JP6831161B2 - Conductive materials for electronic components such as connectors and their manufacturing methods - Google Patents

Conductive materials for electronic components such as connectors and their manufacturing methods Download PDF

Info

Publication number
JP6831161B2
JP6831161B2 JP2018169291A JP2018169291A JP6831161B2 JP 6831161 B2 JP6831161 B2 JP 6831161B2 JP 2018169291 A JP2018169291 A JP 2018169291A JP 2018169291 A JP2018169291 A JP 2018169291A JP 6831161 B2 JP6831161 B2 JP 6831161B2
Authority
JP
Japan
Prior art keywords
layer
plating
intermetallic compound
base material
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018169291A
Other languages
Japanese (ja)
Other versions
JP2020041188A (en
Inventor
弘樹 林
弘樹 林
直宏 高稲
直宏 高稲
Original Assignee
株式会社高松メッキ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社高松メッキ filed Critical 株式会社高松メッキ
Priority to JP2018169291A priority Critical patent/JP6831161B2/en
Publication of JP2020041188A publication Critical patent/JP2020041188A/en
Application granted granted Critical
Publication of JP6831161B2 publication Critical patent/JP6831161B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、使用時に篏合を伴うコネクタ等の電子部品用導電材料及びその製造方法に関する。 The present invention relates to a conductive material for electronic parts such as a connector that is combined when used, and a method for manufacturing the same.

自動車等の電気配線の接続に使用されるSnめっきを施したコネクタ等の電子部品用導電材料において、一般的に要求されることは次のとおりである。
・摩擦係数が低い(コネクタ挿入力の低減)
・良好なはんだ濡れ性を有する
・接触抵抗が安定している(接続信頼性が高い。例えば、160℃‐120h 加熱後も安定)
・微摺動摩耗性に優れる
・ウイスカが発生し難い
The following are generally required for conductive materials for electronic components such as Sn-plated connectors used for connecting electrical wiring of automobiles and the like.
・ Low coefficient of friction (reduction of connector insertion force)
-Has good solder wettability-Stable contact resistance (high connection reliability. For example, stable even after heating at 160 ° C-120h)
・ Excellent fine sliding wear resistance ・ Whiskers are less likely to occur

具体的に説明すると、自動車や民生機器の接続に使用されるコネクタでは、コストや電気的特性の観点からSnめっきが多用されている。その中で、接続信頼性を確保し向上させるためには、Snめっきの厚さの増加や電気接点部の接圧の増加が有効であるが、こうした場合に、他方では、篏合時の挿入力の増加を招くことで作業性が低下することや、Snめっきの変形や掘り起しによる電気的接続の劣化が生じることなどが問題となっている。いずれも、主として最表面のSn被覆層の問題として提起されている(特許文献1,2)。 Specifically, Sn plating is often used in connectors used for connecting automobiles and consumer devices from the viewpoint of cost and electrical characteristics. Among them, in order to secure and improve the connection reliability, it is effective to increase the thickness of Sn plating and the contact pressure of the electrical contact part, but in such a case, on the other hand, insertion at the time of integration. There are problems such as a decrease in workability due to an increase in force and a deterioration of electrical connection due to deformation of Sn plating and digging. Both have been raised mainly as problems of the outermost Sn coating layer (Patent Documents 1 and 2).

加えて、Snめっき材料をコネクタとして用いるにあたり、「はんだ濡れ性が良好であること」、「接触抵抗が安定していること」は必須となる特性である。特に接触抵抗に関しては、微摺動摩耗(一般的なSnめっきにおいて、自動車等の振動によって引き起こされる摩耗)にて生じる酸化摩耗粉による接触抵抗上昇も解決すべき課題となる。 In addition, when using the Sn plating material as a connector, "good solder wettability" and "stable contact resistance" are indispensable characteristics. In particular, regarding contact resistance, an increase in contact resistance due to oxidative wear powder caused by fine sliding wear (wear caused by vibration of an automobile or the like in general Sn plating) is also an issue to be solved.

特許第4503620号(特開2007‐100220)Japanese Patent No. 4503620 (Japanese Patent Laid-Open No. 2007-100220) 特開2016‐211031JP 2016-21031

特許文献1は、Cu合金板条からなる母材Aの表面に、Cu‐Sn合金被覆層YとSn被覆層Xがこの順に形成された導電材料を提示するものであるが(図4)、次の通り問題があった。 Patent Document 1 presents a conductive material in which Cu—Sn alloy coating layer Y and Sn coating layer X are formed in this order on the surface of a base material A made of Cu alloy strips (FIG. 4). There was a problem as follows.

(1)表面に露出したCu‐Sn合金被覆層Yが酸化し、はんだ濡れ性が低下し、接触抵抗が上昇する。ちなみに、Snの酸化ならば濡れ性および接触抵抗に大きな影響を与えない。
(2)Cuめっき(またはCu材)とSnめっきの加熱によりCu‐Sn金属間化合物を形成してCu−Sn合金被覆層とするため、合金層及び表層のSn被覆層の制御が非常に難しい。Sn被覆層が厚くなった場合、摩擦係数が上昇し、Sn被覆層が薄くなった場合、はんだが濡れず接触抵抗が上昇するためである。
(1) The Cu—Sn alloy coating layer Y exposed on the surface is oxidized, the solder wettability is lowered, and the contact resistance is increased. By the way, the oxidation of Sn does not have a great influence on the wettability and contact resistance.
(2) Since a Cu-Sn intermetallic compound is formed by heating Cu plating (or Cu material) and Sn plating to form a Cu-Sn alloy coating layer, it is very difficult to control the Sn coating layer of the alloy layer and the surface layer. .. This is because when the Sn coating layer becomes thick, the friction coefficient increases, and when the Sn coating layer becomes thin, the solder does not get wet and the contact resistance increases.

