JP6609134B2 - Estimation method of copper sulfide generation status of oil-filled cable by insulation oil analysis, risk diagnosis method - Google Patents
Estimation method of copper sulfide generation status of oil-filled cable by insulation oil analysis, risk diagnosis method Download PDFInfo
- Publication number
- JP6609134B2 JP6609134B2 JP2015145433A JP2015145433A JP6609134B2 JP 6609134 B2 JP6609134 B2 JP 6609134B2 JP 2015145433 A JP2015145433 A JP 2015145433A JP 2015145433 A JP2015145433 A JP 2015145433A JP 6609134 B2 JP6609134 B2 JP 6609134B2
- Authority
- JP
- Japan
- Prior art keywords
- oil
- copper
- amount
- dissolved
- tan
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 title claims description 130
- 230000019086 sulfide ion homeostasis Effects 0.000 title claims description 55
- 238000000034 method Methods 0.000 title claims description 35
- 238000003745 diagnosis Methods 0.000 title claims description 34
- 238000009413 insulation Methods 0.000 title description 11
- 238000004458 analytical method Methods 0.000 title description 5
- 239000010949 copper Substances 0.000 claims description 157
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 156
- 229910052802 copper Inorganic materials 0.000 claims description 156
- 230000015572 biosynthetic process Effects 0.000 claims description 22
- 238000002405 diagnostic procedure Methods 0.000 claims description 21
- 230000007423 decrease Effects 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 230000003247 decreasing effect Effects 0.000 claims description 9
- 230000005856 abnormality Effects 0.000 claims description 7
- 238000004090 dissolution Methods 0.000 claims description 6
- 239000003921 oil Substances 0.000 description 253
- 239000007789 gas Substances 0.000 description 33
- 238000005755 formation reaction Methods 0.000 description 21
- 239000005749 Copper compound Substances 0.000 description 20
- 150000001880 copper compounds Chemical class 0.000 description 20
- 239000010802 sludge Substances 0.000 description 16
- 150000004699 copper complex Chemical class 0.000 description 15
- 230000036961 partial effect Effects 0.000 description 15
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 13
- 229910052717 sulfur Inorganic materials 0.000 description 13
- 239000011593 sulfur Substances 0.000 description 13
- 238000005259 measurement Methods 0.000 description 12
- 230000015556 catabolic process Effects 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 9
- 230000006866 deterioration Effects 0.000 description 9
- 239000012212 insulator Substances 0.000 description 8
- 230000005684 electric field Effects 0.000 description 7
- 238000011835 investigation Methods 0.000 description 7
- GVPWHKZIJBODOX-UHFFFAOYSA-N dibenzyl disulfide Chemical compound C=1C=CC=CC=1CSSCC1=CC=CC=C1 GVPWHKZIJBODOX-UHFFFAOYSA-N 0.000 description 6
- 239000004020 conductor Substances 0.000 description 5
- 238000012790 confirmation Methods 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 238000007689 inspection Methods 0.000 description 3
- 230000003014 reinforcing effect Effects 0.000 description 3
- 239000012086 standard solution Substances 0.000 description 3
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000004993 emission spectroscopy Methods 0.000 description 2
- 238000004868 gas analysis Methods 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000002787 reinforcement Effects 0.000 description 2
- 150000003464 sulfur compounds Chemical class 0.000 description 2
- 230000036962 time dependent Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- SLRMQYXOBQWXCR-UHFFFAOYSA-N 2154-56-5 Chemical compound [CH2]C1=CC=CC=C1 SLRMQYXOBQWXCR-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- -1 benzylsulfenyl radical Chemical class 0.000 description 1
- HTMQZWFSTJVJEQ-UHFFFAOYSA-N benzylsulfinylmethylbenzene Chemical compound C=1C=CC=CC=1CS(=O)CC1=CC=CC=C1 HTMQZWFSTJVJEQ-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- SVOAENZIOKPANY-CVBJKYQLSA-L copper;(z)-octadec-9-enoate Chemical compound [Cu+2].CCCCCCCC\C=C/CCCCCCCC([O-])=O.CCCCCCCC\C=C/CCCCCCCC([O-])=O SVOAENZIOKPANY-CVBJKYQLSA-L 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Description
本発明は、絶縁油分析による油入りケーブルの硫化銅生成状況の推定方法、危険度の診断方法に関する。 The present invention relates to a method for estimating the state of copper sulfide generation in an oil-filled cable by insulating oil analysis, and a risk diagnosis method.
油入り変圧器などの油入り電気機器は、油入り電気機器の銅部品と絶縁油中の硫黄成分の反応により導電性の硫化銅が生成(硫化腐食)し、絶縁破壊を引き起こすために油入り電気機器に致命的な損傷を及ぼす場合があることが知られている。絶縁油中の推定硫黄成分としては、絶縁油中に含まれている硫黄成分や、絶縁紙等の部材から溶出する溶出硫黄成分や、絶縁油に後添加する酸化防止剤等の添加硫黄成分が考えられる。 Oil-filled electrical equipment such as oil-filled transformers contain oil because conductive copper sulfide is generated (sulfurization corrosion) due to the reaction between the copper components of oil-filled electrical equipment and sulfur components in the insulation oil, causing dielectric breakdown. It is known that it can cause fatal damage to electrical equipment. Estimated sulfur components in insulating oil include sulfur components contained in insulating oil, eluted sulfur components eluted from members such as insulating paper, and added sulfur components such as antioxidants added later to insulating oil. Conceivable.
大型変圧器などの油入り電気機器では、絶縁体として油浸紙を使用するため、この油浸絶縁紙に硫化銅が付着したときはコイル間で短絡が発生し、破壊されることになり、海外では絶縁破壊事例として報告されている。また、同じ絶縁体として油浸紙を使用している油入りケーブルの劣化は、非常に緩やかであると考えられてきたが、近年経年油入りケーブル線路における絶縁破壊事例も確認されている。ただし、絶縁破壊要因が硫化銅生成という報告はされていない。 In oil-filled electrical equipment such as large transformers, oil-impregnated paper is used as an insulator, so when copper sulfide adheres to this oil-impregnated insulating paper, a short circuit occurs between the coils, which causes destruction. It has been reported overseas as an example of dielectric breakdown. In addition, although deterioration of oil-filled cables using oil-impregnated paper as the same insulator has been considered to be very gradual, in recent years there have been confirmed cases of dielectric breakdown in aged oil-filled cable lines. However, it has not been reported that the breakdown factor is copper sulfide formation.
硫化銅生成に関わる反応メカニズムは、絶縁油中に添加された酸化防止剤ジベンジルジスルフィド(以下、「DBDS」と略称することがある。)との関係で詳細に検討されている。すなわち、DBDSがコイル銅に吸着し、次に、DBDSがコイル銅と反応してDBDS−銅錯体を生成し、さらに、DBDS−銅錯体がベンジルラジカル及びベンジルスルフェニルラジカルと硫化銅へと分解する反応が起こるためと報告されている(例えば、特許文献1〜3を参照)。 The reaction mechanism related to copper sulfide formation has been studied in detail in relation to the antioxidant dibenzyl disulfide (hereinafter sometimes abbreviated as “DBDS”) added to the insulating oil. That is, DBDS is adsorbed on coil copper, and then DBDS reacts with coil copper to form a DBDS-copper complex, which is further decomposed into benzyl radical, benzylsulfenyl radical, and copper sulfide. It is reported that the reaction occurs (for example, see Patent Documents 1 to 3).
特許文献1及び特許文献2では、稼動中の変圧器から絶縁油を採取し、DBDSやその分解物、副生成物などを分析して硫化銅の生成を予測し、油入り電気機器の異常発生の危険度を診断する方法を開示している。また、特許文献3では、絶縁油が空気雰囲気下にある場合に、絶縁油中のジベンジルスルホキシドの濃度を測定し、該濃度に基づいて、硫化銅の生成量を推定する方法を開示している。 In Patent Document 1 and Patent Document 2, insulating oil is collected from a transformer in operation, DBDS and its decomposition products, by-products, etc. are analyzed to predict the formation of copper sulfide. Discloses a method of diagnosing the risk level. Patent Document 3 discloses a method of measuring the concentration of dibenzyl sulfoxide in an insulating oil when the insulating oil is in an air atmosphere, and estimating the amount of copper sulfide generated based on the concentration. Yes.
しかしながら、上記の診断方法は、絶縁油中にDBDSが添加されていることが不可欠であり、基本的にDBDSを添加していない絶縁油を用いている油入りケーブルの場合は、絶縁油中のDBDS−銅錯体生成量から絶縁油中の硫化銅生成量を推定できない問題点がある。また、従来、油入りケーブルの点検技術としては、絶縁油の誘電正接(tanδ)測定や、絶縁油中のガスを分析し、部分放電(絶縁油の局所的な絶縁破壊)により生成される可燃性ガス量を、劣化度合いの目安とする油中ガス分析が一般的であり、硫化銅の生成状況から危険度を診断する方法は実施されていない。 However, in the above diagnostic method, it is indispensable that DBDS is added to the insulating oil. Basically, in the case of an oil-filled cable using an insulating oil to which DBDS is not added, There is a problem that the amount of copper sulfide produced in insulating oil cannot be estimated from the amount of DBDS-copper complex produced. Conventionally, as an inspection technique for oil-filled cables, combustible gas generated by partial discharge (local breakdown of insulating oil) by measuring dielectric tangent (tan δ) of insulating oil and analyzing gas in insulating oil Gas analysis in oil using the amount of toxic gas as a measure of the degree of deterioration is common, and no method for diagnosing the risk from the state of copper sulfide formation has been implemented.
本発明は、前記従来の課題に鑑みてなされたものであり、絶縁油を使用した油入りケーブル中の硫化銅生成状況を推定し、当該方法で推定された硫化銅生成状況に基づいて、油入りケーブルの異常発生の危険度を評価する診断方法を提供することを目的とする。 The present invention has been made in view of the above-described conventional problems, and estimates the state of copper sulfide generation in an oil-filled cable using insulating oil, and based on the state of copper sulfide generation estimated by the method, An object of the present invention is to provide a diagnostic method for evaluating the risk of occurrence of abnormality in an incoming cable.
前記課題を解決するため、本発明者らは鋭意検討した。その結果、絶縁油を使用した油入りケーブルの解体調査結果より、当該油入りケーブル中においても硫化銅が生成すること;硫化銅の生成原因と思われる絶縁油中の油中溶解銅量と絶縁油の誘電正接(tanδ)との間に相関関係が認められること;硫化銅生成時に油中溶解銅量と誘電正接(tanδ)の経時変化を示したトレンドグラフが極大値をとった後に減少する傾向があること;硫化銅生成時に絶縁油中の可燃性ガスが発生し可燃性ガス総量(Total Combustible Gas:TCG)が増加すること;に着目した。
そして、油入りケーブルから採取した絶縁油中の油中溶解銅量、誘電正接(tanδ)及び可燃性ガス量(TCG)から、硫化銅生成状況を推定することができ、当該方法で推定された硫化銅生成状況に基づいて、油入りケーブルの異常発生の危険度を診断することが可能であることを見出し、本発明を完成するに至った。
In order to solve the above problems, the present inventors have intensively studied. As a result, from the results of dismantling investigation of oil-filled cables using insulating oil, copper sulfide is also produced in the oil-filled cable; the amount of copper dissolved in the oil and insulation that is considered to be the cause of copper sulfide formation. A correlation between the oil loss tangent (tan δ) and the trend graph showing the time-dependent changes in the amount of copper dissolved in the oil and the dielectric loss tangent (tan δ) at the time of copper sulfide formation decreases after reaching the maximum value. It paid attention to that there was a tendency; combustible gas in insulating oil was generated at the time of copper sulfide generation, and total combustible gas (TCG) increased.
And the copper sulfide production situation can be estimated from the amount of dissolved copper in the insulating oil collected from the oil-filled cable, the dielectric loss tangent (tan δ) and the amount of flammable gas (TCG), and was estimated by this method. Based on the state of copper sulfide generation, it has been found that it is possible to diagnose the risk of occurrence of an abnormality in an oil-filled cable, and the present invention has been completed.
すなわち、本発明の硫化銅生成状況の推定方法は、
絶縁油を使用した油入りケーブルにおいて、該ケーブル内における硫化銅の生成状況を推定する方法であって、
油入りケーブルから採取した絶縁油について、油中溶解銅量もしくは誘電正接(tanδ)と可燃性ガス総量(TCG)の経時変化を示すトレンドグラフを作成するステップ1を含み、
作成されたトレンドグラフにおいて、油中溶解銅量もしくは誘電正接(tanδ)の値が極大値を示した後に減少して行く期間を、硫化銅生成期と推定し、トレンドグラフで示される油中溶解銅量もしくは誘電正接(tanδ)の最大値と硫化銅生成期の可燃性ガス総量(TCG)の最大値から、硫化銅の生成状況を推定することを特徴とする。
That is, the method of estimating the copper sulfide production status of the present invention is
In an oil-filled cable using insulating oil, a method for estimating the production status of copper sulfide in the cable,
For the insulating oil collected from the oil-filled cable, including a step 1 for creating a trend graph showing a change with time of the amount of copper dissolved in the oil or the dielectric loss tangent (tan δ) and the total amount of combustible gas (TCG),
In the created trend graph, the period in which the amount of copper dissolved in oil or the loss tangent (tan δ) decreases after reaching the maximum value is estimated as the copper sulfide formation period, and the dissolution in oil shown in the trend graph The production state of copper sulfide is estimated from the maximum value of the amount of copper or dielectric loss tangent (tan δ) and the maximum value of the total amount of combustible gas (TCG) during the copper sulfide formation period.
また、本発明の硫化銅生成状況の推定方法は、
絶縁油を使用した油入りケーブルにおいて、該ケーブル内における硫化銅の生成状況を推定する方法であって、
油入りケーブルから採取した絶縁油について、油中溶解銅量もしくは誘電正接(tanδ)と可燃性ガス総量(TCG)の経時変化を示すトレンドグラフを作成するステップ1と、
油入りケーブル使用前の絶縁油と実設備の油入りケーブルから採取した絶縁油の油中溶解銅量と誘電正接(tanδ)の関係を示すグラフを作成し、過去の最大誘電正接(tanδ)の値から、最大油中溶解銅量を求めるステップ2と、
実設備から採取した絶縁油の誘電正接(tanδ)と油中溶解銅量の比を求めるステップ3とを含み、
作成されたトレンドグラフで示される油中溶解銅量もしくは誘電正接(tanδ)の値が極大値を示した後に減少して行く期間を、硫化銅生成期と推定し、ステップ2で求めた最大油中溶解銅量と、ステップ3で求めた誘電正接(tanδ)と油中溶解銅量の比と、ステップ1の油中溶解銅量もしくは誘電正接(tanδ)と可燃性ガス総量(TCG)の値を用いて、硫化銅の生成状況を推定することを特徴とする。
Moreover, the estimation method of the copper sulfide production status of the present invention is:
In an oil-filled cable using insulating oil, a method for estimating the production status of copper sulfide in the cable,
Step 1 for creating a trend graph showing the change over time of the amount of copper dissolved in the oil or the dielectric loss tangent (tan δ) and the total amount of combustible gas (TCG) for the insulating oil collected from the oil-filled cable;
Create a graph showing the relationship between the amount of copper dissolved in the oil and the dielectric loss tangent (tan δ) of the insulating oil collected from the oil-filled cable of the actual equipment and the oil-filled cable before using the oil-filled cable. From step 2, find the maximum amount of copper dissolved in the oil,
Step 3 for determining a ratio of dielectric loss tangent (tan δ) of insulating oil collected from actual equipment and amount of dissolved copper in oil,
Estimate the period during which the amount of copper dissolved in the oil or dielectric loss tangent (tan δ) shown in the created trend graph decreases after reaching the maximum value as the copper sulfide formation period, and determine the maximum oil obtained in step 2 The amount of medium-dissolved copper, the ratio of the dielectric loss tangent (tan δ) obtained in step 3 and the amount of copper dissolved in oil, the value of the amount of copper dissolved in oil or dielectric tangent (tan δ) and the total amount of combustible gas (TCG) in step 1 Is used to estimate the production status of copper sulfide.
本発明の硫化銅生成状況の推定方法は、油入りケーブルを構成する導体が、絶縁油中の炭化水素や非炭化水素化合物と反応し、銅錯体もしくは銅化合物として絶縁油中に溶解し、当該銅錯体が高電界領域にある補強絶縁層の絶縁紙に凝集し、硫化銅を生成するとの推定に基づいている。
また、油入りケーブル使用前の絶縁油について、誘電正接(tanδ)と油中溶解銅量との間に直線性の正の相関が認められるため、誘電正接(tanδ)の最大値(極大値)が大きいと油中溶解銅量も多くなるため、硫化銅生成量が多くなるとの推定に基づいている。
油中溶解銅量と誘電正接(tanδ)のトレンドは相関する。いずれのパラメータを使用しても硫化銅生成状況を推定することが可能である。蓄積データ量、信頼性の高さ、データ処理のし易さ等を考慮して任意に選択できる。
In the method for estimating the state of copper sulfide production according to the present invention, the conductor constituting the oil-filled cable reacts with the hydrocarbon or non-hydrocarbon compound in the insulating oil and dissolves in the insulating oil as a copper complex or a copper compound. This is based on the presumption that the copper complex aggregates on the insulating paper of the reinforcing insulating layer in the high electric field region to form copper sulfide.
In addition, for insulation oil before using an oil-filled cable, there is a positive linear correlation between the dielectric loss tangent (tan δ) and the amount of copper dissolved in the oil, so the maximum value of the dielectric loss tangent (tan δ) (maximum value) Is large, the amount of copper dissolved in the oil also increases, and this is based on the assumption that the amount of copper sulfide produced increases.
The amount of copper dissolved in oil and the trend of dielectric loss tangent (tan δ) are correlated. It is possible to estimate the copper sulfide production status using any parameter. It can be arbitrarily selected in consideration of the amount of stored data, high reliability, ease of data processing, and the like.
また、本発明の診断方法は、
絶縁油を使用した油入りケーブルにおいて、該ケーブル内における異常発生の危険度を評価する診断方法であって、
油入りケーブルから採取した絶縁油について、油中溶解銅量もしくは誘電正接(tanδ)と可燃性ガス総量(TCG)の経時変化を示すトレンドグラフを作成するステップ1と、
油入りケーブル使用前の絶縁油と実設備の油入りケーブルから採取した絶縁油の油中溶解銅量と誘電正接(tanδ)の関係を示すグラフを作成し、過去の最大誘電正接(tanδ)の値から、最大油中溶解銅量を求めるステップ2と、
実設備から採取した絶縁油の誘電正接(tanδ)と油中溶解銅量の比を求めるステップ3とを含み、
(A)ステップ3で求めた誘電正接(tanδ)と油中溶解銅量の比、(B)予め設定した最大油中溶解銅量の基準値、及び(C)予め設定した可燃性ガス総量(TCG)の基準値をもとに、危険度を評価することを特徴とする。
Moreover, the diagnostic method of the present invention comprises:
In an oil-filled cable using insulating oil, a diagnostic method for evaluating the risk of occurrence of abnormality in the cable,
Step 1 for creating a trend graph showing the change over time of the amount of copper dissolved in the oil or the dielectric loss tangent (tan δ) and the total amount of combustible gas (TCG) for the insulating oil collected from the oil-filled cable;
Create a graph showing the relationship between the amount of copper dissolved in the oil and the dielectric loss tangent (tan δ) of the insulating oil collected from the oil-filled cable of the actual equipment and the oil-filled cable before using the oil-filled cable. From step 2, find the maximum amount of copper dissolved in the oil,
Step 3 for determining a ratio of dielectric loss tangent (tan δ) of insulating oil collected from actual equipment and amount of dissolved copper in oil,
(A) Ratio of dielectric loss tangent (tan δ) obtained in step 3 and amount of copper dissolved in oil, (B) reference value of preset maximum amount of copper dissolved in oil, and (C) total amount of combustible gas set in advance ( The risk is evaluated based on a reference value of TCG).
本発明の診断方法においては、ステップ1で作成されたトレンドグラフで示される油中溶解銅量もしくは誘電正接(tanδ)が減少過程または減少後ほぼ定常状態にある油入りケーブルを、要診断と評価した上で、
要診断と評価した油入りケーブルを、(A)ステップ3で求めた誘電正接(tanδ)と油中溶解銅量の比、(B)予め設定した最大油中溶解銅量の基準値、及び(C)予め設定した可燃性ガス総量(TCG)の基準値をもとに危険度を評価することが好ましい。
In the diagnostic method of the present invention, an oil-filled cable whose dissolved copper amount or dielectric loss tangent (tan δ) shown in the trend graph created in Step 1 is in the decreasing process or in a substantially steady state after the decrease is diagnosed and evaluated. And then
(A) Ratio of dielectric loss tangent (tan δ) determined in step 3 to the amount of copper dissolved in oil, (B) preset reference value for maximum amount of copper dissolved in oil, C) It is preferable to evaluate the risk based on a preset reference value of the total amount of combustible gas (TCG).
また、本発明の診断方法においては(A)ステップ3で求めた誘電正接(tanδ)と油中溶解銅量の比、(B)予め設定した最大油中溶解銅量の基準値、及び(C)予め設定した可燃性ガス総量(TCG)の基準値の順で、危険度を評価し、ランク付けすることが好ましい。 In the diagnostic method of the present invention, (A) the ratio of the dielectric loss tangent (tan δ) obtained in Step 3 and the amount of copper dissolved in oil, (B) a preset reference value for the maximum amount of copper dissolved in oil, and (C ) It is preferable to evaluate and rank the risk in the order of the reference value of the preset total amount of combustible gas (TCG).
ステップ3で求めた関係式は、実設備におけるスラッジ生成量やスラッジ生成範囲(広狭)との相関が認められるため、信頼性が高い指標と言える。油中溶解銅量は、硫化銅生成要因となる銅量を表す指標であるため、硫化銅生成に直結する因子である。また、TCG量は、絶縁油溶存ガスの増加を表す指標であるため、部分放電の危険性を評価する上で重要である。 The relational expression obtained in Step 3 can be said to be a highly reliable index because a correlation with the sludge generation amount and sludge generation range (wide and narrow) in the actual equipment is recognized. Since the amount of copper dissolved in oil is an index that represents the amount of copper that is a factor for producing copper sulfide, it is a factor that directly leads to copper sulfide production. Moreover, since the amount of TCG is an index representing an increase in insulating oil dissolved gas, it is important in evaluating the risk of partial discharge.
本発明の硫化銅生成状況の推定方法によれば、トレンドグラフで示される油中溶解銅量もしくは誘電正接(tanδ)の値が、極大値を示した後に、減少して行く期間を、硫化銅生成期と推定するので、油入りケーブルから採取した絶縁油の油中溶解銅量もしくは誘電正接(tanδ)の値から、硫化銅の生成状況を推定することが可能になる。
また、本発明の診断方法によれば、油中ガス分析(部分放電や熱劣化により発生したガスのトレンド傾向診断)、絶縁油の電気特性の低下傾向診断(tanδ、TCG、体積抵抗率、AC耐圧測定)、水の浸入診断(水分量測定)等による従来の診断方法とは異なる観点で、硫化銅生成メカニズムに基づいて診断するので、ジベンジルジスルフィドを添加していない絶縁油を使用した油入りケーブルについても劣化診断が可能になる。
According to the method for estimating the state of copper sulfide production according to the present invention, the amount of copper dissolved in oil or the value of dielectric loss tangent (tan δ) shown in the trend graph decreases after the maximum value is reached. Since the generation period is estimated, it is possible to estimate the state of copper sulfide generation from the amount of dissolved copper in the oil or dielectric loss tangent (tan δ) of the insulating oil collected from the oil-filled cable.
Further, according to the diagnostic method of the present invention, analysis of gas in oil (diagnosis of trend of gas generated by partial discharge or thermal deterioration), diagnosis of decrease in electrical characteristics of insulating oil (tan δ, TCG, volume resistivity, AC Oil that uses insulating oil that does not contain dibenzyl disulfide because it diagnoses based on the copper sulfide formation mechanism from a different viewpoint from conventional diagnostic methods such as pressure resistance measurement and water intrusion diagnosis (moisture content measurement). Degradation diagnosis is also possible for incoming cables.
さらに、絶縁油の誘電正接(tanδ)と絶縁油中の可燃性ガス総量(TCG)の測定データを使用するので、油入りケーブル稼働時より蓄積してきた測定データからトレンドグラフを作成することができる。
また、解体した油入りケーブルにおける硫化銅生成範囲の広狭データを、未使用絶縁油を用いて作成した油中溶解銅量と誘電正接(tanδ)の関係式と関連付けることで、危険度を評価、診断することができる。
Furthermore, since the measurement data of the dielectric loss tangent (tanδ) of the insulating oil and the total amount of combustible gas (TCG) in the insulating oil are used, a trend graph can be created from the measurement data accumulated since the operation of the oil-filled cable. .
In addition, the risk level is evaluated by associating the wide and narrow data of the copper sulfide generation range in the disassembled oil-filled cable with the relational expression of the amount of dissolved copper in oil and dielectric loss tangent (tan δ) created using unused insulating oil. Can be diagnosed.
従って、運転開始から30〜40年を迎える油入りケーブルについて、従来の蓄積データを活用しながら、手軽に精度よく診断することができる。 Therefore, it is possible to easily and accurately diagnose an oil-filled cable that reaches 30 to 40 years from the start of operation while utilizing conventional accumulated data.
以下、本発明による油入りケーブル(以下、OFケーブルと記す)内における硫化銅の生成状況の推定方法、ならびに、異常発生の危険度を評価する診断方法を詳細に説明する。 Hereinafter, a method for estimating the state of copper sulfide generation in an oil-filled cable (hereinafter referred to as an OF cable) according to the present invention and a diagnostic method for evaluating the risk of occurrence of abnormality will be described in detail.
≪OFケーブルにおける劣化状況≫ ≪Deterioration status of OF cable≫
OFケーブルの一例を図1に示す。図1(a)はOFケーブルの断面図、図1(b)はOFケーブル接続部構造を示したものである。OFケーブルは、単に油浸絶縁紙を絶縁体としただけでは、温度変化による絶縁油の圧力低下で絶縁油中に気泡が生じ、要求特性を満足しないため、導体(または金属被)の内側に油通路を設け、絶縁油に大気圧以上の圧力を外部に設置した油槽によって常時加え、高電界強度にも耐えられるように設計されている。OFケーブルの絶縁体は、図1(b)に示すように、テープ状の絶縁紙を巻き付けて絶縁油を含浸させることで構成される。その際、曲げ特性を向上させるために、通常、絶縁紙はラップさせず、ギャップを均等に設けて構成されている。 An example of the OF cable is shown in FIG. FIG. 1A is a cross-sectional view of an OF cable, and FIG. 1B shows an OF cable connecting portion structure. Since the OF cable simply uses oil-insulated insulating paper as an insulator, pressure drops in the insulating oil due to temperature changes cause bubbles in the insulating oil, which do not satisfy the required characteristics, so the inside of the conductor (or metal sheath) It is designed to withstand high electric field strength by providing an oil passage and constantly applying pressure above the atmospheric pressure to the insulating oil by an oil tank installed outside. The insulator of the OF cable is configured by winding a tape-shaped insulating paper and impregnating the insulating oil as shown in FIG. At this time, in order to improve the bending characteristics, the insulating paper is usually not wrapped and the gaps are evenly provided.
OFケーブルの絶縁性能が低下する要因は、過熱による絶縁紙重合度の低下、振動・熱伸縮による損傷・変形・絶縁体の崩れ、負圧、漏油、絶縁油特性異常などが考えられており、従来より、各種点検技術が報告、実施されている。点検技術としては、例えば、油中ガス分析技術(部分放電や熱劣化により発生したガスのトレンド傾向診断)、絶縁油の電気特性(tanδ、TCG、体積抵抗率、AC耐圧測定)の低下傾向を診断する技術、水の浸入診断(水分量測定)等が存在する。 Factors that decrease the insulation performance of OF cables are thought to be due to a decrease in the degree of insulation paper polymerization due to overheating, damage / deformation due to vibration / thermal expansion / contraction, collapse of insulation, negative pressure, oil leakage, and abnormal insulation oil characteristics. In the past, various inspection techniques have been reported and implemented. Examples of inspection techniques include gas analysis techniques in oil (trend trend diagnosis of gas generated by partial discharge and thermal degradation), and decreasing tendency of electrical characteristics (tan δ, TCG, volume resistivity, AC withstand voltage measurement) of insulating oil. Techniques for diagnosis, water intrusion diagnosis (moisture content measurement), and the like exist.
OFケーブルの電気特性はAC電圧に対し裕度をもっているが、コアずれ等により絶縁紙のずれや損傷により欠陥が存在する場合、過電圧の侵入により欠陥部で部分放電が発生してガスが発生し、それが繰り返される場合には欠陥部にボイドとして存在する可能性がある。さらに、ボイドは絶縁耐力が著しく低いため、AC電圧の印加により部分放電が継続することも考えられる。 The electrical characteristics of the OF cable have a tolerance for the AC voltage, but if there is a defect due to the shift or damage of the insulation paper due to the core shift etc., partial discharge occurs at the defective part due to the penetration of overvoltage, and gas is generated. If it is repeated, it may exist as a void in the defective part. Furthermore, since voids have a remarkably low dielectric strength, it is conceivable that partial discharge is continued by applying an AC voltage.
図2は、実設備で30年以上運転された経年OFケーブルを撤去し、解体調査を行った結果、ケーブルコア(ケーブル絶縁体)において、オイルギャップに沿ってスジ状のスラッジや硫化銅(図2(a))、あるいは、ケーブルコア(絶縁紙)全体に点状のスラッジや硫化銅(図2(b))が生成した例を示した写真である。ケーブルコア部のスラッジや硫化銅は、セミストップ下部のケーブルコア部に最も生成堆積する傾向がある。 Figure 2 shows the results of removing the OF cable that has been operating for 30 years or more in actual equipment and conducting a disassembly study. As a result, in the cable core (cable insulator), streaky sludge and copper sulfide (Fig. 2 (a)), or a photograph showing an example in which dotted sludge or copper sulfide (FIG. 2 (b)) is generated on the entire cable core (insulating paper). The sludge and copper sulfide in the cable core part tend to be most generated and deposited on the cable core part under the semi-stop.
また、図3に示すように、ギャップ部に最も生成堆積するが、絶縁紙全体に生成堆積するケースもある。スラッジや硫化銅は、ケーブルコア部の外層〜内層〜中層の順に生成堆積していくが、絶縁破壊したケーブルでは中層付近までスラッジが生成堆積していた例も存在する。 Further, as shown in FIG. 3, the most product is deposited and deposited in the gap portion, but there is a case where the product is deposited and deposited on the entire insulating paper. Sludge and copper sulfide are generated and deposited in the order of the outer layer to the inner layer to the middle layer of the cable core part. However, there is an example in which sludge is produced and deposited to the vicinity of the middle layer in a cable with dielectric breakdown.
図4は、絶縁破壊につながる可能性のある生成状況の一例を示したものである。図4に示すように、上下のオイルギャップが互いに近かったりつながったりした状況の場所で硫化銅が中層まで生成堆積すると、硫化銅生成堆積部も内外層から中層までつながることになる。これにより、絶縁性能が著しく低下し、絶縁破壊に至る可能性が大きくなる。 FIG. 4 shows an example of a generation situation that may lead to dielectric breakdown. As shown in FIG. 4, when copper sulfide is generated and deposited up to the middle layer in a situation where the upper and lower oil gaps are close to each other or connected, the copper sulfide production and deposition portion is also connected from the inner and outer layers to the middle layer. As a result, the insulation performance is significantly lowered and the possibility of dielectric breakdown increases.
≪OFケーブル中の硫化銅生成メカニズム≫ ≪Mechanism of copper sulfide formation in OF cable≫
従来からのDBDSを添加した絶縁油中での硫化銅の生成は、DBDSと導体の銅が反応し、DBDS−銅錯体が絶縁油中に拡散し、油中拡散したDBDS−銅錯体が絶縁紙に吸着し、熱エネルギーにより分解されることで硫化銅が生成する、というメカニズムによるものと推定されている。 Conventionally, copper sulfide is produced in insulating oil to which DBDS is added. DBDS and copper of the conductor react, DBDS-copper complex diffuses into insulating oil, and DBDS-copper complex diffused in oil becomes insulating paper. It is presumed that this is due to the mechanism that copper sulfide is produced by being adsorbed on and decomposed by thermal energy.
一方、本発明では、OFケーブル中の硫化銅の生成は、(i)導体と絶縁油が反応し、(ii)銅錯体もしくは銅化合物として絶縁油中に溶解し、(iii)溶解した銅錯体もしくは銅化合物が高電界領域に凝集し、(iv)銅錯体もしくは銅化合物の触媒効果により絶縁油のスラッジが生成すると共に、(v)銅錯体もしくは銅化合物は絶縁紙あるいは絶縁油中に含まれる硫黄成分と反応することで硫化銅が生成する、というメカニズムによると推定している。そして、本発明では、銅錯体もしくは銅化合物と反応する硫黄成分は、DBDSのように絶縁油中に添加される成分とは限らず、絶縁紙の製造時に用いられた硫黄化合物に由来する硫黄成分や、絶縁油の原料である石油等に由来する硫黄成分も含まれると想定している。
すなわち、本発明による硫化銅生成メカニズムは、DBDSのような硫黄化合物を添加しない絶縁油の場合でも、反応速度は非常に遅いが、時間を掛けて硫化銅が生成するとの想定に基づいており、銅+絶縁油+高電界の3条件が、硫化銅の生成に必要であると推定している。
On the other hand, in the present invention, the copper sulfide in the OF cable is produced by (i) the reaction between the conductor and the insulating oil, (ii) the copper complex or the copper compound being dissolved in the insulating oil, and (iii) the dissolved copper complex. Alternatively, the copper compound aggregates in the high electric field region, and (iv) the sludge of the insulating oil is generated by the catalytic effect of the copper complex or the copper compound, and (v) the copper complex or the copper compound is contained in the insulating paper or the insulating oil. It is presumed to be due to the mechanism that copper sulfide is produced by reacting with the sulfur component. And in this invention, the sulfur component which reacts with a copper complex or a copper compound is not restricted to the component added to insulating oil like DBDS, The sulfur component derived from the sulfur compound used at the time of manufacture of insulating paper It is also assumed that sulfur components derived from petroleum, which is a raw material for insulating oil, are also included.
That is, the copper sulfide production mechanism according to the present invention is based on the assumption that copper sulfide is produced over time, although the reaction rate is very slow even in the case of an insulating oil to which no sulfur compound such as DBDS is added. It is estimated that three conditions of copper + insulating oil + high electric field are necessary for the production of copper sulfide.
≪硫化銅生成メカニズムに基づく診断法≫ ≪Diagnostic method based on copper sulfide formation mechanism≫
上記のOFケーブル中の硫化銅生成メカニズムによれば、(ii)銅錯体もしくは銅化合物が絶縁油中に溶解する状態になると、油中溶解銅量及び絶縁油の誘電正接(tanδ)が増加し、その後、(iii)銅錯体もしくは銅化合物が高電界領域に凝集した時点で溶解量は最大値となり、やがて、(iv)スラッジ生成及び(v)硫化銅生成にともなって、油中溶解銅量及び絶縁油の誘電正接(tanδ)が減少する。 According to the copper sulfide formation mechanism in the OF cable, (ii) when the copper complex or copper compound is dissolved in the insulating oil, the amount of copper dissolved in the oil and the dielectric loss tangent (tan δ) of the insulating oil increase. Thereafter, (iii) when the copper complex or the copper compound aggregates in the high electric field region, the dissolution amount reaches a maximum value, and eventually (iv) the sludge generation and (v) the copper sulfide generation, the dissolved copper amount in the oil And the dielectric loss tangent (tan δ) of the insulating oil decreases.
一方、銅錯体の生成反応、スラッジ及び硫化銅の生成反応にともなって発生するガスは絶縁油に吸収されるため、油中ガス濃度が増加し、油中の可燃性ガス総量(TCG)の測定値が増大する。 On the other hand, the gas generated during the copper complex formation reaction, sludge and copper sulfide production reaction is absorbed by the insulating oil, so the gas concentration in the oil increases and the total amount of combustible gas (TCG) in the oil is measured. The value increases.
図5は、上記のOFケーブル中の硫化銅生成メカニズムに基づく、絶縁油の誘電正接(tanδ)と油中の可燃性ガス総量(TCG)の増減を経時変化として示したトレンドグラフの一例である。また、誘電正接(tanδ)のトレンドグラフは油中溶解銅量のトレンドと相関する。すなわち、油中溶解銅量および油の誘電正接(tanδ)のトレンドグラフ(図5)より、これらの特性値の「減少」期が、硫化銅生成期に相当し、これらの特性値(絶対値)が大きいと硫化銅になる油中溶解銅量が多いことから硫化銅生成量は多い、と推定することができる。よって、トレンドグラフで示される油中溶解銅量もしくは誘電正接(tanδ)の最大値から、OFケーブル内における硫化銅の生成状況を推定することが可能となる。 FIG. 5 is an example of a trend graph showing changes in the dielectric loss tangent (tan δ) of insulating oil and the total amount of combustible gas (TCG) in oil as changes over time based on the copper sulfide generation mechanism in the OF cable. . Moreover, the trend graph of dielectric loss tangent (tan δ) correlates with the trend of the amount of copper dissolved in oil. That is, from the trend graph (FIG. 5) of the amount of copper dissolved in oil and the dielectric loss tangent (tan δ) of oil, the “decrease” period of these characteristic values corresponds to the copper sulfide formation period, and these characteristic values (absolute values) ) Is large, the amount of copper dissolved in oil that becomes copper sulfide is large, so that it can be estimated that the amount of copper sulfide produced is large. Therefore, it becomes possible to estimate the production state of copper sulfide in the OF cable from the amount of copper dissolved in oil or the maximum value of the dielectric loss tangent (tan δ) shown in the trend graph.
<診断に必要な特性値の測定と分析> <Measurement and analysis of characteristic values necessary for diagnosis>
図6は、油中溶解銅量と誘電正接(tanδ)の相関図の一例である。模擬試験として、OFケーブルに使用前の絶縁油を用いて、銅棒から銅を溶解させた絶縁油と銅化合物を溶解させた絶縁油について、油中溶解銅量の異なる絶縁油を作製し、各絶縁油について油中溶解銅量と誘電正接(tanδ)値を測定し、得られた測定値をプロットして近似直線を引き、相関係数を求めたものである。また、合わせて実設備から採油した絶縁油について、油中溶解銅量とtanδ値を測定し、得られた測定値をプロットしたものである。
図6の結果より、銅や銅化合物を溶解させた絶縁油においては、溶解銅量と誘電正接(tanδ)の相関係数はいずれも0.9以上であり、相関係数0.9以上より直線性を確認できたことから、該相関係数を用いて、図7に示すようにtanδ値の過去最大値より最大油中溶解銅量を推定することができる。よって、溶解銅量の値もしくはtanδの値を用いて、硫化銅の生成状況を推定することが可能となる。
FIG. 6 is an example of a correlation diagram between the amount of copper dissolved in oil and the dielectric loss tangent (tan δ). As a simulation test, using insulating oil before use in an OF cable, an insulating oil in which copper is dissolved from a copper rod and an insulating oil in which a copper compound is dissolved are prepared with different amounts of copper dissolved in the oil. For each insulating oil, the amount of copper dissolved in the oil and the dielectric loss tangent (tan δ) value were measured, and the obtained measurement values were plotted to draw an approximate straight line to obtain the correlation coefficient. In addition, for the insulating oil collected from the actual equipment, the amount of copper dissolved in the oil and the tan δ value are measured, and the measured values obtained are plotted.
From the results of FIG. 6, in the insulating oil in which copper or a copper compound is dissolved, the correlation coefficient between the dissolved copper amount and the dielectric loss tangent (tan δ) is 0.9 or more, and the correlation coefficient is 0.9 or more. Since the linearity was confirmed, the maximum dissolved copper amount in oil can be estimated from the past maximum value of the tan δ value using the correlation coefficient, as shown in FIG. Therefore, it is possible to estimate the production status of copper sulfide using the value of the dissolved copper amount or the value of tan δ.
ただし、油中溶解銅の形態が違うと直線の傾きが違うことを確認している。また、実設備において、同じ溶解銅量でも設備によって誘電正接(tanδ)値が違うことを確認している。この同じ溶解銅量でも設備によって誘電正接(tanδ)値が違う要因として、絶縁油の劣化(水分含有や熱劣化)により誘電正接(tanδ)値が増加する点が想定されるものの、OFケーブルで絶縁油の劣化が起きることは稀である。したがって、同じ溶解銅量でも設備によって誘電正接(tanδ)値が違うのは、設備毎に油中溶解銅の形態が異なることが、最大要因と推定され、油中溶解銅量と誘電正接(tanδ)の相関を表す直線の傾きは、設備毎に異なることとなる。これにより、実際の運用では、かかる測定及びプロットは、OFケーブル設備毎に作成する必要がある。 However, it has been confirmed that the slope of the straight line is different when the form of copper dissolved in oil is different. In actual equipment, it has been confirmed that even if the amount of dissolved copper is the same, the dielectric loss tangent (tan δ) value varies depending on the equipment. Even with this same amount of dissolved copper, it is assumed that the dielectric loss tangent (tan δ) value varies depending on the equipment, but the dielectric loss tangent (tan δ) value increases due to deterioration of the insulating oil (moisture content or thermal deterioration). Insulating oil is rarely degraded. Therefore, it is presumed that the difference in dielectric loss tangent (tan δ) value depending on the equipment even with the same amount of dissolved copper is due to the difference in the form of dissolved copper in oil for each equipment. The slope of the straight line representing the correlation of) will be different for each facility. Thus, in actual operation, such measurement and plot need to be created for each OF cable equipment.
本発明者らは、実設備解体結果より、図8に示すように、誘電正接(tanδ)の値が油中溶解銅量に対して、相関直線より高い値の絶縁油を使用している設備で、設備中の多箇所に硫化銅が生成していること、また、補強層の広範囲、ケーブルコアの内外層から中層付近まで硫化銅が生成していることを確認している。 As shown in FIG. 8, the inventors of the present invention dismantled the facility using insulating oil whose dielectric loss tangent (tan δ) value is higher than the correlation line with respect to the amount of copper dissolved in the oil. Therefore, it is confirmed that copper sulfide is generated in many places in the facility, and that copper sulfide is generated from a wide range of the reinforcing layer, from the inner and outer layers of the cable core to the vicinity of the middle layer.
なお、図8に示すように、設備中の多箇所に硫化銅が生成していた設備の誘電正接(tanδ)のプロットは、誘電正接(tanδ)(%)と油中溶解銅量(ppm)の相関を表す直線(傾き0.9(%/ppm)の直線)より上の部分に存在する。 In addition, as shown in FIG. 8, the plot of the dielectric loss tangent (tan δ) of the equipment in which copper sulfide was generated in many places in the equipment is the dielectric loss tangent (tan δ) (%) and the amount of copper dissolved in oil (ppm). It exists in the part above the straight line (straight line with a slope of 0.9 (% / ppm)) representing the correlation of.
つまり、0.9(%/ppm)を基準値と設定した場合、未知の絶縁油について測定した油中溶解銅量と誘電正接(tanδ)の比が基準値より大きい場合(測定値が直線より上の部分に存在する場合)は、設備中の多くの箇所に硫化銅が生成していると推定することが可能である。反対に、油中溶解銅量と誘電正接(tanδ)の比が基準値より小さい場合(測定値が直線より下の部分に存在する場合)は、硫化銅の生成は設備中の狭い範囲に留まると推定することが可能である。 That is, when 0.9 (% / ppm) is set as the reference value, the ratio of the amount of dissolved copper in the oil and the dielectric loss tangent (tan δ) measured for the unknown insulating oil is larger than the reference value (the measured value is more than a straight line). It is possible to estimate that copper sulfide is generated in many places in the facility. On the other hand, when the ratio of the amount of copper dissolved in oil to the dielectric loss tangent (tan δ) is smaller than the reference value (when the measured value is present below the straight line), copper sulfide formation is limited to a narrow range in the facility. Can be estimated.
<診断>
診断に際しては、「診断I」、「診断II」の順で評価を実施する。
<Diagnosis>
In diagnosis, evaluation is performed in the order of “diagnosis I” and “diagnosis II”.
最初の「診断I」では、硫化銅生成期に該当する設備を抽出する。
該当設備の抽出に際しては、誘電正接(tanδ)のトレンドグラフ形状を表1の5種類に分類し、それぞれについて、硫化銅生成状況を推定し、硫化銅生成期及びその前後にある設備を抽出する。
そして、診断必要性の項目が「要診断」のときは、次の「診断II」を行うようにする。「要警戒」のときは、測定インターバルを短くし、グラフが減少傾向(硫化銅生成期)になったら、改めて「診断II」を行うのが良い。「必要無し」のときは、通常ペースで測定を行えば良い。
In the first “diagnosis I”, equipment corresponding to the copper sulfide production period is extracted.
When extracting the relevant equipment, the trend graph shape of dielectric loss tangent (tan δ) is classified into the five types shown in Table 1, and the copper sulfide production status is estimated for each, and the equipment in and around the copper sulfide production period is extracted. .
When the diagnosis necessity item is “need diagnosis”, the following “diagnosis II” is performed. When “warning is required”, it is preferable to shorten the measurement interval and perform “diagnosis II” again when the graph tends to decrease (copper sulfide formation period). When “no need”, the measurement may be performed at a normal pace.
本発明の油入りケーブル内における異常発生の危険度を評価する診断方法では、ステップ1として、油入りケーブルから採取した絶縁油について、油中溶解銅量と誘電正接(tanδ)と可燃性ガス総量(TCG)を測定して得られた油中溶解銅量もしくは誘電正接(tanδ)と、可燃性ガス量(TCG)について、経時変化を示すトレンドグラフを作成する。
そして、上記と同様のステップ2とステップ3を採用し、(A)ステップ3で求めた誘電正接(tanδ)と油中溶解銅量の比、(B)予め設定した最大油中溶解銅量の基準値、及び(C)予め設定した可燃性ガス総量(TCG)の基準値をもとに、危険度を評価する。
ステップ1で作成されたトレンドグラフで示される油中溶解銅量もしくは誘電正接(tanδ)が極大値を示した後に、減少過程または減少後ほぼ定常状態にある油入りケーブルについては、硫化銅が生成している状態にあると推定できるため、要診断と評価するのが良い。
In the diagnostic method for evaluating the risk of occurrence of abnormality in the oil-filled cable of the present invention, as step 1, with respect to the insulating oil collected from the oil-filled cable, the amount of copper dissolved in the oil, the dielectric loss tangent (tan δ), and the total amount of combustible gas A trend graph showing changes with time is created for the amount of copper dissolved in oil or dielectric loss tangent (tan δ) and the amount of combustible gas (TCG) obtained by measuring (TCG).
Then, Steps 2 and 3 similar to the above are adopted, (A) the ratio of the dielectric loss tangent (tan δ) obtained in Step 3 and the amount of copper dissolved in oil, and (B) the maximum amount of copper dissolved in oil set in advance. The risk is evaluated based on the reference value and the reference value of (C) the preset total amount of combustible gas (TCG).
After the amount of copper dissolved in the oil or dielectric loss tangent (tan δ) shown in the trend graph created in Step 1 shows a maximum value, copper sulfide is generated for the oil-filled cable that is in the decreasing process or in the steady state after the decrease. Since it can be estimated that it is in a state of being in a state, it is better to evaluate as a diagnosis required.
次の「診断II」では、硫化銅生成箇所、生成量からの設備危険度を診断する。
診断基準として、誘電正接(tanδ)と油中溶解銅量の相関を表す直線の傾きである「tanδと油中溶解銅量の比」、「最大油中溶解銅量」、「TCG最大値(硫化銅生成期)」を採用し、表2の基準に基づき、設備危険度(下記A〜Eの5区分)を診断する。
なお、表2に示す各基準値は一例であり、その数値の設定については後述する。
(設備危険度の診断基準)
A:多箇所に生成し、各所の絶縁紙上の堆積量も多量
B:多箇所に生成しているが、各所の絶縁紙上の堆積量は少量
C:限定箇所での生成だが、生成箇所の絶縁紙上の堆積量は多量
D:限定箇所での生成で、生成箇所の絶縁紙上の堆積量は少量
E:ほとんど生成されていない
In the next "Diagnosis II", the equipment risk level is diagnosed from the copper sulfide production location and production quantity.
As diagnostic criteria, the ratio of the tan δ to the amount of copper dissolved in oil, the maximum amount of copper dissolved in oil, the maximum value of TCG ( The copper sulfide generation period) is adopted, and the equipment risk level (5 categories A to E below) is diagnosed based on the criteria in Table 2.
Each reference value shown in Table 2 is an example, and the setting of the numerical value will be described later.
(Equipment risk diagnostic criteria)
A: Generated in many places and a large amount of accumulated paper on the insulating paper in each place B: Generated in many places, but a small amount of accumulated paper on the insulating paper in each place C: Generated in limited places, but insulation of the generated places Large amount of deposit on paper D: Generated at limited locations, small amount of deposit on insulating paper at generated locations E: Little generated
診断IIに際しては、最初に、(A)ステップ3で求めた誘電正接(tanδ)と油中溶解銅量の比に対する大小、を評価するのが好ましい。当該は、解体調査結果とも相関性がある評価基準であるため信頼性が高いからである。
次いで、ステップ2で求めた最大油中溶解銅量から、(B)予め設定した最大油中溶解銅量の基準値に対する大小、を評価するのが好ましい。硫化銅生成量と相関することが推定されるからである。
次いで、(C)予め設定した可燃性ガス総量(TCG)の基準値に対する大小、を評価するのが好ましい。硫化銅生成期の可燃性ガス総量(TCG)は、硫化銅生成量と相関することが推定されるからである。
上記の順で危険度を評価しランク付けすることにより、設備の危険度を段階的に評価・把握することが可能となる。
In the diagnosis II, it is preferable to first evaluate (A) the magnitude of the dielectric loss tangent (tan δ) obtained in step 3 and the ratio of the amount of dissolved copper in oil. This is because it is highly reliable because it is an evaluation standard that is also correlated with the dismantling survey results.
Next, from the maximum amount of copper dissolved in oil determined in Step 2, it is preferable to evaluate (B) the size of the preset maximum amount of copper dissolved in oil relative to the reference value. This is because it is estimated to correlate with the amount of copper sulfide produced.
Next, it is preferable to evaluate (C) the magnitude of the preset total amount of combustible gas (TCG) with respect to the reference value. This is because the total amount of combustible gas (TCG) during the copper sulfide generation period is estimated to correlate with the amount of copper sulfide generation.
By evaluating and ranking the risk level in the above order, the risk level of the facility can be evaluated and grasped in stages.
部分放電発生状況を推定は、「補足診断」として実施する。
図5に示した絶縁油のtanδ、TCGの経時変化を示すトレンドグラフを用い、診断Iにより表1にある硫化銅生成状況が硫化銅生成後と抽出された設備について、tanδ減少後のTCG最大値から、予め設定した可燃性ガス総量(TCG)の基準値に対する大小、を評価する。
図5に示す例では、tanδ減少後である測定日2010以降で、TCG140ppm以上のときに、部分放電発生設備と診断することで、部分放電発生状況を推定することができる。
The estimation of the partial discharge occurrence is performed as “supplemental diagnosis”.
Using the trend graph showing the change over time in tan δ and TCG of insulating oil shown in FIG. 5, the TCG maximum after tan δ decrease for facilities where the copper sulfide generation status shown in Table 1 was extracted as after copper sulfide generation by diagnosis I From the value, the magnitude of the preset reference value of the total amount of combustible gas (TCG) is evaluated.
In the example illustrated in FIG. 5, the partial discharge occurrence state can be estimated by diagnosing the partial discharge generation facility when the TCG is 140 ppm or more after the measurement date 2010 after the decrease of tan δ.
次に、本発明による診断法による効果の確認結果を具体的に説明するが、本発明は以下の実施例にのみ限定されるものではない。 Next, although the confirmation result of the effect by the diagnostic method by this invention is demonstrated concretely, this invention is not limited only to a following example.
(1)本診断法よる効果の確認(表3参照)
実設備(OFケーブル3線)について、本発明の診断方法に基づいて診断した推定診断結果と、解体調査結果を比較した。その結果を表3に示す。
各OFケーブルについて、B相、R相、W相から別々に採取した絶縁油中溶解銅量(この値を最大油中溶解銅量とする)を測定し、基準値(0.6ppm)と対比評価した。
(1) Confirmation of the effect of this diagnostic method (see Table 3)
For actual equipment (OF cable 3-wire), the estimated diagnosis result diagnosed based on the diagnosis method of the present invention was compared with the dismantling investigation result. The results are shown in Table 3.
For each OF cable, measure the amount of dissolved copper in insulating oil collected separately from the B phase, R phase, and W phase (this value is the maximum amount of copper dissolved in oil) and compare it with the reference value (0.6 ppm). evaluated.
解体調査では、硫化銅生成範囲を目視確認(絶縁紙上の黒色化部)することにより実施し、生成範囲が広範囲であった設備を「広」、狭範囲であった設備を「狭」と評価した。
また、硫化銅の生成確認は、電子顕微鏡と蛍光X線分析装置により、絶縁紙上の黒色化部で銅(Cu)と硫黄(S)の両方が検出される場所を特定し、その特定場所について、顕微ラマン分光装置により硫化銅のラマンスペクトルが検出されたことで確認した。
In the dismantling survey, the copper sulfide generation range was visually confirmed (blackened part on the insulating paper), and equipment with a wide generation range was evaluated as “wide” and equipment with a narrow range was evaluated as “narrow”. did.
In addition, the confirmation of copper sulfide generation is performed by specifying a place where both copper (Cu) and sulfur (S) are detected at the blackened portion on the insulating paper by an electron microscope and an X-ray fluorescence analyzer. This was confirmed by the detection of the Raman spectrum of copper sulfide by a microscopic Raman spectrometer.
(油中溶解銅量の測定方法)
試料油をキシレンにより10倍希釈し、調整した溶液をICP発光分光分析した。検量線用標準溶液の調整は、市販の油性銅含有標準溶液をブランク油とキシレンにより順に希釈して調整した標準溶液を用いた。
(Measurement method of amount of copper dissolved in oil)
The sample oil was diluted 10 times with xylene, and the prepared solution was analyzed by ICP emission spectroscopy. The standard solution for the calibration curve was prepared by using a standard solution prepared by diluting a commercially available oily copper-containing standard solution in order with blank oil and xylene.
表3の結果より、硫化銅が補強層の広範囲やケーブルコア中層付近まで生成されていた設備については危険度「A・B」と判定でき、生成量が少ない設備については危険度「E」、「生成無し」と判定できた。
本発明の診断方法により、OFケーブル中の硫化銅生成量の多い実設備を特定可能であることを確認できた。
From the results shown in Table 3, it is possible to determine the risk “A / B” for facilities where copper sulfide has been generated up to a wide area of the reinforcing layer and near the middle layer of the cable core, and the risk “E” for facilities with a small amount of generation. It was determined that “No generation”.
It was confirmed by the diagnostic method of the present invention that an actual facility with a large amount of copper sulfide generation in the OF cable can be identified.
(2)本診断法と硫化銅生成メカニズムの相関確認
実設備の解体試験及び各評価試験により、下記の通り、本発明の診断方法が硫化銅生成メカニズムと相関があることを確認した。
(イ)最大油中溶解銅量の算出(図6参照)
銅棒から銅を溶解させた油中溶解銅量が異なる絶縁油(試料絶縁油)と、異なる量の銅化合物を溶解させた絶縁油(銅化合物溶解試料絶縁油)と、実設備から採取した絶縁油について、油中溶解銅量とtanδを測定した結果を図6に示す。
なお、試料絶縁油の油中溶解銅量は、銅棒を浸漬した絶縁油を窒素雰囲気下80℃で加熱し、経時で適時サンプリングを行い上記のICP発光分光分析により測定した。銅化合物溶解試料絶縁油の油中溶解銅量は、市販の銅化合物試薬(アルキルベンゼンスルホン酸銅あるいはオレイン酸銅)を適宜濃度に溶解した後、その後に上記の方法にてICP発光分光分析により測定した。tanδは、誘電正接測定器を用いて測定した。
(2) Correlation confirmation of this diagnostic method and copper sulfide production | generation mechanism It confirmed that the diagnostic method of this invention had a correlation with the copper sulfide production | generation mechanism as follows by the dismantling test and each evaluation test of an actual facility.
(B) Calculation of maximum amount of copper dissolved in oil (see Fig. 6)
Insulating oils (sample insulating oils) with different amounts of dissolved copper in the oil in which copper is dissolved from copper bars, insulating oils (copper compound-dissolving sample insulating oils) in which different amounts of copper compounds are dissolved, and sampled from actual equipment FIG. 6 shows the results of measuring the amount of copper dissolved in the oil and tan δ for the insulating oil.
The amount of dissolved copper in the sample insulating oil was measured by the above-described ICP emission spectroscopic analysis after heating the insulating oil dipped in a copper rod at 80 ° C. in a nitrogen atmosphere and sampling it over time. The amount of copper dissolved in the insulating oil of the copper compound-dissolved sample was measured by ICP emission spectrometry using the above method after dissolving a commercially available copper compound reagent (copper alkylbenzene sulfonate or copper oleate) at an appropriate concentration. did. Tan δ was measured using a dielectric loss tangent measuring instrument.
図6より、銅溶解試料絶縁油では、油中溶解銅量とtanδ値に直線性を示す相関が認められるが、実設備では、油中溶解銅量が同じでも設備によってtanδ値が異なることがわかる。絶縁油の劣化(水分含有や熱劣化)によりtanδ値は増加するが、OFケーブルで絶縁油の劣化が起きることは稀である。一方、図6には、銅化合物を溶解した銅溶解試料絶縁油であっても、用いた銅化合物の種類により油中溶解銅量とtanδ値の相関を示す直線の傾き(相関係数)が異なることが示されており、このことは絶縁油中に溶解している銅化合物の形態によりtanδの値が影響されることを表している。したがって、実設備で油中溶解銅量が同じでも誘電正接(tanδ)の値が異なるのは、油中溶解銅の形態が設備毎に異なることが最大要因であると考えられる。
以上のことから、油中溶解銅量とtanδ値の関係式を用いて、tanδ値から油中溶解銅量を算出することが可能であること、そして、設備毎に絶縁油中に溶解している銅の形態が異なるため、設備毎に関係式を作成する必要があることがわかる。
FIG. 6 shows that the copper-dissolved sample insulating oil shows a linear correlation between the amount of copper dissolved in oil and the tan δ value. However, in actual equipment, the tan δ value varies depending on the equipment even if the amount of copper dissolved in oil is the same. Understand. Although the tan δ value increases due to the deterioration of the insulating oil (moisture content or heat deterioration), the deterioration of the insulating oil rarely occurs in the OF cable. On the other hand, FIG. 6 shows the slope (correlation coefficient) of a straight line indicating the correlation between the amount of copper dissolved in oil and the tan δ value depending on the type of copper compound used, even in the case of a copper-dissolved sample insulating oil in which a copper compound is dissolved. It has been shown that this is different, which indicates that the value of tan δ is influenced by the form of the copper compound dissolved in the insulating oil. Therefore, it is considered that the reason why the value of the dielectric loss tangent (tan δ) is different even if the amount of copper dissolved in oil is the same in actual equipment is that the form of copper dissolved in oil differs from equipment to equipment.
From the above, it is possible to calculate the amount of copper dissolved in oil from the tan δ value using the relational expression between the amount of copper dissolved in oil and the tan δ value. It can be seen that it is necessary to create a relational expression for each facility because the form of copper is different.
(ロ)硫化銅生成期の推定
本発明で提唱するOFケーブル中の硫化銅生成メカニズムによれば、硫化銅生成に伴うOFケーブルの危険度との関係を、次のように、油中溶解銅量と関連付けて説明することができる。
(i)導体と絶縁油が反応する。この段階では油中溶解銅量は変化しない。
(ii)銅が銅錯体もしくは銅化合物として絶縁油中に溶解すると、油中溶解銅量が次第に増加していき、やがて時間とともに溶解停止になる。
(iii)溶解した銅錯体もしくは銅化合物は、高電界領域において、絶縁体(絶縁紙)油隙部に凝集する。
(iv)さらに、銅錯体もしくは銅化合物が高電界領域に凝集することで、絶縁体油隙部における銅錯体もしくは銅化合物による触媒効果が増大する。
(v)触媒媒効果の増大により、油が酸素や硫黄と結合して急激に劣化し、絶縁体油隙部にスラッジが生成する。この段階では油中溶解銅量は最大値を保持している。
(vi)銅錯体もしくは銅化合物が絶縁紙中あるいは絶縁油中の硫黄(本来的に絶縁油に含まれている硫黄)と反応して硫化銅が生成する。硫化銅生成に伴って油中溶解銅量は次第に減少する。
(vii)油隙部に硫化銅が生成すると、油中溶解銅量は減少した状態となり、油隙部の硫化銅によって部分放電発生という事態に陥る。
(B) Estimation of copper sulfide generation period According to the copper sulfide generation mechanism in the OF cable proposed in the present invention, the relationship with the risk of OF cable accompanying copper sulfide generation is as follows: It can be explained in relation to the quantity.
(I) The conductor reacts with the insulating oil. At this stage, the amount of copper dissolved in the oil does not change.
(Ii) When copper is dissolved in the insulating oil as a copper complex or a copper compound, the amount of copper dissolved in the oil gradually increases, and eventually the dissolution stops with time.
(Iii) The dissolved copper complex or copper compound aggregates in the insulator (insulating paper) oil gap in the high electric field region.
(Iv) Furthermore, since the copper complex or the copper compound is aggregated in a high electric field region, the catalytic effect of the copper complex or the copper compound in the insulator oil gap is increased.
(V) Due to an increase in the catalyst medium effect, the oil is combined with oxygen and sulfur and rapidly deteriorates, and sludge is generated in the insulator oil gap. At this stage, the amount of copper dissolved in the oil maintains the maximum value.
(Vi) A copper complex or a copper compound reacts with sulfur in the insulating paper or insulating oil (sulfur that is originally contained in the insulating oil) to form copper sulfide. As copper sulfide is produced, the amount of copper dissolved in the oil gradually decreases.
(Vii) When copper sulfide is generated in the oil gap portion, the amount of dissolved copper in the oil is reduced, and a partial discharge occurs due to the copper sulfide in the oil gap portion.
油中溶解銅量とtanδ値は相関があることから、tanδトレンドと油中溶解銅量トレンドにも相関があると言える。また、上記のように推定した硫化銅生成メカニズムから、硫化銅が生成すると油中の溶解銅量が減少することから、tanδ値も減少することになる。
以上のことから、tanδトレンドが減少した場合は、硫化銅生成により溶解銅量が減少したものと判断することができる。
Since there is a correlation between the amount of copper dissolved in oil and the tan δ value, it can be said that there is also a correlation between the trend of tan δ and the amount of copper dissolved in oil. Moreover, from the copper sulfide production | generation mechanism estimated as mentioned above, when copper sulfide produces | generates, since the amount of melt | dissolved copper in oil will reduce, a tan-delta value will also reduce.
From the above, when the tan δ trend decreases, it can be determined that the amount of dissolved copper has decreased due to copper sulfide formation.
(ハ)硫化銅生成箇所・生成量からの設備危険度診断
(a)tanδ、油中溶解銅量と硫化銅生成箇所の関係(表4、図8参照)
図8に、tanδ、油中溶解銅量と硫化銅生成箇所の関係図を示す。図8は、解体調査を行った実設備における油中溶解銅量とtanδの関係をグラフに表し、tanδと油中溶解銅量の比が0.9となるように直線を引いたものである。
さらに、解体調査結果から、硫化銅生成箇所が多箇所(硫化銅生成が広範囲)の設備について、グラフのプロット11箇所(試料名:A〜K)を○で囲み、tanδと油中溶解銅量の比を求めた結果を表4に示した。
その結果、硫化銅生成箇所が多箇所の設備については、tanδと油中溶解銅量の比の最低値(試料名:K)が「0.95」で、比0.9の直線より上部にプロットされた。
(C) Facility risk diagnosis from copper sulfide production location / production amount (a) Relationship between tan δ, amount of dissolved copper in oil and copper sulfide production location (see Table 4 and FIG. 8)
FIG. 8 shows the relationship between tan δ, the amount of copper dissolved in oil, and the locations where copper sulfide is generated. FIG. 8 is a graph showing the relationship between the amount of copper dissolved in oil and tan δ in the actual equipment subjected to the dismantling investigation, and a straight line is drawn so that the ratio of tan δ and the amount of copper dissolved in oil becomes 0.9. .
Furthermore, based on the results of the dismantling investigation, for facilities with many copper sulfide production sites (copper sulfide production is wide), graph plots 11 locations (sample name: A to K) are circled with tan δ and the amount of copper dissolved in oil Table 4 shows the results obtained for the ratio.
As a result, for equipment with many copper sulfide production sites, the minimum value (sample name: K) of the ratio of tan δ and the amount of dissolved copper in oil is “0.95”, above the straight line of the ratio 0.9. Plotted.
ただし、硫化銅生成箇所が少ない箇所の設備でも、比0.9の直線より上部にプロットされた設備があった。しかし、油中溶解銅量が少なく過去の最大油中溶解銅量を算出できた設備(×のプロット)では、算出された最大油中溶解銅量が0.1ppmとかなり少量であった。つまり、元々の油中溶解銅量が少なかったので、生成箇所が少なかったと推測できる。 However, even in the facilities where there were few copper sulfide generation sites, there were facilities plotted above the straight line with a ratio of 0.9. However, in the equipment (x plot) in which the amount of copper dissolved in oil was small and the maximum amount of copper dissolved in oil in the past could be calculated, the calculated maximum amount of copper dissolved in oil was as small as 0.1 ppm. That is, since the amount of copper dissolved in the original oil was small, it can be estimated that there were few production | generation locations.
また、同様に油中溶解銅量1ppm以上の設備では、過去データがなくトレンド傾向が不明であったが、これから硫化銅生成期を迎える可能性が推測できる。 Similarly, in the equipment having an amount of dissolved copper in oil of 1 ppm or more, there is no past data and the trend tendency is unknown, but from this it can be inferred the possibility of reaching the copper sulfide production period.
以上のことから、tanδと油中溶解銅量の比の数値が高いと、多箇所に硫化銅が生成する可能性のある設備と判断することができ、絶縁破壊につながる劣化設備の判別が可能となる。 From the above, if the value of the ratio of tan δ and the amount of copper dissolved in oil is high, it can be judged that there is a possibility that copper sulfide may be generated in many places, and it is possible to identify deteriorated equipment that leads to dielectric breakdown It becomes.
(b)油中溶解銅量と硫化銅生成量の関係
硫化銅生成メカニズムより、油中溶解銅量が多いほど硫化銅生成量も多くなると言える。
以上のことから、最大油中溶解銅量が多い設備で硫化銅が生成された場合に、生成量は多くなると判断することができる。
(B) Relationship between the amount of copper dissolved in oil and the amount of copper sulfide produced From the copper sulfide production mechanism, it can be said that the amount of copper sulfide produced increases as the amount of copper dissolved in oil increases.
From the above, it can be determined that the amount of production increases when copper sulfide is produced by equipment having a large amount of copper dissolved in the maximum oil.
(c)油中溶解銅量とTCGの関係(表5、図9参照)
実設備(1230箇所)のtanδのトレンドグラフを作成し、グラフ形状を分類し、分類別に各特性値平均値を表5と図9にまとめた。
その結果、tanδの増減時は、TCG量が多い傾向だった。これは、生成メカニズムより、銅溶解、スラッジ生成、硫化銅生成過程で様々な化学反応が起き、この化学反応時に発生する分解生成ガスとして、TCGが検出されたと推測した。つまり、TCG量が多いほど銅溶解量、スラッジ生成量、硫化銅生成量が多いと判断できる。
以上のことから、溶解銅減少時(tanδ減少時)のTCG量が多いほど、硫化銅生成量も多いと判断することができる。
(C) Relationship between amount of dissolved copper in oil and TCG (see Table 5 and FIG. 9)
A trend graph of tan δ of actual equipment (1230 locations) was created, the graph shapes were classified, and the average value of each characteristic value for each category is summarized in Table 5 and FIG.
As a result, the amount of TCG tended to increase when tan δ increased or decreased. It was assumed that various chemical reactions occurred in the process of copper dissolution, sludge formation, and copper sulfide formation from the generation mechanism, and TCG was detected as a decomposition product gas generated during this chemical reaction. That is, it can be determined that the greater the amount of TCG, the greater the amount of copper dissolved, the amount of sludge produced, and the amount of copper sulfide produced.
From the above, it can be determined that the larger the amount of TCG when the dissolved copper is decreased (when tan δ is decreased), the greater the amount of copper sulfide produced.
(ニ)各基準値について(表5参照)
前記の表2の設備危険度診断表に記載した各基準値は、現状明確な相関関係を掴んでいないため、表5に示す現時点の試験データから暫定基準値として定めた。この点については、設備実態に合わせ今後見直す必要がある。
(D) Each reference value (see Table 5)
Since each reference value described in the equipment risk diagnosis table of Table 2 does not have a clear correlation at present, it was determined as a provisional reference value from the current test data shown in Table 5. This point needs to be reviewed in the future according to the actual situation of the equipment.
(ホ)補足診断〔部分放電発生状況〕(表1、表5、図9参照)
TCG量(H2量)、tanδ、油中溶解銅量を、表1に示した硫化銅生成傾向(tanδ増減傾向)と関連付けて図9に示す。
図9から明らかなように、硫化銅生成後にTCG量(H2)は多い(減少しない)傾向を示している。この場合、硫化銅生成後には、様々な化学反応による分解ガスは発生していないことから、従来の絶縁油分析の考え方から、部分放電による発生ガス(H2は放電電荷量が大きい部分放電の発生ガス)と言える。特に硫化銅生成後という点で、硫化銅生成場所での部分放電発生と推測できる。
以上のことから、硫化銅生成後にTCG量が多い設備では、部分放電が多く発生していると判断することができる。
(E) Supplementary diagnosis [partial discharge occurrence status] (See Table 1, Table 5, and FIG. 9)
The TCG amount (H 2 amount), tan δ, and the amount of dissolved copper in oil are shown in FIG. 9 in association with the copper sulfide formation tendency (tan δ increase / decrease tendency) shown in Table 1.
As is apparent from FIG. 9, the amount of TCG (H 2 ) tends to be large (not decreased) after copper sulfide is generated. In this case, since the later copper sulfide generation, not decomposed gas by various chemical reactions occur, the concept of the conventional insulating oil analysis, generated by the partial discharge gas (H 2 discharge charge quantity is large partial discharge Gas). In particular, it can be inferred that partial discharge occurs at the copper sulfide generation site in terms of after copper sulfide generation.
From the above, it can be determined that a large amount of partial discharge is generated in equipment having a large amount of TCG after copper sulfide is generated.
以上説明した通り、本発明のOFケーブル異常発生の危険度の診断方法は、従来の診断方法と比較して、硫化銅生成要因となるジベンジルジスルフィドを添加していない絶縁油にも適用でき、従来の診断方法による特性値(油中溶解銅量、tanδ、TCG)を使用できるため簡易である等の利点を有し、簡易で精度の良い診断手法であると言える。実設備との整合性もある。 As described above, the diagnosis method for the risk of occurrence of an OF cable abnormality according to the present invention can be applied to insulating oil to which dibenzyl disulfide that is a copper sulfide generation factor is not added, as compared with the conventional diagnosis method. Since characteristic values (dissolved copper amount in oil, tan δ, TCG) by a conventional diagnostic method can be used, it can be said that the diagnostic method is simple and accurate. There is also consistency with actual equipment.
ただし、tanδの値が油中溶解銅の形態により影響され、そして、油中溶解銅の形態が設備毎に異なるため、上記診断方法はOFケーブル設備毎に実施する必要がある。 However, since the value of tan δ is affected by the form of copper dissolved in oil, and the form of copper dissolved in oil varies from equipment to equipment, the above-described diagnosis method needs to be implemented for each OF cable equipment.
Claims (5)
油入りケーブルから採取した絶縁油について、油中溶解銅量もしくは誘電正接(tanδ)と可燃性ガス総量(TCG)の経時変化を示すトレンドグラフを作成するステップ1を含み、
作成されたトレンドグラフにおいて、油中溶解銅量もしくは誘電正接(tanδ)の値が極大値を示した後に減少して行く期間を、硫化銅生成期と推定し、トレンドグラフで示される油中溶解銅量もしくは誘電正接(tanδ)の最大値と硫化銅生成期の可燃性ガス総量(TCG)の最大値から、硫化銅の生成状況を推定することを特徴とする方法。 In an oil-filled cable using insulating oil, a method for estimating the production status of copper sulfide in the cable,
For the insulating oil collected from the oil-filled cable, including a step 1 for creating a trend graph showing a change with time of the amount of copper dissolved in the oil or the dielectric loss tangent (tan δ) and the total amount of combustible gas (TCG),
In the created trend graph, the period in which the amount of copper dissolved in oil or the loss tangent (tan δ) decreases after reaching the maximum value is estimated as the copper sulfide formation period, and the dissolution in oil shown in the trend graph A method for estimating the production state of copper sulfide from the maximum value of copper amount or dielectric loss tangent (tan δ) and the maximum value of combustible gas total amount (TCG) in the copper sulfide production period.
油入りケーブルから採取した絶縁油について、油中溶解銅量もしくは誘電正接(tanδ)と可燃性ガス総量(TCG)の経時変化を示すトレンドグラフを作成するステップ1と、
油入りケーブル使用前の絶縁油と実設備の油入りケーブルから採取した絶縁油の油中溶解銅量と誘電正接(tanδ)の関係を示すグラフを作成し、過去の最大誘電正接(tanδ)の値から、最大油中溶解銅量を求めるステップ2と、
実設備から採取した絶縁油の誘電正接(tanδ)と油中溶解銅量の比を求めるステップ3とを含み、
作成されたトレンドグラフで示される油中溶解銅量もしくは誘電正接(tanδ)の値が極大値を示した後に減少して行く期間を、硫化銅生成期と推定し、ステップ2で求めた最大油中溶解銅量と、ステップ3で求めた誘電正接(tanδ)と油中溶解銅量の比と、ステップ1の油中溶解銅量もしくは誘電正接(tanδ)と可燃性ガス総量(TCG)の値を用いて、硫化銅の生成状況を推定することを特徴とする方法。
In an oil-filled cable using insulating oil, a method for estimating the production status of copper sulfide in the cable,
Step 1 for creating a trend graph showing the change over time of the amount of copper dissolved in the oil or the dielectric loss tangent (tan δ) and the total amount of combustible gas (TCG) for the insulating oil collected from the oil-filled cable;
Create a graph showing the relationship between the amount of copper dissolved in the oil and the dielectric loss tangent (tan δ) of the insulating oil collected from the oil-filled cable of the actual equipment and the oil-filled cable before using the oil-filled cable. From step 2, find the maximum amount of copper dissolved in the oil,
Step 3 for determining a ratio of dielectric loss tangent (tan δ) of insulating oil collected from actual equipment and amount of dissolved copper in oil,
Estimate the period during which the amount of copper dissolved in the oil or dielectric loss tangent (tan δ) shown in the created trend graph decreases after reaching the maximum value as the copper sulfide formation period, and determine the maximum oil obtained in step 2 The amount of medium-dissolved copper, the ratio of the dielectric loss tangent (tan δ) obtained in step 3 and the amount of copper dissolved in oil, the value of the amount of copper dissolved in oil or dielectric tangent (tan δ) and the total amount of combustible gas (TCG) in step 1 A method characterized by estimating the production state of copper sulfide using
油入りケーブルから採取した絶縁油について、油中溶解銅量もしくは誘電正接(tanδ)と可燃性ガス総量(TCG)の経時変化を示すトレンドグラフを作成するステップ1と、
油入りケーブル使用前の絶縁油と実設備の油入りケーブルから採取した絶縁油の油中溶解銅量と誘電正接(tanδ)の関係を示すグラフを作成し、過去の最大誘電正接(tanδ)の値から、最大油中溶解銅量を求めるステップ2と、
実設備から採取した絶縁油の誘電正接(tanδ)と油中溶解銅量の比を求めるステップ3とを含み、
(A)ステップ3で求めた誘電正接(tanδ)と油中溶解銅量の比、(B)予め設定した最大油中溶解銅量の基準値、及び(C)予め設定した可燃性ガス総量(TCG)の基準値をもとに、危険度を評価することを特徴とする診断方法。
In an oil-filled cable using insulating oil, a diagnostic method for evaluating the risk of occurrence of abnormality in the cable,
Step 1 for creating a trend graph showing the change over time of the amount of copper dissolved in the oil or the dielectric loss tangent (tan δ) and the total amount of combustible gas (TCG) for the insulating oil collected from the oil-filled cable;
Create a graph showing the relationship between the amount of copper dissolved in the oil and the dielectric loss tangent (tan δ) of the insulating oil collected from the oil-filled cable of the actual equipment and the oil-filled cable before using the oil-filled cable. From step 2, find the maximum amount of copper dissolved in the oil,
Step 3 for determining a ratio of dielectric loss tangent (tan δ) of insulating oil collected from actual equipment and amount of dissolved copper in oil,
(A) Ratio of dielectric loss tangent (tan δ) obtained in step 3 and amount of copper dissolved in oil, (B) reference value of preset maximum amount of copper dissolved in oil, and (C) total amount of combustible gas set in advance ( A diagnostic method characterized by evaluating a risk based on a reference value of TCG).
当該油入りケーブルについて、(A)ステップ3で求めた誘電正接(tanδ)と油中溶解銅量の比、(B)予め設定した最大油中溶解銅量の基準値、及び(C)予め設定した可燃性ガス総量(TCG)の基準値をもとに危険度を評価することを特徴とする請求項3に記載の診断方法。 The oil-filled cable whose dissolved copper amount or dielectric loss tangent (tan δ) shown in the trend graph created in Step 1 is in the decreasing process or in a nearly steady state after the reduction is evaluated as a diagnosis required.
For the oil-filled cable, (A) the ratio of the dielectric loss tangent (tan δ) determined in step 3 and the amount of copper dissolved in oil, (B) a preset reference value for the maximum amount of copper dissolved in oil, and (C) preset 4. The diagnostic method according to claim 3, wherein the risk is evaluated based on a reference value of the total amount of combustible gas (TCG).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015145433A JP6609134B2 (en) | 2015-07-23 | 2015-07-23 | Estimation method of copper sulfide generation status of oil-filled cable by insulation oil analysis, risk diagnosis method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015145433A JP6609134B2 (en) | 2015-07-23 | 2015-07-23 | Estimation method of copper sulfide generation status of oil-filled cable by insulation oil analysis, risk diagnosis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017026470A JP2017026470A (en) | 2017-02-02 |
JP6609134B2 true JP6609134B2 (en) | 2019-11-20 |
Family
ID=57950530
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015145433A Active JP6609134B2 (en) | 2015-07-23 | 2015-07-23 | Estimation method of copper sulfide generation status of oil-filled cable by insulation oil analysis, risk diagnosis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6609134B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019138864A (en) * | 2018-02-15 | 2019-08-22 | 東京電力ホールディングス株式会社 | Method for diagnosing deterioration of an of cable |
-
2015
- 2015-07-23 JP JP2015145433A patent/JP6609134B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017026470A (en) | 2017-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8423301B2 (en) | Lifetime assessment apparatus and method for oil-filled electrical device, and degradation suppression apparatus and method for oil-filled electrical device | |
CN110297167B (en) | Transformer aging state evaluation method based on multi-source information fusion | |
Forouhari et al. | Application of adaptive neuro fuzzy inference system to support power transformer life estimation and asset management decision | |
KR100541996B1 (en) | A dignosis method of insulation of electric apparatus | |
JP6832728B2 (en) | A method for estimating the production status of organic copper compounds and copper sulfide in oil-containing cables by insulating oil analysis, and a method for diagnosing the risk of abnormal occurrence of oil-containing cables. | |
Al Hamdani et al. | Power transformer degradation condition and insulation index estimation based on historical oil dat | |
Wada et al. | Method to evaluate the degradation condition of transformer insulating oil-establishment of the evaluation method and application to field transformer oil | |
JP6609134B2 (en) | Estimation method of copper sulfide generation status of oil-filled cable by insulation oil analysis, risk diagnosis method | |
WO2011077530A1 (en) | Method of predicting probability of abnormality occurrence in oil-filled electric appliance | |
JP2009222620A (en) | Method for estimating residual life of oil-filled electric apparatus | |
JP4888402B2 (en) | Remaining life diagnosis method for oil-filled transformers | |
JP2009168571A (en) | Method for diagnosing degradation of oil-immersed transformer | |
CN102870176B (en) | Diagnosis method and diagnosis apparatus for oil-filled electrical apparatus | |
JP5179587B2 (en) | Diagnostic method for oil-filled electrical equipment, diagnostic device for implementing the diagnostic method, and oil-filled electrical equipment equipped with the diagnostic device | |
JP2023111322A (en) | Method for diagnosing degree of risk of abnormality occurrence of oil-filled cable | |
CN104838456B (en) | The diagnostic method of oil-filled electric equipment and maintaining method | |
JP2010256207A (en) | Method for diagnosing deterioration of oil-containing electric device due to cumulated deteriorated matter in insulating oil | |
JP5233021B2 (en) | Method for estimating the amount of copper sulfide produced in oil-filled electrical equipment, method for diagnosing abnormality, method for estimating initial concentration of dibenzyl disulfide in insulating oil, and method for diagnosing the possibility of occurrence of abnormality | |
JP5442646B2 (en) | Diagnostic method for oil-filled electrical equipment | |
JP5079936B1 (en) | Diagnostic method for oil-filled electrical equipment | |
Ding et al. | Progress in paper degradation assessment in service-aged transformers | |
WO2011080812A1 (en) | Method for predicting amount of copper sulfate produced in oil-filled electric derive, method for diagnosing occurrence of abnormal event, method for predicting initial concentration of dibenzyl disulfide in insulating oil, and method for diagnosing possibility of occurrence of abnormal event | |
Dong et al. | Synthetic furfural analysis for paper insulation ageing diagnosis of transformer | |
Toll et al. | Condition Assessments of 50-Year Old Low Voltage Power Cables | |
JP2019138864A (en) | Method for diagnosing deterioration of an of cable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180601 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190418 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190513 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190624 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20191021 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20191025 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6609134 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |