amount of dissolved copper in oil and the production sites of organic copper compounds and copper sulfide (see Tables 5 and 8)
FIG. 8 shows a relationship diagram between tan δ, the amount of dissolved copper in oil, and the production sites of the organic copper compound and copper sulfide. FIG. 8 is a graph showing the relationship between the amount of dissolved copper in oil and tan δ in the actual equipment where the dismantling survey was conducted, and a straight line is drawn so that the ratio of tan δ and the amount of dissolved copper in oil is 0.9. ..
Furthermore, based on the results of the dismantling survey, 11 plots (sample names: A to K) of the graph were shown for facilities with many production sites of organic copper compounds and copper sulfide (wide range of production of organic copper compounds and copper sulfide). The results of determining the ratio of tan δ to the amount of dissolved copper in oil are shown in Table 5.
As a result, the minimum value (sample name: K) of the ratio of tan δ to the amount of dissolved copper in oil was "0.95" and the ratio was 0.9 for equipment with many locations where organic copper compounds and copper sulfide were produced. It was plotted above the straight line of.

ただし、有機銅化合物および硫化銅の生成箇所が少ない箇所の設備でも、比0.9の直線より上部にプロットされた設備があった。しかし、油中溶解銅量が少なく過去の最大油中溶解銅量を算出できた設備(×のプロット)では、算出された最大油中溶解銅量が0.1ppmとかなり少量であった。つまり、元々の油中溶解銅量が少なかったので、生成箇所が少なかったと推測できる。 However, there were some facilities plotted above the straight line with a ratio of 0.9 even in the facilities where organic copper compounds and copper sulfide were produced in small numbers. However, in the equipment (plot of x) where the amount of dissolved copper in oil was small and the maximum amount of dissolved copper in oil in the past could be calculated, the calculated maximum amount of dissolved copper in oil was as small as 0.1 ppm. That is, since the amount of dissolved copper in the oil was originally small, it can be inferred that the number of production sites was small.

また、同様に油中溶解銅量1ppm以上の設備では、過去データがなくトレンド傾向が不明であったが、これから有機銅化合物および硫化銅の生成期を迎える可能性が推測できる。 Similarly, for equipment with a dissolved copper content of 1 ppm or more in oil, there was no past data and the trend tendency was unknown, but it can be inferred from this that the production period of organic copper compounds and copper sulfide may be reached.

以上のことから、tanδと油中溶解銅量の比の数値が高いと、多箇所に有機銅化合物および硫化銅が生成する可能性のある設備と判断することができ、絶縁破壊につながる劣化設備の判別が可能となる。 From the above, if the value of the ratio of tan δ to the amount of dissolved copper in oil is high, it can be judged that the equipment may generate organic copper compounds and copper sulfide in many places, and it is a deterioration equipment that leads to dielectric breakdown. Can be discriminated.

さらに、数種の銅化合物を溶解させた絶縁油を、模擬的に作製した高電界領域中で、加熱して固体状の有機銅化合物を作成した。
この有機銅化合物を溶解させた絶縁油の油中溶解銅量とtanδを測定すると共に、固体状の有機銅化合物の入ったそれぞれの絶縁油について誘電泳動試験を実施し、相関を調べた結果を図9に示す。
なお、油中溶解銅量とtanδの測定方法は上述の通りである。また、誘電泳動試験は、上記絶縁油を、シャーレに入れて、その下に2本の導線を置き、電圧をかけ、各種固体状の有機銅化合物の凝集時間を計測した。なお、作成した固体状の有機銅化合物は、上述の解体調査と同様な方法で、電子顕微鏡と蛍光X線分析装置、FTIRにより、実設備と同質の有機銅化合物であることを確認した。
Further, an insulating oil in which several kinds of copper compounds were dissolved was heated in a simulated high electric field region to prepare a solid organic copper compound.
The amount of dissolved copper in the oil and tan δ of the insulating oil in which this organic copper compound was dissolved were measured, and a dielectric migration test was carried out for each insulating oil containing the solid organic copper compound, and the results of examining the correlation were obtained. It is shown in FIG.
The method for measuring the amount of dissolved copper in oil and tan δ is as described above. In the dielectrophoresis test, the insulating oil was placed in a petri dish, two conducting wires were placed under the petri dish, a voltage was applied, and the aggregation time of various solid organic copper compounds was measured. The solid organic copper compound produced was confirmed to be an organic copper compound of the same quality as the actual equipment by an electron microscope, a fluorescent X-ray analyzer, and FTIR by the same method as the above-mentioned disassembly survey.

