JP2005223104A - Method of diagnosing and suppressing electrostatic charge of oil-filled electrical apparatus - Google Patents

Method of diagnosing and suppressing electrostatic charge of oil-filled electrical apparatus Download PDF

Info

Publication number
JP2005223104A
JP2005223104A JP2004028721A JP2004028721A JP2005223104A JP 2005223104 A JP2005223104 A JP 2005223104A JP 2004028721 A JP2004028721 A JP 2004028721A JP 2004028721 A JP2004028721 A JP 2004028721A JP 2005223104 A JP2005223104 A JP 2005223104A
Authority
JP
Japan
Prior art keywords
oil
sulfur
filled electrical
nitrogen
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004028721A
Other languages
Japanese (ja)
Other versions
JP4494815B2 (en
Inventor
Motoo Tsuchie
基夫 土江
Takeshi Amimoto
剛 網本
Narimitsu Okabe
成光 岡部
Masanori Komasa
政典 向當
Takayuki Kobayashi
隆幸 小林
Shigeyuki Tsukao
茂之 塚尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TMT & D KK
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
TMT & D KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, TMT & D KK filed Critical Tokyo Electric Power Co Inc
Priority to JP2004028721A priority Critical patent/JP4494815B2/en
Publication of JP2005223104A publication Critical patent/JP2005223104A/en
Application granted granted Critical
Publication of JP4494815B2 publication Critical patent/JP4494815B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Housings And Mounting Of Transformers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To diagnose electrostatic charge, by noticing a specified component included in insulation oil of an oil-filled electrical apparatus and grasping a product produced by oxidation of the specified component. <P>SOLUTION: In the electrostatic charge diagnosis method of the oil-filled electrical apparatus, the degree of electrostatic charge for every substance in an environment, inside the oil-filled electric apparatus of sulfur compound existing in insulation oil and sulfur oxide formed by oxidation of sulfur compound, is investigated beforehand, and insulation oil with which the oil-filled electrical apparatus is filled up is extracted. Contents of sulfur compound which exist in extracted insulation oil and sulfur oxide are detected for each substance, and detected sulfur compound and sulfur oxide are set as index substances. Electrostatic charge properties are diagnosed by the contents, and the previously investigated degree of electrostatic charge of the index substance corresponding to the detected contents for every index substance. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、油入電気機器の充填された絶縁油が流動することによって発生する流動帯電現象の診断方法および抑制方法に関するものである。   The present invention relates to a method for diagnosing and suppressing a fluid charging phenomenon that occurs when insulating oil filled in an oil-filled electrical device flows.

油入変圧器や油入リアクトル等の油入電気機器は、タンク内に鉄心および巻線が収容され、巻線部分は導体表面を絶縁紙等の固体絶縁物で絶縁された構成であり、タンク内には絶縁耐力の確保と巻線、鉄心の冷却を目的とした絶縁油が充填され、タンク内部の発熱源である鉄心および巻線と冷却器との間を強制的に絶縁油を循環させて冷却し、各部の温度が規定の範囲内に抑えられる構成となっている。   Oil-filled electrical equipment such as oil-filled transformers and oil-filled reactors have a structure in which an iron core and windings are housed in a tank, and the surface of the winding is insulated with a solid insulator such as insulating paper. The inside is filled with insulating oil for the purpose of ensuring the dielectric strength and cooling the winding and iron core, and forcibly circulates the insulating oil between the iron core and the winding that is the heat source inside the tank and the cooler. Cooling, and the temperature of each part is kept within a specified range.

このような構成の油入電気機器においては、巻線の表面を絶縁油が流れることにより、固体絶縁物と絶縁油との界面に流動帯電現象が発生し、固体絶縁物の表面に負電荷が蓄積し、その部位の直流電位が上昇し、電位が限界を超えると部分放電が発生し、これがトリガとなって、機器内部において交流絶縁破壊に至る危険性がある。
このようなことから油入電気機器においては、流動帯電現象が発生しないように内部を循環する絶縁油の流速を低速に設定して流動帯電現象の発生が抑制された構成となっている。油入電気機器の流動帯電現象に関しては、例えば非特許文献1に詳述されている。
In an oil-filled electrical device having such a configuration, when the insulating oil flows on the surface of the winding, a flow charging phenomenon occurs at the interface between the solid insulator and the insulating oil, and a negative charge is generated on the surface of the solid insulator. When the potential increases and the potential of the portion increases and the potential exceeds the limit, a partial discharge is generated, which triggers an AC breakdown inside the device.
For this reason, the oil-filled electrical device has a configuration in which the flow charging phenomenon is suppressed by setting the flow rate of the insulating oil circulating inside to be low so that the flow charging phenomenon does not occur. The fluid charging phenomenon of the oil-filled electrical device is described in detail in Non-Patent Document 1, for example.

油入電気機器の流動帯電現象に関しては、種々検討された結果が非特許文献1の第III編〔流動帯電に関する保守管理〕に示されている。
流動帯電現象は、非特許文献1の71頁の第2−1−1図の流動帯電メカニズムの概念図に示されているように、電荷移動、電荷分離、電荷緩和の3つの基本過程から成り立っている。
電荷移動過程においては、絶縁油(液体)と絶縁紙(固体絶縁物)とが接していると絶縁紙に正負イオンの内一方のイオン(負イオン)が選択的に吸着され、他方のイオン(正イオン)がその近傍の絶縁油内に分布して電気二重層を形成する。電荷分布過程においては、電荷移動した状態で、絶縁油が流動すると、絶縁紙近傍の絶縁油中に分布している正イオンは、負イオンから分離されて絶縁油とともに運び去られ、絶縁油中の正負イオンがアンバランス状態になる。電荷緩和過程においては、絶縁紙に吸着されていた負イオンおよび流れ去った正イオンは互いに束縛から開放され、通電路もしくは絶縁油中において緩和し、帯電イオンは次第に電気的に中和し消滅する。
Regarding the flow charging phenomenon of oil-filled electrical equipment, various investigation results are shown in Part III [Maintenance management for flow charging] of Non-Patent Document 1.
The flow charging phenomenon is composed of three basic processes of charge transfer, charge separation, and charge relaxation, as shown in the conceptual diagram of the flow charging mechanism in Fig. 2-1-1 on page 71 of Non-Patent Document 1. ing.
In the charge transfer process, when insulating oil (liquid) and insulating paper (solid insulator) are in contact, one of positive and negative ions (negative ion) is selectively adsorbed on the insulating paper, and the other ion ( Positive ions) are distributed in the insulating oil in the vicinity thereof to form an electric double layer. In the charge distribution process, when the insulating oil flows in a state of charge transfer, the positive ions distributed in the insulating oil near the insulating paper are separated from the negative ions and carried away with the insulating oil. Positive and negative ions become unbalanced. In the charge relaxation process, the negative ions adsorbed on the insulating paper and the positive ions that have flowed away are released from each other, relaxed in the current path or in the insulating oil, and the charged ions gradually neutralize and disappear electrically. .

油入電気機器の内部において、絶縁紙と絶縁油との間の帯電現象は、非特許文献1の71頁の第2−1−2図に示されているように、絶縁紙(セルロース)表面に水酸基(−OH)、カルボキシル基(−COOH)等の極性基が存在し、その中の酸素は電気陰性度が大きく水素の電子を引きつけて表面の水素が正に分極し、油中の負イオンを選択的に吸着することにより、絶縁紙が負、絶縁油が正に帯電する。   In the oil-filled electrical equipment, the charging phenomenon between the insulating paper and the insulating oil is caused by the surface of the insulating paper (cellulose) as shown in FIG. 2-1-2 on page 71 of Non-Patent Document 1. There are polar groups such as hydroxyl groups (—OH) and carboxyl groups (—COOH), and oxygen in them has a high electronegativity and attracts electrons of hydrogen, so that hydrogen on the surface is positively polarized and negative in oil. By selectively adsorbing ions, the insulating paper is negatively charged and the insulating oil is positively charged.

油入電気機器内において発生した流動帯電現象による電荷は、上記の3つの基本過程の起こりやすさと関連しており、3つの基本過程のすべてを含んで総合的に油入電気機器内の流動帯電性の大小を表す尺度として中性点巻線漏れ電流(以下巻線漏れ電流という)が挙げられる。すなわち、巻線漏れ電流が静電気放電の発生限界と関連するために油入電気機器内での静電気放電の危険性を判断する基準値として用いられる。非特許文献1の73頁の第2−2−5図に静電気放電発生下限流量の温度特性が示されている。この図における流量は、放電が発生する下限流量を1puとして示したものであり、放電発生の下限流量および巻線漏れ電流は温度依存性がある。
このことは巻線漏れ電流を計測することにより、流動帯電現象による油入電気機器内の放電現象を予知することが可能であることを示すものであるが、油入電気機器の運転状態では微少電流のために計測することができないので機器を停止して計測する必要がある。
The charge due to the flow charging phenomenon that occurs in the oil-filled electrical equipment is related to the likelihood of the above three basic processes, and all of the three basic processes are included in the flow charge in the oil-filled electrical equipment. A neutral point winding leakage current (hereinafter referred to as winding leakage current) can be cited as a measure representing the magnitude of the characteristics. That is, since the winding leakage current is related to the occurrence limit of electrostatic discharge, it is used as a reference value for judging the risk of electrostatic discharge in the oil-filled electrical device. FIG. 2-2-5 on page 73 of Non-Patent Document 1 shows the temperature characteristics of the electrostatic discharge generation lower limit flow rate. The flow rate in this figure shows the lower limit flow rate at which discharge occurs as 1 pu, and the lower limit flow rate at which discharge occurs and the winding leakage current are temperature dependent.
This indicates that it is possible to predict the discharge phenomenon in the oil-filled electrical equipment due to the flow electrification phenomenon by measuring the winding leakage current. Since it cannot measure due to current, it is necessary to stop and measure the equipment.

実際の油入電気機器では、停止することが難しいので、停止しなくても流動帯電性が把握できる方法として、絶縁油の帯電度を測定することが行われている。巻線漏れ電流と絶縁油の帯電度の関係は非特許文献1の72〜73頁の2−2−2〔中性点巻線漏れ電流と流動帯電との関係〕に示されている。   In an actual oil-filled electrical device, since it is difficult to stop, measuring the charging degree of the insulating oil is performed as a method for grasping the flow chargeability without stopping. The relationship between the winding leakage current and the charging degree of the insulating oil is shown in 2-2-2 [Relationship between the neutral point winding leakage current and the flow charge] on pages 72 to 73 of Non-Patent Document 1.

絶縁油の帯電度の測定方法は、非特許文献1の133頁の第III編第7章〔測定技術〕の7−2−1〔帯電度測定方法〕に示されている。帯電度測定装置としては、国内外において各種が開発されているが、機器製造者毎に異なった評価方法が採られており、まだ統一された方法で行われていないが、その中で非特許文献1の133頁の第7−2−5図に示されたミニ静電テスタが比較的多くの機関で使用されている。このミニ静電テスタは、ジェット燃料の帯電度を測定するために考案されたものであり、油入電気機器に対しては静電気発生部のフィルタを油入電気機器(変圧器)における流動帯電を捉えることができるセルロース系の紙フィルタに変えたものであり、装置の製作が簡便な上、再現性に優れているので広く使用されている。   A method for measuring the charging degree of the insulating oil is shown in 7-2-1 [Charging degree measuring method] in Chapter III [Measuring technique] of Part III, page 133 of Non-Patent Document 1. Various types of charge measurement devices have been developed both in Japan and overseas, but different evaluation methods have been adopted for each equipment manufacturer, and they have not been performed in a unified manner, but are not patented. The mini electrostatic tester shown in FIG. 7-2-5 on page 133 of Document 1 is used in a relatively large number of engines. This mini electrostatic tester was devised to measure the degree of charge of jet fuel. For oil-filled electrical equipment, a filter for static electricity generation is used for fluid charging in the oil-filled electrical equipment (transformer). It is a cellulosic paper filter that can be captured, and is widely used because it is easy to manufacture and has excellent reproducibility.

油入電気機器(変圧器)の流動帯電に影響する因子として、巻線に印加される交流電界の大きさや温度、絶縁油の体積抵抗率、誘電正接、油中水分量、絶縁油内に含まれる不純物の含有量などがあげられ、それらの要因と帯電度に対する影響は、非特許文献1の74頁〜86頁に説明されている。   Factors affecting flow electrification of oil-filled electrical equipment (transformers), including the magnitude and temperature of the AC electric field applied to the windings, volume resistivity of insulating oil, dielectric loss tangent, moisture content in oil, and contained in insulating oil Non-Patent Document 1, pages 74 to 86, explain these factors and the influence on the degree of charge.

油入電気機器の流動帯電現象の抑制方法として、非特許文献1の80頁に、絶縁油に1,2,3−ベンゾトリアゾール(以下BTAという)を添加することで流動帯電が抑制されることが記載されている。BTAを添加すると、添加量5ppmから帯電度が低下するデータが示されている。また、添加量が30ppm以下であれば絶縁油の体積抵抗率、絶縁破壊電圧および油浸コイルモデルの絶縁耐力も低下しないことが示されている。
また、実変圧器においてもBTAを添加した効果を示した例として、油中のBTAは徐々に絶縁物あるいは金属銅等に吸着され、経時的に減少するが、油の帯電度および誘電正接の増大が小さくなったデータが示されている。
As a method of suppressing fluid charging phenomenon of oil-filled electrical equipment, fluid charging is suppressed by adding 1,2,3-benzotriazole (hereinafter referred to as BTA) to insulating oil on page 80 of Non-Patent Document 1. Is described. The data shows that when BTA is added, the degree of charge decreases from an addition amount of 5 ppm. Further, it is shown that when the addition amount is 30 ppm or less, the volume resistivity of the insulating oil, the dielectric breakdown voltage, and the dielectric strength of the oil-immersion coil model are not lowered.
In addition, as an example showing the effect of adding BTA in an actual transformer, BTA in oil is gradually adsorbed by an insulator or metallic copper and decreases with time, but the oil charge and dielectric loss tangent Data with a smaller increase is shown.

以上のように、油入電気機器(変圧器)の流動帯電現象およびその対策に対する背景技術の状況にあって、油入電気機器では、銅の絶縁油中への溶解を抑制するためにBTAを0.5〜30mg/l(リットル)を添加すること、および酸化劣化防止剤として2.6ジターシャリーブチルパラクレゾール(以下DBPCという)を添加することが特許文献1に示されている。   As described above, in the state of the background art for the flow electrification phenomenon of oil-filled electrical equipment (transformers) and countermeasures, in oil-filled electrical equipment, BTA is used to suppress the dissolution of copper into insulating oil. Patent Document 1 discloses that 0.5 to 30 mg / l (liter) is added, and 2.6 ditertiary butylparacresol (hereinafter referred to as DBPC) is added as an oxidative degradation inhibitor.