特許文献2は、銅または銅合金からなる基材10上に、Cu‐Sn合金12aとSn12bが混在したSn‐Cuめっき層12を形成するもので、最表面のSn層14は電気めっきにより形成されるが(図5)、次のような問題があった。 Patent Document 2 forms a Sn-Cu plating layer 12 in which Cu—Sn alloy 12a and Sn12b are mixed on a base material 10 made of copper or a copper alloy, and the outermost Sn layer 14 is formed by electroplating. However, there were the following problems (Fig. 5).

(1)Snが溶融凝固処理されておらず結晶粒界が多数存在することに加え、Sn‐Cuめっき層が加熱処理されていないため、Sn‐Cuめっき層内の合金状態が安定していない。そのため、経時変化および加熱によって、Snめっきの結晶粒界に沿って金属間化合物が成長し、それが最表面に達し、酸化する。結果として、はんだ濡れ性が低下し、接触抵抗が上昇する。 (1) Sn is not melt-solidified and has many grain boundaries, and the Sn—Cu plating layer is not heat-treated, so that the alloy state in the Sn—Cu plating layer is not stable. .. Therefore, due to aging and heating, the intermetallic compound grows along the grain boundaries of Sn plating, reaches the outermost surface, and oxidizes. As a result, the solder wettability decreases and the contact resistance increases.

この発明は、上記のような実情に鑑みて、CuまたはCu合金基材を母材としてその最表面にSn表層を設けた電子部品用導電材料において、Sn表層が加熱や層環境の変化にもかかわらず安定して機能する電子部品用導電材料及びその製造方法を提供することを課題とした。 In view of the above circumstances, the present invention is a conductive material for electronic components in which a Cu or Cu alloy base material is used as a base material and a Sn surface layer is provided on the outermost surface thereof, and the Sn surface layer is subject to heating and changes in the layer environment. An object of the present invention is to provide a conductive material for electronic parts that functions stably regardless of the above and a method for producing the same.

上記の課題を解決するために、この発明は、鋭意研究を重ねた結果知見を得たことによるもので、CuまたはCu合金基材を母材として最表面にSn表層を設けた電子部品用導電材料において、該表層がSnめっき層を一旦溶融し凝固してなるSn単独の凝固層として形成され、その下地の下層は、SnとCuの総量に対するCuの含有量が10.0〜54.5at%であり、SnとCuSn金属間化合物が混在した層に形成してあって、さらに、母材と該混在層との間に拡散防止のNi層を設けたことを特徴としている。 In order to solve the above problems, the present invention has been obtained as a result of intensive research, and is conductive for electronic parts having a Cu or Cu alloy base material as a base material and a Sn surface layer on the outermost surface. In the material, the surface layer is formed as a solidified layer of Sn alone formed by temporarily melting and solidifying the Sn plating layer, and the lower layer of the base layer has a Cu content of 10.0 to 54.5 at relative to the total amount of Sn and Cu. %, Which is formed in a layer in which Sn and a Cu 6 Sn 5 intermetallic compound are mixed, and further, a diffusion-preventing Ni layer is provided between the base material and the mixed layer.

また、この発明は、CuまたはCu合金基材を母材として最表面にSn表層を設けた電子部品用導電材料の製造方法において、母材の上方部に層厚が0.3〜5.0μmかつSnとCuの総量に対するCuの含有量が10.0〜54.5at%であるSn‐Cuめっきを施し、その上に層厚0.2〜0.8μmのSnめっきを施した後、溶融し冷却により凝固させることによって、前記Sn‐Cuめっき層をCuSn金属間化合物とSnが混在した層とするとともに、Sn溶融凝固層を前記Sn表層として形成することを特徴とする電子部品用導電材料の製造方法を提供するものである。 Further, the present invention relates to a method for producing a conductive material for electronic parts in which a Cu or Cu alloy base material is used as a base material and a Sn surface layer is provided on the outermost surface, and the layer thickness is 0.3 to 5.0 μm above the base material. Then, Sn-Cu plating in which the Cu content is 10.0 to 54.5 at% with respect to the total amount of Sn and Cu is applied, and Sn plating having a layer thickness of 0.2 to 0.8 μm is applied thereto, and then melted. An electronic component characterized in that the Sn-Cu plating layer is formed as a layer in which a Cu 6 Sn 5 intermetallic compound and Sn are mixed, and the Sn melt-solidified layer is formed as the Sn surface layer by solidifying by cooling. It provides a method for producing a conductive material for copper.

電子部品用導電材料及びその製造方法を上記のように構成したため、これによると、最表層がSn溶融凝固単独層であって、酸化されてもSn酸化物のみとなる。Sn酸化物はCuやCu‐Sn系酸化物と比較して、電気比抵抗が小さい、高温環境下でも厚く成長し難い、等の特性を持ち、接触抵抗およびはんだ濡れ性に影響を与えにくく、それらの良好な状態が保たれる。また、最表層の下地層は、CuSn金属間化合物とSnとのみで構成され、リフロー処理後であり、200℃以下の使用環境を想定した場合、状態が変化しない。更に、CuSn金属間化合物の硬度がSnと比較して高いため、最表層のSn溶融凝固単独層の下地として支持が確実であり、これで最表層を薄くすることが許容される結果、篏合時の摩擦係数を低下できる。 Since the conductive material for electronic parts and the method for producing the same are configured as described above, according to this, the outermost layer is a Sn melt-solidified single layer, and even if it is oxidized, only Sn oxide is formed. Compared with Cu and Cu-Sn oxides, Sn oxides have characteristics such as low electrical resistivity, thick growth even in a high temperature environment, and are less likely to affect contact resistance and solder wettability. Their good condition is maintained. Further, the underlying layer of the outermost layer is composed of only Cu 6 Sn 5 intermetallic compound and Sn, and after the reflow treatment, the state does not change when the usage environment of 200 ° C. or lower is assumed. Further, since the hardness of the Cu 6 Sn 5 intermetallic compound is higher than that of Sn, it is surely supported as a base for the Sn melt-solidification single layer of the outermost layer, and it is permissible to make the outermost layer thinner. , The coefficient of friction at the time of merging can be reduced.

特に、請求項3に関しては、溶融加熱が、「Snめっきを溶融凝固層とすること」のほかに、「Sn‐Cuめっき層中の合金の状態を安定させること」も目的としている。これについては、Sn‐Cuめっき層を溶融加熱処理しない場合、Sn‐Cuめっき層中には「Cu」,「Sn」,「CuSn金属間化合物」,「CuSn金属間化合物」の4種類が存在することになるが、溶融加熱処理を行った場合、急速な金属の拡散反応が生じ、「Sn」と「CuSn金属間化合物」の2種類のみの安定した構成が得られる。 In particular, with respect to claim 3, the purpose of melt heating is not only to "make Sn plating a melt solidified layer" but also to "stabilize the state of the alloy in the Sn—Cu plating layer". Regarding this, when the Sn-Cu plating layer is not melt-heated, "Cu", "Sn", "Cu 3 Sn intermetallic compound", and "Cu 6 Sn 5 intermetallic compound" are contained in the Sn-Cu plating layer. However, when the melt heat treatment is performed, a rapid metal diffusion reaction occurs, and only two types of "Sn" and "Cu 6 Sn 5 intermetallic compound" have a stable configuration. can get.

以上説明したように、この発明によれば、CuまたはCu合金基材を母材としてその最表面にSn表層を設けた電子部品用導電材料について、最表面が酸化の影響を受けることが少なく、良好なはんだ濡れ性および接触抵抗を確保でき、また、Sn最表層が下地の硬いCuSn金属間化合物によって支持され、これで安定化するためSn最表層を薄くして摩擦係数の低下を図ることができ、また、溶融凝固により最終表面が平滑化するので、これでも摩擦係数の低減が図られるなど、Sn表層の安定した構成を得る簡単な方法によっても、数々の優れた特性を発揮することができる。 As described above, according to the present invention, the outermost surface of a conductive material for electronic parts, which is made of a Cu or Cu alloy base material as a base material and has a Sn surface layer on the outermost surface, is less affected by oxidation. Good solder wettability and contact resistance can be ensured, and the Sn outermost layer is supported by a hard underlying Cu 6 Sn 5 intermetallic compound, which stabilizes the Sn outermost layer by thinning it to reduce the friction coefficient. In addition, since the final surface is smoothed by melt solidification, the friction coefficient can still be reduced, and many excellent characteristics are exhibited even by a simple method of obtaining a stable structure of the Sn surface layer. can do.

この発明の説明のため、実施例、比較例の対象として試験片を縦にとり、横に各構成をとって例示した表型式の説明用の図面である。For the purpose of explaining the present invention, the test pieces are taken vertically as objects of Examples and Comparative Examples, and each configuration is taken horizontally to illustrate the table type. 図1の実施例、比較例と同じ縦の配列において、前記基本的構成に対応して評価結果を横にとって表示した同じく表型式の説明用の図面である。In the same vertical arrangement as in the examples and comparative examples of FIG. 1, the evaluation results are displayed horizontally corresponding to the basic configuration, and this is a drawing for explaining the same table type. この発明の一実施例を示すコネクタ等の電子部品用導電材料の断面説明図である。It is sectional drawing explanatory drawing of the conductive material for electronic parts such as a connector which shows one Example of this invention. 特許文献1に示す図3に対応する従来例の断面説明図である。It is sectional drawing of the conventional example corresponding to FIG. 3 shown in Patent Document 1. FIG. 特許文献2に示す図3に対応する従来例の断面説明図である。It is sectional drawing of the conventional example corresponding to FIG. 3 shown in Patent Document 2. FIG.

この発明においては、CuまたはCu合金基材を母材1としてその最表面にSn表層を設けた電子部品用導電材料において、該表層のSnめっき層を一旦溶融してなるSn単独の凝固層5(層厚0.2〜0.8μm)として形成し、その下層については、Sn(4‐1)とCuSn金属間化合物(4‐2)が混在した層(Cu含有率として10.0〜54.5at% 層厚0.3〜5.0μm)を形成したものであって、さらに、母材1と混在層との間には、Ni層2(層厚0.2〜3.0μm)とその上層としてのCu‐Ni‐Sn合金層3が設けられる。 In the present invention, in a conductive material for electronic parts in which a Cu or Cu alloy base material is used as a base material 1 and a Sn surface layer is provided on the outermost surface thereof, a solidified layer 5 of Sn alone formed by temporarily melting the Sn plating layer of the surface layer. It was formed as (layer thickness 0.2 to 0.8 μm), and the lower layer was a layer in which Sn (4-1) and Cu 6 Sn 5 intermetallic compound (4-2) were mixed (Cu content was 10. 0 to 54.5 at% layer thickness 0.3 to 5.0 μm) was formed, and further, Ni layer 2 (layer thickness 0.2 to 3.) was formed between the base material 1 and the mixed layer. 0 μm) and a Cu—Ni—Sn alloy layer 3 as an upper layer thereof are provided.

実施例の図面は、電子部品用導電材料とその製造方法の発明とが共に具備する構成となっており,図3につき合わせて説明する。いずれにしても、母材1の上に幾つかのめっきが順次施されて製造される。なお、この層形成の前提となるめっき工程は次の通りである。
(1)アルカリ電解脱脂
↓(水洗い)
(2)酸活性
↓(水洗い)
(3)Niめっき
↓(水洗い)
(4)Sn‐Cuめっき
↓(水洗い)
(5)Snめっき
↓(水洗い)
(6)乾燥

(7)リフロー(溶融凝固)
※(1)(2)は前処理
The drawings of the examples have a configuration in which the conductive material for electronic parts and the invention of the manufacturing method thereof are both provided, and will be described together with reference to FIG. In any case, it is manufactured by sequentially applying several platings on the base material 1. The plating process that is a prerequisite for this layer formation is as follows.
(1) Alkaline electrolytic degreasing ↓ (washing with water)
(2) Acid activity ↓ (washing with water)
(3) Ni plating ↓ (washing with water)
(4) Sn-Cu plating ↓ (washing with water)
(5) Sn plating ↓ (washing with water)
(6) Drying ↓
(7) Reflow (molten solidification)
* (1) and (2) are pretreatment

次に、図3に基づいて各層を説明する。
「Sn溶融凝固層5」(最表層)について
(1)Snの単独めっきからなる。金属間化合物は存在しない。最表層がSn単独層であれば酸化物はSn酸化物のみとなる。Sn酸化物は、接触抵抗およびはんだ濡れ性に影響を与えにくく、接触抵抗およびはんだ濡れ性の良好な状態が保たれる。
ちなみに、最表層にCuまたはNi(の酸化物)が存在した場合、はんだ濡れ性が低下し、接触抵抗が上昇する。
(2)Sn溶融凝固層5は、Snをめっき溶融させることで形成される。
(3)溶融凝固により最終表面が平滑化する結果、摩擦係数の低減が図られる。
(4)しかし、Snめっきの厚さが0.2μm未満の場合、経時変化および加熱によって最表層にCu‐Sn金属間化合物が一定の割合で露出する。その結果Cu‐Sn金属間化合物の酸化によってはんだ濡れ性が悪くなる。
(5)Snめっきの厚さが0.8μmを超える場合、Sn層が厚く摩擦係数が高くなる。
Next, each layer will be described with reference to FIG.
About "Sn melt solidification layer 5" (outermost layer) (1) It consists of single plating of Sn. There are no intermetallic compounds. If the outermost layer is a Sn single layer, the oxide is only Sn oxide. The Sn oxide does not easily affect the contact resistance and the solder wettability, and the good contact resistance and the solder wettability are maintained.
By the way, when Cu or Ni (oxide) is present on the outermost surface layer, the solder wettability decreases and the contact resistance increases.
(2) The Sn melt solidification layer 5 is formed by plating and melting Sn.
(3) As a result of smoothing the final surface by melt solidification, the friction coefficient can be reduced.
(4) However, when the Sn plating thickness is less than 0.2 μm, the Cu-Sn intermetallic compound is exposed to the outermost layer at a constant ratio due to aging and heating. As a result, the solder wettability deteriorates due to the oxidation of the Cu-Sn intermetallic compound.
(5) When the thickness of Sn plating exceeds 0.8 μm, the Sn layer becomes thick and the friction coefficient becomes high.

「Sn(4‐1)と、CuSn金属間化合物(4‐2)が混在した層」について
(1)混在層は、Cu含有量がCuSn金属間化合物の割合である54.5at%より少ない場合、SnとCuSn金属間化合物のみが共存する状態となる。Cu含有量がCuSn金属間化合物の割合である54.5at%を超える場合、CuSn金属間化合物または単独Cuが存在することとなる。経時変化および加熱環境を考えた場合、Sn単独層である最表層のSn溶融凝固層5と混在層中のCuSn金属間化合物または単独Cuが反応し、最表層にCu‐Sn金属間化合物が生成され、はんだ濡れ性が低下し、接触抵抗が上昇する。つまり、CuがCuSn金属間化合物の割合よりも多い環境では、Sn単独層は存在しえない。最表層にSn単独層を残存させることを前提に考えた場合、CuSn金属間化合物の割合に対し、Sn過多な環境が必要である。
Regarding "a layer in which Sn (4-1) and a Cu 6 Sn 5 intermetallic compound (4-2) are mixed" (1) The mixed layer has a Cu content of the ratio of the Cu 6 Sn 5 intermetallic compound 54. If it is less than .5 at%, only Sn and Cu 6 Sn 5 intermetallic compound coexist. When the Cu content exceeds 54.5 at%, which is the ratio of the Cu 6 Sn 5 intermetallic compound, the Cu 3 Sn 5 intermetallic compound or the single Cu is present. Considering the change over time and the heating environment, the Sn melt-solidified layer 5 on the outermost surface, which is the Sn single layer, reacts with the Cu 3 Sn intermetallic compound or the single Cu in the mixed layer, and the Cu-Sn intermetallic compound on the outermost layer. Is generated, the solder wettability decreases, and the contact resistance increases. That is, in an environment where Cu is greater than the proportion of Cu 6 Sn 5 intermetallic compounds, the Sn single layer cannot exist. Assuming that the Sn single layer remains on the outermost layer, an environment in which Sn is excessive with respect to the ratio of the Cu 6 Sn 5 intermetallic compound is required.

(2)Cu含有量が10.0%未満の場合、生成されるCuSn金属間化合物の量が十分ではなく、下層のNiと混在層内のSnによって生じた金属間化合物が最表層まで達し、はんだ濡れ性が低下し、接触抵抗が上昇する。Sn‐Cuめっきにて処理を行った場合、混在層はCu‐Sn金属間化合物だけでなく、Sn単独となる箇所も存在するためである。Cu‐Sn金属間化合物は、Niの最表層への拡散防止層という役割も担っている。 (2) When the Cu content is less than 10.0%, the amount of Cu 6 Sn 5 intermetallic compound produced is not sufficient, and the intermetallic compound generated by Ni in the lower layer and Sn in the mixed layer is the outermost layer. The solder wettability is reduced and the contact resistance is increased. This is because when the treatment is performed by Sn-Cu plating, the mixed layer includes not only the Cu-Sn intermetallic compound but also Sn alone. The Cu-Sn intermetallic compound also plays a role of a diffusion prevention layer for the outermost layer of Ni.

(3)混在層は、「Cuめっき→Snめっき→リフロー」により形成するのではなく、「Sn‐Cuめっき→リフロー」にて形成する。前者の場合、CuとSnの界面からCu‐Sn金属間化合物が生成されるため、表層に目的とする量のSnめっきを残存させることは非常に難しい。それはSnとCuの量および加熱条件を細かく制御する必要があるためである。更に、リフロー処理によって表層に残存するSn層を正確に制御したとしても、リフロー後にCu層が残存している場合、経時変化および加熱によってCu‐Sn金属間化合物が成長し、Sn層が消失する。電気めっきでめっき処理を行う上で、製品全域においてそのバランスを制御することは不可能に近い。 (3) The mixed layer is not formed by "Cu plating-> Sn plating-> reflow", but is formed by "Sn-Cu plating-> reflow". In the former case, since a Cu-Sn intermetallic compound is generated from the interface between Cu and Sn, it is very difficult to leave the desired amount of Sn plating on the surface layer. This is because it is necessary to finely control the amounts of Sn and Cu and the heating conditions. Further, even if the Sn layer remaining on the surface layer is accurately controlled by the reflow treatment, if the Cu layer remains after the reflow, the Cu-Sn intermetallic compound grows due to aging and heating, and the Sn layer disappears. .. It is almost impossible to control the balance of the entire product when performing the plating process by electroplating.

Sn‐Cuめっきとした場合、SnとCuの比率やSn‐Cuめっきの厚さにバラつきが生じた際にも、SnとCuを分散させた層としてめっきを行うため、Cu‐Sn金属間化合物は混在層中に均等に配置される。表層のSnめっきがそのままの厚みで残存することになり、制御が大変容易である。 In the case of Sn-Cu plating, even if the ratio of Sn and Cu and the thickness of Sn-Cu plating vary, plating is performed as a layer in which Sn and Cu are dispersed, so that a Cu-Sn intermetallic compound is used. Are evenly distributed in the mixed layer. The Sn plating on the surface layer remains with the same thickness, which is very easy to control.

Sn‐Cuめっきの厚さが0.3μm未満の場合、生成されるCu‐Sn金属間化合物の量が十分ではなく、下層のNiと混在層内のSnによって生じた金属間化合物が最表層まで達し、接触抵抗が上昇しはんだ濡れ性が低下する。
Sn‐Cuめっきの厚さが5.0μmを超える場合、生産効率が悪い。加えて、その金属間化合物は硬度が高いため材料としての加工性が低下する。
When the thickness of Sn-Cu plating is less than 0.3 μm, the amount of Cu-Sn intermetallic compound produced is not sufficient, and the intermetallic compound generated by Ni in the lower layer and Sn in the mixed layer reaches the outermost layer. When it reaches, the contact resistance increases and the solder wettability decreases.
If the thickness of Sn-Cu plating exceeds 5.0 μm, the production efficiency is poor. In addition, since the intermetallic compound has a high hardness, the processability as a material is lowered.

「Ni層2」について
Niめっきの厚さが0.2μm未満の場合、拡散防止層としての役割を果たせない。Niめっきの厚さが3.0μmを超える場合、生産効率が悪い。加えて硬度が高いため、材料としての加工性が低下する。
About "Ni layer 2" When the thickness of Ni plating is less than 0.2 μm, it cannot play a role as a diffusion prevention layer. If the thickness of Ni plating exceeds 3.0 μm, the production efficiency is poor. In addition, since the hardness is high, the workability as a material is lowered.

図1および図2は、被膜構成の例示となるもので、実施例1〜実施例7は、本発明の要件を満たす被膜構成である。 1 and 2 are examples of a coating structure, and Examples 1 to 7 are coating configurations that satisfy the requirements of the present invention.

図1に示す試験片作成にあたり、母材にはりん青銅(C5210)を用いた。アルカリ電解脱脂は30秒、酸活性は5Vol%硫酸を用い30秒とし、Niめっき、Sn‐Cuめっき、Snめっきは目的とする厚さおよび金属比率が得られるように電流値および時間を調整した。リフロー処理は300℃にて5秒間とした。また、各工程間の水洗は10秒とした。 Phosphor bronze (C5210) was used as the base material in preparing the test piece shown in FIG. Alkaline electrolytic degreasing was performed for 30 seconds, acid activity was set to 30 seconds using 5 Vol% sulfuric acid, and the current value and time were adjusted for Ni plating, Sn-Cu plating, and Sn plating so that the desired thickness and metal ratio could be obtained. .. The reflow treatment was performed at 300 ° C. for 5 seconds. In addition, washing with water between each step was set to 10 seconds.

図2に示すように、実施例1〜実施例7では、摩擦係数、はんだ濡れ性、接触抵抗のいずれについても優れた特性が得られた。また、実施例2および実施例6において、微摺動摩耗特性においても、一般的に用いられている被膜構成である比較例1に対し、接触抵抗が10mΩを超えるまでの摺動回数が倍程度となっており、良好な特性が得られたことを示す。 As shown in FIG. 2, in Examples 1 to 7, excellent characteristics were obtained in terms of friction coefficient, solder wettability, and contact resistance. Further, in Examples 2 and 6, the number of times of sliding until the contact resistance exceeds 10 mΩ is about twice as much as that of Comparative Example 1, which is a generally used coating structure, in terms of fine sliding wear characteristics. It indicates that good characteristics were obtained.

一方、比較例1では、最表層のSnめっきが厚く、摩擦係数が高くなった。また、熱処理480hでは、Sn中へのNi拡散防止のバリア層が存在しないため、接触抵抗が高くなった。
比較例2では、ブランクは最表層に残存するSnめっきの厚さを制御しているため、摩擦係数、はんだ濡れ性、接触抵抗について良好な結果が得られているものの、熱処理後に接触抵抗が高くなった。
比較例3では、めっき後に溶融凝固処理を実施していないため、経時変化および加熱によって、はんだ濡れ性が悪くなり熱処理480h後の接触抵抗が高くなった。
On the other hand, in Comparative Example 1, the Sn plating on the outermost layer was thick and the friction coefficient was high. Further, in the heat treatment 480h, the contact resistance became high because the barrier layer for preventing the diffusion of Ni into Sn did not exist.
In Comparative Example 2, since the blank controls the thickness of the Sn plating remaining on the outermost layer, good results are obtained in terms of friction coefficient, solder wettability, and contact resistance, but the contact resistance is high after the heat treatment. became.
In Comparative Example 3, since the melt solidification treatment was not performed after plating, the solder wettability deteriorated due to aging and heating, and the contact resistance after 480 hours of heat treatment increased.

比較例4では、最表層のSnめっきが薄く、はんだ濡れ性が悪くなった。
比較例5では、最表層のSnめっきが厚く、摩擦係数が高くなった。
比較例6では、Sn‐Cuめっきが薄く、熱処理後の接触抵抗が高くなった。
比較例7では、Niめっきが薄く、熱処理480h後の接触抵抗が高くなった。
比較例8では、Sn‐Cuめっき中のCu含有率が低く、熱処理後の接触抵抗が高くなった。
比較例9では、Sn‐Cuめっきの中のCu含有率が高く、はんだ濡れ性が悪くなり接触抵抗が高くなった。
In Comparative Example 4, the Sn plating on the outermost layer was thin, and the solder wettability was deteriorated.
In Comparative Example 5, the Sn plating on the outermost layer was thick and the friction coefficient was high.
In Comparative Example 6, the Sn—Cu plating was thin and the contact resistance after the heat treatment was high.
In Comparative Example 7, the Ni plating was thin and the contact resistance after 480 hours of heat treatment was high.
In Comparative Example 8, the Cu content in Sn-Cu plating was low, and the contact resistance after the heat treatment was high.
In Comparative Example 9, the Cu content in the Sn-Cu plating was high, the solder wettability was poor, and the contact resistance was high.

以上のような表式図中の試験片に対する各種の測定方法については、次の通りである。 The various measurement methods for the test pieces in the above-mentioned schematic diagram are as follows.

<めっき厚測定方法>
集束イオンビーム加工観察装置 JIB-4000(日本電子(株))を用いて試験片を板厚方向に切断し、露出した断面を付属の走査イオン顕微鏡により10000倍で観察した。
<合金層中のCu含有量測定方法>
Snめっき前の試験片に対し、エネルギー分散型X線分析装置JED-2300(日本電子(株))を用いて定量分析を実施した。
<摩擦係数測定試験>
平板状試験片(雄端子としての試験片)および内径φ1mmの半球状加工を施したインデント付き試験片(雌端子としての試験片)を用いて評価を実施した。まず、平板状試験片を水平なステージ上に固定し、その試験片にインデント付き試験片のインデント部が接触するよう、上方にインデント付き試験片を設置した。続いて、インデント試験片に300gfの荷重をかけて平板状試験片に押し付けた状態で、平板状試験片を固定したステージを水平方向に80mm/minの速度で移動させ、摺動距離20mmまでの平均摩擦力を測定した。測定した摩擦力より摩擦係数を算出した。
<はんだ濡れ性試験>
平板状試験片に対し打ち抜き加工を行い、3mm×15mmの試験片を作成した。試験装置はソルダーチッカSAT5200型(レスカ(株))を用い、JISC60068‐2‐54に基づいて試験を実施した。
<接触抵抗測定試験>
平板状試験片に対し、熱処理を行っていないもの、大気中にて160℃×120hの熱処理を行ったもの、大気中にて160℃×480hの熱処理を行ったもの、を作成した。試験装置は、電気接点シミュレータCRS‐112‐MU型((株)山崎精機研究所)を用いて評価を実施した。四端子法により、荷重100gfの条件で測定した。
<微摺動摩耗試験>
精密摺動試験装置CRS−G2050型((株)山崎精機研究所)を用い、平板状試験片(雄端子としての試験片)および内径φ1mmの半球状加工を施したインデント付き試験片(雌端子としての試験片)を用いて評価を実施した。荷重3N 振幅0.05mm、速度0.1mm/secとして、10000往復まで繰り返し振動させた際の接触抵抗の変化を四端子法により測定した。
<Plating thickness measurement method>
The test piece was cut in the plate thickness direction using a focused ion beam processing observation device JIB-4000 (JEOL Ltd.), and the exposed cross section was observed at 10000 times with the attached scanning ion microscope.
<Method for measuring Cu content in alloy layer>
Quantitative analysis was performed on the test piece before Sn plating using the energy dispersive X-ray analyzer JED-2300 (JEOL Ltd.).
<Friction coefficient measurement test>
Evaluation was carried out using a flat plate-shaped test piece (test piece as a male terminal) and an indented test piece (test piece as a female terminal) having a hemispherical shape with an inner diameter of φ1 mm. First, the flat plate-shaped test piece was fixed on a horizontal stage, and the indented test piece was installed above the test piece so that the indented portion of the indented test piece was in contact with the test piece. Subsequently, with a load of 300 gf applied to the indented test piece and pressed against the flat plate-shaped test piece, the stage on which the flat plate-shaped test piece is fixed is moved horizontally at a speed of 80 mm / min to a sliding distance of up to 20 mm. The average frictional force was measured. The friction coefficient was calculated from the measured frictional force.
<Solder wettability test>
A flat plate-shaped test piece was punched to prepare a 3 mm × 15 mm test piece. The test apparatus was Solder Chica SAT5200 (Reska Co., Ltd.), and the test was carried out based on JISC6000068-2-54.
<Contact resistance measurement test>
The flat plate-shaped test piece was prepared, one that was not heat-treated, one that was heat-treated at 160 ° C. × 120 h in the air, and one that was heat-treated at 160 ° C. × 480 h in the air. The test device was evaluated using an electrical contact simulator CRS-112-MU type (Yamasaki Seiki Laboratory Co., Ltd.). It was measured by the four-terminal method under the condition of a load of 100 gf.
<Slight sliding wear test>
Using the precision sliding test device CRS-G2050 (Yamasaki Seiki Laboratory Co., Ltd.), a flat plate-shaped test piece (test piece as a male terminal) and an indented test piece (female terminal) with an inner diameter of φ1 mm. The evaluation was carried out using the test piece). The change in contact resistance when repeatedly vibrated up to 10,000 reciprocations was measured by the four-terminal method under a load of 3N amplitude of 0.05 mm and a speed of 0.1 mm / sec.

1 母材
2 Ni層
3 Cu‐Ni‐Sn合金層
4 混在層
4‐1 Sn
4‐2 CuSn金属間化合物
5 Sn溶融凝固層
1 Base material 2 Ni layer 3 Cu-Ni-Sn alloy layer 4 Mixed layer 4-1 Sn
4-2 Cu 6 Sn 5 Intermetallic compound 5 Sn Molten solidification layer

Claims (3)

CuまたはCu合金基材を母材として最表面にSn表層を設けた電子部品用導電材料において、該表層がSnめっき層を一旦溶融してなる厚さ0.2〜0.8μmのSn単独の凝固層として形成され、その下地の下層は、SnとCuの総量に対するCuの含有量が10.0〜54.5at%であり、SnとCuSn金属間化合物が混在した層厚0.3〜5.0μmの混在層として形成してあって、さらに、母材と該混在層との間に層厚が0.2〜3.0μmのNi層を設け
前記混在層は、断面視にて、Cu Sn 金属間化合物と、Cu Sn 金属間化合物に囲まれたSnと、を含む、
ことを特徴とする電子部品用導電材料。
In a conductive material for electronic parts in which a Cu or Cu alloy base material is used as a base material and a Sn surface layer is provided on the outermost surface, Sn alone having a thickness of 0.2 to 0.8 μm is formed by temporarily melting the Sn plating layer on the surface layer. The lower layer formed as a solidified layer has a Cu content of 10.0 to 54.5 at% with respect to the total amount of Sn and Cu, and a layer thickness of a mixture of Sn and Cu 6 Sn 5 intermetallic compound is 0. It is formed as a mixed layer of 3 to 5.0 μm, and a Ni layer having a layer thickness of 0.2 to 3.0 μm is further provided between the base material and the mixed layer .
The mixed layer contains, in cross-sectional view, a Cu 6 Sn 5 intermetallic compound and a Sn surrounded by a Cu 6 Sn 5 intermetallic compound.
A conductive material for electronic components.
前記Ni層と混在層との間にCu‐Ni‐Sn合金層を設けたことを特徴とする請求項1記載の電子部品用導電材料。 The conductive material for electronic components according to claim 1, wherein a Cu—Ni—Sn alloy layer is provided between the Ni layer and the mixed layer. CuまたはCu合金基材を母材として最表面にSn表層を設けた電子部品用導電材料の製造方法において、母材の上に、層厚が0.2〜3.0μmのNiめっきによりNi層を形成し、Ni層を形成した後、母材の上方部に層厚が0.3〜5.0μmかつSnとCuの総量に対するCuの含有量が10.0〜54.5at%であるSn‐Cuめっきを施し、その上に層厚0.2〜0.8μmのSnめっきを施した後、溶融し冷却により凝固させることによって、前記Sn‐Cuめっき層をCuSn金属間化合物とSnが混在した層とするとともに、Sn溶融凝固層を前記Sn表層として形成することを特徴とする電子部品用導電材料の製造方法。 In a method for manufacturing a conductive material for electronic parts in which a Cu or Cu alloy base material is used as a base material and a Sn surface layer is provided on the outermost surface, a Ni layer is formed on the base material by Ni plating having a layer thickness of 0.2 to 3.0 μm. After forming the Ni layer , the layer thickness is 0.3 to 5.0 μm and the Cu content is 10.0 to 54.5 at% of the total amount of Sn and Cu in the upper part of the base metal. -Cu plating is applied, Sn plating with a layer thickness of 0.2 to 0.8 μm is applied, and then melted and solidified by cooling to combine the Sn-Cu plated layer with a Cu 6 Sn 5 intermetallic compound. A method for producing a conductive material for electronic parts, which comprises forming a layer in which Sn is mixed and forming a Sn melt-solidified layer as the Sn surface layer.
JP2018169291A 2018-09-11 2018-09-11 Conductive materials for electronic components such as connectors and their manufacturing methods Active JP6831161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018169291A JP6831161B2 (en) 2018-09-11 2018-09-11 Conductive materials for electronic components such as connectors and their manufacturing methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018169291A JP6831161B2 (en) 2018-09-11 2018-09-11 Conductive materials for electronic components such as connectors and their manufacturing methods

Publications (2)

Publication Number Publication Date
JP2020041188A JP2020041188A (en) 2020-03-19
JP6831161B2 true JP6831161B2 (en) 2021-02-17

Family

ID=69798119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018169291A Active JP6831161B2 (en) 2018-09-11 2018-09-11 Conductive materials for electronic components such as connectors and their manufacturing methods

Country Status (1)

Country Link
JP (1) JP6831161B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063160B2 (en) * 2007-03-29 2012-10-31 株式会社神戸製鋼所 Copper alloy terminal with Sn plating and manufacturing method thereof
JP5101235B2 (en) * 2007-10-18 2012-12-19 Jx日鉱日石金属株式会社 Sn plating material for electronic parts and electronic parts
JP5419774B2 (en) * 2010-03-29 2014-02-19 株式会社神戸製鋼所 Copper or copper alloy sheet with Sn plating for mating type terminals
EP2703524A3 (en) * 2012-08-29 2014-11-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Sn-coated copper alloy strip having excellent heat resistance
JP6113674B2 (en) * 2014-02-13 2017-04-12 株式会社神戸製鋼所 Copper alloy strip with surface coating layer with excellent heat resistance
JP2016211031A (en) * 2015-05-07 2016-12-15 Dowaメタルテック株式会社 Sn-PLATED MATERIAL AND METHOD OF PRODUCING THE SAME

Also Published As

Publication number Publication date
JP2020041188A (en) 2020-03-19

Similar Documents

Publication Publication Date Title
KR102059693B1 (en) Tin-plated copper alloy terminal material with excellent insertion and discharge performance and method of manufacturing the same
JP4402132B2 (en) Reflow Sn plating material and electronic component using the same
KR102355331B1 (en) Tin-plated copper alloy terminal material and method for producing same
KR102028215B1 (en) Tin-plated copper alloy terminal member with outstanding insertion and removal characteristics
JP4653133B2 (en) Plating material and electric / electronic component using the plating material
JP2008223143A (en) Plated material and method for preparation thereof, and electric and electronic parts using the same
JP2010037629A (en) Conducting material for terminal and connector, and fitting-type connecting terminal
WO2007097338A1 (en) Plating material and electrical and electronic component using the plating material
JP5479789B2 (en) Metal materials for connectors
CN104752865A (en) Tin-plated Copper-alloy Terminal Material
JP2014208904A (en) Electroconductive material superior in resistance to fretting corrosion for connection component
JP3953169B2 (en) Manufacturing method of plating material for mating type connection terminal
JP2005126763A (en) Coating material, electric/electronic component using the same, rubber contact component using the same, and coating material manufacturing method
KR102156016B1 (en) Conductive material for connecting parts
JP3998731B2 (en) Manufacturing method of current-carrying member
JP2005353542A (en) Conductive covering material, manufacturing method thereof, and connector terminal or contact using the covering material
JP6831161B2 (en) Conductive materials for electronic components such as connectors and their manufacturing methods
JP2003213486A (en) Sn-COVERED MEMBER, AND MANUFACTURING METHOD THEREOF
JP6488070B2 (en) Terminal fitting
JP4560642B2 (en) Method for producing Sn-coated conductive material
KR101457321B1 (en) Sn PLATING MATERIAL
JP2004225070A (en) Sn ALLOY SOLDER PLATING MATERIAL AND FITTING TYPE CONNECTION TERMINAL USING THE SAME
KR102503365B1 (en) Plating material with excellent heat resistance and its manufacturing method
JP2008156668A (en) Method for setting thickness of tin-plating film
JP2021046595A (en) Pin terminal, connector, wire harness having connector and control unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210115

R150 Certificate of patent or registration of utility model

Ref document number: 6831161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250