図9に示される結果から、油中溶解銅量とtanδの比が大きい銅化合物ほど、そこから固体状に生成した有機銅化合物は、誘電泳動試験により電源側の導線上に凝集しやすく、凝集時間が短い(凝集力が強い)ことが確認された。これらの結果から、油中溶解銅量と誘電正接(tanδ)の比は、生成される固体状の有機銅化合物の凝集力(誘電泳動力)に相関があることがわかった。
特に、油中溶解銅量とtanδの比が0.9以上の場合に、凝集確認時間は1分を切っており、有機銅化合物の凝集力が強いことがわかる。このことは、図8に示される、有機銅化合物および硫化銅の生成箇所が多箇所の設備と、その油中溶解銅量とtanδの比との関係にも対応しており、有機銅化合物の凝集力が強い実設備では、有機銅化合物が移動しやすく、広範囲に有機銅化合物や硫化銅が生成すると推察することができる。
From the results shown in FIG. 9, the larger the ratio of the amount of dissolved copper in the oil to the tan δ, the more easily the organic copper compound produced as a solid from the copper compound is agglomerated on the lead wire on the power supply side by the dielectrophoresis test. It was confirmed that the time was short (strong cohesive force). From these results, it was found that the ratio of the amount of dissolved copper in oil to the dielectric loss tangent (tan δ) correlates with the cohesive force (dielectrophoretic force) of the solid organic copper compound produced.
In particular, when the ratio of the amount of dissolved copper in oil to tan δ is 0.9 or more, the aggregation confirmation time is less than 1 minute, indicating that the organic copper compound has a strong cohesive force. This also corresponds to the relationship between the equipment in which the organic copper compound and copper sulfide are produced at many locations and the ratio of the amount of dissolved copper in the oil to tan δ, which is shown in FIG. It can be inferred that the organic copper compound easily moves in the actual equipment with strong cohesive force, and the organic copper compound and copper sulfide are produced in a wide range.

[3]油中溶解銅量とTCGの関係(図10参照)
実設備(1272箇所)について、tanδ、油中溶解銅量およびTCGのトレンドグラフを作成し、グラフ形状別の各特性値の平均値を、図10にまとめた。
その結果、tanδの増減時は、TCG量が多い傾向だった。これは、生成メカニズムより、銅溶解、有機銅化合物生成、硫化銅生成過程で様々な化学反応が起き、この化学反応時に発生する分解生成ガスとして、TCGが検出されたと推測した。つまり、TCG量が多いほど銅溶解量、有機銅化合物生成量、硫化銅生成量が多いと判断できる。
以上のことから、溶解銅減少時(tanδ減少時)のTCG量が多いほど、硫化銅生成量も多いと判断することができる。
[3] Relationship between the amount of dissolved copper in oil and TCG (see FIG. 10)
For the actual equipment (1272 locations), a trend graph of tan δ, the amount of dissolved copper in oil and TCG was created, and the average value of each characteristic value for each graph shape was summarized in FIG.
As a result, when the increase or decrease of tan δ, the amount of TCG tended to be large. From the formation mechanism, it was speculated that various chemical reactions occurred in the processes of copper dissolution, organic copper compound formation, and copper sulfide formation, and TCG was detected as the decomposition product gas generated during this chemical reaction. That is, it can be determined that the larger the amount of TCG, the larger the amount of copper dissolved, the amount of organic copper compound produced, and the amount of copper sulfide produced.
From the above, it can be determined that the larger the amount of TCG when the molten copper is reduced (when the tan δ is reduced), the larger the amount of copper sulfide produced.

(ニ)各基準値について(表6参照)
前記の表2の設備危険度診断の評価項目に記載した各基準値は、現状明確な相関関係を掴んでいないため、表6に示す現時点の試験データから暫定基準値として定めた。この点については、設備実態に合わせ今後見直す必要がある。
(D) For each reference value (see Table 6)
Since each reference value described in the evaluation items of the equipment risk diagnosis in Table 2 above does not have a clear correlation at present, it was set as a provisional reference value from the current test data shown in Table 6. This point needs to be reviewed in the future according to the actual conditions of the equipment.

表6は、実設備(1272箇所)について、(a)最大油中溶解銅量、(b)可燃性ガス総量(TCG)の最大値、(c)最大油中溶解銅量からの減少量を算出し、これらの値に基づき、各特性値について平均値、標準偏差(σ)、平均値+σを示したものである。さらに、このうち解体調査でAランクと診断された実設備(2箇所)について、各特性値の最小値を示したものである。 Table 6 shows (a) the maximum amount of dissolved copper in oil, (b) the maximum value of the total amount of flammable gas (TCG), and (c) the amount of decrease from the maximum amount of dissolved copper in oil for the actual equipment (1272 locations). It is calculated, and based on these values, the mean value, standard deviation (σ), and mean value + σ are shown for each characteristic value. Furthermore, the minimum value of each characteristic value is shown for the actual equipment (2 locations) diagnosed as A rank in the dismantling survey.

表6に示す現時点の試験データに基づき、(a)最大油中溶解銅量は、解体調査Aランクの実設備データの最小値をカバーする値として4.0ppmを暫定基準値として定めた。また、(b)可燃性ガス総量(TCG)の最大値は、実設備(1272箇所)の平均値から260ppmを暫定基準値として定めた。さらに(c)最大油中溶解銅量からの減少量は、実設備(1272箇所)の平均値+σから5.0ppmを暫定基準値として定めた。 Based on the current test data shown in Table 6, (a) the maximum amount of dissolved copper in oil was set to 4.0 ppm as a provisional reference value as a value covering the minimum value of the actual equipment data of the dismantling survey A rank. Further, (b) the maximum value of the total amount of flammable gas (TCG) was set to 260 ppm as a provisional reference value from the average value of the actual equipment (1272 locations). Further, (c) the amount of decrease from the maximum amount of molten copper in oil was set to 5.0 ppm from the average value of the actual equipment (1272 locations) + σ as a provisional reference value.

なお、(d)溶解銅量に対する誘電正接(tanδ)の比については、図8に示す解体調査を行った実設備における油中溶解銅量とtanδの関係をグラフに基づき、0.9を暫定基準値として定めた。 Regarding (d) the ratio of the dielectric loss tangent (tan δ) to the amount of molten copper, 0.9 is provisionally set based on the graph of the relationship between the amount of molten copper in oil and tan δ in the actual equipment where the dismantling survey shown in FIG. 8 was conducted. It was set as a standard value.

(ホ)補足診断〔部分放電発生状況〕(表1、表6、図10参照)
TCG量(H量)、tanδ、油中溶解銅量を、表1に示した有機銅化合物および硫化銅の生成傾向(tanδ増減傾向)と関連付けて図10に示す。
図10から明らかなように、硫化銅生成後(STEP3のとき)にTCG量(H)は多い(減少しない)傾向を示している。この場合、硫化銅生成後には、様々な化学反応による分解ガスは発生していないことから、従来の絶縁油分析の考え方から、部分放電による発生ガス(Hは放電電荷量が大きい部分放電の発生ガス)と言える。特に硫化銅生成後という点で、硫化銅生成場所での部分放電発生と推測できる。
以上のことから、硫化銅生成後にTCG量が多い設備では、部分放電が多く発生していると判断することができる。
(E) Supplementary diagnosis [Partial discharge occurrence status] (See Table 1, Table 6, and Fig. 10)
TCG amount (H 2 amount), tan [delta, the dissolved copper content in the oil is shown in Figure 10 in association with the propensity of an organic copper compound and copper sulfide shown in Table 1 (tan [delta increasing or decreasing trend).
As is clear from FIG. 10, the amount of TCG (H 2 ) tends to be large (does not decrease) after copper sulfide formation (at STEP 3). In this case, since decomposition gas is not generated by various chemical reactions after copper sulfide is produced, the gas generated by partial discharge (H 2 is a partial discharge with a large discharge charge amount) is based on the conventional concept of insulating oil analysis. Generated gas). In particular, it can be inferred that a partial discharge occurs at the copper sulfide production site, especially after the copper sulfide production.
From the above, it can be determined that a large amount of partial discharge is generated in the equipment having a large amount of TCG after the production of copper sulfide.

(へ)補足診断〔硫化銅生成困難および危険設備〕
この補足診断では、上述の油中溶解銅量の測定に合わせて、油中硫黄量を測定する。
油中硫黄量の測定で、採取した絶縁油から硫黄成分が検出されなかった設備については、絶縁油中に含まれる硫黄成分との反応による硫化銅の生成は起こらないと考えることができる。しかし、このような設備でも、絶縁紙中や、その他OFケーブルの材料中に含まれる硫黄成分との反応により、硫化銅が生成する可能性はあるが、このような硫化銅の生成は、絶縁油中に含まれる硫黄成分との反応による硫化銅の生成量に比べて極めて少ない。そのため、このような設備は、硫化銅の生成量が少ない、硫化銅生成困難設備と推定することができる。
また、絶縁油として、製造時に硫黄が多く含まれる鉱物油を使用していない設備については、絶縁紙中やその他OFケーブルの材料中に含まれる硫黄成分が絶縁油中に移行することで、上記測定時に油中硫黄量が高い値を示す場合がある。この場合、その測定時以降は、硫化銅が生成し易くなるため、硫化銅の生成量が多くなる設備と推定することができる。
以上のことから、油中溶解銅量の測定に合わせ油中硫黄量を測定し、硫黄が検出されない設備では、硫化銅生成による絶縁性能の著しい低下は起き難くなるため、硫化銅生成による異常発生の危険度は下がると診断できる。また、絶縁油に鉱物油を使用していない設備において、油中硫黄量が多い場合は、硫化銅生成による絶縁性能の著しい低下が起き易くなるため、硫化銅生成による異常発生の危険度は上がると診断できる。
(F) Supplementary diagnosis [Difficulty in producing copper sulfide and dangerous equipment]
In this supplementary diagnosis, the amount of sulfur in oil is measured in accordance with the above-mentioned measurement of the amount of dissolved copper in oil.
It can be considered that copper sulfide is not produced by the reaction with the sulfur component contained in the insulating oil in the equipment where the sulfur component was not detected in the collected insulating oil by the measurement of the amount of sulfur in the oil. However, even in such equipment, copper sulfide may be produced by the reaction with the sulfur component contained in the insulating paper or other materials of the OF cable, but such production of copper sulfide is insulating. It is extremely small compared to the amount of copper sulfide produced by the reaction with the sulfur component contained in the oil. Therefore, such equipment can be presumed to be equipment that is difficult to produce copper sulfide because the amount of copper sulfide produced is small.
For equipment that does not use mineral oil, which contains a large amount of sulfur during manufacturing, as the insulating oil, the sulfur component contained in the insulating paper and other materials of the OF cable is transferred to the insulating oil. The amount of sulfur in oil may show a high value at the time of measurement. In this case, since copper sulfide is likely to be produced after the measurement, it can be estimated that the equipment produces a large amount of copper sulfide.
From the above, in equipment where the amount of sulfur in oil is measured in accordance with the measurement of the amount of dissolved copper in oil and sulfur is not detected, it is unlikely that the insulation performance will be significantly reduced due to copper sulfide formation. It can be diagnosed that the risk of In addition, in equipment that does not use mineral oil as insulating oil, if the amount of sulfur in the oil is large, the insulation performance is likely to deteriorate significantly due to the formation of copper sulfide, and the risk of abnormal occurrence due to the formation of copper sulfide increases. Can be diagnosed.

以上説明した通り、本発明のOFケーブル異常発生の危険度の診断方法は、従来の診断方法と比較して、硫化銅生成要因となるジベンジルジスルフィドを添加していない絶縁油にも適用でき、従来の診断方法による特性値(油中溶解銅量、tanδ、TCG)を使用できるため簡易である等の利点を有し、簡易で精度の良い診断手法であると言える。実設備との整合性もある。 As described above, the method for diagnosing the risk of occurrence of OF cable abnormality of the present invention can be applied to insulating oil to which dibenzyl disulfide, which is a factor of copper sulfide, is not added, as compared with the conventional diagnostic method. Since the characteristic values (amount of dissolved copper in oil, tan δ, TCG) obtained by the conventional diagnostic method can be used, it has advantages such as simplicity, and can be said to be a simple and accurate diagnostic method. It is also consistent with the actual equipment.

ただし、tanδの値が油中溶解銅の形態により影響され、そして、油中溶解銅の形態が設備毎に異なるため、上記診断方法はOFケーブル設備毎に実施する必要がある。 However, since the value of tan δ is affected by the form of molten copper in oil and the form of molten copper in oil differs for each facility, the above diagnostic method needs to be carried out for each OF cable facility.

Claims (5)

絶縁油を使用した油入りケーブルにおいて、該ケーブル内における有機銅化合物および硫化銅の生成状況を推定する方法であって、
前記油入りケーブルの使用経過に応じて、該ケーブルから絶縁油を採取して、該絶縁油の油中溶解銅量、誘電正接(tanδ)および可燃性ガス総量(TCG)を測定し、得られた測定値に基づき、誘電正接(tanδ)と可燃性ガス総量(TCG)の経時変化を示すトレンドグラフ、あるいは、油中溶解銅量および誘電正接(tanδ)と可燃性ガス総量(TCG)の経時変化を示すトレンドグラフを作成する工程1と、
前記工程1で得られた測定値に基づき、下記式(1)により、最大油中溶解銅量を求める工程2を含み、
作成されたトレンドグラフにおいて、油中溶解銅量もしくは誘電正接(tanδ)の値が極大値を示した後に減少して行く期間を、有機銅化合物および硫化銅の生成期と推定し、前記工程2で求めた最大油中溶解銅量と、前記トレンドグラフで示される有機銅化合物および硫化銅の生成期における可燃性ガス総量(TCG)の最大値から、油入りケーブル内における有機銅化合物および硫化銅の生成状況を推定することを特徴とする方法。
[Cu]max=(tanδmax−tanδ)×{[Cu]/(tanδ−tanδ)}・・・(1)
(ただし、上記式(1)において、[Cu]maxは、最大油中溶解銅量であり、tanδmaxは、前記工程1で作成された誘電正接(tanδ)のトレンドグラフから導いた極大値であり、tanδは、油入りケーブルの使用開始前における絶縁油(新品の絶縁油)の誘電正接(tanδ)の値であり、tanδおよび[Cu]はそれぞれ、油入りケーブルの使用開始後のある時点における絶縁油の誘電正接(tanδ)および油中溶解銅量の各値である。)
A method for estimating the production status of an organic copper compound and copper sulfide in an oil-containing cable using insulating oil.
Insulating oil is sampled from the cable according to the progress of use of the oil-containing cable, and the amount of dissolved copper in the oil, the dielectric loss tangent (tan δ) and the total amount of flammable gas (TCG) of the insulating oil are measured and obtained. A trend graph showing the time course of the dielectric loss tangent (tanδ) and the total amount of flammable gas (TCG) based on the measured values, or the time course of the amount of dissolved copper in oil and the dielectric loss tangent (tanδ ) and the total amount of flammable gas (TCG). Step 1 to create a trend graph showing changes,
Including step 2 of determining the maximum amount of dissolved copper in oil by the following formula (1) based on the measured value obtained in step 1.
In the created trend graph, the period during which the amount of dissolved copper in oil or the value of dielectric tangent (tan δ) reaches the maximum value and then decreases is estimated as the production period of the organic copper compound and copper sulfide. From the maximum amount of dissolved copper in oil obtained in 1 and the maximum value of the total amount of flammable gas (TCG) in the production period of the organic copper compound and copper sulfide shown in the trend graph, the organic copper compound and copper sulfide in the oil-filled cable A method characterized by estimating the generation status of.
[Cu] max = (tanδ max -tanδ 0) × {[Cu] / (tanδ-tanδ 0)} ··· (1)
(However, in the above formula (1), [Cu] max is the maximum amount of dissolved copper in oil, and tanδ max is the maximum value derived from the trend graph of dielectric loss tangent (tanδ) prepared in step 1. Yes, tan δ 0 is the value of the dielectric loss tangent (tan δ) of the insulating oil (new insulating oil) before the start of use of the oil-containing cable, and tan δ and [Cu] are the values after the start of use of the oil-containing cable, respectively. It is each value of the dielectric loss tangent (tan δ) of the insulating oil and the amount of molten copper in the oil at the time point.
前記工程1で得られた測定値および前記工程2で求めた最大油中溶解銅量に基づき、最大油中溶解銅量からの減少量を求める工程3をさらに含み、
前記工程3で求めた最大油中溶解銅量からの減少量をさらに用いて、油入りケーブル内における有機銅化合物および硫化銅の生成状況を推定することを特徴とする請求項1に記載の方法。
Further including step 3 for obtaining the amount of decrease from the maximum amount of dissolved copper in oil based on the measured value obtained in the step 1 and the maximum amount of dissolved copper in oil obtained in the step 2.
The method according to claim 1, wherein the production state of the organic copper compound and copper sulfide in the oil-containing cable is estimated by further using the amount of decrease from the maximum amount of dissolved copper in oil obtained in the step 3. ..
前記工程1で得られた測定値に基づき、油中溶解銅量に対する誘電正接(tanδ)の比を求める工程4をさらに含み、
前記工程4で求めた油中溶解銅量に対する誘電正接(tanδ)の比をさらに用いて、油入りケーブル内における有機銅化合物および硫化銅の生成状況を推定することを特徴とする請求項1または2に記載の方法。
Further including step 4 for determining the ratio of dielectric loss tangent (tan δ) to the amount of dissolved copper in oil based on the measured value obtained in step 1.
Claim 1 or claim 1, wherein the production state of the organic copper compound and copper sulfide in the oil-containing cable is estimated by further using the ratio of the dielectric loss tangent (tan δ) to the amount of dissolved copper in oil obtained in the step 4. The method according to 2.
絶縁油を使用した油入りケーブルにおいて、該ケーブル内における異常発生の危険度を評価する診断方法であって、
前記油入りケーブルの使用経過に応じて、該ケーブルから絶縁油を採取して、該絶縁油の油中溶解銅量、誘電正接(tanδ)および可燃性ガス総量(TCG)を測定し、得られた測定値に基づき、誘電正接(tanδ)と可燃性ガス総量(TCG)の経時変化を示すトレンドグラフ、あるいは、油中溶解銅量および誘電正接(tanδ)と可燃性ガス総量(TCG)の経時変化を示すトレンドグラフを作成する工程1と、
前記工程1で得られた測定値に基づき、下記式(1)により、最大油中溶解銅量を求める工程2と、
前記工程1で得られた測定値および前記工程2で求めた最大油中溶解銅量に基づき、最大油中溶解銅量からの減少量を求める工程3と、
前記工程1で得られた測定値に基づき、油中溶解銅量に対する誘電正接(tanδ)の比を求める工程4と、を含み、
前記工程1で作成されたトレンドグラフで示される誘電正接(tanδ)が減少過程または減少後ほぼ定常状態にある油入りケーブルを、要診断と評価し、
前記要診断と評価された油入りケーブルについて、(a)前記工程2で求めた最大油中溶解銅量と、(b)前記トレンドグラフで示される有機銅化合物および硫化銅の生成期における可燃性ガス総量(TCG)の最大値と、(c)前記工程3で求めた最大油中溶解銅量からの減少量と、(d)前記工程4で求めた油中溶解銅量に対する誘電正接(tanδ)の比を、予め設定しておいた各基準値に基づき評価し、前記危険度を評価することを特徴とする診断方法。
[Cu]max=(tanδmax−tanδ)×{[Cu]/(tanδ−tanδ)}・・・(1)
(ただし、上記式(1)において、[Cu]maxは、最大油中溶解銅量であり、tanδmaxは、前記工程1で作成された誘電正接(tanδ)のトレンドグラフから導いた極大値であり、tanδは、油入りケーブルの使用開始前における絶縁油(新品の絶縁油)の誘電正接(tanδ)の値であり、tanδおよび[Cu]はそれぞれ、油入りケーブルの使用開始後のある時点における絶縁油の誘電正接(tanδ)および油中溶解銅量の各値である。)
This is a diagnostic method for evaluating the risk of abnormalities occurring in an oil-filled cable using insulating oil.
Insulating oil is sampled from the cable according to the progress of use of the oil-containing cable, and the amount of dissolved copper in the oil, the dielectric loss tangent (tan δ) and the total amount of flammable gas (TCG) of the insulating oil are measured and obtained. A trend graph showing the time course of the dielectric loss tangent (tanδ) and the total amount of flammable gas (TCG) based on the measured values, or the time course of the amount of dissolved copper in oil and the dielectric loss tangent (tanδ ) and the total amount of flammable gas (TCG). Step 1 to create a trend graph showing changes,
Based on the measured values obtained in the above step 1, the step 2 in which the maximum amount of dissolved copper in oil is obtained by the following formula (1), and
Based on the measured value obtained in the step 1 and the maximum amount of dissolved copper in oil obtained in the step 2, the amount of decrease from the maximum amount of dissolved copper in oil is obtained in step 3 and
Including step 4 of determining the ratio of dielectric loss tangent (tan δ) to the amount of dissolved copper in oil based on the measured value obtained in step 1.
An oil-filled cable in which the dielectric loss tangent (tan δ) shown in the trend graph created in step 1 is in a nearly steady state during or after the decrease is evaluated as requiring diagnosis.
Regarding the oil-containing cable evaluated as requiring diagnosis, (a) the maximum amount of dissolved copper in oil obtained in the step 2 and (b) flammability during the production period of the organic copper compound and copper sulfide shown in the trend graph. The maximum value of the total amount of gas (TCG), (c) the amount of decrease from the maximum amount of dissolved copper in oil obtained in the step 3, and (d) the dielectric tangent (tan δ) with respect to the amount of dissolved copper in the oil obtained in the step 4. ) Is evaluated based on each preset reference value, and the degree of risk is evaluated.
[Cu] max = (tanδ max -tanδ 0) × {[Cu] / (tanδ-tanδ 0)} ··· (1)
(However, in the above formula (1), [Cu] max is the maximum amount of dissolved copper in oil, and tanδ max is the maximum value derived from the trend graph of dielectric loss tangent (tanδ) prepared in step 1. Yes, tan δ 0 is the value of the dielectric loss tangent (tan δ) of the insulating oil (new insulating oil) before the start of use of the oil-containing cable, and tan δ and [Cu] are the values after the start of use of the oil-containing cable, respectively. It is each value of the dielectric loss tangent (tan δ) of the insulating oil and the amount of molten copper in the oil at the time point.
(a)前記工程2で求めた最大油中溶解銅量と、(b)前記トレンドグラフで示される有機銅化合物および硫化銅の生成期における可燃性ガス総量(TCG)の最大値との両方が、予め設定しておいた各基準値を超える場合に、前記危険度がより高いと評価することを特徴とする請求項4に記載の診断方法。 Both (a) the maximum amount of dissolved copper in oil obtained in the step 2 and (b) the maximum value of the total amount of flammable gas (TCG) in the production period of the organic copper compound and copper sulfide shown in the trend graph are The diagnostic method according to claim 4, wherein when the value exceeds each preset reference value, the risk is evaluated to be higher.
JP2017017098A 2017-02-01 2017-02-01 A method for estimating the production status of organic copper compounds and copper sulfide in oil-containing cables by insulating oil analysis, and a method for diagnosing the risk of abnormal occurrence of oil-containing cables. Active JP6832728B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017017098A JP6832728B2 (en) 2017-02-01 2017-02-01 A method for estimating the production status of organic copper compounds and copper sulfide in oil-containing cables by insulating oil analysis, and a method for diagnosing the risk of abnormal occurrence of oil-containing cables.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017017098A JP6832728B2 (en) 2017-02-01 2017-02-01 A method for estimating the production status of organic copper compounds and copper sulfide in oil-containing cables by insulating oil analysis, and a method for diagnosing the risk of abnormal occurrence of oil-containing cables.

Publications (2)

Publication Number Publication Date
JP2018124185A JP2018124185A (en) 2018-08-09
JP6832728B2 true JP6832728B2 (en) 2021-02-24

Family

ID=63109547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017017098A Active JP6832728B2 (en) 2017-02-01 2017-02-01 A method for estimating the production status of organic copper compounds and copper sulfide in oil-containing cables by insulating oil analysis, and a method for diagnosing the risk of abnormal occurrence of oil-containing cables.

Country Status (1)

Country Link
JP (1) JP6832728B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7014065B2 (en) 2018-06-29 2022-02-01 セイコーエプソン株式会社 Liquid discharge head and liquid discharge device
CN111445110B (en) * 2020-03-05 2023-03-03 深圳供电局有限公司 Cable channel-based environmental risk decision method and device and computer equipment

Also Published As

Publication number Publication date
JP2018124185A (en) 2018-08-09

Similar Documents

Publication Publication Date Title
Fofana et al. Characterization of aging transformer oil–pressboard insulation using some modern diagnostic techniques
Meshkatoddini et al. Aging study and lifetime estimation of transformer mineral oil
CN110297167B (en) Transformer aging state evaluation method based on multi-source information fusion
US8423301B2 (en) Lifetime assessment apparatus and method for oil-filled electrical device, and degradation suppression apparatus and method for oil-filled electrical device
JP6832728B2 (en) A method for estimating the production status of organic copper compounds and copper sulfide in oil-containing cables by insulating oil analysis, and a method for diagnosing the risk of abnormal occurrence of oil-containing cables.
Yuan et al. A review: Research on corrosive sulphur in electrical power equipment
JP2005223104A (en) Method of diagnosing and suppressing electrostatic charge of oil-filled electrical apparatus
Yang et al. Effects of electric fields on copper sulfide deposition and the properties of insulating oils in oil-immersed transformers
JP4888402B2 (en) Remaining life diagnosis method for oil-filled transformers
JP6609134B2 (en) Estimation method of copper sulfide generation status of oil-filled cable by insulation oil analysis, risk diagnosis method
Ibrahim et al. Thermal ageing study of ZnO nanofluid–cellulose insulation
JP2010256208A (en) Method for diagnosing secular deterioration of insulating oil in electric device
CN112269105A (en) Moisture prediction and aging evaluation method for field bushing oil-immersed cellulose insulation
CN102870176B (en) Diagnosis method and diagnosis apparatus for oil-filled electrical apparatus
JP2010256207A (en) Method for diagnosing deterioration of oil-containing electric device due to cumulated deteriorated matter in insulating oil
Liu et al. Effects of antioxidants and acids on copper sulfide generation and migration induced by dibenzyl disulfide in oil‐immersed transformers
JP2009168571A (en) Method for diagnosing degradation of oil-immersed transformer
WO1998056017A1 (en) Method for evaluating deterioration of insulating paper
JP2010230483A (en) Insulation deterioration diagnosis method of insulating oil in electric apparatus
JP2023111322A (en) Method for diagnosing degree of risk of abnormality occurrence of oil-filled cable
CN104838456B (en) The diagnostic method of oil-filled electric equipment and maintaining method
JP5233021B2 (en) Method for estimating the amount of copper sulfide produced in oil-filled electrical equipment, method for diagnosing abnormality, method for estimating initial concentration of dibenzyl disulfide in insulating oil, and method for diagnosing the possibility of occurrence of abnormality
Mitchinson et al. Investigation into the formation of copper sulphide in oil filled electrical equipment
JP5442646B2 (en) Diagnostic method for oil-filled electrical equipment
Maina et al. Copper dissolution and deposition tendency of insulating mineral oils related to dielectric properties of liquid and solid insulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210202

R150 Certificate of patent or registration of utility model

Ref document number: 6832728

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250