また、油入電気機器に流動帯電現象の発生状態を常時監視し、静電気障害が発生するおそれがあるときに静電気の発生量を抑制する構成が特許文献2に示されている。
この特許文献2の構成は、特許文献2の図1に示されているように、流動帯電発生部とその下流に設けた静電気検出部から構成される静電気監視装置を静止誘導電器(油入電気機器)のタンクの上部に近接して配置し、静電気監視装置の流動帯電発生部はタンク内に使用されているものと同じ絶縁材料でカバーされ、かつ交流電界が印加された電極間には静止誘導電器のタンク上部から流入する絶縁性液体(絶縁油)を流動させるようにし、さらに絶縁性液体の温度と流速を計測する手段を設け、これらと流動帯電発生部の交流電界の大きさから定まる許容静電気発生量と、静電気監視装置の静電気検出部で測定された静電気発生量を比較し、前者より後者の値が大きいときに警告を発する比較判定部を備え、警告が発生したとき、絶縁性液体の冷却循環回路の途中に高濃度な帯電抑制物質を含有する絶縁性液体を注入する機構を備えているものである。
Further, Patent Document 2 discloses a configuration in which the occurrence state of a flow electrification phenomenon is constantly monitored in an oil-filled electrical device, and the amount of static electricity generated is suppressed when there is a possibility of static electricity failure.
As shown in FIG. 1 of Patent Document 2, the configuration of Patent Document 2 includes a static induction device (oil-filled electricity) that includes a flow charge generation unit and a static electricity detection unit provided downstream thereof. Equipment) is placed close to the top of the tank, and the static charge generator's flow charge generator is covered with the same insulating material used in the tank, and is stationary between the electrodes to which an alternating electric field is applied Insulating liquid (insulating oil) flowing from the upper part of the induction tank is made to flow, and means for measuring the temperature and flow rate of the insulating liquid are provided, and these are determined from the magnitude of the alternating electric field of the flow charge generation unit. Comparing the allowable static electricity generation amount with the static electricity generation amount measured by the static electricity detection unit of the static electricity monitoring device, it is equipped with a comparison / determination unit that issues a warning when the latter value is greater than the former. liquid In which it has a mechanism for injecting an insulating liquid of containing middle high concentration charging inhibitor cooling circulation circuit.

特許文献2の構成では、静止誘導電器の内部に近い条件、すなわち、流速、温度、交流電界の大きさを考慮して流動帯電を起こさせ、その静電気発生量を静電気検出部で調整する構成であり、静止誘導電器の流動帯電が正確に推定され、比較判定部で静電気障害発生のおそれがあるか否かを判断することができ、静電気障害発生の恐れがあると判断された場合に帯電抑制物質が添加された絶縁性液体を注入するので、静止誘導電器の内部での静電気が抑えられ電荷蓄積による静電気放電あるいはこれに起因する絶縁破壊事故が未然に防止できるというものである。   In the configuration of Patent Document 2, the flow charge is caused in consideration of conditions close to the inside of the static induction appliance, that is, the flow velocity, temperature, and the magnitude of the alternating electric field, and the amount of generated static electricity is adjusted by the static electricity detection unit. Yes, the static charge can be accurately estimated and the comparison / determination unit can determine whether or not there is a possibility of static electricity failure. Since the insulating liquid to which the substance is added is injected, static electricity inside the static induction appliance is suppressed, and electrostatic discharge due to charge accumulation or an insulation breakdown accident resulting therefrom can be prevented beforehand.

従来の油入電気機器の流動帯電に対する対策は、上記のような状況にあり、機器設計段階では、絶縁油の流速を適度に抑え、流路に局部的な流れの乱れがなくなるように配慮し、コンサベータを隔膜式として使用中の酸素浸入の抑制と、使用絶縁材料の厳選等が行われ、絶縁油に対しては、油中水分量、体積抵抗率、誘電正接等の適正管理が行われ、経年的に帯電度が増加することに対してはBTAの添加などが行われている。   The countermeasures against flow electrification of conventional oil-filled electrical equipment are as described above, and at the equipment design stage, the flow rate of the insulating oil is moderately controlled and consideration is given to eliminate local flow disturbance in the flow path. The use of a conservator as a diaphragm type suppresses oxygen intrusion during use and carefully selects the insulating material to be used. For insulating oil, proper management of moisture content, volume resistivity, dielectric loss tangent, etc. is performed. However, BTA is added to increase the degree of electrification over time.

電気協同研究・第54巻・第5号・(その1)「油入変圧器の保守管理」Electric cooperative research, Vol. 54, No. 5, (Part 1) "Maintenance management of oil-filled transformers" 特開平6−76635号公報JP-A-6-76635 特開平7−161534号公報JP 7-161534 A

従来の油入電気機器の流動帯電現象に対する対策は上記のような状況にあり、製作段階の管理は厳密に行われていると想定される。
しかし、実際の油入電気機器では非特許文献1に示されているように、新しく設置された油入電気機器が実使用状態になると、使用経過とともに流動帯電が増加することが示されており、経年的な流動帯電の変化は、定期的な巻線漏れ電流の測定、絶縁油の帯電度の測定、絶縁油の油中水分量、誘電正接の測定等によって把握されているが、絶縁油に含まれる成分の変化や固体絶縁物の変化に対してあまり検討されていない状況である。
このように従来の油入電気機器の経年的な流動帯電の変化に対して生成される物質が把握されないので、流動帯電に対し的確な抑制対策が実施できないという問題点があった。
The countermeasures against the flow electrification phenomenon of the conventional oil-filled electrical equipment are in the above situation, and it is assumed that the management of the production stage is strictly performed.
However, in actual oil-filled electrical equipment, as shown in Non-Patent Document 1, when a newly installed oil-filled electrical equipment is put into actual use, it has been shown that the flow charge increases with the course of use. The change in flow electrification over time is grasped by periodic measurement of winding leakage current, measurement of insulation oil charge, moisture content of insulation oil, measurement of dielectric loss tangent, etc. This is a situation that has not been studied much with respect to changes in components and changes in solid insulators.
Thus, since the substance produced | generated with respect to the change of the flow charge with the aging of the conventional oil-filled electrical equipment is not grasped | ascertained, there existed a problem that the exact suppression measure with respect to flow charge cannot be implemented.

この発明は、上記問題点を解消するためになされたものであり、油入電気機器の絶縁油中に含まれる特定成分に着目し、その特定成分の酸化等によって生成される生成物を把握することにより流動帯電を診断する油入電気機器の流動帯電診断方法と診断結果に基づいた油入電気機器の流動帯電の抑制方法を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems, paying attention to a specific component contained in insulating oil of an oil-filled electrical device, and grasping a product generated by oxidation or the like of the specific component It is an object of the present invention to provide a method for diagnosing fluid charging of an oil-filled electrical device and a method for suppressing fluid charge of an oil-filled electrical device based on the diagnosis result.

絶縁油中に存在する硫黄化合物および硫黄化合物の酸化により生成される硫黄酸化物の油入電気機器内部の環境における物質毎の帯電度を予め調査しておき、油入電気機器に充填された絶縁油を採油し、採油した絶縁油中に存在する硫黄化合物および硫黄酸化物を物質毎に含有量を検出し、検出した硫黄化合物および硫黄酸化物を指標物質とし、その含有量と、指標物質毎の検出された含有量と対応する指標物質の予め調査した帯電度とにより、油入電気機器の流動帯電性を診断する油入電気機器の流動帯電診断方法である。   Insulation filled in the oil-filled electrical equipment by pre-investigating the degree of charge of each substance in the environment inside the oil-filled electrical equipment of sulfur compounds generated by oxidation of sulfur compounds and sulfur compounds present in the insulating oil Oil is extracted and the content of sulfur compounds and sulfur oxides present in the extracted insulating oil is detected for each substance. The detected sulfur compounds and sulfur oxides are used as indicator substances. This is a fluid charging diagnostic method for an oil-filled electrical device for diagnosing the fluid chargeability of the oil-filled electrical device based on the detected content and the degree of charge of a corresponding indicator substance that has been investigated in advance.

油入電気機器に充填された絶縁油を採油し、絶縁油中に存在する硫黄化合物および硫黄酸化物の物質毎の含有量を検出し、予め調査した物質毎の帯電度と対比することで、油入電気機器を停止することなく流動帯電性の診断ができる。   By collecting the insulating oil filled in the oil-filled electrical equipment, detecting the content of each substance of sulfur compounds and sulfur oxides present in the insulating oil, and comparing with the charge degree of each substance investigated in advance, Diagnosis of flow chargeability without stopping oil-filled electrical equipment.

実施の形態1.
油入電気機器は、流動帯電現象が生じないように絶縁油の流れを適度な流速に抑える等の設計的配慮と、充填される絶縁油は流動帯電に影響する成分が少なくなるように精製されたものが使用されているので、運転初期段階での流動帯電性が問題にはならないと思われる。しかし、運転状態に入ると充填された絶縁油に含まれた微量の硫黄化合物や窒素化合物が初期段階に含まれる微量の空気成分(酸素や窒素)と反応して硫黄酸化物や窒素酸化物となり、さらに油入電気機器内の導体材料の銅材が銅触媒として働いて反応が進んで高帯電度化物質が生成される。油入電気機器は運転時間の経過とともに流動帯電の増加現象が生じる問題がある。
この実施の形態1では、油入電気機器の実運転段階において、運転を停止することなく流動帯電性を診断する油入電気機器の流動帯電診断方法を提供するものである。
Embodiment 1 FIG.
Oil-filled electrical equipment is refined so that the insulating oil to be filled has less components that affect flow charging, and design considerations such as suppressing the flow of insulating oil to an appropriate flow rate so that the flow charging phenomenon does not occur. Therefore, the flow chargeability at the initial stage of operation does not seem to be a problem. However, when it enters the operating state, a small amount of sulfur compounds and nitrogen compounds contained in the filled insulating oil react with a small amount of air components (oxygen and nitrogen) contained in the initial stage to form sulfur oxides and nitrogen oxides. Furthermore, the copper material of the conductor material in the oil-filled electrical device works as a copper catalyst, and the reaction proceeds to generate a highly charged substance. Oil-filled electrical equipment has a problem that an increase phenomenon of flow electrification occurs with the passage of operation time.
The first embodiment provides a fluid charging diagnostic method for an oil-filled electrical device that diagnoses the flow chargeability without stopping the operation in the actual operation stage of the oil-filled electrical device.

流動帯電現象を説明する前に、充填される絶縁油の一般的な性状について説明する。
油入電気機器に充填される絶縁油は、原油の産地によってかなりの差があるが、元素の組成は次の範囲に入っている。
炭素 82〜87% 水素 11〜15%
硫黄 0.1〜5% 窒素 0.1〜5%
酸素 0.1〜2% 金属 0〜0.5%
このように原油の大部分は炭素と水素からなる石油系炭化水素である。鉱油系絶縁油に含まれる炭化水素は、極めて複雑な多くの異性体からなっているため、それぞれの化学構造を知ることは不可能であるが、主成分である炭化水素の化学構造は、鎖状につながった構造のパラフィン系炭化水素、環状につながったナフテン系炭化水素、ベンゼン環を持つ芳香族系炭化水素の3つに分類される。
原油中に含まれる非炭化水素である硫黄化合物、窒素系化合物、酸素系化合物などは、炭化水素に比べて少ないが、絶縁油の品質に大きな影響を及ぼすため精製プロセスで適度に除去されている。
Before explaining the flow electrification phenomenon, the general properties of the filled insulating oil will be explained.
The insulating oil filled in oil-filled electrical equipment varies considerably depending on the crude oil production area, but the elemental composition falls within the following range.
Carbon 82-87% Hydrogen 11-15%
Sulfur 0.1-5% Nitrogen 0.1-5%
Oxygen 0.1-2% Metal 0-0.5%
Thus, most of the crude oil is petroleum hydrocarbons consisting of carbon and hydrogen. Hydrocarbons contained in mineral insulating oils are composed of many extremely complicated isomers, so it is impossible to know the chemical structure of each, but the chemical structure of the main hydrocarbon component is a chain. It is classified into three types: paraffinic hydrocarbons with a structure connected in the form of a ring, naphthenic hydrocarbons connected in a ring, and aromatic hydrocarbons with a benzene ring.
Non-hydrocarbon sulfur compounds, nitrogen compounds, oxygen compounds, etc. contained in crude oil are less than hydrocarbons, but they are moderately removed by the refining process because they have a significant effect on the quality of insulating oil. .

油入電気機器に使用される絶縁油は鉱物油を精製したものであり、その中には硫黄成分として0.1〜0.5%の硫黄化合物が含まれ、次のような順番で存在する。
チオフェン類>>スルフィド類>ジスルフィド類>メルカプタン(チオール)類
Insulating oil used in oil-filled electrical equipment is a refined mineral oil that contains 0.1-0.5% sulfur compounds as sulfur components and exists in the following order: .
Thiophenes >>Sulphides>Disulfides> Mercaptan (thiol) s

絶縁油中に含まれる硫黄化合物の分子構造は図1に示す。図1(a)はベンゾチオフェン、図1(b)はジベンゾチオフェンの代表的な構造式を示す。ベンゾチオフェンは5員環のチオフェン環にベンゼン環が隣接した構造であり、一方ジベンゾチオフェンは2つのベンゼン環に挟まれてチオフェン環が存在する。硫黄原子はベンゼン環とは結合を共有しない位置に存在する。
ベンゾチオフェンおよびジベンゾチオフェンとも多くの場合、鎖状炭化水素であるアルキル基がベンゼン環やチオフェン環の一部に置換している。したがって、絶縁油中に存在するチオフェン類はある程度の分子量分布をもって存在し、その組合わせも無限に近いものがある。
The molecular structure of the sulfur compound contained in the insulating oil is shown in FIG. 1A shows a typical structural formula of benzothiophene, and FIG. 1B shows a typical structural formula of dibenzothiophene. Benzothiophene has a structure in which a benzene ring is adjacent to a 5-membered thiophene ring, while dibenzothiophene is sandwiched between two benzene rings and has a thiophene ring. A sulfur atom exists in the position which does not share a bond with a benzene ring.
In both cases of benzothiophene and dibenzothiophene, an alkyl group which is a chain hydrocarbon is substituted with a part of the benzene ring or thiophene ring. Therefore, the thiophenes present in the insulating oil exist with a certain molecular weight distribution, and combinations thereof are nearly infinite.

チオフェン類の次に多いのがスルフィド類である。スルフィド化合物の構造式を図1(c)に示す。この構造は、硫黄原子の両端にアルキル基が配置された構造を有している。実験には市販試薬のn=mすなわち両側の炭素数が等しい化合物を使用した。実際にはnとmとは必ずしも等しいとはいえないし、同じnやmであっても分子鎖の枝分かれの状態によって種々の構造を採りうるので、組合わせは無限に近いものがある。
スルフィド化合物は2価の硫黄化合物で結合に関与しない電子(孤立電子対)が存在する。したがって、過酸化物などの活性な化合物と容易に反応し、図1(d)の4価のスルホキシド化合物や、図1(e)の6価のスルホン化合物を形成する。
The next most common thiophenes are sulfides. The structural formula of the sulfide compound is shown in FIG. This structure has a structure in which alkyl groups are arranged at both ends of a sulfur atom. In the experiment, n = m of a commercially available reagent, that is, a compound having the same carbon number on both sides was used. Actually, n and m are not necessarily equal, and even with the same n and m, various structures can be adopted depending on the state of branching of the molecular chain, so that there are infinite combinations.
The sulfide compound is a divalent sulfur compound and has an electron (lone electron pair) that does not participate in bonding. Therefore, it easily reacts with an active compound such as peroxide to form the tetravalent sulfoxide compound of FIG. 1 (d) and the hexavalent sulfone compound of FIG. 1 (e).

図1(f)にジスルフィドの分子構造を示す。これはジスルフィド(−SS−)結合の両端にアルキル基が存在する構造である。   FIG. 1 (f) shows the molecular structure of disulfide. This is a structure in which an alkyl group is present at both ends of a disulfide (—SS—) bond.

図1(g)にチオール類化合物の分子構造を示す。これはメルカプタンとも呼ばれ、硫黄原子の片端がアルキル基で他端が水素原子で構成されている。硫黄を酸素に置き換えたのがアルコール類化合物である。破線で囲んだ部分はスルフィド類と共通な構造である。  FIG. 1 (g) shows the molecular structure of the thiol compound. This is also called a mercaptan, and one end of the sulfur atom is composed of an alkyl group and the other end is composed of a hydrogen atom. Alcohol compounds replace sulfur with oxygen. The part surrounded by a broken line has a structure common to sulfides.

次に、運転中の油入電気機器における流動帯電の概念について説明する。
油入電気機器が運転されると、図2に示すとおり、絶縁油および絶縁油中に含有する物質A(硫黄化合物、窒素化合物等)が機器内部の温度上昇による熱、絶縁油中に残存する酸素、コイル等の導電材料の銅による触媒作用等の影響を受けて物質B(硫黄酸化物、窒素酸化物等)に変化し、物質Bは銅の存在による触媒作用、銅と結合によって分子構造的に安定した金属錯体等になる。このように運転されることによる含有成分の変化によって高帯電度化物質が生成して絶縁油の帯電度が増加するものと想定される。
Next, the concept of fluid charging in an oil-filled electrical device during operation will be described.
When the oil-filled electrical device is operated, as shown in FIG. 2, the insulating oil and the substance A (sulfur compound, nitrogen compound, etc.) contained in the insulating oil remain in the insulating oil and heat due to the temperature rise inside the device. It changes to substance B (sulfur oxide, nitrogen oxide, etc.) under the influence of the catalytic action of copper on conductive materials such as oxygen and coil, and substance B has a molecular structure due to the catalytic action due to the presence of copper and bonding with copper. A stable metal complex or the like. It is assumed that the charge of the insulating oil increases due to the generation of the highly charged substance due to the change in the components contained by the operation.

内部導体の表面を覆う絶縁紙やコイルと鉄心またはタンクとの間に配置されるプレスボードの固体絶縁物は、いずれもセルロースを主成分とする材料であり、経年変化によって劣化が進行し、表面の酸化や内部に存在する物質の吸着による経年変化によって高帯電度化が進行する。BTAは絶縁紙と吸着して絶縁紙表面の負電荷の電荷移動を抑制し、銅表面の触媒効果を不活性にする働きがある。   The insulation paper covering the surface of the inner conductor and the solid insulation of the press board placed between the coil and the iron core or tank are all materials mainly composed of cellulose. The degree of electrification advances due to the secular change due to the oxidation of the substance and the adsorption of substances present inside. BTA has the function of adsorbing with the insulating paper to suppress the negative charge transfer on the surface of the insulating paper and inactivating the catalytic effect on the copper surface.

油入電気機器の運転中の流動帯電現象の可能性を診断する診断方法を見つけだし、流動帯電現象の可能性がある場合の抑制方法を選択するためには、次の項目を明らかにすることが必要である。
(1)帯電度増大をもたらす前兆物質(物質A)の明確化
(2)帯電度増大をもたらす増大物質(物質B)の明確化
(3)前兆物質から増大物質への加速要因の明確化(銅触媒、酸素、熱等の条件)
次に流動帯電現象が発生したときの抑制方法を見つけだし、その抑制方法の効果の確認をするために次の課題を解決する必要がある。
(4)前兆物質から増大物質への変化の抑制方法の創出とその効果の確認
(BTA、DBPCの添加等とその効果の確認)
(5)増大物質の除去方法の確立(油入電気機器の油処理)
(6)前兆物質、増大物質の分析方法の確立
In order to find a diagnostic method for diagnosing the possibility of fluid charging phenomenon during operation of oil-filled electrical equipment, and to select a suppression method when there is a possibility of fluid charging phenomenon, the following items should be clarified: is necessary.
(1) Clarification of precursor substance (substance A) that causes increase in charge level (2) Clarification of increase substance (substance B) that causes increase in charge degree (3) Clarification of acceleration factors from precursor substance to increase substance ( (Copper catalyst, oxygen, heat, etc.)
Next, it is necessary to find a suppression method when the fluid charging phenomenon occurs and to solve the following problem in order to confirm the effect of the suppression method.
(4) Creation of a method to suppress changes from precursor substances to increased substances and confirmation of their effects (addition of BTA, DBPC, etc. and confirmation of their effects)
(5) Establishment of removal method for increased substances (oil treatment for oil-filled electrical equipment)
(6) Establishment of analysis methods for precursors and increased substances

上記流動帯電現象の診断方法及び抑制方法を明確にするために、絶縁油中に含まれる硫黄化合物、窒素化合物等を対象とし、絶縁油中に存在する物質毎に試験する絶縁油に添加し、実際の油入電気機器内部の環境条件に近い条件として加熱する加熱試験を実施した。
(1)試験条件
・試験油:アルキルベンゼン
鉱物油系の絶縁油は多種類の微量成分が含まれているので、絶縁油そのものを用いて微量成分に関する試験を行うのは試験精度が低下するので、鉱物絶縁油と同じような分子量および特性を示す合成油としてアルキルベンゼンとした。(アルキルベンゼンは炭化水素のみで構成されているので、硫黄系、窒素系、酸素系の微量成分の添加精度が高くなる。
・試験容器:内容積450〜500ml(ml=ミリリットル)、ベロー付き。
試験油に帯電度に影響する物質を添加し、内部にガス空間を確保できることと密閉状態での温度変化に耐えることを考慮してベロ−付き構造とした。図3に試験容器の構成を示す。
・試料の構成:酸素の添加のために空間を設ける場合は試験油を450ml、空間を50mlとし、内部には巻線材料を模擬する銅線を直経1mm、長さ9.5mとした。この銅線の表面積は約300cmであり、絶縁油100mlに対して66cmである。
空間を設けない場合は試験油を450mlとした。
・加熱条件:加熱温度・・120℃、加熱時間・・最長450Hr
・帯電度測定器:非特許文献1の135頁第7−2−5図のミニ静電テスタを使用した。その構成図を図4に示す。試験方法は1つの試料油につき1枚のフィルタで4回測定し、1回目を除く3回の平均値を帯電度とし、20℃に換算する。
・物質添加の条件:絶縁油中に含まれる成分の添加試験に使用した化合物の一覧表を図5に示す。図5は実施の形態2以降の実施の形態での試験に使用した化合物も含めて示している。硫黄化合物については、通常の鉱物絶縁油に含まれる平均的な硫黄化合物濃度の硫黄分換算で86ppmになるようにアルキルベンゼンに溶解させた。
銅化合物については、銅濃度が10ppmになるようにし、酸素化合物、窒素化合物では官能基(炭化水素以外の構成要素)が86ppmになるように添加して溶解させた。
・流動帯電現象に影響を与える酸素および銅触媒の条件:次の条件を設定し条件毎に添加試験を実施した。
条件1:酸素および銅触媒を含まない系
条件2:酸素を含み銅触媒を含まない系
条件3:酸素を含まず銅触媒を含む系
条件4:酸素および銅触媒を含む系
In order to clarify the diagnosis method and suppression method of the fluid charging phenomenon, sulfur compounds, nitrogen compounds, etc. contained in the insulating oil are targeted, added to the insulating oil to be tested for each substance present in the insulating oil, A heating test was conducted as a condition close to the environmental conditions inside the actual oil-filled electrical equipment.
(1) Test conditions / Test oil: Alkylbenzene Since mineral oil-based insulation oil contains many kinds of trace components, testing for trace components using insulation oil itself will reduce test accuracy. Alkylbenzene was used as a synthetic oil having the same molecular weight and characteristics as mineral insulating oil. (Since alkylbenzene is composed only of hydrocarbons, the addition accuracy of sulfur, nitrogen and oxygen trace components is increased.
Test container: inner volume 450-500 ml (ml = milliliter), with bellows.
A substance with an influence on the degree of charge was added to the test oil, and a structure with a bellows was made in consideration of being able to secure a gas space inside and withstanding temperature changes in a sealed state. FIG. 3 shows the configuration of the test container.
Sample configuration: When a space was provided for the addition of oxygen, the test oil was 450 ml, the space was 50 ml, and a copper wire simulating the winding material was 1 mm straight and 9.5 m long. The surface area of this copper wire is about 300 cm 2 and is 66 cm 2 for 100 ml of insulating oil.
When no space was provided, the test oil was 450 ml.
・ Heating conditions: Heating temperature ・ ・ 120 ℃, Heating time ・ ・ Maximum 450Hr
Charge degree measuring device: A mini electrostatic tester shown in Fig. 7-2-5 on page 135 of Non-Patent Document 1 was used. The configuration diagram is shown in FIG. In the test method, one sample oil is measured four times with one filter, and the average value of three times excluding the first is taken as the degree of charge and converted to 20 ° C.
-Conditions for substance addition: FIG. 5 shows a list of compounds used in the addition test of the components contained in the insulating oil. FIG. 5 also shows the compounds used in the tests in the second and subsequent embodiments. The sulfur compound was dissolved in alkylbenzene so that the average sulfur compound concentration contained in ordinary mineral insulating oil was 86 ppm in terms of sulfur content.
Regarding the copper compound, the copper concentration was adjusted to 10 ppm, and the oxygen compound and the nitrogen compound were added and dissolved so that the functional group (component other than hydrocarbon) was 86 ppm.
-Oxygen and copper catalyst conditions affecting the flow electrification phenomenon: The following conditions were set and an addition test was conducted for each condition.
Condition 1: System containing no oxygen and copper catalyst Condition 2: System containing oxygen and no copper catalyst Condition 3: System containing no oxygen and a copper catalyst Condition 4: System containing oxygen and a copper catalyst

・添加物質:油入電気機器に充填される絶縁油中に含まれ、流動帯電現象に関与する可能性のある物質を選択する。
硫黄化合物:スルフィド類、ジスルフィド類、スルホキシド類、スルホン類、チオフェン類、チオール類等。
・ Additive substances: Select substances that are contained in insulating oil filled in oil-filled electrical equipment and that may be involved in fluid charging phenomenon.
Sulfur compounds: sulfides, disulfides, sulfoxides, sulfones, thiophenes, thiols and the like.

〈スルフィド類の流動帯電性評価〉
絶縁油中に含まれるスルフィド類の上記図5に示すスルフィド類について上記試験条件により、加熱試験を実施し加熱後の試験油の帯電度を評価した。
下記の実験データ1は、試験油のアルキルベンゼンにスルフィド類を添加しないブランクテストである。スルフィド類の代表としてヘプチルスルフィドの場合を実験データ2、ドデシルスルフィドの場合を実験データ3に示す。図5に示すスルフィド類のヘプチルスルフィド、ドデシルスルフィド以外についても同様に試験を行っている。その各スルフィド類の加熱試験の加熱100時間後の帯電度と分子量(炭素数)との関係を実験データ4に示す。
<Evaluation of flow chargeability of sulfides>
With respect to the sulfides shown in FIG. 5 of the sulfides contained in the insulating oil, a heating test was carried out under the above test conditions, and the charge degree of the test oil after heating was evaluated.
The following experimental data 1 is a blank test in which no sulfides are added to the alkylbenzene of the test oil. As representatives of sulfides, experimental data 2 shows the case of heptyl sulfide, and experimental data 3 shows the case of dodecyl sulfide. Tests are similarly conducted for the sulfides other than heptyl sulfide and dodecyl sulfide shown in FIG. Experimental data 4 shows the relationship between the degree of charge and the molecular weight (carbon number) after 100 hours of heating in the heating test for each sulfide.

<実験データ1>試験に用いた絶縁油のアルキルベンゼンのみの加熱試験
試験結果を図6に示す。
試験結果は、酸素および銅触媒の条件に対して、帯電度はほとんど増加していない。
<Experimental data 1> Heat test of only the alkylbenzene of the insulating oil used in the test The test results are shown in FIG.
The test results show that the degree of charge hardly increases with respect to the conditions of oxygen and copper catalyst.

<実験データ2>スルフィド類硫黄化合物のヘプチルスルフィド添加の加熱試験
スルフィド類硫黄化合物の加熱試験の代表例としてヘプチルスルフィド620ppmをアルキルベンゼンに添加し、上記試験条件で450時間加熱し、加熱後の帯電度の変化を求めた加熱試験結果を図7に示す。
その結果は次の通りである。
条件1:酸素および銅触媒を含まない系:帯電度の増加が少ない。
条件2:酸素を含み銅触媒を含まない系:帯電度の増加は微量である。
条件3:酸素を含まず銅触媒を含む系:帯電度が急速に増加している。
条件4:酸素および銅触媒を含む系:帯電度が急速に増加している。
この結果から、ヘプチルスルフィドは酸素によってヘプチルスルフィドの酸化生成物が生成され、この酸化生成物が帯電度の増加に影響していることと、銅触媒の関係については単に触媒として作用する場合と、ヘプチルスルフィドの酸化生成物と銅が結合して高帯電度化物質が生成したと推定される。
<Experimental data 2> Heat test for addition of heptyl sulfide to sulfide sulfur compound As a representative example of the heat test for sulfide sulfur compound, 620 ppm of heptyl sulfide is added to alkylbenzene, heated for 450 hours under the above test conditions, and the degree of charge after heating. FIG. 7 shows the result of the heating test for determining the change in the.
The results are as follows.
Condition 1: System not containing oxygen and copper catalyst: Little increase in charge.
Condition 2: A system containing oxygen and not containing a copper catalyst: The increase in charging degree is very small.
Condition 3: a system containing no copper and containing a copper catalyst: the degree of charging is rapidly increasing.
Condition 4: a system containing oxygen and a copper catalyst: the degree of charge is rapidly increasing.
From this result, in heptyl sulfide, an oxidation product of heptyl sulfide is generated by oxygen, and this oxidation product affects the increase in the degree of charge. It is presumed that the oxidation product of heptyl sulfide and copper were combined to produce a highly charged substance.

<実験データ3>スルフィド類硫黄化合物のドデシルスルフィド添加の加熱試験
スルフィド類硫黄化合物の加熱試験の代表例としてドデシルスルフィド1000ppmをアルキルベンゼンに添加し、上記試験条件で450時間加熱し、加熱後の帯電度の変化を求めた加熱試験結果を図8に示す。
その結果は次の通りである。
条件1:酸素および銅触媒を含まない系:帯電度の増加が少ない。
条件2:酸素を含み銅触媒を含まない系:帯電度は漸増する傾向である。
条件3:酸素を含まず銅触媒を含む系:帯電度が増加している。
条件4:酸素および銅触媒を含む系:帯電度が急速に増加している。
この結果から、ドデシルスルフィドは酸素によって酸化生成物のドデシルスルホキシドが生成され、このドデシルスルホキシドが帯電度の増加に影響していることと、銅触媒の関係については触媒としての作用が大きい場合と、ドデシルスルホキシドと銅が結合して高帯電度化物質が生成したと推定される。
<Experimental data 3> Heat test for addition of sulfide sulfur compound dodecyl sulfide As a typical example of a sulfide sulfur compound heat test, 1000 ppm of dodecyl sulfide was added to alkylbenzene, heated for 450 hours under the above test conditions, and the degree of charge after heating. FIG. 8 shows the result of the heating test for determining the change in the temperature.
The results are as follows.
Condition 1: System not containing oxygen and copper catalyst: Little increase in charge.
Condition 2: A system containing oxygen and not containing a copper catalyst: The degree of charge tends to increase gradually.
Condition 3: A system containing no copper and containing a copper catalyst: the degree of charging is increasing.
Condition 4: a system containing oxygen and a copper catalyst: the degree of charge is rapidly increasing.
From this result, in the dodecyl sulfide, the oxidation product dodecyl sulfoxide is generated by oxygen, this dodecyl sulfoxide has an effect on the increase in the degree of charge, and the relationship between the copper catalyst and the case where the action as a catalyst is large, It is presumed that dodecyl sulfoxide and copper were combined to form a highly charged substance.

