JP4994899B2 - Flow electrification diagnosis method for oil-filled electrical equipment - Google Patents

Flow electrification diagnosis method for oil-filled electrical equipment Download PDF

Info

Publication number
JP4994899B2
JP4994899B2 JP2007065194A JP2007065194A JP4994899B2 JP 4994899 B2 JP4994899 B2 JP 4994899B2 JP 2007065194 A JP2007065194 A JP 2007065194A JP 2007065194 A JP2007065194 A JP 2007065194A JP 4994899 B2 JP4994899 B2 JP 4994899B2
Authority
JP
Japan
Prior art keywords
oil
concentration
sulfoxide
insulating oil
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007065194A
Other languages
Japanese (ja)
Other versions
JP2008224514A (en
Inventor
基夫 土江
剛 網本
成光 岡部
政典 向當
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Tokyo Electric Power Co Inc
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Mitsubishi Electric Corp filed Critical Tokyo Electric Power Co Inc
Priority to JP2007065194A priority Critical patent/JP4994899B2/en
Publication of JP2008224514A publication Critical patent/JP2008224514A/en
Application granted granted Critical
Publication of JP4994899B2 publication Critical patent/JP4994899B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Transformer Cooling (AREA)
  • Housings And Mounting Of Transformers (AREA)

Description

本発明は、油入電気機器に使用される絶縁油の流動により発生する流動帯電の診断方法、および流動帯電の抑制方法に関するものである。   The present invention relates to a method for diagnosing fluid charge generated by the flow of insulating oil used in oil-filled electrical equipment, and a method for suppressing fluid charge.

変圧器等の油入電気機器に生ずる流動帯電現象は、絶縁および冷却のために使用される電気絶縁油(以下、絶縁油という。)などの絶縁液体が、絶縁紙等の固体絶縁物と接触したときに生ずる静電気現象であり、帯電が進行した場合には内部放電が発生し、電気機器の不具合に繋がる可能性がある。   The fluid electrification phenomenon that occurs in oil-filled electrical equipment such as transformers is due to the fact that an insulating liquid such as electrical insulating oil (hereinafter referred to as insulating oil) used for insulation and cooling contacts a solid insulator such as insulating paper. This is an electrostatic phenomenon that occurs when the charging progresses, and when charging progresses, internal discharge may occur, which may lead to malfunction of the electrical equipment.

従来、流動帯電を診断する手法として、非特許文献1に記載されているように、巻線漏れ電流を測定し、変圧器の流動帯電特性を診断する手法、および絶縁油の帯電度または誘電正接等の帯電特性を診断する手法等が用いられてきた。   Conventionally, as described in Non-Patent Document 1, as a technique for diagnosing fluid charging, a technique for measuring winding leakage current and diagnosing the fluid charging characteristics of a transformer, and the charge degree or dielectric loss tangent of insulating oil A method for diagnosing charging characteristics such as has been used.

変圧器の巻線漏れ電流の測定については、非特許文献1の142ページから144ページに記載されている。絶縁油が変圧器内を流動すると、一般に固体絶縁物が負に、絶縁油が正に帯電する。所定台数のポンプで絶縁油を循環させたときに、高圧巻線の中性点に流れ込む電流を測定し、その測定電流の大きさから巻線漏れ電流を測定し、変圧器の健全性を評価する。ただし、この方法は変圧器が運転停止中でないと測定できないという問題点がある。   The measurement of the winding leakage current of the transformer is described on pages 142 to 144 of Non-Patent Document 1. When the insulating oil flows through the transformer, the solid insulator is generally negatively charged and the insulating oil is positively charged. When insulating oil is circulated with a specified number of pumps, the current flowing into the neutral point of the high-voltage winding is measured, and the winding leakage current is measured from the magnitude of the measured current to evaluate the soundness of the transformer. To do. However, this method has a problem that the measurement cannot be performed unless the transformer is stopped.

絶縁油の帯電度を測定する方法についても、非特許文献1の133頁〜142頁に複数の方法が記載されており、その一つとして、ミニ静電テスタを利用する測定方法がある。ミニ静電テスタによる帯電度の測定においては、紙フィルターに一定量の試料油を通過させ、このとき静電気発生部にて発生した電流、またはファラデーケージに流れ込む電流を測定し、その測定電流の大きさから絶縁油の帯電度の大きさを評価している。なお、帯電度の大きさとしては、一般に、電流を単位時間あたりの試料油の流量で除算した電荷量で評価することが多い。   As for the method for measuring the charge degree of the insulating oil, a plurality of methods are described on pages 133 to 142 of Non-Patent Document 1, and one of them is a measurement method using a mini electrostatic tester. In the measurement of the degree of charge using a mini electrostatic tester, a certain amount of sample oil is passed through a paper filter. At this time, the current generated in the static electricity generation part or the current flowing into the Faraday cage is measured, and the magnitude of the measurement current is measured. Therefore, the degree of charge of insulating oil is evaluated. In general, the degree of charge is often evaluated by the amount of charge obtained by dividing the current by the flow rate of the sample oil per unit time.

一般には、新油の帯電度は経年油に比べると低い。例えば、非特許文献1の148頁、第7−3−11図には、絶縁油の帯電度の経年的増加傾向が示されている。また、そこでは、変圧器の据付け時における絶縁油の帯電度の管理値が200pC/ml、変圧器稼働中における絶縁油の帯電度が500pC/mlとそれぞれ規定されている。新油の帯電度が低く、年数が経過すると帯電度が増加するのは、絶縁油中の何らかの成分が変質するためと考えられる。   In general, the charge of new oil is lower than that of aged oil. For example, Non-Patent Document 1, page 148, Fig. 7-3-11 shows a tendency of the charging degree of insulating oil to increase over time. Further, there are specified a management value of the charging degree of the insulating oil at the time of installation of the transformer as 200 pC / ml, and a charging value of the insulating oil during the operation of the transformer as 500 pC / ml, respectively. The reason why the degree of charge of the new oil is low and the degree of charge increases with the passage of years is considered to be because some component in the insulating oil is altered.

そこで、絶縁油中に含まれる特定成分に着目し、その特定成分の酸化等によって生成される生成物を把握することにより流動帯電を診断する方法として、特許文献1では、硫黄化合物などの油中微量成分に着目した流動帯電診断方法が記載されている。すなわち、特許文献1では、以下のような内容を含む従来技術が開示されている。(1)油入電気機器内の絶縁油中に存在する硫黄化合物、窒素化合物、硫黄化合物の酸化反応生成物、窒素化合物の酸化反応生成物、およびそれらの金属錯体、を指標物質として、採取された絶縁油から検出された指標物質毎の含有量と、予め調査された指標物質毎の含有量に応じた帯電度と、を対比することにより、流動帯電性の現状レベルを診断する。(2)硫黄化合物等を含有する絶縁油に、ベンゾトリアゾール(BTA)およびジターシャリーブチルパラクレゾール(DBPC)を添加することにより、流動帯電の抑制をはかる。(3)硫黄化合物等を含有する絶縁油に、インドール類窒素化合物、カルバゾール類窒素化合物、およびキノリン類窒素化合物のうち少なくとも一つを添加することにより、流動帯電の抑制をはかる。(4)(1)に記載した硫黄化合物等を吸着除去して、流動帯電の抑制をはかる。   Therefore, as a method of diagnosing fluid charge by focusing on a specific component contained in insulating oil and grasping a product generated by oxidation or the like of the specific component, Patent Document 1 discloses a method for diagnosing fluid charge in oil such as a sulfur compound. A flow charge diagnostic method focusing on trace components is described. That is, Patent Document 1 discloses a conventional technique including the following contents. (1) Sulfur compounds, nitrogen compounds, oxidation reaction products of sulfur compounds, oxidation reaction products of nitrogen compounds, and their metal complexes, which are present in insulating oil in oil-filled electrical equipment, are collected as indicators. The current level of flow chargeability is diagnosed by comparing the content of each indicator substance detected from the insulating oil with the degree of charge according to the content of each indicator substance investigated in advance. (2) Flow electrification is suppressed by adding benzotriazole (BTA) and ditertiary butylparacresol (DBPC) to an insulating oil containing a sulfur compound or the like. (3) Flow charging is suppressed by adding at least one of indole nitrogen compounds, carbazole nitrogen compounds, and quinoline nitrogen compounds to an insulating oil containing a sulfur compound or the like. (4) The sulfur compound described in (1) is adsorbed and removed to suppress the flow charge.

特開2005−223104号公報JP-A-2005-223104 電気協同研究、第54巻、 第5号(その1)、「油入変圧器の保守管理」電力用変圧器保守管理専門委員会著、社団法人電気共同研究会、平成11年2月25日発行Electric Cooperative Research, Vol. 54, No. 5 (Part 1), “Maintenance management of oil-filled transformers” by Electric Power Transformer Maintenance Management Committee, Electric Joint Research Society, February 25, 1999 Issue

しかしながら、上記従来の技術によれば、以下に述べるような問題があった。従来の流動帯電の診断方法では、非特許文献1に記載されているように、実際に運転している油入電気機器から採油し、帯電度を測定する方法が最も多く用いられているが、これは現状の帯電度を評価するものであり、帯電度の将来動向に関しては検討されることはなかった。   However, according to the above conventional technique, there are the following problems. In the conventional flow charge diagnostic method, as described in Non-Patent Document 1, the most frequently used method is to collect oil from an oil-filled electrical device that is actually operating and measure the degree of charge. This is to evaluate the current charge degree, and the future trend of the charge degree has not been studied.

また、特許文献1に記載された絶縁油中の微量成分から帯電度を検討する試みにおいても、現状の帯電度を評価するためのものであり、帯電度の将来動向に関しては検討されることはなかった。   In addition, in the attempt to examine the charge degree from a trace amount component in the insulating oil described in Patent Document 1, it is for evaluating the current charge degree, and the future trend of the charge degree will be examined. There wasn't.

また、従来の流動帯電の抑制方法では、流動帯電抑制をはかるための物質を絶縁油に添加した試験に基づいたもので、セルロース製絶縁物の共存下での検討がなされていなかった。セルロース製絶縁物は、例えば油入変圧器における巻線の導体表面を覆う絶縁紙等として使用されている。このようにセルロース製絶縁物が共存するという条件下では、セルロース製絶縁物が存在しない条件下では流動帯電抑制効果が認められた物質でも、条件によっては帯電度が増加する場合もあるという問題があった。   Further, the conventional method for suppressing fluid charge is based on a test in which a substance for suppressing fluid charge is added to insulating oil, and has not been studied in the presence of a cellulose insulator. Cellulose insulators are used, for example, as insulating paper covering the conductor surfaces of windings in oil-filled transformers. As described above, under the condition that the cellulose insulator coexists, there is a problem that the charge degree may increase depending on the condition even if the substance has the effect of suppressing the flow charge in the absence of the cellulose insulator. there were.

本発明は、上記に鑑みてなされたものであって、油入電気機器内の絶縁油に含まれる微量成分の変化と動向を予測することで、それに伴う帯電特性の将来動向を診断し、また、微量成分の制御によって、帯電度増加の抑制をはかることが可能な油入電気機器の流動帯電診断方法および流動帯電抑制方法を得ることを目的とする。   The present invention has been made in view of the above, and predicts changes and trends in trace components contained in insulating oil in oil-filled electrical equipment, thereby diagnosing future trends in charging characteristics associated therewith, and An object of the present invention is to obtain a fluid charge diagnostic method and a fluid charge suppression method for oil-filled electrical equipment that can suppress an increase in the degree of charge by controlling trace components.

上述した課題を解決し、目的を達成するために、本発明にかかる油入電気機器の流動帯電診断方法は、内部に絶縁油が充填された油入電気機器の流動帯電性を診断する方法であって、前記絶縁油に含まれる硫黄化合物の濃度および前記硫黄化合物の酸化物である硫黄酸化物の濃度をそれぞれ測定し、硫黄酸化物濃度と、(硫黄酸化物濃度)/(硫黄化合物濃度+硫黄酸化物濃度)とのある時点における関係に基づいて、前記絶縁油の帯電特性の評価およびその経時変化の将来予測を行うことを特徴とする。 In order to solve the above-described problems and achieve the object, the flow charging diagnostic method for oil-filled electrical equipment according to the present invention is a method for diagnosing the flow chargeability of an oil-filled electrical equipment filled with insulating oil. The concentration of the sulfur compound contained in the insulating oil and the concentration of the sulfur oxide that is an oxide of the sulfur compound are respectively measured, and the sulfur oxide concentration and (sulfur oxide concentration) / (sulfur compound concentration + Based on the relationship at a certain point in time with the sulfur oxide concentration), the charging characteristics of the insulating oil are evaluated and the future prediction of the change with time is performed.

本発明によれば、油入電気機器内の絶縁油に含まれる硫黄化合物の量から、帯電度の将来動向が予測でき、かつ流動帯電の効果的な抑制がはかれる、という効果を奏する。   According to the present invention, it is possible to predict the future trend of the degree of charging from the amount of sulfur compound contained in the insulating oil in the oil-filled electrical device, and to effectively suppress the flow charge.

以下に、本発明にかかる油入電気機器の流動帯電診断方法および流動帯電抑制方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。   Embodiments of a fluid charging diagnostic method and a fluid charging suppression method for oil-filled electrical equipment according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.

実施の形態1.
図1は、本実施の形態が適用される絶縁油中に含まれると想定される硫黄化合物とその帯電特性を示す図である。図1では、絶縁油の帯電度増加に最も大きな影響を及ぼすと考えられるスルフィド(R1−S−R2)と、スルフィドを出発物質として生成され、絶縁油中に存在すると考えられる各種の硫黄化合物が示されている。
Embodiment 1 FIG.
FIG. 1 is a diagram showing a sulfur compound assumed to be contained in the insulating oil to which the present embodiment is applied and its charging characteristics. In FIG. 1, sulfides (R 1 —S—R 2 ) that are considered to have the greatest effect on the increase in the charging degree of insulating oil, and various sulfurs that are generated from sulfide as a starting material and are considered to exist in insulating oil. Compounds are shown.

帯電度増大のキー物質と考えているスルホキシド(R1−SO−R2)は、ある濃度までは時間とともに増加すると想定されるが、さらに時間が経過すると別の物質に変化する可能性がある。 Sulfoxide (R 1 —SO—R 2 ), which is considered to be a key substance for increasing the degree of charge, is assumed to increase over time up to a certain concentration, but may change to another substance over time. .

後述するように、現時点でスルホキシドから変化する別の物質と想定されるのは、スルホキシドが陽イオンを分子内に取り込んだスルホニウムイオン(R1−SOH+−R2)もしくは不活性と考えられるスルホン(R1−SO2−R2)、または絶縁油が負帯電性を示すスルホン酸(R1−SO3H)が想定される。また、図1では、スルホキシドからスルホニウムイオンに至る変化を、他とは異なり、点線の矢印で示しているが、これは実際の高帯電化物質としてスルホニウムイオンが想定されるものの、実際に単離して定量分析することが困難であることを表している。また、コイル等の導電材料である銅の存在により、スルフィドまたはスルホニウムイオンが銅と結合し、スルフィドまたはスルホニウムの銅錯体が生成され、これらの銅錯体が絶縁油中に存在し、帯電度に影響を及ぼすと考えられる。 As will be described later, another substance that is changed from sulfoxide at present is assumed to be sulfonium ion (R 1 —SOH + —R 2 ) in which cation incorporates a cation in the molecule or sulfone that is considered to be inactive. (R 1 —SO 2 —R 2 ) or a sulfonic acid (R 1 —SO 3 H) in which the insulating oil exhibits negative chargeability is assumed. Further, in FIG. 1, the change from sulfoxide to sulfonium ion is indicated by a dotted arrow, unlike the others, but this is actually isolated although the sulfonium ion is assumed as an actual highly charged substance. This means that it is difficult to perform quantitative analysis. In addition, the presence of copper, which is a conductive material such as a coil, causes sulfide or sulfonium ions to bond with copper to form copper complexes of sulfide or sulfonium, and these copper complexes are present in the insulating oil, affecting the charge level. It is thought that it exerts.

絶縁油中に含まれるスルフィドは、酸化劣化の抑制作用があるとして、ほぼ全銘柄(少なくとも国内で精製される絶縁油の全銘柄)中には含有されている。その量は銘柄によって、異なる。   The sulfide contained in the insulating oil is contained in almost all brands (at least all brands of insulating oil refined domestically) as having an action of suppressing oxidative degradation. The amount varies depending on the brand.

図2は、初期のスルフィド濃度が高い場合における、硫黄化合物の経時変化と帯電度の関係を示す図である。図3は、初期のスルフィド濃度が低い場合における、硫黄化合物の経時変化と帯電度の関係を示す図である。   FIG. 2 is a graph showing the relationship between the change with time of the sulfur compound and the degree of charge when the initial sulfide concentration is high. FIG. 3 is a graph showing the relationship between the change with time of the sulfur compound and the degree of charge when the initial sulfide concentration is low.

図2では、段階1でのスルフィド濃度が3000ppmとなっている。これは、初期スルフィド濃度が高い場合の例であり、スルホキシドに変換される資源としてのスルフィドが十分に保有した状態にあると考えられる。したがって、高帯電度化するだけの十分なポテンシャルがあると考えられ、スルフィドからスルホキシドが生成され、スルホキシドの濃度が増大するにつれて帯電度も増大する。なお、経時的に増加すると想定される帯電度は矢印付の曲線(この場合、ほぼ直線となっている。)で示されている。また、段階が進むにつれて、生成されたスルホキシドからスルホン酸が生成されている。   In FIG. 2, the sulfide concentration in stage 1 is 3000 ppm. This is an example of a case where the initial sulfide concentration is high, and it is considered that sulfide as a resource to be converted into sulfoxide is sufficiently retained. Therefore, it is considered that there is a sufficient potential to increase the charging degree, sulfoxide is generated from sulfide, and the charging degree increases as the concentration of sulfoxide increases. Note that the degree of charging that is assumed to increase over time is indicated by a curve with an arrow (in this case, a substantially straight line). Moreover, as the step proceeds, sulfonic acid is produced from the produced sulfoxide.

一方、図3では、初期スルフィド濃度は500ppmであり、図2の場合に比べて六分の一である。図3に示すように、途中段階まではスルホキシドの濃度が増大しているが、段階の後半(段階4以降)では供給できるスルフィドが少なくなり、スルホキシドからスルホン酸への変換も同時に起こるので、スルホキシド濃度はある段階から減少に転ずると考えられる。したがって、帯電度は大きくは増大せず、一定レベルに到達した後、減少に転ずると推定される。なお、初期には増大し、ある段階で頭打ちとなってその後減少すると想定される帯電度は矢印付の曲線で示されている。   On the other hand, in FIG. 3, the initial sulfide concentration is 500 ppm, which is 1/6 of the case of FIG. As shown in FIG. 3, the concentration of sulfoxide is increased until the middle stage, but in the latter half of the stage (after stage 4), the amount of sulfide that can be supplied decreases, and the conversion from sulfoxide to sulfonic acid also occurs at the same time. It is thought that the concentration starts to decrease from a certain stage. Therefore, it is presumed that the degree of charging does not increase greatly, but decreases after reaching a certain level. Note that the degree of electrification that initially increases and then reaches a certain level and then decreases is indicated by a curve with an arrow.

スルホキシドは帯電度と相関があるため、スルホキシドの濃度はその濃度が測定された時点における絶縁油の帯電度の指標を与える。また、スルフィドはスルホキシドを生成する原物質である。そのため、スルホキシドが少なくても、スルフィドが多いと、今後さらに高帯電度化が進む可能性がある。図2および図3において、絶縁油中に一定量の濃度のスルホキシドが生成された場合、図2でのスルホキシド濃度/(スルフィド濃度+スルホキシド濃度)は、図3での(スルホキシド濃度)/(スルフィド濃度+スルホキシド濃度)よりも小さい。例えば、図2の段階2では、スルホキシドの濃度は200ppm程度であり、(スルホキシド濃度)/(スルフィド濃度+スルホキシド濃度)=200/3000=0.067程度であるのに対して、図3の段階4では、スルホキシドの濃度は200ppm程度であり、(スルホキシド濃度)/(スルフィド濃度+スルホキシド濃度)=200/450=0.44程度となっている。上述のように、図2では、段階2以降、帯電度は増大すると予測されるが、図3では、段階4以降、帯電度は減少すると予測される。そこで、(スルホキシド濃度)/(スルフィド濃度+スルホキシド濃度)を調べることによって、今後さらに高帯電度化が進むかどうかの判別が可能となる。   Since sulfoxide has a correlation with the degree of charge, the concentration of sulfoxide gives an indication of the degree of charge of the insulating oil at the time the concentration is measured. Sulfide is a raw material that produces sulfoxide. Therefore, even if the amount of sulfoxide is small, if the amount of sulfide is large, there is a possibility that the degree of charging will further increase in the future. 2 and 3, when a certain amount of sulfoxide is generated in the insulating oil, the sulfoxide concentration / (sulfide concentration + sulfoxide concentration) in FIG. 2 is (sulfoxide concentration) / (sulfide in FIG. 3). (Concentration + sulfoxide concentration). For example, in stage 2 of FIG. 2, the sulfoxide concentration is about 200 ppm and (sulfoxide concentration) / (sulfide concentration + sulfoxide concentration) = 200/3000 = 0.067, whereas FIG. 4, the concentration of sulfoxide is about 200 ppm, and (sulfoxide concentration) / (sulfide concentration + sulfoxide concentration) = 200/450 = 0.44. As described above, in FIG. 2, the charging degree is predicted to increase after stage 2, but in FIG. 3, the charging degree is predicted to decrease after stage 4. Therefore, by examining (sulfoxide concentration) / (sulfide concentration + sulfoxide concentration), it becomes possible to determine whether or not the degree of charge will further increase in the future.

図2および図3に示された傾向に基づいて、スルホキシド濃度と、(スルホキシド濃度)/(スルフィド濃度+スルホキシド濃度)とに基づいて、絶縁油の帯電特性に関する状態を5つの領域に分類したものが図4である。図4では、横軸は油中スルホキシド濃度(ppm)、縦軸は(油中スルホキシド濃度)/(油中スルフィド濃度+油中スルホキシド濃度)である。図4に基づく帯電度の予測は以下のように行われる。   Based on the trends shown in FIG. 2 and FIG. 3, the states related to the charging characteristics of insulating oil are classified into five regions based on sulfoxide concentration and (sulfoxide concentration) / (sulfide concentration + sulfoxide concentration). Is FIG. In FIG. 4, the horizontal axis represents the sulfoxide concentration in oil (ppm), and the vertical axis represents (the sulfoxide concentration in oil) / (the sulfide concentration in oil + the sulfoxide concentration in oil). The prediction of the degree of charging based on FIG. 4 is performed as follows.

領域I−1は、低帯電度領域である。すなわち、絶縁油中のスルホキシド濃度が低いので、帯電度も低い。   Region I-1 is a low charge region. That is, since the sulfoxide concentration in the insulating oil is low, the charging degree is also low.

領域II−1は、今後、帯電度の増加が予測される。すなわち、領域II−1では、スルホキシドの濃度も領域I−1よりは高く、すでに帯電度も高い傾向にあるが、(油中スルホキシド濃度)/(油中スルフィド濃度+油中スルホキシド濃度)は、0.4以下と低いため、スルホキシドを生成する油中スルフィドの量が相対的に多く、今後、帯電度が増加すると予測される。   In the area II-1, an increase in the degree of charging is predicted in the future. That is, in the region II-1, the concentration of sulfoxide is higher than that of the region I-1 and the degree of charge is already high, but (sulfide concentration in oil) / (sulfide concentration in oil + sulfoxide concentration in oil) is Since it is as low as 0.4 or less, the amount of sulfide in oil that produces sulfoxide is relatively large, and it is expected that the degree of charging will increase in the future.

領域III−1は、今後、帯電度の減少が予測される。すなわち、領域III−1では、スルホキシドの濃度も領域I−1よりは高く、すでに帯電度も高い傾向にあるが、(油中スルホキシド濃度)/(油中スルフィド濃度+油中スルホキシド濃度)は、0.4以上と高いため、スルホキシドを生成する油中スルフィドの量が相対的に少なく、今後、スルホキシドがスルホン酸等に変換されて減少すれば、帯電度が減少すると予測される。   In the area III-1, a decrease in the charging degree is predicted in the future. That is, in region III-1, the concentration of sulfoxide is higher than that of region I-1 and the degree of charge is already high, but (sulfide concentration in oil) / (sulfide concentration in oil + sulfoxide concentration in oil) is Since it is as high as 0.4 or more, the amount of sulfide in oil that produces sulfoxide is relatively small, and if the sulfoxide is converted to sulfonic acid or the like in the future, the degree of charge is expected to decrease.

領域IV−1は、今後、帯電度の増加が予測される。すなわち、領域IV−1では、スルホキシドの濃度は領域II−1よりさらに高く、帯電度も領域II−1より高い傾向にあるが、(油中スルホキシド濃度)/(油中スルフィド濃度+油中スルホキシド濃度)は、0.4以下と低いため、スルホキシドを生成する油中スルフィドの量が相対的に多く、今後、さらに帯電度が増加すると予測される。   In the area IV-1, an increase in charging degree is predicted in the future. That is, in Region IV-1, the concentration of sulfoxide is higher than that of Region II-1 and the degree of charge tends to be higher than that of Region II-1, but (sulfide concentration in oil) / (sulfide concentration in oil + sulfoxide in oil). (Concentration) is as low as 0.4 or less, the amount of sulfide in oil that produces sulfoxide is relatively large, and it is expected that the degree of charge will increase further in the future.

領域V−1は、今後、帯電度の減少が予測される。すなわち、領域V−1では、スルホキシドの濃度も領域II−1よりさらに高く、帯電度も領域II−1より高い傾向にあるが、(油中スルホキシド濃度)/(油中スルフィド濃度+油中スルホキシド濃度)は、0.4以下と低いため、スルホキシドを生成する油中スルフィドの量が相対的に少なく、今後、スルホキシドがスルホン酸等に変換されて減少すれば、帯電度が減少すると予測される。   In the region V-1, a decrease in the degree of charging is predicted in the future. That is, in the region V-1, the concentration of sulfoxide is higher than that of region II-1 and the degree of charging tends to be higher than that of region II-1, but (sulfide concentration in oil) / (sulfide concentration in oil + sulfoxide in oil). (Concentration) is as low as 0.4 or less, so the amount of sulfide in oil that produces sulfoxide is relatively small. In the future, if sulfoxide is converted to sulfonic acid and the like, the degree of charge is expected to decrease. .

図5は、油中スルホキシド濃度と体積抵抗率との関係を用いた帯電度の診断を行うための図であり、帯電度の将来動向を図4とは別の見方で診断した図である。図5に示すように、油中スルホキシド濃度(ppm)を横軸、体積抵抗率(Ωcm 常温0分)を縦軸とし、帯電度(pC/ml)の範囲に応じて、測定結果がプロットされている。前述のように、スルホキシドはさらに別の物質に変化している可能性があり、実際の高帯電度物質は例えばスルホニウムイオンと考えられるが、実際に単離して定量分析することは難しい。しかしながら、スルホニウムイオンの構成要因として、次の条件が挙げられる。すなわち、陽イオンを取り込むスルホキシドが存在すること、および取り込まれるプロトンなどの陽イオンが油中に存在することである。そこで、絶縁油中のスルホキシド濃度が高く、かつ、陽イオンが多い場合には、高帯電度化しやすいと想定される。絶縁油中のスルホキシドについては、微量成分分析で確認可能である。また、油中の陽イオン(イオン性物質)については、誘電正接または体積抵抗率などの特性から推定することが可能である。したがって、図5において、帯電度の予測は以下のように行われる。   FIG. 5 is a diagram for diagnosing the degree of charging using the relationship between the sulfoxide concentration in oil and the volume resistivity, and is a diagram diagnosing the future trend of the degree of charging from a different perspective than FIG. 4. As shown in FIG. 5, the sulfoxide concentration in oil (ppm) is plotted on the horizontal axis, the volume resistivity (Ωcm, room temperature, 0 minute) is plotted on the vertical axis, and the measurement results are plotted according to the range of charge (pC / ml). ing. As described above, the sulfoxide may be further changed to another substance, and the actual highly charged substance is considered to be, for example, a sulfonium ion, but it is difficult to actually isolate and quantitatively analyze the substance. However, the following conditions are mentioned as a constituent factor of sulfonium ion. That is, there are sulfoxides that take up cations and cations such as protons that are taken up in the oil. Therefore, when the sulfoxide concentration in the insulating oil is high and the amount of cations is large, it is assumed that the degree of charge is easily increased. The sulfoxide in the insulating oil can be confirmed by trace component analysis. The cations (ionic substances) in oil can be estimated from characteristics such as dielectric loss tangent or volume resistivity. Therefore, in FIG. 5, the degree of charge is predicted as follows.

領域I−2は、低帯電度領域である。すなわち、油中スルホキシド濃度が低く、帯電度が低くなっている。体積抵抗率が高いので、油中の陽イオンも少ないと推定される。   Region I-2 is a low charge region. That is, the sulfoxide concentration in oil is low and the charge degree is low. Since volume resistivity is high, it is estimated that there are also few cations in oil.

領域II−2は、体積抵抗率が低いので、油中の陽イオンも多いと推定される。油中スルホキシドの濃度が多い場合には、今後、帯電度の増加が予測される。   Since the volume resistivity is low in region II-2, it is estimated that there are many cations in the oil. In the case where the concentration of sulfoxide in oil is high, an increase in charging degree is expected in the future.

領域III−2は、現に帯電度が高く、場合によっては今後さらに帯電度の増加が予測される。すなわち、油中スルホキシド濃度は高く、また、体積抵抗率は低いため、絶縁油中に存在する陽イオンは多いと推定される。   Region III-2 is actually highly charged, and in some cases, further increase in charge is expected in the future. That is, since the sulfoxide concentration in oil is high and the volume resistivity is low, it is estimated that there are many cations present in the insulating oil.

領域IV−2は、測定点は存在しないが、油中スルホキシド濃度は高く、帯電度は高い領域である。体積抵抗率は高いため、絶縁油中に存在する陽イオンは少ないと推定される。   Region IV-2 is a region where there is no measurement point, but the sulfoxide concentration in oil is high and the degree of charge is high. Since the volume resistivity is high, it is estimated that there are few cations present in the insulating oil.

以上の本実施の形態では、絶縁油中のスルフィド、スルホキシド、スルホンおよびスルホン酸を実際に測定する必要があるが、抽出および分析の例として以下の方法が挙げられる。   In the present embodiment described above, it is necessary to actually measure sulfide, sulfoxide, sulfone and sulfonic acid in the insulating oil. Examples of extraction and analysis include the following methods.

1.油中スルフィドの測定
金属塩を担持したシリカゲルなどの吸着剤でスルフィドを抽出する。ガスクロマトグラフまたは液体クロマトグラフにより吸着剤から脱着させたスルフィドを定量する。
1. Measurement of sulfide in oil Extract sulfide with an adsorbent such as silica gel loaded with metal salt. The sulfide desorbed from the adsorbent is quantified by gas chromatography or liquid chromatography.

2.油中スルホキシドおよび油中スルホンの測定
両者は極性があるので、シリカゲルで抽出する。ガスクロマトグラフまたは液体クロマトグラフにより吸着剤から脱着させたスルホキシドおよびスルホンを定量する。
2. Measurement of sulfoxide in oil and sulfone in oil Both are polar and are extracted with silica gel. The sulfoxide and sulfone desorbed from the adsorbent are quantified by gas chromatography or liquid chromatography.

3.油中スルホン酸の測定
酸性を示すので、アルカリブルー6Bなどの指示薬の色変化で定量する。
3. Measurement of sulfonic acid in oil Since it shows acidity, it is quantified by the color change of an indicator such as alkali blue 6B.

本実施の形態によれば、スルホキシド濃度と、(スルホキシド濃度)/(スルホキシド濃度+スルフィド濃度)とに基づいて、絶縁油の帯電度の評価およびその経時変化の将来予測を行うことができる。また、体積抵抗率または誘電正接と、スルホキシドの濃度とにより、高帯電化の原因物質の一つとされるスルホニウムイオンの濃度変化を予測することができるので、絶縁油の帯電度の将来動向を予測することができる。   According to this embodiment, based on the sulfoxide concentration and (sulfoxide concentration) / (sulfoxide concentration + sulfide concentration), it is possible to evaluate the charge degree of the insulating oil and to predict the future change with time. In addition, it is possible to predict changes in the concentration of sulfonium ion, which is one of the causative substances of high charging, by volume resistivity or dielectric loss tangent and sulfoxide concentration. can do.

なお、本実施の形態では、スルフィド、スルホキシド等を例に説明したが、帯電度特性について同様の関係にある他の硫黄化合物、硫黄酸化物、に対しても、本実施の形態にかかる流動帯電診断方法を適用することができる。さらに、帯電度特性について同様の関係にあれば、硫黄化合物、硫黄酸化物に限らず、他の化合物に対しても本実施の形態を適用することができる。   In this embodiment, sulfide, sulfoxide, and the like have been described as examples. However, the flow charge according to this embodiment is also applied to other sulfur compounds and sulfur oxides having a similar relationship with respect to the charge characteristics. Diagnostic methods can be applied. Furthermore, as long as the charge characteristics are similar, the present embodiment can be applied not only to sulfur compounds and sulfur oxides but also to other compounds.

実施の形態2.
図6は、油入電気機器の運転年数と、(スルホキシド濃度)/(スルフィド濃度+スルホキシド濃度)に運転年数を乗じた値と、の関係を示す図である。以下では、(スルホキシド濃度)/(スルフィド濃度+スルホキシド濃度)を変換率ともいう。本実施の形態では、スルホキシド濃度と、変換率に運転年数を乗じた値と、に基づいて、帯電特性の現状と将来動向を予測する。
Embodiment 2. FIG.
FIG. 6 is a diagram showing the relationship between the operation years of the oil-filled electrical device and the value obtained by multiplying (sulfoxide concentration) / (sulfide concentration + sulfoxide concentration) by the operation years. Hereinafter, (sulfoxide concentration) / (sulfide concentration + sulfoxide concentration) is also referred to as a conversion rate. In the present embodiment, the current state and future trends of the charging characteristics are predicted based on the sulfoxide concentration and the value obtained by multiplying the conversion rate by the number of years of operation.

実施の形態1で述べたように、絶縁油中にスルフィドが多いと、スルホキシドは比較的長期間にわたる増加を示すが、少ない場合には、減少に転ずる場合がある。図6に示すように、絶縁油中の初期スルフィド濃度が比較的低い1400ppmの場合には、運転年数が30年を経過した頃から、変換率×運転年数の値は減少に転じている。一方、絶縁油中の初期スルフィド濃度が1400ppmよりも高い他の場合には、データが取得されている運転年数40年まで増加し続けている。また、例えば、変換率×運転年数=2.0に対して、初期スルフィドの濃度が1400ppmから5000ppmに大きくなるにつれて、対応するプロットにおける運転年数も増大している。例えば、初期スルフィドの濃度が1400ppmの場合には、運転年数は10年程度であるのに対して、初期スルフィドの濃度が5000ppmの場合には、運転年数は18年程度である。これは、初期スルフィドの濃度が5000ppmの場合のほうが、初期スルフィドの濃度が1400ppmの場合よりも、変換率が小さく、かつ運転年数が長いことを意味しているが、このように、変換率×運転年数を考察することにより、すでに経過した運転年数の効果を加味することができる。   As described in the first embodiment, when the insulating oil contains a large amount of sulfide, the sulfoxide increases for a relatively long period of time. As shown in FIG. 6, when the initial sulfide concentration in the insulating oil is 1400 ppm, which is relatively low, the value of conversion rate × operating years has started to decrease since the operating years have passed 30 years. On the other hand, in other cases where the initial sulfide concentration in the insulating oil is higher than 1400 ppm, it continues to increase until the 40 years of operation for which data has been acquired. Further, for example, with respect to the conversion rate × the number of years of operation = 2.0, the number of years of operation in the corresponding plot increases as the initial sulfide concentration increases from 1400 ppm to 5000 ppm. For example, when the initial sulfide concentration is 1400 ppm, the operation period is about 10 years, whereas when the initial sulfide concentration is 5000 ppm, the operation period is about 18 years. This means that when the initial sulfide concentration is 5000 ppm, the conversion rate is smaller and the number of years of operation is longer than when the initial sulfide concentration is 1400 ppm. By considering the operation years, the effect of the operation years that have already passed can be taken into account.

図7は、図6の関係を考慮し、スルホキシド濃度と、変換率に運転年数を乗じた値との関係を用いて、帯電特性の現状および将来動向を予測する診断図である。横軸は、油中スルホキシド濃度(ppm)、縦軸は、変換率×運転年数であり、油中に銅成分が存在する場合と存在しない場合のそれぞれに対して、帯電度の値に応じて測定結果がプロットされている。診断は以下のように行われる。   FIG. 7 is a diagnostic diagram for predicting the current state and future trend of the charging characteristics using the relationship between the sulfoxide concentration and the value obtained by multiplying the conversion rate by the number of years of operation in consideration of the relationship of FIG. The horizontal axis is the sulfoxide concentration in oil (ppm), and the vertical axis is the conversion rate x the number of years of operation, depending on the value of the charge for each of the cases where the copper component is present and absent in the oil. The measurement results are plotted. Diagnosis is performed as follows.

領域I−3は低帯電度領域である。すなわち、油中スルホキシド濃度は低い。   Region I-3 is a low charge region. That is, the sulfoxide concentration in oil is low.

領域II−3では、今後、帯電度の増加が予測される。すなわち、油中スルホキシド濃度も領域I−3における値よりも高く、一方、運転年数を考慮した変換率×運転年数の値は低いため、高帯電度化する可能性を備えている。この領域では、油中スルホキシドの濃度がそれほど高くなくても、変換率が低いか、運転年数が短いか、またはその両者が満たされている。   In the area II-3, an increase in the charging degree is predicted in the future. That is, the concentration of sulfoxide in oil is also higher than the value in region I-3, while the value of conversion rate x operation years considering operation years is low, so that there is a possibility of increasing the degree of charge. In this region, even if the sulfoxide concentration in the oil is not so high, the conversion rate is low, the operation years are short, or both are satisfied.

領域III−3では、今後、帯電度の減少が予測される。この領域における油中スルホキシド濃度の範囲は、領域II−3における油中スルホキシド濃度の範囲と同じである。一方、変換率×運転年数は、一定値の油中スルホキシド濃度に対して、より大きい値となっている。この領域では、変換率が高いか、運転年数が長いか、またはその両方が満たされている。   In the area III-3, a decrease in the charging degree is predicted in the future. The range of the sulfoxide concentration in oil in this region is the same as the range of the sulfoxide concentration in oil in Region II-3. On the other hand, the conversion rate × the number of years of operation is a larger value than the fixed value of the sulfoxide concentration in oil. In this region, the conversion rate is high, the operation years are long, or both.

領域IV−3では、今後、帯電度の増加が予測される。すなわち、油中スルホキシド濃度も領域II−3における値よりも大きく、変換率×運転年数の値も小さいため、高帯電度化する可能性を備えている。   In the area IV-3, an increase in the charging degree is predicted in the future. That is, since the sulfoxide concentration in oil is also larger than the value in region II-3 and the value of conversion rate × operational years is also small, there is a possibility of increasing the charging degree.

領域V−3では、今後、帯電度の減少が予測される。この領域では油中スルホキシド濃度は高いが、変換率×運転年数の値も大きい。   In the region V-3, a decrease in the charging degree is predicted in the future. In this region, the concentration of sulfoxide in oil is high, but the value of conversion rate x operation years is also large.

本実施の形態においては、油中スルホキシド濃度と、変換率に運転年数を乗じた値と、に基づいて、絶縁油の帯電度の評価およびその経時変化の将来予測を行うことができる。   In the present embodiment, based on the sulfoxide concentration in oil and the value obtained by multiplying the conversion rate by the number of years of operation, the degree of charge of the insulating oil can be evaluated and the future prediction of the change with time can be performed.

実施の形態3.
本実施の形態では、変圧器等で使用される絶縁紙等のセルロース製絶縁物の共存下において、絶縁油中に含まれる硫黄化合物、硫黄化合物の酸化物等の分子構造、反応性、イオンへの解離性等に基づいて、帯電度特性を診断する方法について説明する。本発明の効果を確認するための実験では、セルロース製絶縁物に対しては、負電荷と正電荷の双方が帯電しうることを実験的に確認した。絶縁物が負に帯電する場合には、絶縁油が正に帯電する。一方、絶縁物が正に帯電する場合には、絶縁油が負に帯電する。
Embodiment 3 FIG.
In the present embodiment, in the presence of cellulose insulators such as insulating paper used in transformers, etc., the molecular structure, reactivity, ions, etc. of sulfur compounds and oxides of sulfur compounds contained in insulating oil A method of diagnosing the charge degree characteristic based on the dissociation property of the above will be described. In an experiment for confirming the effect of the present invention, it was experimentally confirmed that both a negative charge and a positive charge can be charged to a cellulose insulator. When the insulator is negatively charged, the insulating oil is positively charged. On the other hand, when the insulator is positively charged, the insulating oil is negatively charged.

絶縁油の負帯電の例としては、オクチルスルホン酸を添加したアルキルベンゼンが挙げられる。また、絶縁油の大きな正帯電の例としては、オクチルスルフィドまたはオクチルスルホキシドを添加し酸素および銅触媒共存下で加熱したアルキルベンゼンが挙げられる。上述の例を一般化すると次のようなメカニズムが想定される。   As an example of the negative charge of the insulating oil, alkylbenzene added with octyl sulfonic acid can be mentioned. An example of a large positive charge of insulating oil is alkylbenzene heated by adding octyl sulfide or octyl sulfoxide and coexisting with oxygen and a copper catalyst. When the above example is generalized, the following mechanism is assumed.

絶縁油の主成分は炭化水素であり、さらに詳しくは、化学式Cn2n+2で表わされる鎖状炭化水素(パラフィン)、化学式Cn2nで表わされる飽和環状炭化水素(ナフテン)、およびベンゼン環またはナフタレン環を有する芳香族からなる。化学式Cn2n+1をアルキル基と称し、ナフテン環にアルキル基が付加したものをアルキル置換ナフテン、芳香族環にアルキル基が付加したものをアルキル置換芳香族と称している。 The main component of the insulating oil is a hydrocarbon, and more specifically, a chain hydrocarbon represented by the chemical formula C n H 2n + 2 (paraffin), a saturated cyclic hydrocarbon represented by the chemical formula C n H 2n (naphthene), and It consists of an aromatic having a benzene ring or a naphthalene ring. The chemical formula C n H 2n + 1 is referred to as an alkyl group, a naphthene ring having an alkyl group added thereto is referred to as an alkyl-substituted naphthene, and an aromatic ring having an alkyl group added thereto is referred to as an alkyl-substituted aromatic.

絶縁油の主成分の分子量は220〜300程度である。絶縁油の主成分以外の成分に対して、他の極性基が存在する場合でも絶縁油の分子量に相当するアルキル基が共存する場合には、親油性がある。一方、アルキル基が小さい場合には、親油性が小さく、油中で異相として析出するか、容器壁に付着するなどして、油中には均一な状態では、存在しない可能性が高い。   The molecular weight of the main component of the insulating oil is about 220 to 300. When an alkyl group corresponding to the molecular weight of the insulating oil coexists with components other than the main component of the insulating oil, even if other polar groups are present, it is oleophilic. On the other hand, when the alkyl group is small, the lipophilicity is small, and it is highly possible that the oil does not exist in a uniform state in the oil, for example, as a different phase in the oil or adheres to the container wall.

前述の例に挙げたように、オクチルスルホン酸を添加した場合には、絶縁油が負に、セルロース製絶縁物が正に帯電する。オクチルスルホン酸は分子量194で、C816SO3Hという構造を有する。このオクチルスルホン酸は、イオン式量193のC816SO3 -とイオン式量1のH+とに解離する。C816SO3 -は、親油性を示すアルキル基が大きいので(この場合、C816)、油中で安定に存在する。一方、H+は親油性を示すアルキル基が存在しないので、油中では安定には存在しない。 As mentioned in the above example, when octyl sulfonic acid is added, the insulating oil is negatively charged and the cellulose insulator is positively charged. Octyl sulfonic acid has a molecular weight of 194 and a structure of C 8 H 16 SO 3 H. This octyl sulfonic acid dissociates into C 8 H 16 SO 3 with an ionic formula 193 and H + with an ionic formula 1. C 8 H 16 SO 3 has a large lipophilic alkyl group (in this case, C 8 H 16 ), and therefore exists stably in oil. On the other hand, H + has no lipophilic alkyl group and therefore does not exist stably in oil.

一方、セルロース製絶縁物は、分子内に極性を有する水酸基を多く含んでおり、無極性の絶縁油とは、分子構造の様相が異なる。また、分子構造が平面ではないので、立体障害等の影響を受けるため、分子量の大きい物質は吸着しにくいと考えられる。   On the other hand, cellulose insulators contain many polar hydroxyl groups in the molecule, and the molecular structure is different from nonpolar insulating oil. In addition, since the molecular structure is not flat, it is affected by steric hindrance and the like, so it is considered that a substance having a large molecular weight is difficult to adsorb.

前述のオクチルスルホン酸の場合、解離したH+は極性面およびイオン式量の双方から
セルロースに帯電しやすいと考えられる。そのため、負電荷は油中に残りやすく、正電荷がセルロース製絶縁物に吸着しやすいので、絶縁油は、比較的大きな負帯電状態となる。
In the case of the above-mentioned octyl sulfonic acid, it is considered that dissociated H + is likely to be charged to cellulose from both the polar face and the ionic formula. Therefore, the negative charge is likely to remain in the oil, and the positive charge is likely to be adsorbed on the cellulose insulator, so that the insulating oil is in a relatively large negatively charged state.

また、前述の例に挙げたように、オクチルスルフィドを添加し酸素および銅触媒共存下で加熱した場合には、絶縁油は正に、絶縁紙は負に帯電する。オクチルスルフィドは、化学式がC816SC816であり、2価の硫黄化合物の両端にアルキル基が配置された構造を有する。この2価の硫黄化合物は容易に酸素を取り込む能力を備えている。そのため、オクチルスルフィドは酸化されると、4価の硫黄化合物であるスルホキシドになる。 Further, as described in the above example, when octyl sulfide is added and heated in the presence of oxygen and a copper catalyst, the insulating oil is positively charged and the insulating paper is negatively charged. Octyl sulfide has a chemical formula of C 8 H 16 SC 8 H 16 and has a structure in which alkyl groups are arranged at both ends of a divalent sulfur compound. This divalent sulfur compound has an ability to easily take in oxygen. Therefore, when octyl sulfide is oxidized, it becomes a sulfoxide which is a tetravalent sulfur compound.

実験結果によると、オクチルスルホキシド自体の帯電度は、ベース油のアルキルベンゼンよりも少し高い程度であり、顕著な高帯電度を示すとはいえないレベルである。しかしながら、銅触媒共存下などで加熱すると、加熱前と比較して、1〜2桁程度の高帯電度化がみられた。これには、次のようなメカニズムが想定される。   According to the experimental results, the degree of charge of octyl sulfoxide itself is a little higher than that of the alkylbenzene of the base oil, and it cannot be said that it exhibits a markedly high degree of charge. However, when heated in the presence of a copper catalyst or the like, a high degree of charge of about 1 to 2 digits was observed compared to before heating. The following mechanism is assumed for this.

一般的にスルホキシド類には、H+等を分子内に取り込んでイオン化する作用があり、H+等を取り込んだものをスルホニウムイオンと称している。なお、H+のみならず、R+(Rはアルキル基)等を取り込んだものも同様にスルホニウムイオンと呼ばれている。スルホニウムイオンは、オクチルの場合、比較的長いアルキル基を有しているので、大きな親油性を示す。また、スルホニウムイオンは正の電荷を有しているので、オクチルスルホン酸の場合とは逆に、絶縁油が正に帯電する。なお、この場合の負電荷としては水分子が解離した水酸イオンなどが想定される。 In general, sulfoxides have an action of incorporating H + and the like into the molecule and ionizing them, and those incorporating H + and the like are referred to as sulfonium ions. In addition, not only H + but also R + (R is an alkyl group) and the like are also called sulfonium ions. In the case of octyl, the sulfonium ion has a relatively long alkyl group and thus exhibits a large lipophilicity. In addition, since sulfonium ions have a positive charge, the insulating oil is positively charged, contrary to the case of octyl sulfonic acid. In this case, as a negative charge, a hydroxide ion from which water molecules are dissociated is assumed.

塩酸または水をオクチルスルホキシドが共存するアルキルベンゼンに添加すると、比較的大きな帯電度となっていることから、オクチルスルホキシドが塩酸または水から解離したH+を取り込んでオクチルスルホニウムを形成して、高帯電度化していることを実験的に確認した。 When hydrochloric acid or water is added to an alkylbenzene in which octyl sulfoxide coexists, the charge becomes relatively large. Therefore, octyl sulfoxide takes in H + dissociated from hydrochloric acid or water to form octyl sulfonium, and has high charge. It was confirmed experimentally that

以上説明した、オクチルスルホン酸と、オクチルスルフィドおよびオクチルスルホキシドの例を併せて検討すると次のように一般化できる。   When the examples of octyl sulfonic acid, octyl sulfide and octyl sulfoxide described above are studied together, they can be generalized as follows.

絶縁油中に含まれる主成分以外の成分において、正電荷のイオンと、負電荷のイオンとに着目する。そして、正電荷のイオンが備える親油基の分子量の大きさと、負電荷のイオンが備える親油基の分子量の大きさとを比較し、(正電荷のイオンが備える親油基の分子量の大きさ)>(負電荷のイオンが備える親油基の分子量の大きさ)の場合、絶縁油が正に帯電する。一方、(負電荷のイオンが備える親油基の分子量の大きさ)>(正電荷のイオンが備える親油基の分子量の大きさ)の場合、絶縁油が負に帯電する。なお、解離したH+のように、もともと親油基を備えない場合には分子量の大きさを0として比較する。(正電荷のイオンが備える親油基の分子量の大きさ)/(負電荷のイオンが備える親油基の分子量の大きさ)>>1の場合は大きな正帯電性を示し、(正電荷のイオンが備える親油基の分子量の大きさ)/(負電荷のイオンが備える親油基の分子量の大きさ)≒1の場合はほとんど帯電しない。 In components other than the main component contained in the insulating oil, attention is paid to positively charged ions and negatively charged ions. Then, the molecular weight of the lipophilic group provided for the positively charged ions is compared with the molecular weight of the lipophilic group provided for the negatively charged ions. )> (The molecular weight of the lipophilic group of negatively charged ions), the insulating oil is positively charged. On the other hand, when (the molecular weight of the lipophilic group provided for the negatively charged ions)> (the molecular weight of the lipophilic group provided for the positively charged ions), the insulating oil is negatively charged. In the case where the lipophilic group is not originally provided as in the case of dissociated H +, the molecular weight is compared with zero. In the case of (the molecular weight of the lipophilic group included in the positively charged ions) / (the molecular weight of the lipophilic group included in the negatively charged ions) >> 1, a large positive charge is exhibited. When the molecular weight of the oleophilic group included in the ion / (the molecular weight of the oleophilic group included in the negatively charged ion) ≈1, it is hardly charged.

また、(負電荷のイオンが備える親油基の分子量の大きさ)/(正電荷のイオンが備える親油基の分子量の大きさ)>>1の場合は大きな負帯電性を示し、(正電荷のイオンが備える親油基の分子量の大きさ)/(負電荷のイオンが備える親油基の分子量の大きさ)>1の場合は負帯電性を示し、(正電荷のイオンが備える親油基の分子量の大きさ)/(負電荷のイオンが備える親油基の分子量の大きさ)≒1の場合はほとんど帯電しない。上述のように、親油基は、例えばアルキル基である。   In addition, when (molecular weight of lipophilic group provided for negatively charged ions) / (molecular weight of lipophilic group provided for positively charged ions) >> 1, a large negative chargeability was exhibited. When the molecular weight of the lipophilic group included in the charged ion / (the molecular weight of the lipophilic group included in the negatively charged ion)> 1, it indicates negative chargeability, and (the parent included in the positively charged ion) When the molecular weight of the oil base) / (the molecular weight of the lipophilic group included in the negatively charged ions) ≈1, it is hardly charged. As described above, the lipophilic group is, for example, an alkyl group.

対象とする油中成分としては、油中で正電荷を有するものとして、例えば、上述のスルホニウムおよびスルホニウムの生成母体であるスルホキシド、また、窒素化合物であるピリジニウムなどの正電荷を有するイオンおよびそれらの生成母体である塩基性窒素化合物が挙げられる。一方、油中で負電荷を有するものとして、例えば、スルホン酸、有機酸、非塩基性窒素化合物等が挙げられる。   Examples of components in oil that have a positive charge in oil include, for example, the above-mentioned sulfonium, a sulfoxide that is a production base of sulfonium, and a positively charged ion such as pyridinium that is a nitrogen compound, and their The basic nitrogen compound which is a production | generation base is mentioned. On the other hand, those having a negative charge in oil include, for example, sulfonic acid, organic acid, non-basic nitrogen compound and the like.

本実施の形態によれば、絶縁油中の主成分以外の成分である、硫黄化合物およびその酸化物、ならびに、窒素化合物およびその酸化物等に対して、酸性/塩基性、イオンへの解離性、反応性等に基づき、さらに、正電荷のイオンおよび負電荷のイオンがそれぞれ備える親油基の分子量の大きさを比較することにより、絶縁油の帯電特性を診断することができる。   According to the present embodiment, acidic / basic, dissociation into ions with respect to sulfur compounds and oxides thereof, and nitrogen compounds and oxides thereof, which are components other than the main component in insulating oil. Based on the reactivity and the like, the charge characteristics of the insulating oil can be diagnosed by comparing the molecular weights of the lipophilic groups of the positively charged ions and the negatively charged ions.

実施の形態4. Embodiment 4 FIG.

一般に、絶縁油中に存在するスルフィド化合物およびスルホキシド化合物は、異なる分子構造を備えた多くの化合物の集合体である。そのため、例えばガスクロマトグラフを利用して、絶縁油を成分分析し、例えばスルフィド化合物およびスルホキシド化合物を含むプロファイルを取得することにより、以下の推定ができる。   In general, sulfide compounds and sulfoxide compounds present in insulating oils are aggregates of many compounds with different molecular structures. Therefore, the following estimation can be performed by component analysis of insulating oil using, for example, a gas chromatograph and acquiring a profile including, for example, a sulfide compound and a sulfoxide compound.

炭素数が一定のスルフィドが酸化してスルホキシドが生成した場合、スルホキシドの分子量はもとのスルフィドに対して16だけ増加する。一方、さらに酸化が進んで、スルホンが生成する場合、スルホキシドの分子量はもとのスルフィドに対して32だけ増加する。したがって、スルフィドとスルホキシドの分子量分布を調べた際に、16だけの相違であれば、スルホキシドの生成が予測され、32の増加であれば、スルホンまで進んでいる可能性がある。   When a sulfide with a constant carbon number is oxidized to produce a sulfoxide, the molecular weight of the sulfoxide increases by 16 relative to the original sulfide. On the other hand, when the oxidation further proceeds to produce sulfone, the molecular weight of sulfoxide increases by 32 relative to the original sulfide. Therefore, when examining the molecular weight distribution of sulfide and sulfoxide, if there is only a difference of 16, the formation of sulfoxide is predicted, and if it is an increase of 32, there is a possibility of proceeding to sulfone.

なお、図8は、ガスクロマトグラフを利用し分析を行ったスルフィドとスルホキシドのプロファイルの一例を示す図である。横軸はガスクロマトグラフの保持時間であり、分子量に換算して表されている。縦軸はその保持時間に存在するスルフィドまたはスルホキシドの存在する割合(頻度)である。   In addition, FIG. 8 is a figure which shows an example of the profile of the sulfide and sulfoxide which analyzed using the gas chromatograph. The horizontal axis represents the retention time of the gas chromatograph and is expressed in terms of molecular weight. The vertical axis represents the ratio (frequency) of sulfide or sulfoxide present during the retention time.

このように、絶縁油に含まれる成分の分子量分布を測定し、分子量分布から特定される硫黄化合物およびその酸化物である硫黄酸化物のそれぞれの分子量の差に基づいて、絶縁油の帯電特性の評価を行うことができる。例えばスルフィドからスルホキシドおよびスルホンへの移行は、運転年数などの条件によって異なるために、分子量の差分のほかにそれらの存在量の比率等も考慮すると、絶縁油の帯電特性を精度よく評価することができる。   In this way, the molecular weight distribution of the components contained in the insulating oil is measured, and the charging characteristics of the insulating oil are determined based on the molecular weight difference between the sulfur compound identified from the molecular weight distribution and the sulfur oxide that is an oxide thereof. Evaluation can be made. For example, since the transition from sulfide to sulfoxide and sulfone varies depending on conditions such as the number of years of operation, the charging characteristics of insulating oil can be accurately evaluated by considering the ratio of their abundance in addition to the difference in molecular weight. it can.

実施の形態5.
流動帯電の抑制には、従来、ベンゾトリアゾール(BTA)などの絶縁油への添加、または白土などの吸着剤を用いた処理が検討されてきた。
Embodiment 5 FIG.
In order to suppress the flow electrification, conventionally, addition to an insulating oil such as benzotriazole (BTA) or treatment using an adsorbent such as clay has been studied.

しかしながら、BTAの添加、または白土を用いた処理には以下に示すような問題がある。BTAは、絶縁紙の表面に吸着して、絶縁表面への負電荷の電荷移動を抑制する効果があると考えられている。流動帯電のメカニズムについては、実施の形態3で説明したように考えられるので、BTAの添加は、解離したH+を取り込んだ絶縁油が負帯電化されるような作用によって、帯電度を低下させる場合があるが、H+が消耗した場合に、効果がなくなると想定される。白土を用いた場合、極性物質の除去によって、体積抵抗率が上昇し、電荷緩和が起こりにくくなり、帯電した電荷の蓄積による帯電特性の悪化が懸念される。 However, the addition of BTA or the treatment using white clay has the following problems. BTA is considered to be effective in adsorbing to the surface of insulating paper and suppressing the transfer of negative charges to the insulating surface. Since the mechanism of fluid charging is considered as described in the third embodiment, the addition of BTA lowers the degree of charge by the action that the insulating oil incorporating the dissociated H + is negatively charged. In some cases, it is assumed that the effect is lost when H + is depleted. When white clay is used, the removal of polar substances increases the volume resistivity, makes charge relaxation less likely, and there is a concern about deterioration of charging characteristics due to accumulation of charged charges.

本実施の形態では、種々のタイプのイオン交換樹脂またはイオン交換膜の選択によって、高帯電度に影響を及ぼすイオンのみを除去して、高帯電化の抑制をはかる。また、ある特定のイオンを絶縁油に添加して、帯電特性のバランスを保つことによって、高帯電化の抑制をはかることができる。   In the present embodiment, by selecting various types of ion exchange resins or ion exchange membranes, only the ions that affect the high charge degree are removed, thereby suppressing the high charge. Further, by adding a specific ion to the insulating oil and maintaining the balance of the charging characteristics, it is possible to suppress the increase in charging.

実施の形態6.
従来、ベンゾトリアゾール(BTA)などの絶縁油への添加によって、帯電度の抑制がはかられてきた。そして、絶縁油とBTAのみの状態では、長期間にわたる流動帯電抑制の効果が期待できる。しかしながら、セルロース系絶縁材料の例えばプレスボードが共存するような系においては、図9に示すように、ある時期から帯電度が急増するという実験結果が得られた。そのため、BTAの効果の持続性に問題があることがわかった。図9は、銅触媒、酸素共存の条件下で加熱した場合において、オクチルスルホキシドが添加されたアルキルベンゼンの帯電度の経時変化を示した図であり、BTAの添加量と、プレスボード(PB)の有無により、複数の曲線が描かれている。横軸は加熱時間(hr)を、縦軸は帯電度(pC/ml)を表す。
Embodiment 6 FIG.
Conventionally, the charging degree has been suppressed by the addition to an insulating oil such as benzotriazole (BTA). And in the state of only insulating oil and BTA, the effect of suppressing the flow charge over a long period can be expected. However, in a system in which a cellulosic insulating material such as a press board coexists, as shown in FIG. 9, an experimental result has been obtained that the degree of charging increases rapidly from a certain time. Therefore, it turned out that there is a problem in the sustainability of the effect of BTA. FIG. 9 is a graph showing the change over time in the degree of charge of alkylbenzene added with octyl sulfoxide when heated in the presence of a copper catalyst and oxygen. The amount of BTA added and the pressboard (PB) A plurality of curves are drawn depending on the presence or absence. The horizontal axis represents the heating time (hr), and the vertical axis represents the charge degree (pC / ml).

そこで、スルフィドおよびスルホキシドを含有した絶縁油に、フェノール系の物質を添加したところ、プレスボードが共存する系における帯電度は、BTAを添加した場合のような大きな帯電度の増加を示さないことが実験的に確認された。特に、フェノール化合物の分子量が、絶縁油の主成分の分子量と同程度である場合に、高帯電度化の抑制により効果がある。本実施の形態は、プレスボード共存下で、スルフィドおよびスルホキシド等の硫黄化合物および硫黄化合物の酸化物を含む絶縁油に、その分子量が絶縁油の主成分の分子量相当であるフェノール化合物を添加することにより、絶縁油の帯電度を抑制する。   Therefore, when a phenol-based substance is added to insulating oil containing sulfide and sulfoxide, the charge in a system where a press board coexists does not show a large increase in charge as in the case where BTA is added. Confirmed experimentally. In particular, when the molecular weight of the phenol compound is about the same as the molecular weight of the main component of the insulating oil, the effect of suppressing the increase in the degree of charge is more effective. In the present embodiment, in the presence of a press board, a phenol compound whose molecular weight is equivalent to the molecular weight of the main component of the insulating oil is added to the insulating oil containing a sulfur compound such as sulfide and sulfoxide and an oxide of the sulfur compound. This suppresses the charging degree of the insulating oil.

絶縁油の主成分の分子量に相当する分子量を有するフェノール化合物の作用としては、スルフィドの酸化によるスルホキシドへの移行を阻害していること、さらには、分子量がBTAよりも大きいので、負電荷としての帯電が起こりにくいこと、が考えられる。   The action of the phenolic compound having a molecular weight corresponding to the molecular weight of the main component of the insulating oil is that it inhibits the transition to sulfoxide due to oxidation of sulfide, and furthermore, the molecular weight is larger than BTA, It is conceivable that charging is difficult to occur.

なお、実施の形態1〜6で説明した流動帯電の診断方法および抑制方法を利用した装置を構成することで、診断および抑制を自動化することができる。   In addition, diagnosis and suppression can be automated by configuring an apparatus using the fluid charging diagnosis method and suppression method described in the first to sixth embodiments.

以上のように、本発明にかかる油入電気機器の流動帯電診断方法および流動帯電抑制方法は、変圧器等に使用される絶縁油の帯電特性の評価およびその将来動向の予測、ならびに、流動帯電の効果的な抑制に有用である。   As described above, the fluid charging diagnostic method and the fluid charging suppression method for oil-filled electrical equipment according to the present invention include the evaluation of the charging characteristics of insulating oil used in transformers and the like, the prediction of its future trend, and the flow charging. It is useful for effective suppression.

実施の形態1が適用される絶縁油中に含まれると想定される硫黄化合物とその帯電特性を示す図である。It is a figure which shows the sulfur compound assumed to be contained in the insulating oil to which Embodiment 1 is applied, and its charging characteristic. 初期のスルフィド濃度が高い場合における、硫黄化合物の経時変化と帯電度の関係を示す図である。It is a figure which shows the relationship between a time-dependent change of a sulfur compound, and a charging degree when an initial sulfide density | concentration is high. 初期のスルフィド濃度が高い場合における、硫黄化合物の経時変化と帯電度の関係を示す図である。It is a figure which shows the relationship between a time-dependent change of a sulfur compound, and a charging degree when an initial sulfide density | concentration is high. 実施の形態1において、スルホキシド濃度と、(スルホキシド濃度)/(スルホキシド濃度+スルフィド濃度)とにより、絶縁油の帯電特性に関する状態を5つの領域に分類した図である。In Embodiment 1, it is the figure which classified the state regarding the charging characteristic of an insulating oil into five areas by sulfoxide concentration and (sulfoxide concentration) / (sulfoxide concentration + sulfide concentration). 油中スルホキシド濃度と体積抵抗率との関係を用いた帯電度の診断を行うための図である。It is a figure for diagnosing the degree of charge using the relation between the sulfoxide concentration in oil and the volume resistivity. 油入電気機器の運転年数と、(スルホキシド濃度)/(スルフィド濃度+スルホキシド濃度)に運転年数を乗じた値と、の関係を示す図である。It is a figure which shows the relationship between the operation years of an oil-filled electrical apparatus, and the value which multiplied the operation years to (sulfoxide concentration) / (sulfide concentration + sulfoxide concentration). 実施の形態2において、スルホキシド濃度と、変換率に運転年数を乗じた値との関係を用いて、帯電特性の現状および将来動向を予測する診断図である。In Embodiment 2, it is the diagnostic figure which estimates the present condition and future trend of a charging characteristic using the relationship between the sulfoxide density | concentration and the value which multiplied the conversion rate by the years of operation. ガスクロマトグラフを利用し分析を行ったスルフィドとスルホキシドのプロファイルの一例を示す図である。It is a figure which shows an example of the profile of the sulfide and the sulfoxide which analyzed using the gas chromatograph. プレスボード(PB)の有無およびBTAの添加量に応じて、オクチルスルホキシドが添加されたアルキルベンゼンの帯電度の経時変化を示した図である。It is the figure which showed the time-dependent change of the charging degree of the alkylbenzene to which octyl sulfoxide was added according to the presence or absence of a press board (PB) and the addition amount of BTA.

Claims (5)

内部に絶縁油が充填された油入電気機器の流動帯電性を診断する方法であって、
前記絶縁油に含まれる硫黄化合物の濃度および前記硫黄化合物の酸化物である硫黄酸化物の濃度をそれぞれ測定し、硫黄酸化物濃度と、(硫黄酸化物濃度)/(硫黄化合物濃度+硫黄酸化物濃度)とのある時点における関係に基づいて、前記絶縁油の帯電特性の評価およびその経時変化の将来予測を行うことを特徴とする油入電気機器の流動帯電診断方法。
A method of diagnosing the flow chargeability of oil-filled electrical equipment filled with insulating oil inside,
The concentration of the sulfur compound contained in the insulating oil and the concentration of the sulfur oxide that is an oxide of the sulfur compound were measured, respectively, and the sulfur oxide concentration and (sulfur oxide concentration) / (sulfur compound concentration + sulfur oxide) On the basis of the relationship with the concentration) at a certain point of time , the charging characteristics diagnosis method for oil-filled electrical equipment is characterized by evaluating the charging characteristics of the insulating oil and predicting the future of the change with time.
内部に絶縁油が充填された油入電気機器の流動帯電性を診断する方法であって、
前記絶縁油に含まれる硫黄化合物の濃度および前記硫黄化合物の酸化物である硫黄酸化物の濃度をそれぞれ測定し、硫黄酸化物濃度と、(硫黄酸化物濃度)/(硫黄化合物濃度+硫黄酸化物濃度)×(前記油入電気機器の運転年数)とのある時点における関係に基づいて、前記絶縁油の帯電特性の評価およびその経時変化の将来予測を行うことを特徴とする油入電気機器の流動帯電診断方法。
A method of diagnosing the flow chargeability of oil-filled electrical equipment filled with insulating oil inside,
The concentration of the sulfur compound contained in the insulating oil and the concentration of the sulfur oxide that is an oxide of the sulfur compound were measured, respectively, and the sulfur oxide concentration and (sulfur oxide concentration) / (sulfur compound concentration + sulfur oxide) Based on the relationship at a certain point in time with (concentration) × (the number of years of operation of the oil-filled electrical device), the evaluation of the charging characteristics of the insulating oil and the future prediction of the change over time are performed. Flow charging diagnostic method.
前記硫黄化合物はスルフィドであり、前記硫黄酸化物はスルホキシドであることを特徴とする請求項1または2に記載の油入電気機器の流動帯電診断方法。   The fluid charging diagnostic method for oil-filled electrical equipment according to claim 1, wherein the sulfur compound is sulfide, and the sulfur oxide is sulfoxide. 内部に絶縁油が充填された油入電気機器の流動帯電性を診断する方法であって、
前記絶縁油に含まれる硫黄酸化物の濃度および前記絶縁油の体積抵抗率または誘電正接を測定し、硫黄酸化物濃度と、体積抵抗率または誘電正接とのある時点における関係に基づいて、前記絶縁油の帯電特性の評価およびその経時変化の将来予測を行うことを特徴とする油入電気機器の流動帯電診断方法。
A method of diagnosing the flow chargeability of oil-filled electrical equipment filled with insulating oil inside,
Measure the concentration of sulfur oxide contained in the insulating oil and the volume resistivity or dielectric loss tangent of the insulating oil, and based on the relationship between the sulfur oxide concentration and the volume resistivity or dielectric loss tangent at a certain point in time , A fluid charging diagnostic method for oil-filled electrical equipment characterized by evaluating the charging characteristics of oil and predicting future changes with time.
前記硫黄酸化物はスルホキシドであることを特徴とする請求項4に記載の油入電気機器の流動帯電診断方法。   The fluid charging diagnostic method for oil-filled electrical equipment according to claim 4, wherein the sulfur oxide is sulfoxide.
JP2007065194A 2007-03-14 2007-03-14 Flow electrification diagnosis method for oil-filled electrical equipment Active JP4994899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007065194A JP4994899B2 (en) 2007-03-14 2007-03-14 Flow electrification diagnosis method for oil-filled electrical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007065194A JP4994899B2 (en) 2007-03-14 2007-03-14 Flow electrification diagnosis method for oil-filled electrical equipment

Publications (2)

Publication Number Publication Date
JP2008224514A JP2008224514A (en) 2008-09-25
JP4994899B2 true JP4994899B2 (en) 2012-08-08

Family

ID=39843313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007065194A Active JP4994899B2 (en) 2007-03-14 2007-03-14 Flow electrification diagnosis method for oil-filled electrical equipment

Country Status (1)

Country Link
JP (1) JP4994899B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873433B2 (en) * 2007-10-26 2012-02-08 三菱電機株式会社 Diagnostic method for oil-filled electrical equipment
JP2009150742A (en) * 2007-12-20 2009-07-09 Tokyo Electric Power Co Inc:The Analyzing method of sulfoxide-type sulfur component in insulating oil
JP2009150744A (en) * 2007-12-20 2009-07-09 Tokyo Electric Power Co Inc:The Extraction method of sulfide-type sulfur component in insulating oil
JP5298828B2 (en) * 2008-12-19 2013-09-25 東京電力株式会社 Charged potential calculation apparatus and method
CN102265357B (en) * 2008-12-25 2013-06-12 三菱电机株式会社 Method for predicting probability of abnormality occurrence in oil-filled electrical apparatus
WO2011080812A1 (en) * 2009-12-28 2011-07-07 三菱電機株式会社 Method for predicting amount of copper sulfate produced in oil-filled electric derive, method for diagnosing occurrence of abnormal event, method for predicting initial concentration of dibenzyl disulfide in insulating oil, and method for diagnosing possibility of occurrence of abnormal event
JP5516818B2 (en) * 2013-11-05 2014-06-11 三菱電機株式会社 Method for estimating the amount of copper sulfide produced in oil-filled electrical equipment, method for diagnosing abnormality, method for estimating initial concentration of dibenzyl disulfide in insulating oil, and method for diagnosing the possibility of abnormality

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5295099A (en) * 1976-02-04 1977-08-10 Nissin Electric Co Ltd Method of refining orthophosphoric acid ester oil for electric insulation
JP2001006946A (en) * 1999-06-21 2001-01-12 Mitsubishi Electric Corp Evaluation method of electric insulation oil and method of analyzing hetero compound including electric insulation oil
JP4591899B2 (en) * 2000-01-26 2010-12-01 ユカインダストリーズ株式会社 Life diagnosis method for oil-filled electrical equipment
JP2002005976A (en) * 2000-06-23 2002-01-09 Mitsubishi Electric Corp Streaming electrification degree measurement device and its method
JP4494815B2 (en) * 2004-02-05 2010-06-30 三菱電機株式会社 Fluid charging diagnostic method and fluid charging suppression method for oil-filled electrical equipment
JP2005259785A (en) * 2004-03-09 2005-09-22 Tm T & D Kk Oil-filled electric apparatus

Also Published As

Publication number Publication date
JP2008224514A (en) 2008-09-25

Similar Documents

Publication Publication Date Title
Fofana et al. Characterization of aging transformer oil–pressboard insulation using some modern diagnostic techniques
JP4994899B2 (en) Flow electrification diagnosis method for oil-filled electrical equipment
Saha et al. Transformer ageing: monitoring and estimation techniques
Kohtoh et al. Aging effect on electrical characteristics of insulating oil in field transformer
JP4873433B2 (en) Diagnostic method for oil-filled electrical equipment
Fofana et al. Aging of transformer insulating materials under selective conditions
Amimoto et al. Concentration dependence of corrosive sulfur on copper-sulfide deposition on insulating paper used for power transformer insulation
Kato et al. Effect of DBDS concentration and heating duration on copper sulfide formation in oil-immersed transformer insulation
Ueta et al. Study on degradation causing components of various characteristics of transformer insulating oil
Cong et al. Reviews on sulphur corrosion phenomenon of the oil–paper insulating system in mineral oil transformer
JP4494815B2 (en) Fluid charging diagnostic method and fluid charging suppression method for oil-filled electrical equipment
Kato et al. Suppressive effect and its duration of triazole-based passivators on copper sulfide deposition on kraft paper in transformer
Yuan et al. A review: Research on corrosive sulphur in electrical power equipment
WO2010073748A1 (en) Method for predicting the probability of abnormality occurrence in oil-filled electrical apparatus
WO2011077530A1 (en) Method of predicting probability of abnormality occurrence in oil-filled electric appliance
Okabe et al. Suppression of increase in electrostatic charging tendency of insulating oil by aging used for power transformer insulation
Sokolov et al. Transformer fluid: a powerful tool for the life management of an ageing transformer population
Fofana et al. Early stage detection of insulating oil decaying
Rajan et al. Electric stress distribution in paper oil insulation due to sulphur corrosion of copper conductors
Scatiggio et al. Oils with presence of corrosive sulfur: mitigation and collateral effects
Wada et al. Method to evaluate the degradation condition of transformer insulating oil-experimental study on the hydrophilic and dissociative properties of degradation products
JP5337303B2 (en) Diagnostic method and apparatus for oil-filled electrical equipment
Okabe et al. Diagnosis on increase in electrostatic charging tendency of mineral insulating oil for power transformers due to aging
JP5329008B1 (en) Diagnosis and maintenance methods for oil-filled electrical equipment
WO2012081073A1 (en) Method for testing of electric insulating oil, method for treatment of electric insulating oil, and method for maintenance of oil-filled electric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120509

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4994899

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250