<実験データ4>スルフィド類の炭素数(または分子量)と帯電度の関係データ
図5の試験に使用した化合物一覧表のスルフィド類について、上記と同様に加熱試験を実施し、酸素、銅触媒ありの条件での結果について、横軸に炭素数(分子量)、縦軸に加熱時間100時間後の帯電度として示したものであり、図9のような関係になっている。
その状況はスルフィド化合物の中でも炭素数の少ない(分子量が小さい)メチルスルフィドやエチルスルフィドでは加熱試験での顕著な帯電度の増加はみられない。また、炭素数が14のテトラデシルスルフィドでも顕著な帯電度の増加はみられない。
炭素数と帯電度との関係は、炭素数7〜8のヘプチルスルフィドやオクチルスルフィドを頂点として、炭素数が少ない場合および炭素数が多い場合の両サイドで低くなる結果となっている。
<Experimental data 4> Relationship data between carbon number (or molecular weight) of sulfides and charge degree For the sulfides in the compound list used in the test of FIG. 5, a heating test was conducted in the same manner as above, and there was oxygen and a copper catalyst. With respect to the results under the above conditions, the horizontal axis indicates the number of carbon atoms (molecular weight), and the vertical axis indicates the degree of charge after a heating time of 100 hours. The relationship is as shown in FIG.
As for the situation, methyl sulfide or ethyl sulfide having a small number of carbon atoms (small molecular weight) among the sulfide compounds does not show a significant increase in the charge degree in the heating test. In addition, no significant increase in charge is observed even with tetradecyl sulfide having 14 carbon atoms.
The relationship between the number of carbon atoms and the degree of charge is such that the heptyl sulfide or octyl sulfide having 7 to 8 carbon atoms is the apex and decreases on both sides when the carbon number is small and when the carbon number is large.

一般に硫黄原子は電気陰性度が大きく他の原子の電子を引付ける能力がある。芳香族環の場合、電子は過剰な状態にある。そのような硫黄原子近傍の電子の状態が帯電特性に影響を及ぼしていると推定される。
また、炭素数8付近が頂点となる理由としては、メチルやエチルの場合は絶縁油と親和性のあるアルキル基が小さいので、絶縁油の相溶性に難がある点が原因と推定される。一方、炭素数が増えるとアルキル基の立体障害によって硫黄原子の酸化などの反応が阻害されるためと推定される。(表現上は直線的な構造としているが、実際は炭素間は109°の角度をもって結合しているので、分子は折れ曲っており、その折れ曲りによってアルキル基が硫黄原子の周辺を覆うようになる。)つまり、絶縁油との相溶性と立体障害による反応性の阻害の両面から、炭素数8が頂点となると推定される。
In general, a sulfur atom has a large electronegativity and has an ability to attract electrons of other atoms. In the case of aromatic rings, the electrons are in excess. It is presumed that such an electron state in the vicinity of the sulfur atom affects the charging characteristics.
The reason why the vicinity of 8 carbon atoms is the apex is presumed to be that the compatibility of the insulating oil is difficult because methyl or ethyl has a small alkyl group that is compatible with the insulating oil. On the other hand, it is presumed that when the number of carbon atoms increases, reactions such as oxidation of sulfur atoms are inhibited by steric hindrance of the alkyl group. (Although it has a linear structure in terms of expression, since the carbon atoms are actually bonded at an angle of 109 °, the molecule is bent, and the alkyl group covers the periphery of the sulfur atom due to the bending. .) That is, it is presumed that the number of carbon atoms becomes the apex from both aspects of compatibility with insulating oil and inhibition of reactivity due to steric hindrance.

絶縁油中には炭素数の異なる種類の複数のスルフィド類が含有されており、それぞれ帯電度に対する関与の程度も異なるので、図9に示したスルフィド類の物質毎にそれぞれ帯電度に対する関与の程度に応じて帯電度係数を乗じることにより、スルフィド類の帯電度への関与を総合的に判断することができる。例えば図9に示したスルフィド類では、絶縁油への添加量は、通常の鉱物絶縁油に含まれる硫黄化合物の標準的に含有する濃度の硫黄分換算の86ppmに相当する量をアルキルベンゼンに添加して実験したデータである。図10に示すように、炭素数16(分子量258)のオクチルスルフィドの帯電度を1として他のスルフィド類の帯電度の比率を求め、検出されたスルフィド類の各帯電度の比率を集計し、その集計値を帯電度指標値Yとし、基準としたオクチルスルフィドの帯電度に乗じることでスルフィド類の帯電度のレベルが評価できる。物質が異なることに対しても適正に評価できる。   The insulating oil contains a plurality of types of sulfides having different numbers of carbon atoms, and the degree of involvement in the degree of charge is different, so the degree of participation in the degree of charge for each of the sulfides shown in FIG. By multiplying the charge degree coefficient according to the above, it is possible to comprehensively determine the involvement of sulfides in the charge degree. For example, in the sulfides shown in FIG. 9, the amount of addition to the insulating oil is an amount corresponding to 86 ppm in terms of the sulfur content of the standard concentration of the sulfur compound contained in the normal mineral insulating oil. It is the data which was experimented. As shown in FIG. 10, the charge ratio of other sulfides is obtained by setting the charge degree of octyl sulfide having 16 carbon atoms (molecular weight 258) to 1, and the ratio of each charge degree of the detected sulfides is tabulated. The charge level of sulfides can be evaluated by multiplying the total value as the charge index value Y and multiplying the charge level of octyl sulfide as a reference. Appropriate evaluation can be made for different materials.

<実験データ5>スルフィド類とジスルフィド類の分子量または炭素数と帯電度の関係
図9のスルフィド類の分子量と炭素数の関係に、ジスルフィド類の分子量または炭素数と帯電度の関係を加えた状態を図11に示す。◆はスルフィド類で、□はジスルフィド類である。ジスルフィド類はスルフィド類と同様2価の硫黄化合物であるが、化合物内への酸素の取込みが少ないために高帯電度物質にならないものと推定される。
スルフィド類は絶縁油に対する酸化防止作用があり、過酸化物中の酸素を分子内に取り込んで酸化劣化の伝播を阻害する働きがあるが、ジスルフィド類は過酸化物やラジカルなどによって分解するといわれており、両者の違いは次のような式で表される、ジスルフィド類が分解して生成したチオイルラジカルが硫化腐食に関与すると推定される。
RSR’ + R”OOH → RSOR”+ R”OH
RSSR’+ R”OOH → RSSR’+ R”O・ + ・OH
→ RS・ + R’S・ + R”OOH
(R、R’、R”はアルキル基、・はラジカル)
また、硫黄の結合からみてもS−S結合は2.04ÅとC−S結合の1.78Åよりも長いので切れやすいと推定される。
<Experimental data 5> Relationship between molecular weight or carbon number of sulfides and disulfides and charge degree State of adding molecular weight or carbon number and charge degree of disulfides to the relationship between molecular weight and carbon number of sulfides in FIG. Is shown in FIG. ◆ is sulfides, and □ is disulfides. Disulfides, like sulfides, are divalent sulfur compounds, but it is presumed that they do not become highly charged substances due to less oxygen uptake into the compounds.
Sulfides have an antioxidant effect on insulating oil, and have the function of inhibiting the propagation of oxidative degradation by incorporating oxygen in the peroxide into the molecule, but disulfides are said to be decomposed by peroxides and radicals. The difference between the two is presumed that the thioyl radicals produced by the decomposition of disulfides are involved in sulfidation corrosion.
RSR '+ R ”OOH → RSOR” + R ”OH
RSSR '+ R ”OOH → RSSR' + R” O ・ + ・ OH
→ RS ・ + R'S ・ + R ”OOH
(R, R ', R "are alkyl groups,.
Also, from the viewpoint of the sulfur bond, the S—S bond is estimated to be easily broken because it is longer than 2.04 Å and 1.78 C of the C—S bond.

<実験データ6>スルホキシド類の評価データ
スルホキシドは次のような式で表されるスルフィドの酸化生成物であり、スルフィドが直接酸素と反応するというよりも過酸化物の酸素と反応してスルホキシドになると考えられる。スルフィドは2価の硫黄化合物であり、スルホキシドは4価の硫黄化合物である。
R2S + R’OOH → R2S = O + R’OH
スルフィド スルホキシド
R2S = O + R’OOH → R2SO2 + R’OH
スルホキシド スルホン
<Experimental Data 6> Evaluation Data for Sulfoxides Sulfoxide is an oxidation product of sulfide represented by the following formula, and it reacts with peroxide oxygen rather than reacting directly with oxygen to form sulfoxide. It is considered to be. Sulfide is a divalent sulfur compound, and sulfoxide is a tetravalent sulfur compound.
R2S + R'OOH → R2S = O + R'OH
Sulfide sulfoxide
R2S = O + R'OOH → R2SO2 + R'OH
Sulfoxide sulfone

上記のようにスルフィド類の添加試験では帯電度の増加がみられたので、スルフィド類の酸化生成物であるスルホキシド類が高帯電度化物質かどうかの確認試験を行った。
図12はスルホキシド類のブチルスルホキシドの加熱試験の結果である。試験条件は実験データ2と同じ条件である。
結果は酸素と銅触媒の双方が存在しない場合には帯電度の増加は少ないが、銅触媒が共存する系では帯電度の増加がみられる。この結果からブチルスルホキシドは銅触媒により高帯電度化物質への変化が大きくなると推定される。
図13は常温でブチルスルホキシドを添加したアルキルベンゼンの帯電度の添加濃度依存性を示すものである。スルホキシド類そのものが高帯電度化物質である場合、常温でスルホキシド類を添加しただけでアルキルベンゼンの帯電度は増加するはずであるが、添加濃度依存性はみられるものの、900ppmまで添加しても140pC/ml程度と、スルフィド類の加熱試験でみられたような1000pC/mlを超すようなレベルとはなっていなので、高帯電度化物質はスルホキシドそのものではないと推定できる。
As described above, in the addition test of sulfides, an increase in charge was observed. Therefore, a confirmation test was performed to determine whether sulfoxides, which are oxidation products of sulfides, are substances having a high charge.
FIG. 12 shows the results of a heat test of butyl sulfoxide, a sulfoxide. The test conditions are the same as the experimental data 2.
As a result, when both oxygen and the copper catalyst are not present, the increase in the charging degree is small, but in the system where the copper catalyst coexists, the charging degree is increased. From this result, it is presumed that butyl sulfoxide is greatly changed to a highly charged substance by the copper catalyst.
FIG. 13 shows the dependency of the degree of charge of alkylbenzene added with butyl sulfoxide at normal temperature on the concentration of the additive. When the sulfoxide itself is a highly charged substance, the charge of the alkylbenzene should increase only by adding the sulfoxide at room temperature. However, although dependence on the addition concentration is observed, even if it is added up to 900 ppm, it is 140 pC. It is estimated that the highly charged substance is not sulfoxide itself, because it is at a level exceeding about 1000 pC / ml as observed in the sulfide heat test.

<実験データ7>スルフィド類、スルホキシド類、スルホン類の比較実験
ブチル系のスルフィド類、スルホキシド類、スルホン類の比較実験を上記した試験条件の加熱試験結果の帯電度の増加が顕著な酸素と銅触媒の両者の共存系で比較表示した経時変化を図14に示す。
加熱75時間後の帯電度、100時間後の帯電度は、ブチルスルフィド、ブチルスルホキシドともに増加しているが、ブチルスルホキシドの方がブチルスルフィドよりも高い傾向がみられ、ブチルスルホンは帯電度が増加していない。このことは前述のようにスルホキシド自身は高帯電度化物質ではないが、酸素や銅触媒の共存下では、スルフィド化合物よりも高帯電度化物質になりやすいと推定される。
<Experimental Data 7> Comparative Experiment of Sulfides, Sulfoxides, and Sulfones Oxygen and copper with a marked increase in charge as a result of the heating test under the test conditions described above for comparative experiments of butyl sulfides, sulfoxides, and sulfones FIG. 14 shows changes with time in a comparative display in the coexistence system of both catalysts.
The degree of charge after heating for 75 hours and the degree of charge after 100 hours increased for both butyl sulfide and butyl sulfoxide, but butyl sulfoxide tended to be higher than butyl sulfide, and butyl sulfone increased in charge. Not done. As described above, it is presumed that sulfoxide itself is not a highly charged substance as described above, but is more likely to be a highly charged substance than a sulfide compound in the presence of oxygen or a copper catalyst.

<実験データ8>スルフィド類、スルホキシド類、スルホン類の加熱試験時の銅溶解量
実験データ6に示す加熱試験時の酸素の有無によるブチルスルフィド、ブチルスルホキシド、ブチルスルホンそれぞれについて添加した場合の加熱100時間後の銅溶解量を図15に示す。ブチルスルホキシドが酸素ありで溶解量が大きく、酸素なしで酸素ありの1/2前後である。ブチルスルフィドは酸素の有無に関係なくブチルスルオキシドの酸素なしと同程度である。
<Experimental data 8> Copper dissolution amount during heating test of sulfides, sulfoxides, and sulfones Heating when added for each of butyl sulfide, butyl sulfoxide, and butyl sulfone according to the presence or absence of oxygen during the heating test shown in experimental data 6 The amount of copper dissolved after time is shown in FIG. Butyl sulfoxide is dissolved in a large amount with oxygen, and is about 1/2 that without oxygen without oxygen. Butyl sulfide is similar to butylsulfoxide without oxygen, with or without oxygen.

<実験データ9>スルホン類の加熱試験
スルホン類は次のような式で表されるスルホキシド類の酸化生成物である。スルホキシド類にしてもスルホン類にしても元の化合物はスルフィド類である。スルホキシド類が生成する場合と同様にスルホキシド類が直接酸素と反応してスルホン類になるというよりも過酸化物の酸素と反応してスルホキシド類がスルホン類になると考えられる。スルフィド類は2価、スルホキシド類は4価であるが、スルホン類は6価の硫黄化合物である。スルホン類の場合、硫黄原子が6価であるので、更なる負荷反応を行うことはできない。
R2S + R’OOH → R2S = O + R’OH
スルフィド類 スルホキシド類
R2S = O + R’OOH → R2SO2 + R’OH
スルホキシド類 スルホン類
<Experimental data 9> Heat test of sulfones Sulfones are oxidation products of sulfoxides represented by the following formula. The original compounds, whether sulfoxides or sulfones, are sulfides. In the same manner as when sulfoxides are formed, it is considered that sulfoxides react with oxygen of peroxide to become sulfones rather than directly react with oxygen to become sulfones. Sulfides are divalent and sulfoxides are tetravalent, but sulfones are hexavalent sulfur compounds. In the case of sulfones, since the sulfur atom is hexavalent, further loading reaction cannot be performed.
R2S + R'OOH → R2S = O + R'OH
Sulfides Sulfoxides
R2S = O + R'OOH → R2SO2 + R'OH
Sulfoxides Sulfones

スルホン類の添加の加熱試験の結果を図16に示す。この結果は加熱試験での高帯電度化はみられていない。スルフィド類やスルホキシド類とは挙動が異なり、酸素や銅触媒の影響もほとんどない。スルフィド類やスルホキシド類では、酸素や銅触媒共存下の方が帯電度の増大傾向がみられるが、スルホン類では、酸素と銅触媒が共存しない方が帯電度の増加傾向にあるが顕著に増加するものではなく、加熱試験でも帯電度の増大がみられないことから、高帯電度化物質の中間体でもないと考えられる。   The result of the heating test for the addition of sulfones is shown in FIG. As a result, no increase in the degree of charging was observed in the heating test. The behavior is different from sulfides and sulfoxides, and there is almost no influence of oxygen and copper catalyst. In sulfides and sulfoxides, there is a tendency to increase the charge in the presence of oxygen and a copper catalyst, whereas in sulfones, the charge is increasing in the absence of oxygen and a copper catalyst, but the increase is markedly increased. However, since the increase in the charging degree is not observed even in the heating test, it is not considered to be an intermediate of the highly charged substance.

<実験データ10>チオフェン類添加の加熱試験
絶縁油中に含有する硫黄化合物の主成分はチオフェン類であり、そのチオフェン類のベンゾチオフェンを添加した加熱試験の結果を図17に示す。試験条件は実験データ2と同一である。加熱時間450時間では帯電度が100〜200pC/mlに収斂し増加傾向はみられない。また、銅触媒の影響を受け難い物質と考えられる。
<Experimental data 10> Heat test of addition of thiophenes The main component of the sulfur compound contained in the insulating oil is thiophenes, and the results of a heat test in which benzothiophenes of the thiophenes are added are shown in FIG. The test conditions are the same as in experimental data 2. When the heating time is 450 hours, the charging degree converges to 100 to 200 pC / ml, and no increase tendency is observed. Moreover, it is thought that it is a substance which is hard to receive the influence of a copper catalyst.

<実験データ11>チオール類添加の加熱試験
チオール類は絶縁油中の硫黄化合物の中では比較的少量の部類に属する。化学式は図1(g)に示すとおりであり、破線で囲んだ部分はスルフィド化合物と類似している。硫黄原子の一方は水素原子と結合しているが、スルフィド化合物に似たような特性を示す可能性がある。図18はチオール類のオクタンチオール390ppmを添加した加熱試験の酸素、銅触媒ありの試験結果である。
結果は、加熱時間100時間で帯電度は2000pC/mlと初期値から2桁上昇している。
<Experimental data 11> Heat test of addition of thiols Thiols belong to a relatively small amount of sulfur compounds in insulating oil. The chemical formula is as shown in FIG. 1 (g), and the portion surrounded by a broken line is similar to the sulfide compound. One of the sulfur atoms is bonded to a hydrogen atom, but may have characteristics similar to those of sulfide compounds. FIG. 18 is a test result with an oxygen and copper catalyst in a heating test in which 390 ppm of thiol octanethiol was added.
As a result, when the heating time is 100 hours, the charging degree is 2000 pC / ml, which is two digits higher than the initial value.

<実験データ12>チオール類の炭素数(または分子量)と帯電度の関係データ
図19はチオール類の炭素数(または分子量)と帯電度の関係を示す図である。データ数が少ないが、スルフィド類と同様に、炭素数8のオクタンチオールが頂点となるような傾向を示している。スルフィド類のブチルスルフィドでは帯電度の増加がみられるのにチオール類のブタンチオール(炭素数4)は加熱時間100時間で帯電度は負極性を示している。アルキル基の長いtドデカンチオール(炭素数12)は加熱時間が経過しても帯電度の増加がない結果となっている。オクタンチオール(炭素数8)の帯電度が大きくなるのは、スルフィド類と類似している。スルフィド類(R−S−R’)とチオール類(R−S−H)は類似しており、R’の部分がHに置き変わっているものがチオール類であり、帯電度の増大に関与することと類似している。
<Experimental Data 12> Relationship Data Between Carbon Number (or Molecular Weight) and Charge Level of Thiols FIG. 19 is a diagram showing the relationship between the carbon number (or molecular weight) of thiols and the charge level. Although the number of data is small, like the sulfides, it shows a tendency that octanethiol having 8 carbon atoms is at the top. The butyl sulfide sulfide has an increase in charge, but the thiol butanethiol (carbon number 4) has a heating time of 100 hours and exhibits a negative charge. T-Dodecanethiol (carbon number 12) having a long alkyl group results in no increase in charge even when the heating time elapses. The increase in the degree of charge of octanethiol (carbon number 8) is similar to sulfides. Sulfides (RSR) and thiols (RSH) are similar, and thiols are those in which R ′ is replaced by H, and are involved in increasing the degree of charge. Similar to doing.

〈窒素化合物の流動帯電性評価〉
絶縁油中には硫黄化合物よりも少量ではあるが、窒素化合物が含まれている。鎖状炭化水素と結合した窒素化合物は少ないとされ、インドール類、イミダゾール類、ピリジン類、キノリン類、カルバゾール類などの芳香族環を有する化合物に大別される。
<実験データ13>
図20はインドール類のインド−ル718ppmを絶縁油中に添加した加熱試験の結果を示す。試験条件は実験データ2と同一である。
試験結果は、高帯電度化を示さず。逆に100時間加熱すると負極性を示し、硫黄化合物のスルフィド類とは様相が異なっている。
<Evaluation of flow chargeability of nitrogen compounds>
Insulating oil contains a nitrogen compound in a smaller amount than the sulfur compound. There are few nitrogen compounds bonded to chain hydrocarbons, and they are roughly classified into compounds having an aromatic ring such as indoles, imidazoles, pyridines, quinolines, and carbazoles.
<Experimental data 13>
FIG. 20 shows the results of a heating test in which 718 ppm of indole indole was added to insulating oil. The test conditions are the same as in experimental data 2.
Test results do not show high charge. On the other hand, when heated for 100 hours, it exhibits negative polarity and is different from the sulfides of sulfur compounds.

〈酸素化合物の流動帯電性の評価〉
<実験データ14>
絶縁油の新油中に存在する酸素化合物は極めてわずかであるが絶縁油が酸化劣化すると、アルコール、アルデヒド、ケトンや有機酸といった酸素化合物が生成する可能性がある。種々の酸素化合物について添加試験を行ったが、帯電度の増加につながる化合物はみられなかった。詳細データは省略する。
<Evaluation of fluid chargeability of oxygen compounds>
<Experimental data 14>
There are very few oxygen compounds present in the new insulating oil, but when the insulating oil is oxidized and deteriorated, oxygen compounds such as alcohols, aldehydes, ketones, and organic acids may be generated. Addition tests were conducted on various oxygen compounds, but no compounds that lead to an increase in the degree of charge were found. Detailed data is omitted.

〈油入電気機器の流動帯電性の診断方法〉
以上の通り、絶縁油中に存在する可能性のある含有物質について、酸素の有無、銅触媒の有無を組合せた各条件で加熱試験を実施した結果、油入電気機器内部の酸素、銅触媒のある条件での加熱試験では、スルフィド類、とその酸化生成物のスルホキシド類およびチオール類の加熱試験において帯電度が大きくなっているデータが得られている。それ以外の物質についての帯電度レベルは低い結果である。
このような結果から、油入電気機器の通常絶縁油中に含まれる硫黄成分量を基準とし、絶縁油中に存在する可能性のある物質を指標物質とし、予め指標物質について絶縁油の帯電度に関与する状態を物質毎に調査してこれを基準とし、油入電気機器から充填された絶縁油を抽出し、抽出した絶縁油中に含有する物質を分析し、流動帯電現象に関与する物質の存在の有無と、存在した場合の上記基準値のレベルとを対比することで油入電気機器を停止することなく流動帯電化現象の診断が可能となる。
<Diagnosis method for flow chargeability of oil-filled electrical equipment>
As described above, as a result of conducting a heating test on the inclusion substances that may be present in the insulating oil under the combined conditions of the presence or absence of oxygen and the presence or absence of the copper catalyst, oxygen in the oil-filled electrical equipment, In a heating test under a certain condition, data indicating that the degree of charge is large in a heating test of sulfides and sulfoxides and thiols of oxidation products thereof are obtained. The charge level for other materials is a low result.
Based on these results, based on the amount of sulfur component contained in the normal insulating oil of oil-filled electrical equipment, the substance that may be present in the insulating oil is used as the indicator substance, and the charge degree of the insulating oil for the indicator substance in advance. Investigate the state involved in the substance for each substance, extract the insulating oil filled from the oil-filled electrical equipment based on this, analyze the substance contained in the extracted insulating oil, and the substance involved in the fluid charging phenomenon By comparing the presence / absence of water and the level of the reference value when it exists, the fluidized charging phenomenon can be diagnosed without stopping the oil-filled electrical device.

以上のように油入電気機器に充填された絶縁油中に存在する含有成分の流動帯電現象に及ぼす影響および含有成分の変化の状態を明確にし、流動帯電現象に大きく影響する含有成分を指標物質とし、実際に運転中の油入電気機器の絶縁油を採油し、その含有成分を分析して、指標物質とした含有成分の量により油入電気機器の流動帯電性を診断することができる。   As described above, the influence of the components present in the insulating oil filled in the oil-filled electrical equipment on the flow charging phenomenon and the state of change of the components are clarified, and the components that greatly affect the flow charging phenomenon are indicated as indicator substances. Insulating oil of an oil-filled electrical device that is actually in operation can be collected, the contained component can be analyzed, and the flow chargeability of the oil-filled electrical device can be diagnosed based on the amount of the contained component used as an indicator substance.

また、指標物質とした物質の絶縁油の帯電度化に関与する度合いは物質毎に相違するので、精度よく診断するには、帯電度化への関与がもっとも大きな物質を基準とし、他の物質の同一基準における帯電度比率を求め、検出されたそれぞれの物質の帯電度比率を集計し、その集計値を帯電度指標値とし、基準とした物質量を乗じ、設定されている帯電度の限界と比較することで油入電気機器の流動帯電性を診断することができる。   In addition, the degree of participation in the insulating oil charge of the substance used as the indicator substance differs depending on the substance. Therefore, for accurate diagnosis, the substance with the largest contribution to charge formation is used as a reference, and other substances The charge ratios of the same standard are calculated, the charge ratios of the detected substances are totaled, the calculated value is used as the charge index value, and the reference substance amount is multiplied, and the set charge limit is set. In comparison, it is possible to diagnose the flow chargeability of the oil-filled electrical device.

上記では油入電気機器の流動帯電性を診断するのに、流動帯電に大きく関与する硫黄化合物のスルフィド類と硫黄酸化物のスルホキシド類を指標物質にすることで説明したが、スルホキシド類からさらに酸化して生成される硫黄酸化物の金属錯体や窒素酸化物の金属錯体を指標物質として流動帯電性の診断を行うと帯電化した細かな原因を推定することができる。   In the above description, in order to diagnose the fluid chargeability of oil-filled electrical equipment, the sulfur compounds sulfides and sulfur oxide sulfoxides that are greatly involved in fluid charge are used as indicators. When the fluid chargeability diagnosis is performed using a sulfur oxide metal complex or a nitrogen oxide metal complex formed as an indicator substance, it is possible to estimate a detailed cause of the charge.

実施の形態2.
実施の形態1では、油入電気機器に充填される絶縁油中に含まれる物質の酸素、銅触媒による高帯電度化の様相について示したが、高帯電度化に関与する物質が検出された場合や、高帯電度化が進行していることが判明した場合には、高帯電度化を抑制することが必要となる。この実施の形態2は、高帯電度化の抑制方法を示すものである。
Embodiment 2. FIG.
In the first embodiment, the oxygen contained in the insulating oil filled in the oil-filled electrical device and the aspect of increasing the charging degree by the copper catalyst have been described. However, the substance involved in increasing the charging degree was detected. In some cases, or when it is found that the increase in the degree of charge has progressed, it is necessary to suppress the increase in the degree of charge. The second embodiment shows a method for suppressing the increase in the degree of charge.

〈BTA、DBPCのスルフィド類に対する流動帯電の抑制効果の評価〉
油入電気機器の高帯電度化を抑制するためにBTA(ベンゾトリアゾール)が充填されているが、これは絶縁紙に吸着して、絶縁紙表面への負電荷の電荷移動を抑制する効果があることと、銅の表面を不活性にする働きがあることで充填されているものである。
<Evaluation of fluid charging suppression effect on sulfides of BTA and DBPC>
BTA (benzotriazole) is filled in order to suppress the increase in the charging degree of oil-filled electrical equipment, but this is adsorbed on the insulating paper and has the effect of suppressing the negative charge transfer to the insulating paper surface. It is filled with the fact that it has a function to inactivate the copper surface.

<実験データ15>スルフィド類にBTAを添加した場合の加熱試験
BTAが硫黄化合物であるスルフィド類の高帯電度化に対してどの程度の抑制効果があるかについて加熱試験を実施した。図21はスルフィド類のドデシルスルフィド1000ppmとBTAを30mg/1を添加した場合の加熱試験の結果である。試験条件は実験データ2と同一である。
この結果は、酸素、銅触媒の有無に関係なく帯電度は低くなっている。
<Experimental data 15> Heat test when BTA is added to sulfides A heat test was carried out to determine how much the BTA is a sulfur compound with respect to increasing the degree of charge of sulfides. FIG. 21 shows the results of a heating test in the case of adding 1000 ppm of sulfides dodecyl sulfide and 30 mg / 1 of BTA. The test conditions are the same as in experimental data 2.
As a result, the degree of charging is low regardless of the presence or absence of oxygen and a copper catalyst.

<実験データ16>スルフィド類にBTAを添加した場合の加熱試験
BTAが硫黄化合物であるスルフィド類の高帯電度化に対してどの程度の抑制効果があるかについて加熱試験を実施した。図22はスルフィド類のヘプチルスルフィド620ppmとBTAを30mg/1を添加した場合の加熱試験の結果である。試験条件は実験データ2と同一である。
この結果は、酸素、銅触媒の有無に関係なく帯電度は低くなっている。
<Experimental data 16> Heat test in the case of adding BTA to sulfides A heat test was carried out as to how much the BTA has a suppressive effect on the increase in the degree of charge of sulfides which are sulfur compounds. FIG. 22 shows the results of a heating test in the case of adding 620 ppm of heptyl sulfide sulfide and 30 mg / 1 of BTA. The test conditions are the same as in experimental data 2.
As a result, the degree of charging is low regardless of the presence or absence of oxygen and a copper catalyst.

<実験データ17>スルフィド類にDBPCを添加した場合の加熱試験
DBPCが硫黄化合物であるスルフィド類の高帯電度化に対してどの程度の抑制効果があるかについて加熱試験を実施した。図23はスルフィド類のヘプチルスルフィド620ppmとDBPCを3000mg/lを添加した場合の加熱試験の結果である。試験条件は実験データ2と同一である。
この結果は、酸素、銅触媒の有無に関係なく帯電度の増加傾向はみられない。これはDBPCがスルフィドの酸化反応を抑制しているものと推定される。
<Experimental data 17> Heating test in the case of adding DBPC to sulfides A heating test was carried out as to how much the DBPC is effective for increasing the degree of charge of sulfides which are sulfur compounds. FIG. 23 shows the results of a heating test in the case of adding 620 ppm of heptyl sulfide sulfide and 3000 mg / l of DBPC. The test conditions are the same as in experimental data 2.
As a result, there is no tendency to increase the degree of charging regardless of the presence or absence of oxygen and a copper catalyst. This is presumed that DBPC suppresses the oxidation reaction of sulfide.

<実験データ18>スルホキシド類とBTAまたはDBPCを添加した場合の加熱試験
BTAまたはDBPCを硫黄酸化物のスルホキシド類のブチルスルホキシドに添加した場合に高帯電度化に対してどの程度の抑制効果があるかについて加熱試験を実施した。図24はスルホキシド類のブチルスルホキシド450ppmとBTAを30mg/lまたはDBPCを3000mg/lを添加した場合の加熱試験の結果である。試験条件は実験データ2と同一である。
この結果は、BTA、DBPCの添加がない場合は、帯電度の顕著な増加がみられたのに対して、BTAを添加した場合には帯電度の増加がなく、DBPCの添加では帯電度がBTAまたはDBPCの添加がない場合と同レベルまでの帯電度の増加がみられた。
この実験データでは、BTAがスルホキシドの帯電度の増加抑制に効果的であるが、DBPCはスルフィドがスルホキシドに変化する反応が抑制されるが高帯電度の抑制効果はみられない。
<Experimental data 18> Heat test when sulfoxides and BTA or DBPC are added When BTA or DBPC is added to butyl sulfoxide of sulfoxides of sulfur oxides, what is the inhibitory effect on increasing the degree of charge? A heating test was conducted. FIG. 24 shows the results of a heating test in the case of adding 450 ppm of butyl sulfoxide of sulfoxides and 30 mg / l of BTA or 3000 mg / l of DBPC. The test conditions are the same as in experimental data 2.
As a result, when BTA and DBPC were not added, the charging degree was remarkably increased, whereas when BTA was added, there was no increase in charging degree. An increase in charge was observed up to the same level as when no BTA or DBPC was added.
In this experimental data, BTA is effective in suppressing the increase in the charge degree of sulfoxide, but DBPC suppresses the reaction in which sulfide is changed into sulfoxide, but does not show the effect of suppressing the high charge degree.

〈窒素化合物による流動帯電性の抑制効果の評価〉
インドール類窒素化合物の加熱試験は実施の形態1の実験データ13に示しているが、これは高帯電度化を示さず、逆に100時間加熱すると負極性を示し、硫黄化合物のように高帯電度化する物質でないことを示したが、同じ窒素化合物のイミダゾール類、キノリン類、カルバゾール類などについても加熱試験を行った。
<実験データ19>ベンゾイミダゾールの加熱試験
図25はイミダゾール類のベンゾイミダゾール362ppmを絶縁油中に添加した加熱試験の結果を示す。試験条件は実験データ2と同一である。
試験結果は、加熱時間の経過とともに負極性に帯電する結果となっている。
<実験データ20>8ヒドロキシキノリンの加熱試験
図26は8ヒドロキシキノリン891ppmを絶縁油中に添加した加熱試験の結果を示す。試験条件は実験データ2と同一である。
試験結果は、加熱初期は正極性を示しているが、加熱時間が経過すると負極性に転じている。
<Evaluation of the effect of suppressing flow electrification by nitrogen compounds>
The heating test for indole nitrogen compounds is shown in the experimental data 13 of the first embodiment. However, this does not show a high degree of charge, and conversely, when heated for 100 hours, it exhibits a negative polarity and is highly charged like a sulfur compound. Although it was shown that it was not a substance to be heated, imidazoles, quinolines, carbazoles and the like of the same nitrogen compound were also subjected to a heating test.
<Experimental data 19> Heat test of benzimidazole FIG. 25 shows the result of a heat test in which 362 ppm of imidazole benzimidazole was added to insulating oil. The test conditions are the same as in experimental data 2.
The test result is a result of being negatively charged as the heating time elapses.
<Experimental Data 20> Heat Test of 8 Hydroxyquinoline FIG. 26 shows the results of a heat test in which 891 ppm of 8 hydroxyquinoline was added to insulating oil. The test conditions are the same as in experimental data 2.
The test results show positive polarity at the initial stage of heating, but when the heating time has passed, the test has turned negative.

実験データ13のインドール、実験データ19のベンゾイミダゾール、実験データ20の8ヒドロキシキノリンは絶縁油中で加熱されると負極性に帯電するので、硫黄化合物のスルフィド類や硫黄酸化物のスルホキシド類のように帯電度が増大する物質が存在する場合に、適量添加しておくと、スルフィド類、スルホキシド類による流動帯電と相殺して帯電度が経時的に増大することが抑制される。
窒素化合物の添加により流動帯電性を検討する場合、帯電度が0pC/ml近辺であることが好ましく、負極性が大きくならないように添加量を厳密にすることが重要である。
Experimental data 13 indole, experimental data 19 benzimidazole, and experimental data 20 hydroxyquinoline are negatively charged when heated in insulating oil, such as sulfides of sulfur compounds and sulfoxides of sulfur oxides. In the case where a substance having an increased charge is present, if an appropriate amount is added, it is possible to suppress the increase in the charge over time by offsetting the flow charge by sulfides and sulfoxides.
When the flow chargeability is examined by adding a nitrogen compound, the charge is preferably in the vicinity of 0 pC / ml, and it is important to make the addition amount strict so as not to increase the negative polarity.

実施の形態3.
実施の形態1では、流動帯電現象の原因となる物質の性状を説明して流動帯電の診断方法を示し、実施の形態2では、油入電気機器に充填された絶縁油が高帯電度化により帯電度が高くなったときの抑制方法について示したが、この実施の形態3では、絶縁油中の帯電度を大きくする物質の除去方法について示す。
絶縁油の流動帯電現象は、硫黄化合物のスルフィド類やその酸化物である硫黄酸化物のスルホキシド類の高帯電度化物質が関与している。この高帯電度化物質を除去することができれば、油入電気機器の流動帯電を抑制することができる。
Embodiment 3 FIG.
In the first embodiment, the property of the substance that causes the fluid charging phenomenon will be explained and a fluid charging diagnosis method will be shown. In the second embodiment, the insulating oil filled in the oil-filled electrical device is increased in charge. Although the suppression method when the degree of electrification becomes high is shown, this Embodiment 3 shows a method for removing a substance that increases the degree of electrification in the insulating oil.
The fluid electrification phenomenon of the insulating oil involves a highly charged substance such as sulfides of sulfur compounds and sulfoxides of sulfur oxides which are oxides thereof. If this highly charged substance can be removed, fluid charging of the oil-filled electrical device can be suppressed.

絶縁油の精製に用いられている吸着剤の活性白土、溶剤やガスの精製に使用される活性炭、分析試験用のシリカゲル(ワコーゲル200)を用いて高帯電度化物質の除去を行う実験を行った。
<実験データ19>絶縁油中の高帯電度化物質の除去処理実験
上記の3種類の吸着剤を100℃で24時間加熱乾燥し、乾燥した吸着剤を45g秤量し、300mlの絶縁油中に入れて遮光状態で1時間攪拌してろ過し、その後真空脱気し、非特許文献1に示されたミニ静電テスタで帯電度を測定した。
絶縁油はアルキルベンゼンを用い、高帯電度化物質のスルホキシド類のドデシルスルホキシドを1037ppm添加し、100時間加熱試料、250時間加熱試料、450時間加熱試料を準備し、それぞれの加熱試料は2タンクとし、個別に帯電度を測定した後、2タンクを混合して吸着剤で高帯電度化物質の除去処理を行った。
Conducted experiments to remove highly charged substances using activated clay for adsorbents used for purification of insulating oil, activated carbon used for purification of solvents and gases, and silica gel for analytical tests (Wakogel 200). It was.
<Experimental data 19> Removal treatment experiment of highly charged substance in insulating oil The above three kinds of adsorbents were heated and dried at 100 ° C. for 24 hours, and 45 g of the dried adsorbent was weighed and put into 300 ml of insulating oil. Then, the mixture was stirred for 1 hour in a light-shielded state, filtered, and then vacuum degassed, and the degree of charge was measured with a mini electrostatic tester disclosed in Non-Patent Document 1.
Insulating oil is alkylbenzene, 1037 ppm of dodecyl sulfoxide, a sulfoxide of highly charged substance, is added, and a heated sample of 100 hours, a heated sample of 250 hours, and a heated sample of 450 hours are prepared. After measuring the charge degree individually, the two tanks were mixed and the removal process of the highly charged substance was performed with the adsorbent.

・試験結果
参考のためにドデシルベンゼン1037ppm添加のアルキルベンゼンに酸素の有無、銅触媒の有無を組み合わせ条件で行った加熱試験のデータを図27に示す。各吸着剤の種類毎の処理前後の帯電度の比較データを図28に示す。また、帯電度および油中溶解の銅量の測定結果を図29に示す。図30は図29のデータを図示したものである。図31は各吸着剤の処理前の帯電度と、加熱時間100時間、250時間、450時間後における各吸着剤の処理後の帯電度の変化を示すグラフである。
Test results For reference, FIG. 27 shows data of a heating test conducted under a combination of the presence or absence of oxygen and the presence or absence of a copper catalyst in alkylbenzene added with 1037 ppm of dodecylbenzene. FIG. 28 shows comparison data of the degree of charge before and after the treatment for each adsorbent type. In addition, FIG. 29 shows the measurement results of the degree of charge and the amount of copper dissolved in oil. FIG. 30 illustrates the data of FIG. FIG. 31 is a graph showing the degree of charge before the treatment of each adsorbent and the change in the degree of charge after the treatment of each adsorbent after heating times of 100 hours, 250 hours, and 450 hours.

<結果の考察>
活性白土、活性炭および分析試験用シリカゲルの順でいずれの吸着剤でも高帯電度化物質の除去効果がみられた。
効果の程度は活性白土で処理したものは初期の絶縁油の帯電度よりも低い値を示し、活性炭で処理したものは初期の絶縁油の帯電度とほぼ同等の値を示し、シリカゲルの場合、初期の帯電度よりも1桁程度高い値を示している。
<Consideration of results>
Any adsorbent in the order of activated clay, activated carbon and silica gel for analytical test showed the effect of removing highly charged substances.
As for the effect, the one treated with activated clay shows a lower value than the charge of the initial insulating oil, and the one treated with activated carbon shows a value almost equal to the charge of the initial insulating oil. The value is about one digit higher than the initial charging degree.

結果に示したように、高帯電度化物質が生成された絶縁油は、活性白土処理、活性炭処理を行うことで高帯電度化物質および溶解銅も除去することが可能であり、実際の油入電気機器で高帯電度化が進行した場合には、活性白土処理、活性炭処理を行うことで高帯電度化を抑制することができる。   As shown in the results, it is possible to remove the highly charged substance and dissolved copper from the insulating oil in which the highly charged substance is produced by performing activated clay treatment and activated carbon treatment. When the increase in the degree of charging progresses in the input electrical equipment, the increase in the charging degree can be suppressed by performing the activated clay treatment and the activated carbon treatment.

実際の油入電気機器では、機器本体と冷却器との間は配管で循環回路を形成した構成であり、絶縁油の循環回路に吸着剤を配置することで、帯電度が大きくなった絶縁油中の高帯電度物質を吸着させて取り除くことができる。   In an actual oil-filled electrical device, a circulation circuit is formed by piping between the device body and the cooler, and an insulating oil whose charging degree has been increased by placing an adsorbent in the insulation oil circulation circuit. Highly charged substances in the medium can be adsorbed and removed.

実施の形態4.
油入電気機器の流動帯電は、油入電気機器内のプレスボードや絶縁紙の固体絶縁物と絶縁油との間で生じる。内部導体の表面を覆う絶縁紙やコイルと鉄心またはタンクとの間には位置されるプレスボードの絶縁物は、いずれもセルロースを主成分とする材料であり、経年変化によって劣化が進行し、表面の酸化や内部に存在する物質の吸着による経年変化によって高帯電度化が進行する。固体絶縁物の絶縁紙、プレスボードの経年変化要因としては、セルロースの酸化と油中成分の絶縁物表面への吸着が考えられる。
セルロースが酸化する場合一部の水酸基がアルデヒド基を経てカルボキシル基に変化する。水酸基は酸素原子と水素原子から成り立っていて、酸素が負に、水素が正に分極し、分極の程度は〔水酸基<アルデヒド基<カルボキシル基〕の順になっている。分極の大きなものほど負電荷を取り込む力が強くなるので帯電しやすくなる。
Embodiment 4 FIG.
The flow electrification of the oil-filled electrical device occurs between the solid insulator of the press board or the insulating paper in the oil-filled electrical device and the insulating oil. Insulator paper covering the surface of the inner conductor and the insulation of the press board, which is located between the coil and the iron core or tank, are all materials mainly composed of cellulose. The degree of electrification advances due to the secular change due to the oxidation of the substance and the adsorption of substances present inside. As factors of aging of insulating paper and press board of solid insulator, oxidation of cellulose and adsorption of components in oil onto the insulator surface are considered.
When cellulose is oxidized, some hydroxyl groups are converted to carboxyl groups via aldehyde groups. The hydroxyl group is composed of an oxygen atom and a hydrogen atom. Oxygen is negatively polarized and hydrogen is positively polarized, and the degree of polarization is in the order of [hydroxyl group <aldehyde group <carboxyl group]. The larger the polarization, the stronger the force to take in negative charges, and the more easily charged.

図32は絶縁油中のカルボキシル基量と帯電度との関係を示すものである。カルボキシル基量が増加すると帯電度も増大する傾向がみられる。
絶縁紙やプレスボードが酸化して生成されるアルデヒド基やカルボキシル基は絶縁油中にも溶解していくので、絶縁油中のアルデヒド基濃度、カルボキシル基濃度を検出し、これを指標値として、限界値を設定しておくことで、油入電気機器の固体絶縁部分の流動帯電の診断を行うことができる。
FIG. 32 shows the relationship between the amount of carboxyl groups in the insulating oil and the degree of charge. As the amount of carboxyl groups increases, the degree of charge tends to increase.
Aldehyde groups and carboxyl groups generated by oxidation of insulating paper and press board are also dissolved in insulating oil, so aldehyde group concentration and carboxyl group concentration in insulating oil are detected, and this is used as an index value. By setting the limit value, it is possible to diagnose the flow charge of the solid insulating portion of the oil-filled electrical device.

実施の形態5.
図33は絶縁油の帯電度を調べる静電ミニテスタの静電気発生部に使用している濾紙にそれぞれ帯電度特性が異なる絶縁油を含浸した後の帯電特性である。横軸は含浸油の帯電度で、縦軸は次式で表せる絶縁物の帯電率の増減率である。
絶縁物帯電度増減率=(A−B)/B
A:絶縁油が含浸した濾紙を静電気発生部としたときの帯電度
B:新品濾紙を静電気発生部としたときの帯電度
この方法では、予め油入電気機器内部の状況と、含浸油の関係を等価性がある状態にデータを整理しておくことにより、油入電気機器の流動帯電診断を行うことができる。
Embodiment 5 FIG.
FIG. 33 shows the charging characteristics after impregnating insulating oils having different charging characteristics on the filter paper used in the static electricity generation part of the electrostatic minitester for examining the charging degree of the insulating oil. The horizontal axis represents the charging degree of the impregnating oil, and the vertical axis represents the rate of increase or decrease in the charging rate of the insulator expressed by the following equation.
Insulator charge degree increase / decrease rate = (AB) / B
A: Charge when a filter paper impregnated with insulating oil is used as a static electricity generating part B: Charge when a new filter paper is used as a static electricity generating part In this method, the relationship between the internal conditions of the oil-filled electrical device and the impregnated oil in advance By organizing the data so that they are equivalent, it is possible to perform flow charge diagnosis of oil-filled electrical equipment.

実際の油入電気機器の絶縁油の流路に濾紙が着脱可能にしておくことで、油入電気機器を停止することなく流動帯電性の診断が可能となる。   By making the filter paper detachable in the flow path of the insulating oil of the actual oil-filled electrical device, it is possible to diagnose the flow chargeability without stopping the oil-filled electrical device.

実施の形態6.
図34は油入電気機器から採取した絶縁油中の溶存窒素ガス濃度とスルホキシド/スルフィドの関係を示す。このデータでは窒素ガス濃度が高いとスルホキシド/スルフィドが大きくなる傾向である。
Embodiment 6 FIG.
FIG. 34 shows the relationship between dissolved nitrogen gas concentration in insulating oil collected from oil-filled electrical equipment and sulfoxide / sulfide. In this data, the sulfoxide / sulfide tends to increase when the nitrogen gas concentration is high.

油入電気機器内に空気成分の酸素や窒素が存在すると、酸素は油入電気機器内の酸化反応に消費されるが、不活性な窒素ガスはそのまま溶存する。したがって、油入電気機器内に窒素ガスが多く含まれる場合は、侵入した空気量が多いことを示すものであり、油入電気機器内での酸化反応がより進展することを意味するものであり、絶縁油中の窒素ガス量を検出することにより、スルホキシド/スルフィド比率が大きくなり、油入電気機器内の流動帯電の状態を診断することができる。   If oxygen or nitrogen as an air component is present in the oil-filled electrical device, oxygen is consumed for the oxidation reaction in the oil-filled electrical device, but the inert nitrogen gas is dissolved as it is. Therefore, when a large amount of nitrogen gas is contained in the oil-filled electrical device, this indicates that there is a large amount of invaded air, which means that the oxidation reaction in the oil-filled electrical device further progresses. By detecting the amount of nitrogen gas in the insulating oil, the sulfoxide / sulfide ratio increases, and the state of flow charge in the oil-filled electrical device can be diagnosed.

絶縁油中に存在する硫黄化合物の分子構造を示す図である。It is a figure which shows the molecular structure of the sulfur compound which exists in insulating oil. 油入電気機器内の絶縁油および絶縁物の高帯電度化の概念説明図である。It is a conceptual explanatory view of increasing the degree of charging of insulating oil and insulator in an oil-filled electrical device. 加熱試験に使用した試験容器の構成図である。It is a block diagram of the test container used for the heating test. 加熱試験に使用したミニ静電テスタの構成図である。It is a block diagram of the mini electrostatic tester used for the heating test. 絶縁油中に含まれる成分の添加試験に使用した化合物の一覧表である。It is a list of the compounds used for the addition test of the component contained in insulating oil. 試験に用いたアルキルベンゼン単独の加熱試験の試験結果である。It is a test result of the heating test of the alkylbenzene used alone for the test. ヘプチルスルフィド添加の加熱試験の試験結果である。It is a test result of the heating test of heptyl sulfide addition. ドデシルスルフィド添加の加熱試験の試験結果である。It is a test result of the heating test of dodecyl sulfide addition. スルフィド類の炭素数(分子量)と帯電度の関係を示すデータである。This data shows the relationship between the number of carbons (molecular weight) of sulfides and the degree of charge. スルフィド類の物質毎の帯電度を基準物質に換算する換算比率一覧表である。It is a conversion ratio table which converts the charge degree for every substance of sulfides into a standard substance. スルフィド類の炭素数と帯電度の関係に、ジスルフィド類の炭素数と帯電度の関係を加えた物質毎の帯電度を示すデータである。This data shows the charge degree of each substance obtained by adding the relationship between the carbon number of the disulfides and the charge degree to the relation between the carbon number of the sulfides and the charge degree. ブチルスルホキシド添加の加熱試験の結果であるIt is the result of the heating test of butyl sulfoxide addition 常温でブチルスルホキシドを添加したアルキルベンゼンの帯電度の添加濃度依存性を示す図である。It is a figure which shows the addition density | concentration dependence of the charging degree of the alkylbenzene which added butyl sulfoxide at normal temperature. スルフィド類、スルホキシド類、スルホン類の比較実験の結果である。It is a result of the comparative experiment of sulfides, sulfoxides, and sulfones. スルフィド類、スルホキシド類、スルホン類の加熱試験時の銅溶解量を示す図である。It is a figure which shows the copper dissolution amount at the time of the heat test of sulfides, sulfoxides, and sulfones. スルホン類添加の加熱試験の試験結果である。It is a test result of the heating test of sulfones addition. ベンゾチオフェン添加の加熱試験の試験結果である。It is a test result of the heating test of benzothiophene addition. オクタンチオール添加の加熱試験の試験結果である。It is a test result of the heating test of octanethiol addition. チオール類の炭素数と帯電度の関係を示す図である。It is a figure which shows the relationship between the carbon number of thiols, and a charging degree. インドール添加の加熱試験の試験結果である。It is a test result of the heating test of indole addition. ドデシルスルフィドとBTAを添加した場合の加熱試験の試験結果である。It is a test result of the heating test at the time of adding dodecyl sulfide and BTA. ヘプチルスルフィドとBTAを添加した場合の加熱試験の試験結果である。It is a test result of the heating test at the time of adding heptyl sulfide and BTA. ヘプチルスルフィドとDBPCを添加した場合の加熱試験の試験結果である。It is a test result of the heating test at the time of adding heptyl sulfide and DBPC. ブチルスルホキシドとBTAまたはDBPCを添加した場合の加熱試験の試験結果である。It is a test result of the heating test at the time of adding butyl sulfoxide and BTA or DBPC. ベンゾイミダゾール添加の加熱試験の試験結果である。It is a test result of the heating test of benzimidazole addition. 8ヒドロキノリンを添加の加熱試験の試験結果である。It is a test result of the heat test of adding 8 hydroquinoline. ドデシルベンゼン添加のアルキルベンゼンに酸素の有無、銅触媒の有無を組み合わせ条件で行った加熱試験の試験結果である。It is a test result of the heating test performed on the combined conditions of the presence or absence of oxygen and the presence or absence of a copper catalyst in the alkylbenzene added with dodecylbenzene. 吸着剤の種類毎の処理前後の帯電度および銅量の比較データである。It is the comparison data of the charge degree before and after the process for every kind of adsorbent, and the amount of copper. 吸着剤の処理前の帯電度と、加熱時間100時間、250時間、450時間後における各吸着剤の処理後の帯電度の変化を示すデータである。It is the data which shows the change of the electrification degree after the process of each adsorbent in the charge degree before the process of an adsorbent, and the heating time after 100 hours, 250 hours, and 450 hours. 吸着剤の処理前の帯電度と、加熱時間100時間、250時間、450時間後における各吸着剤の処理後の帯電度の結果である。It is the result of the charge degree before the treatment of the adsorbent and the charge degree after the treatment of each adsorbent after the heating time of 100 hours, 250 hours, and 450 hours. 吸着剤の処理後の帯電度の変化を示すグラフである。It is a graph which shows the change of the charge degree after the process of adsorption agent. 絶縁紙のカルボキシル基量と帯電度の関係を示す図である。It is a figure which shows the relationship between the carboxyl group amount of an insulating paper, and a charging degree. 油含浸絶縁物の帯電度増減率を示す図である。It is a figure which shows the charging degree increase / decrease rate of an oil impregnation insulator. 絶縁油の窒素ガス濃度とスルホキシド/スルフィドとの関係を示す図である。It is a figure which shows the relationship between the nitrogen gas density | concentration of insulating oil, and a sulfoxide / sulfide.

Claims (10)

絶縁油中に存在する硫黄化合物および硫黄化合物の酸化により生成される硫黄酸化物の油入電気機器内部の環境における物質毎の帯電度を予め調査しておき、油入電気機器に充填された絶縁油を採油し、採油した絶縁油中に存在する上記硫黄化合物および上記硫黄酸化物を物質毎に含有量を検出し、検出した上記硫黄化合物および上記硫黄酸化物を指標物質とし、該指標物質毎の検出された含有量と指標物質毎に対応する上記予め調査した帯電度とにより、上記油入電気機器の流動帯電性を診断することを特徴とする油入電気機器の流動帯電診断方法。 Insulation filled in the oil-filled electrical equipment by pre-investigating the degree of charge of each substance in the environment inside the oil-filled electrical equipment of sulfur compounds generated by oxidation of sulfur compounds and sulfur compounds present in the insulating oil Oil is collected, the content of the sulfur compound and the sulfur oxide present in the collected insulating oil is detected for each substance, the detected sulfur compound and the sulfur oxide are used as indicator substances, and each indicator substance is detected. A fluid charging diagnostic method for an oil-filled electrical device, comprising: diagnosing the fluid chargeability of the oil-filled electrical device based on the detected content of the water and the charge degree previously investigated corresponding to each indicator substance. 検出した硫黄化合物および硫黄酸化物の物質毎の含有量に、対応する物質毎の帯電度係数をそれぞれ乗じた数値を集計し、その集計値を指標物質の帯電度指標値とし、該帯電度指標値により、上記油入電気機器の流動帯電性を診断することを特徴とする請求項1記載の油入電気機器の流動帯電診断方法。 Aggregate numerical values obtained by multiplying the detected sulfur compound and sulfur oxide content for each substance by the charge coefficient for each corresponding substance, and use the aggregate value as the charge index value for the indicator substance. 2. The fluid charging diagnostic method for oil-filled electrical equipment according to claim 1, wherein the fluid chargeability of the oil-filled electrical equipment is diagnosed based on a value. 絶縁油中に存在する硫黄化合物および硫黄化合物の酸化により生成される硫黄酸化物の油入電気機器内部の環境における物質毎の帯電度を予め調査しておき、油入電気機器に充填された絶縁油を採油し、採油した絶縁油中に存在する上記硫黄化合物および上記硫黄酸化物を物質毎に含有量を検出し、検出した上記硫黄化合物および上記硫黄酸化物を指標物質とし、該指標物質の含有量と指標物質毎に対応する上記予め調査した帯電度とにより、上記油入電気機器の流動帯電性を診断し、上記検出した物質毎の含有量に対応した添加量のベンゾトリアゾール(BTA)を上記油入電気機器の絶縁油に添加することを特徴とする油入電気機器の流動帯電抑制方法。 Insulation filled in the oil-filled electrical equipment by pre-investigating the degree of charge of each substance in the environment inside the oil-filled electrical equipment of sulfur compounds generated by oxidation of sulfur compounds and sulfur compounds present in the insulating oil Oil is collected, the content of the sulfur compound and the sulfur oxide present in the collected insulating oil is detected for each substance, the detected sulfur compound and the sulfur oxide are used as indicator substances, and the indicator substance The flow chargeability of the oil-filled electrical device is diagnosed based on the content and the previously measured charge degree corresponding to each indicator substance, and an added amount of benzotriazole (BTA) corresponding to the detected content of each substance Is added to the insulating oil of the oil-filled electrical device. 絶縁油中に存在する硫黄化合物および硫黄化合物の酸化により生成される硫黄酸化物の油入電気機器内部の環境における物質毎の帯電度を予め調査しておき、油入電気機器に充填された絶縁油を採油し、採油した絶縁油中に存在する上記硫黄化合物および上記硫黄酸化物を物質毎に含有量を検出し、検出した上記硫黄化合物および上記硫黄酸化物を指標物質とし、該指標物質の含有量と指標物質毎に対応する上記予め調査した帯電度とにより、上記油入電気機器の流動帯電性を診断し、検出された物質毎の検出量に対応した添加量のベンゾトリアゾール(BTA)およびジターシャリーブチルパラクレゾール(DBPC)の双方を添加することを特徴とする油入電気機器の流動帯電抑制方法。 Insulation filled in the oil-filled electrical equipment by pre-investigating the degree of charge of each substance in the environment inside the oil-filled electrical equipment of sulfur compounds generated by oxidation of sulfur compounds and sulfur compounds present in the insulating oil Oil is collected, the content of the sulfur compound and the sulfur oxide present in the collected insulating oil is detected for each substance, the detected sulfur compound and the sulfur oxide are used as indicator substances, and the indicator substance The flow chargeability of the oil-filled electrical device is diagnosed based on the content and the charge degree previously investigated corresponding to each indicator substance, and an added amount of benzotriazole (BTA) corresponding to the detected quantity for each detected substance And ditertiary butyl paracresol (DBPC) are added. 絶縁油中に存在する硫黄化合物および硫黄化合物の酸化により生成される硫黄酸化物の油入電気機器内部の環境における物質毎の帯電度を予め調査しておき、油入電気機器に充填された絶縁油を採油し、採油した絶縁油中に存在する上記硫黄化合物および上記硫黄酸化物を物質毎に含有量を検出し、検出した上記硫黄化合物および上記硫黄酸化物を指標物質とし、該指標物質の含有量と指標物質毎に対応する上記予め調査した帯電度とにより、上記油入電気機器の流動帯電性を診断し、上記検出した物質毎の含有量に対応した添加量のインドール類窒素化合物、カルバゾール類窒素化合物、キノリン類窒素化合物の少なくとも1つを添加することを特徴とすることを特徴とする油入電気機器の流動帯電抑制方法。 Insulation filled in the oil-filled electrical equipment by pre-investigating the degree of charge of each substance in the environment inside the oil-filled electrical equipment of sulfur compounds generated by oxidation of sulfur compounds and sulfur compounds present in the insulating oil Oil is collected, the content of the sulfur compound and the sulfur oxide present in the collected insulating oil is detected for each substance, the detected sulfur compound and the sulfur oxide are used as indicator substances, and the indicator substance Diagnosing the flow chargeability of the oil-filled electrical equipment based on the content and the charge degree previously investigated corresponding to each indicator substance, and adding an indole nitrogen compound corresponding to the content of each detected substance, At least one of a carbazole nitrogen compound and a quinoline nitrogen compound is added. 絶縁油中に存在する硫黄化合物と、硫黄化合物の酸化により生成された硫黄酸化物と、窒素化合物と、窒素化合物の酸化により生成された窒素酸化物とが、絶縁油中に存在する金属との錯体反応で生成した硫黄酸化物もしくは硫黄酸化物の金属錯体、窒素化合物もしくは窒素酸化物の金属錯体の油入電気機器内部の環境における帯電度を予め調査しておき、上記油入電気機器に充填された絶縁油を採油し、採油した絶縁油中に存在する上記硫黄化合物と、上記硫黄酸化物と、上記窒素化合物と、上記窒素酸化物と、硫黄酸化物もしくは硫黄酸化物の金属錯体、窒素化合物もしくは窒素酸化物の金属錯体の物質毎に含有量を検出し、上記硫黄酸化物もしくは硫黄酸化物の金属錯体、窒素化合物もしくは窒素酸化物の金属錯体を指標物質として上記油入電気機器の流動帯電性を診断することを特徴とする油入電気機器の流動帯電診断方法。 The sulfur compound present in the insulating oil, the sulfur oxide produced by oxidation of the sulfur compound, the nitrogen compound, and the nitrogen oxide produced by oxidation of the nitrogen compound are the metal present in the insulating oil. Investigate in advance the degree of charge in the environment inside the oil-filled electrical equipment of sulfur oxides or metal complexes of sulfur oxides, nitrogen compounds or metal complexes of nitrogen oxides produced by complex reactions, and fill the oil-filled electrical equipment The sulfur compound present in the collected insulating oil, the sulfur oxide, the nitrogen compound, the nitrogen oxide, and a metal complex of sulfur oxide or sulfur oxide, nitrogen The content of each compound or nitrogen oxide metal complex is detected, and the above sulfur oxide or sulfur oxide metal complex or nitrogen compound or nitrogen oxide metal complex is used as an indicator substance. Flow electrification diagnostic method for an oil-filled electrical apparatus, which comprises diagnosing the flow electrification of an oil-filled electrical device. 油入電気機器に充填された絶縁油の循環回路に吸着剤を配置し、油入電気機器に充填された絶縁油中に存在する硫黄化合物、硫黄化合物の酸化により生成された硫黄酸化物、窒素化合物、窒素化合物の酸化により生成された窒素酸化物、硫黄化合物もしくは硫黄酸化物が絶縁油中に存在する金属との錯体反応で生成した金属錯体、窒素化合物もしくは窒素酸化物が絶縁油中に存在する金属との錯体反応で生成した金属錯体を吸着させて除去することを特徴とする油入電気機器の流動帯電抑制方法。 Sulfur compounds present in insulating oil filled in oil-filled electrical equipment, sulfur oxides generated by oxidation of sulfur compounds, nitrogen, by placing an adsorbent in the circulation circuit of insulating oil filled in oil-filled electrical equipment Compounds, nitrogen oxides produced by oxidation of nitrogen compounds, sulfur compounds or metal complexes produced by complex reactions with metals in which sulfur oxides are present in insulating oil, nitrogen compounds or nitrogen oxides are present in insulating oil A method of suppressing flow charge of an oil-filled electrical device, wherein a metal complex formed by a complex reaction with a metal to be absorbed is adsorbed and removed. 油入電気機器に充填された絶縁油中に存在する硫黄化合物、硫黄化合物の酸化により生成された硫黄酸化物、窒素化合物、窒素化合物の酸化により生成された窒素酸化物が絶縁油中に存在する金属との錯体反応で生成した硫黄酸化物もしくは硫黄酸化物の金属錯体、窒素化合物もしくは窒素酸化物の金属錯体、および絶縁物中に存在するアルデヒド基濃度、カルボキシル基濃度を検出し、上記アルデヒド基濃度とカルボキシル基濃度とを流動帯電性の指標とし、上記油入電気機器およびその内部の固体絶縁物の流動帯電性を診断することを特徴とする油入電気機器の流動帯電診断方法。 Insulating oil contains sulfur compounds present in insulating oil filled in oil-filled electrical equipment, sulfur oxides generated by oxidation of sulfur compounds, nitrogen compounds, and nitrogen oxides generated by oxidation of nitrogen compounds Detects sulfur oxides or metal complexes of sulfur oxides, nitrogen compounds or metal complexes of nitrogen oxides, and aldehyde group concentrations and carboxyl group concentrations present in insulators, and detects the aldehyde groups. A fluid charging diagnostic method for an oil-filled electrical device, wherein the flow charge property of the oil-filled electrical device and a solid insulator therein is diagnosed using the concentration and the carboxyl group concentration as an index of fluid chargeability. 絶縁油中に存在する硫黄化合物、硫黄化合物の酸化により生成された硫黄酸化物、窒素化合物、窒素化合物の酸化により生成された窒素酸化物が絶縁油中に存在する金属との錯体反応で生成された硫黄化合物もしくは硫黄酸化物の金属錯体、窒素化合物もしくは窒素酸化物の金属錯体の油入電気機器内部の環境における物質毎の帯電度を予め調査しておき、油入電気機器に充填された絶縁油の循環回路に上記油入電気機器に使用された固体絶縁部材と同種の固体絶縁部材を配置し、硫黄化合物、硫黄酸化物、窒素化合物、窒素酸化物が絶縁油中に存在する金属との錯体反応で生成した硫黄化合物もしくは硫黄酸化物の金属錯体、窒素化合物もしくは窒素酸化物の金属錯体を吸着させ、吸着物質の成分を分析し、その分析結果と上記予め調査した物質毎の帯電度とから油入電気機器の流動帯電性を診断することを特徴とする油入電気機器の流動帯電診断方法。 Sulfur compounds present in insulating oil, sulfur oxides produced by oxidation of sulfur compounds, nitrogen compounds, and nitrogen oxides produced by oxidation of nitrogen compounds are produced by complex reactions with metals present in insulating oil. Insulation filled in the oil-filled electrical equipment after investigating in advance the charge degree of each substance in the environment inside the oil-filled electrical equipment of the sulfur compound or sulfur oxide metal complex, nitrogen compound or nitrogen oxide metal complex A solid insulating member of the same type as the solid insulating member used in the oil-filled electrical device is disposed in the oil circulation circuit, and the sulfur compound, sulfur oxide, nitrogen compound, and nitrogen oxide are present in the insulating oil. Adsorb the sulfur compound or sulfur oxide metal complex, nitrogen compound or nitrogen oxide metal complex produced by the complex reaction, analyze the components of the adsorbed material, and investigate the analysis results and the above in advance. Flow electrification diagnostic method for an oil-filled electrical device, characterized in that the charging of the respective substances to diagnose flow electrification of an oil-filled electrical device. 油入電気機器に充填された絶縁油中に溶解する溶解窒素ガス濃度を検出し、検出した溶解窒素ガス濃度から固体絶縁物の酸化状態を推定することにより油入電気機器の流動帯電性を診断することを特徴とする油入電気機器の流動帯電診断方法。
Diagnose the flow chargeability of oil-filled electrical equipment by detecting the dissolved nitrogen gas concentration dissolved in the insulating oil filled in the oil-filled electrical equipment and estimating the oxidation state of the solid insulator from the detected dissolved nitrogen gas concentration A fluid charging diagnostic method for oil-filled electrical equipment.
JP2004028721A 2004-02-05 2004-02-05 Fluid charging diagnostic method and fluid charging suppression method for oil-filled electrical equipment Expired - Fee Related JP4494815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004028721A JP4494815B2 (en) 2004-02-05 2004-02-05 Fluid charging diagnostic method and fluid charging suppression method for oil-filled electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004028721A JP4494815B2 (en) 2004-02-05 2004-02-05 Fluid charging diagnostic method and fluid charging suppression method for oil-filled electrical equipment

Publications (2)

Publication Number Publication Date
JP2005223104A true JP2005223104A (en) 2005-08-18
JP4494815B2 JP4494815B2 (en) 2010-06-30

Family

ID=34998504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004028721A Expired - Fee Related JP4494815B2 (en) 2004-02-05 2004-02-05 Fluid charging diagnostic method and fluid charging suppression method for oil-filled electrical equipment

Country Status (1)

Country Link
JP (1) JP4494815B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007144696A2 (en) * 2005-12-30 2007-12-21 Abb Research Ltd. Method to deactivate corrosive sulfur in insulation
JP2008224514A (en) * 2007-03-14 2008-09-25 Mitsubishi Electric Corp Method for diagnosing and reducing flow charging of oil-filled electrical apparatus
WO2009054155A1 (en) 2007-10-26 2009-04-30 Mitsubishi Electric Corporation Method of inspecting oil-filled electrical apparatus
JP2009150744A (en) * 2007-12-20 2009-07-09 Tokyo Electric Power Co Inc:The Extraction method of sulfide-type sulfur component in insulating oil
JP2009150742A (en) * 2007-12-20 2009-07-09 Tokyo Electric Power Co Inc:The Analyzing method of sulfoxide-type sulfur component in insulating oil
JP2009150743A (en) * 2007-12-20 2009-07-09 Tokyo Electric Power Co Inc:The Quantification method of sulfonic acid type sulfur component in insulating oil
WO2009110073A1 (en) * 2008-03-05 2009-09-11 三菱電機株式会社 Method for removing dibenzyl disulfide and apparatus for remvoing dibenzyl disulfide
JP2010145261A (en) * 2008-12-19 2010-07-01 Tokyo Electric Power Co Inc:The Charged potential operation device and method
JP2011165851A (en) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp Estimating method of amount of copper sulfide generated in oil-filled electric equipment, diagnostic method of failure occurrence, estimating method of initial concentration of dibenzyl disulfide in insulating oil, and diagnostic method of possibility of failure occurrence
JP5111619B2 (en) * 2008-12-25 2013-01-09 三菱電機株式会社 Method for predicting the possibility of abnormality in oil-filled electrical equipment
JP2014045212A (en) * 2013-11-05 2014-03-13 Mitsubishi Electric Corp Estimation method of copper sulfide formation amount in oil-filled electrical apparatus, diagnostic method of abnormality occurrence, estimation method of initial concentration of dibenzyl disulfide in insulation oil, and diagnostic method of possibility of abnormality occurrence
JP5516601B2 (en) * 2009-12-28 2014-06-11 三菱電機株式会社 Method for estimating the amount of copper sulfide produced in oil-filled electrical equipment, method for diagnosing abnormality, method for estimating initial concentration of dibenzyl disulfide in insulating oil, and method for diagnosing the possibility of abnormality
JP2017219420A (en) * 2016-06-07 2017-12-14 株式会社豊田中央研究所 Oil deterioration detection device
CN111595924A (en) * 2020-04-29 2020-08-28 中国石油天然气股份有限公司 Method for determining gas invasion degree of condensate oil
KR20230044839A (en) * 2021-09-27 2023-04-04 한국전력공사 Apparatus for simulating of transformer and operating method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482023A (en) * 1977-12-13 1979-06-29 Mitsubishi Electric Corp Static electricity supervisory unit for transformers
JP2000090740A (en) * 1998-09-14 2000-03-31 Kansai Tech Corp Ester insulating oil and manufacture thereof and electrical equipment
JP2000346892A (en) * 1999-06-04 2000-12-15 Mitsubishi Electric Corp Measuring device for fluidized electrification charge
JP2001006946A (en) * 1999-06-21 2001-01-12 Mitsubishi Electric Corp Evaluation method of electric insulation oil and method of analyzing hetero compound including electric insulation oil
JP2001311083A (en) * 2000-04-27 2001-11-09 Mitsubishi Electric Corp Apparatus and method for removing sulfur compound in insulating oil
JP2003207440A (en) * 2002-01-11 2003-07-25 Chubu Electric Power Co Inc Method of measuring degree of degradation of electric insulating paper

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5482023A (en) * 1977-12-13 1979-06-29 Mitsubishi Electric Corp Static electricity supervisory unit for transformers
JP2000090740A (en) * 1998-09-14 2000-03-31 Kansai Tech Corp Ester insulating oil and manufacture thereof and electrical equipment
JP2000346892A (en) * 1999-06-04 2000-12-15 Mitsubishi Electric Corp Measuring device for fluidized electrification charge
JP2001006946A (en) * 1999-06-21 2001-01-12 Mitsubishi Electric Corp Evaluation method of electric insulation oil and method of analyzing hetero compound including electric insulation oil
JP2001311083A (en) * 2000-04-27 2001-11-09 Mitsubishi Electric Corp Apparatus and method for removing sulfur compound in insulating oil
JP2003207440A (en) * 2002-01-11 2003-07-25 Chubu Electric Power Co Inc Method of measuring degree of degradation of electric insulating paper

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007144696A3 (en) * 2005-12-30 2008-02-21 Abb Research Ltd Method to deactivate corrosive sulfur in insulation
WO2007144696A2 (en) * 2005-12-30 2007-12-21 Abb Research Ltd. Method to deactivate corrosive sulfur in insulation
JP2008224514A (en) * 2007-03-14 2008-09-25 Mitsubishi Electric Corp Method for diagnosing and reducing flow charging of oil-filled electrical apparatus
JP4873433B2 (en) * 2007-10-26 2012-02-08 三菱電機株式会社 Diagnostic method for oil-filled electrical equipment
WO2009054155A1 (en) 2007-10-26 2009-04-30 Mitsubishi Electric Corporation Method of inspecting oil-filled electrical apparatus
US8241916B2 (en) 2007-10-26 2012-08-14 Mitsubishi Electric Corporation Diagnostic method for oil-filled electrical apparatus
JP2009150743A (en) * 2007-12-20 2009-07-09 Tokyo Electric Power Co Inc:The Quantification method of sulfonic acid type sulfur component in insulating oil
JP2009150742A (en) * 2007-12-20 2009-07-09 Tokyo Electric Power Co Inc:The Analyzing method of sulfoxide-type sulfur component in insulating oil
JP2009150744A (en) * 2007-12-20 2009-07-09 Tokyo Electric Power Co Inc:The Extraction method of sulfide-type sulfur component in insulating oil
WO2009110073A1 (en) * 2008-03-05 2009-09-11 三菱電機株式会社 Method for removing dibenzyl disulfide and apparatus for remvoing dibenzyl disulfide
JPWO2009110073A1 (en) * 2008-03-05 2011-07-14 三菱電機株式会社 Dibenzyl disulfide removal method and dibenzyl disulfide removal apparatus
JP2010145261A (en) * 2008-12-19 2010-07-01 Tokyo Electric Power Co Inc:The Charged potential operation device and method
JP5111619B2 (en) * 2008-12-25 2013-01-09 三菱電機株式会社 Method for predicting the possibility of abnormality in oil-filled electrical equipment
JP5516601B2 (en) * 2009-12-28 2014-06-11 三菱電機株式会社 Method for estimating the amount of copper sulfide produced in oil-filled electrical equipment, method for diagnosing abnormality, method for estimating initial concentration of dibenzyl disulfide in insulating oil, and method for diagnosing the possibility of abnormality
JP2011165851A (en) * 2010-02-09 2011-08-25 Mitsubishi Electric Corp Estimating method of amount of copper sulfide generated in oil-filled electric equipment, diagnostic method of failure occurrence, estimating method of initial concentration of dibenzyl disulfide in insulating oil, and diagnostic method of possibility of failure occurrence
JP2014045212A (en) * 2013-11-05 2014-03-13 Mitsubishi Electric Corp Estimation method of copper sulfide formation amount in oil-filled electrical apparatus, diagnostic method of abnormality occurrence, estimation method of initial concentration of dibenzyl disulfide in insulation oil, and diagnostic method of possibility of abnormality occurrence
JP2017219420A (en) * 2016-06-07 2017-12-14 株式会社豊田中央研究所 Oil deterioration detection device
CN111595924A (en) * 2020-04-29 2020-08-28 中国石油天然气股份有限公司 Method for determining gas invasion degree of condensate oil
CN111595924B (en) * 2020-04-29 2023-02-28 中国石油天然气股份有限公司 Method for determining gas invasion degree of condensate oil
KR20230044839A (en) * 2021-09-27 2023-04-04 한국전력공사 Apparatus for simulating of transformer and operating method thereof
KR102561998B1 (en) 2021-09-27 2023-08-02 한국전력공사 Apparatus for simulating of transformer and operating method thereof
KR20230117085A (en) * 2021-09-27 2023-08-07 한국전력공사 Apparatus for simulating of transformer
KR20230117084A (en) * 2021-09-27 2023-08-07 한국전력공사 Apparatus for simulating of transformer
KR20230117086A (en) * 2021-09-27 2023-08-07 한국전력공사 Apparatus for simulating of transformer
KR20230117083A (en) * 2021-09-27 2023-08-07 한국전력공사 Apparatus for simulating of transformer
KR102566710B1 (en) 2021-09-27 2023-08-16 한국전력공사 Apparatus for simulating of transformer
KR102566713B1 (en) 2021-09-27 2023-08-16 한국전력공사 Apparatus for simulating of transformer
KR102566711B1 (en) 2021-09-27 2023-08-16 한국전력공사 Apparatus for simulating of transformer
KR102566712B1 (en) 2021-09-27 2023-08-16 한국전력공사 Apparatus for simulating of transformer

Also Published As

Publication number Publication date
JP4494815B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
JP4494815B2 (en) Fluid charging diagnostic method and fluid charging suppression method for oil-filled electrical equipment
Fofana et al. Characterization of aging transformer oil–pressboard insulation using some modern diagnostic techniques
Kohtoh et al. Aging effect on electrical characteristics of insulating oil in field transformer
JP5234440B2 (en) Oil-filled electrical equipment life diagnosis device, oil-filled electrical equipment life diagnosis method, oil-filled electrical equipment deterioration suppression device, and oil-filled electrical equipment deterioration control method
JP4873433B2 (en) Diagnostic method for oil-filled electrical equipment
Kohtoh et al. Transformer insulating oil characteristic changes observed using accelerated degradation in consideration of field transformer conditions
Cong et al. Reviews on sulphur corrosion phenomenon of the oil–paper insulating system in mineral oil transformer
Scatiggio et al. Effects of metal deactivator concentration upon the gassing characteristics of transformer oils
Ueta et al. Study on degradation causing components of various characteristics of transformer insulating oil
Yuan et al. A review: Research on corrosive sulphur in electrical power equipment
JP4994899B2 (en) Flow electrification diagnosis method for oil-filled electrical equipment
Kato et al. Suppressive effect and its duration of triazole-based passivators on copper sulfide deposition on kraft paper in transformer
Wan et al. Influence of copper ions in transformer oil properties and adsorption treatment
Yang et al. Inhibition method for the degradation of oil–paper insulation and corrosive sulphur in a transformer using adsorption treatment
Samarasinghe et al. Investigating passivator effectiveness for preventing silver sulfide corrosion in power transformer on-load tap changers
Okabe et al. Suppression of increase in electrostatic charging tendency of insulating oil by aging used for power transformer insulation
WO2011077530A1 (en) Method of predicting probability of abnormality occurrence in oil-filled electric appliance
Akshatha et al. Study of degradation of sulphur compounds and depletion of metal passivators during thermal ageing of mineral oil
JP2010256208A (en) Method for diagnosing secular deterioration of insulating oil in electric device
Scatiggio et al. Oils with presence of corrosive sulfur: mitigation and collateral effects
JP5337303B2 (en) Diagnostic method and apparatus for oil-filled electrical equipment
Xiang et al. Gas production mechanism of Irgamet 39 and its long‐term corrosion resistance
Wada et al. Method to evaluate the degradation condition of transformer insulating oil-experimental study on the hydrophilic and dissociative properties of degradation products
JP2010230483A (en) Insulation deterioration diagnosis method of insulating oil in electric apparatus
JP4854822B1 (en) Electrical insulating oil inspection method, electrical insulating oil processing method, and maintenance method for oil-filled electrical equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051024

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090817

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100406

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R150 Certificate of patent or registration of utility model

Ref document number: 4494815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees