JP6828425B2 - Power converter - Google Patents

Power converter Download PDF

Info

Publication number
JP6828425B2
JP6828425B2 JP2016251370A JP2016251370A JP6828425B2 JP 6828425 B2 JP6828425 B2 JP 6828425B2 JP 2016251370 A JP2016251370 A JP 2016251370A JP 2016251370 A JP2016251370 A JP 2016251370A JP 6828425 B2 JP6828425 B2 JP 6828425B2
Authority
JP
Japan
Prior art keywords
pressure
power conversion
phase
electrode side
side arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016251370A
Other languages
Japanese (ja)
Other versions
JP2018107888A (en
Inventor
航平 柏木
航平 柏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2016251370A priority Critical patent/JP6828425B2/en
Publication of JP2018107888A publication Critical patent/JP2018107888A/en
Application granted granted Critical
Publication of JP6828425B2 publication Critical patent/JP6828425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Electronic Switches (AREA)
  • Rectifiers (AREA)
  • Power Conversion In General (AREA)

Description

本発明の実施形態は、電力変換装置に関する。 Embodiments of the present invention relates to a power conversion device.

電力変換装置のインバータ回路あるいはチョッパセル回路は、絶縁ゲート型バイポーラトランジスタ(以下、IGBT:Insulated Gate Bipolar Transistorと称する)等のスイッチング機能を有する半導体素子を含む。複数の半導体素子(例えばIGBT)が1つのパッケージ内に収納されるマルチチップ半導体装置が知られている。マルチチップ半導体装置は、半田を用いて複数の半導体素子を接続し、全体を樹脂で固めたモジュール型と、2つの電極板を半導体素子の両面から圧接して複数の半導体素子を電気的に並列に接続するようにした圧接型を含む。圧接型のマルチチップ半導体装置(以下、単に圧接型半導体装置と称することもある)では、半導体素子が損傷すると、電極間が短絡した状態になる。 The inverter circuit or chopper cell circuit of the power converter includes a semiconductor element having a switching function such as an insulated gate bipolar transistor (hereinafter referred to as an IGBT: Insulated Gate Bipolar Transistor). A multi-chip semiconductor device in which a plurality of semiconductor elements (for example, IGBTs) are housed in one package is known. Multi-chip semiconductor devices are a module type in which a plurality of semiconductor elements are connected using solder and the whole is hardened with resin, and two electrode plates are pressure-welded from both sides of the semiconductor element to electrically parallelize the plurality of semiconductor elements. Includes a pressure welding type that is designed to connect to. In a pressure-welded multi-chip semiconductor device (hereinafter, may be simply referred to as a pressure-welded semiconductor device), when a semiconductor element is damaged, the electrodes are short-circuited.

特開2013−236004号公報Japanese Unexamined Patent Publication No. 2013-236004

圧接型マルチチップ半導体装置を用いた電力変換装置では、通常動作時、圧接型半導体装置に含まれる複数の半導体素子は全てがオンあるいはオフにされるため、圧接型半導体装置を流れる電流は各半導体素子に均等に分散される。 In a power conversion device using a pressure welding type multi-chip semiconductor device, all of the plurality of semiconductor elements included in the pressure welding type semiconductor device are turned on or off during normal operation, so that the current flowing through the pressure welding type semiconductor device is each semiconductor. It is evenly distributed in the elements.

しかし、圧接型半導体装置に含まれる半導体素子の少なくとも1つが故障し、電極間が短絡した状態になると、全てがオフにされる期間でも短絡故障した半導体素子はオフにならないため、短絡故障した半導体素子に電流が集中して流れる。このため、短絡故障した半導体素子の材料であるシリコンが昇華して気体となり、急激な内圧の増加を招き、圧接型半導体装置のパッケージが破損してしまうことがある。さらに、破損により発生する破片が電力変換装置内の他の周辺部品を破損することもある。この現象は、電力変換装置に適用される圧接型半導体装置に限らず、他の装置に適用される圧接型半導体装置にも同様に生じ得る。 However, if at least one of the semiconductor elements included in the pressure welding type semiconductor device fails and the electrodes are short-circuited, the short-circuited semiconductor element does not turn off even during the period when all of them are turned off. Current is concentrated and flows in the element. For this reason, silicon, which is a material for a semiconductor element that has suffered a short-circuit failure, sublimates into a gas, which causes a rapid increase in internal pressure and may damage the package of the pressure-welded semiconductor device. In addition, the debris generated by the breakage can damage other peripheral components in the power converter. This phenomenon can occur not only in the pressure-welding semiconductor device applied to the power conversion device but also in the pressure-welding semiconductor device applied to other devices.

本発明の目的は、圧接型半導体装置に含まれる半導体素子の短絡故障時に圧接型半導体装置の破損を防止することである。 An object of the present invention is to prevent damage to a pressure-welded semiconductor device in the event of a short-circuit failure of a semiconductor element included in the pressure-welding semiconductor device.

本発明の一観点によれば、それぞれが並列に接続されたスイッチング機能を有する複数の半導体素子からなり、直列に接続された2つの圧接型半導体装置と、直列に接続された前記2つの圧接型半導体装置と並列に接続されるコンデンサとからなる電力変換部と、前記2つの圧接型半導体装置を交互にオンにする駆動手段と、前記2つの圧接型半導体装置のいずれかの圧接型半導体装置の前記複数の半導体素子のいずれかの半導体素子の短絡を検出する検出手段と、前記検出手段が前記短絡を検出した場合、前記短絡が検出された前記半導体素子を含む前記圧接型半導体装置の前記複数の半導体素子をオンにする制御手段と、を具備し、前記電力変換部が直列に複数個接続された正極側アームと、前記電力変換部が直列に複数個接続され前記正極側アームと接続される負極側アームと、を含むアーム回路を備え、前記検出手段は、前記正極側アームと前記負極側アームとに含まれる複数の前記電力変換部それぞれに個別に設けられ、前記電力変換部それぞれを互いに区別する識別情報を含む検出信号を前記制御手段に送信し、前記制御手段は、前記短絡が検出された前記半導体素子を含む前記圧接型半導体装置を備えた電力変換部以外の電力変換部を使用して変換運転を継続する
本発明の一観点によれば、それぞれが並列に接続されたスイッチング機能を有する複数の半導体素子からなり、直列に接続された2つの圧接型半導体装置と、直列に接続された前記2つの圧接型半導体装置と並列に接続されるコンデンサとからなる電力変換部と、前記2つの圧接型半導体装置を交互にオンにする駆動手段と、前記2つの圧接型半導体装置のいずれかの圧接型半導体装置の前記複数の半導体素子のいずれかの半導体素子の短絡を検出する検出手段と、前記検出手段が前記短絡を検出した場合、前記短絡が検出された前記半導体素子を含む前記圧接型半導体装置の前記複数の半導体素子をオンにする制御手段と、を具備し、前記電力変換部が直列に複数個接続された第一相正極側アームと、前記電力変換部が直列に複数個接続され前記第一相正極側アームと接続される第一相負極側アームと、を含む第一相アーム回路と、前記電力変換部が直列に複数個接続された第二相正極側アームと、前記電力変換部が直列に複数個接続され前記第二相正極側アームと接続される第二相負極側アームと、を含む第二相アーム回路と、前記電力変換部が直列に複数個接続された第三相正極側アームと、前記電力変換部が直列に複数個接続され前記第三相正極側アームと接続される第三相負極側アームと、を含む第三相アーム回路と、をさらに備え、
前記第一相アーム回路と前記第二相アーム回路と前記第三相アーム回路とが三相電力変換回路を構築し、前記検出手段は、前記第一相正極側アームと前記第一相負極側アームと前記第二相正極側アームと前記第二相負極側アームと前記第三相正極側アームと前記第三相負極側アームとに含まれる複数の前記電力変換部それぞれに個別に設けられ、前記電力変換部それぞれを互いに区別する識別情報を含む検出信号を前記制御手段に送信し、前記制御手段は、前記短絡が検出された前記半導体素子を含む前記圧接型半導体装置を備えた電力変換部以外の電力変換部を使用して変換運転を継続する。
According to one aspect of the present invention, two pressure-welded semiconductor devices , each of which is composed of a plurality of semiconductor elements having a switching function connected in parallel, are connected in series, and the two pressure-welded types connected in series. A power conversion unit composed of a capacitor connected in parallel with a semiconductor device, a driving means for alternately turning on the two pressure-welded semiconductor devices, and a pressure-welding semiconductor device of either of the two pressure-welding semiconductor devices. A detection means for detecting a short circuit of any one of the plurality of semiconductor elements, and a plurality of the pressure welding type semiconductor device including the semiconductor element in which the short circuit is detected when the detection means detects the short circuit. A control means for turning on the semiconductor element of the above is provided, and a plurality of positive power conversion units connected in series and a plurality of power conversion units connected in series are connected to the positive side arm. The detection means is individually provided for each of the plurality of power conversion units included in the positive side arm and the negative side arm, and each of the power conversion units is provided with an arm circuit including the negative side arm. A detection signal including identification information for distinguishing each other is transmitted to the control means, and the control means transmits a power conversion unit other than the power conversion unit including the pressure-welding semiconductor device including the semiconductor element in which the short circuit is detected. Use to continue conversion operation .
According to one aspect of the present invention, two pressure-welded semiconductor devices, each of which is composed of a plurality of semiconductor elements having a switching function connected in parallel, are connected in series, and the two pressure-welded types connected in series. A power conversion unit composed of a capacitor connected in parallel with a semiconductor device, a driving means for alternately turning on the two pressure-welded semiconductor devices, and a pressure-welding semiconductor device of either of the two pressure-welding semiconductor devices. A detection means for detecting a short circuit of any one of the plurality of semiconductor elements, and a plurality of the pressure welding type semiconductor device including the semiconductor element in which the short circuit is detected when the detection means detects the short circuit. A first-phase positive electrode side arm in which a plurality of the power conversion units are connected in series and a plurality of the power conversion units connected in series are provided with a control means for turning on the semiconductor element of the first phase. A first-phase arm circuit including a first-phase negative-side arm connected to a positive-side arm, a second-phase positive-side arm in which a plurality of the power conversion units are connected in series, and the power conversion unit are connected in series. A second-phase arm circuit including a second-phase negative-side arm that is connected to a plurality of the second-phase positive-side arms and a third-phase positive-side arm in which a plurality of the power conversion units are connected in series. A third-phase arm circuit including a plurality of arms and a third-phase negative-side arm in which a plurality of the power conversion units are connected in series and connected to the third-phase positive-side arm is further provided.
The first-phase arm circuit, the second-phase arm circuit, and the third-phase arm circuit form a three-phase power conversion circuit, and the detection means is the first-phase positive side arm and the first-phase negative side. A plurality of power conversion units included in the arm, the second phase positive side arm, the second phase negative side arm, the third phase positive side arm, and the third phase negative side arm are individually provided. A detection signal including identification information for distinguishing each of the power conversion units is transmitted to the control means, and the control means is a power conversion unit including the pressure welding type semiconductor device including the semiconductor element in which the short circuit is detected. Continue the conversion operation using a power conversion unit other than.

本発明によれば、並列に接続された複数の半導体素子のいずれかが短絡した場合、残りの半導体素子がオンになるので、短絡した半導体素子のみに電流が集中して流れ、半導体装置が破損することが防止される。 According to the present invention, when any of a plurality of semiconductor elements connected in parallel is short-circuited, the remaining semiconductor elements are turned on, so that the current is concentrated and flows only in the short-circuited semiconductor elements, and the semiconductor device is damaged. Is prevented.

図1は実施形態に係る圧接型半導体装置の制御回路を含む電力変換装置の構成の一例を示す図である。FIG. 1 is a diagram showing an example of a configuration of a power conversion device including a control circuit of the pressure welding type semiconductor device according to the embodiment. 図2は実施形態における電力変換装置に備えられた変換器の構成の一例を示す図である。FIG. 2 is a diagram showing an example of the configuration of a converter provided in the power converter according to the embodiment. 図3は実施形態における圧接型半導体装置に含まれるIGBT及びダイオードの接続状態の一例を説明する回路図である。FIG. 3 is a circuit diagram illustrating an example of a connection state of the IGBT and the diode included in the pressure welding type semiconductor device according to the embodiment. 図4は実施形態における圧接型半導体装置において複数の半導体チップが配列された様子の一例を示す図である。FIG. 4 is a diagram showing an example of a state in which a plurality of semiconductor chips are arranged in the pressure welding type semiconductor device according to the embodiment. 図5は実施形態における圧接型半導体装置同士の接続の一例を説明する側面図である。FIG. 5 is a side view illustrating an example of connection between pressure-welded semiconductor devices in the embodiment. 図6は実施形態の変形例における変換器の構成の一例を示す図である。FIG. 6 is a diagram showing an example of the configuration of the converter in the modified example of the embodiment. 図7は他の実施形態における変換器の構成の一例を示す図である。FIG. 7 is a diagram showing an example of the configuration of the converter in another embodiment.

以下図面を参照して、本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

[電力変換装置の概要]
図1は、本発明の実施形態に係る圧接型半導体装置の制御回路を含む電力変換装置30の構成の一例を示す図である。
実施形態は、電力変換装置としてMMC(Modular Multilevel Converter)を例に説明するが、実施形態の制御回路が適用できる電力変換装置は、MMCに限定されない。MMCは、高圧直流送電と既存の交流系統とを接続する直交変換器と交直変換器に利用される。
[Overview of power converter]
FIG. 1 is a diagram showing an example of a configuration of a power conversion device 30 including a control circuit of a pressure welding type semiconductor device according to an embodiment of the present invention.
The embodiment will be described by taking MMC (Modular Multilevel Converter) as an example of the power conversion device, but the power conversion device to which the control circuit of the embodiment can be applied is not limited to the MMC. The MMC is used for orthogonal converters and AC / DC converters that connect high-voltage DC power transmission and existing AC systems.

電力変換装置30は、電力変換回路31と制御装置32とから構成される。 The power conversion device 30 includes a power conversion circuit 31 and a control device 32.

電力変換回路31は、6つのアーム21up,21um,21vp,21vm,21wp,21wmと、6つのバッファリアクトル22up,22um,22vp,22vm,22wp,22wmとを備えている。 The power conversion circuit 31 includes six arms 21up, 21um, 21vp, 21vm, 21wp, 21wm and six buffer reactors 22up, 22um, 22vp, 22vm, 22wp, 22ww.

電力変換装置30の交流側(図1の左側)は、変圧器24を介して、交流電力系統と接続されている。電力変換装置30の直流側(図1の右側)は、直流電力系統と接続されている。電力変換装置30は、直流電力系統から供給される直流電力を三相交流電力に変換する。あるいは、電力変換装置30は、交流電力系統から供給される三相交流電力を直流電力に変換する。 The AC side (left side in FIG. 1) of the power conversion device 30 is connected to the AC power system via a transformer 24. The DC side (right side of FIG. 1) of the power conversion device 30 is connected to the DC power system. The power conversion device 30 converts the DC power supplied from the DC power system into three-phase AC power. Alternatively, the power conversion device 30 converts the three-phase AC power supplied from the AC power system into DC power.

各アーム21up,21um,21vp,21vm,21wp,21wmは、複数の変換器1が直列に接続された構成である。U相正極側アーム21upとU相負極側アーム21umは、三相交流のU相についての構成である。V相正極側アーム21vpとV相負極側アーム21vmは、三相交流のV相についての構成である。W相正極側アーム21wpとW相負極側アーム21wmは、三相交流のW相についての構成である。 Each arm 21up, 21um, 21vp, 21vm, 21ww, 21wm has a configuration in which a plurality of converters 1 are connected in series. The U-phase positive electrode side arm 21up and the U-phase negative electrode side arm 21um are configured for the U-phase of three-phase alternating current. The V-phase positive electrode side arm 21 bp and the V-phase negative electrode side arm 21 vm are configured for the V-phase of three-phase AC. The W-phase positive electrode side arm 21 hp and the W-phase negative electrode side arm 21 ww are configured for the W phase of three-phase alternating current.

バッファリアクトル22up,22um,22vp,22vm,22wp,22wmは、短絡電流抑制のために、電力変換装置30の回路に一定の直流電流を流すためのインピーダンスである。 The buffer reactors 22up, 22um, 22bp, 22vm, 22wp, and 22wm are impedances for passing a constant direct current through the circuit of the power converter 30 in order to suppress the short-circuit current.

U相正極側バッファリアクトル22upとU相負極側バッファリアクトル22umは、直列に接続されている。U相正極側バッファリアクトル22upとU相負極側バッファリアクトル22umとの接続点は、三相交流のU相と接続される。U相正極側バッファリアクトル22upの正極側には、U相正極側アーム21upが接続されている。U相負極側バッファリアクトル22umの負極側には、U相負極側アーム21umが接続されている。 The U-phase positive electrode side buffer reactor 22up and the U-phase negative electrode side buffer reactor 22um are connected in series. The connection point between the U-phase positive electrode side buffer reactor 22up and the U-phase negative electrode side buffer reactor 22um is connected to the U-phase of three-phase alternating current. A U-phase positive electrode side arm 21up is connected to the positive electrode side of the U-phase positive electrode side buffer reactor 22up. A U-phase negative electrode side arm 21um is connected to the negative electrode side of the U-phase negative electrode side buffer reactor 22um.

V相正極側バッファリアクトル22vpとV相負極側バッファリアクトル22vmは、直列に接続されている。V相正極側バッファリアクトル22vpとV相負極側バッファリアクトル22vmとの接続点は、三相交流のV相と接続される。V相正極側バッファリアクトル22vpの正極側には、V相正極側アーム21vpが接続されている。V相負極側バッファリアクトル22vmの負極側には、V相負極側アーム21vmが接続されている。 The V-phase positive electrode side buffer reactor 22 bp and the V-phase negative electrode side buffer reactor 22 vm are connected in series. The connection point between the V-phase positive electrode side buffer reactor 22 bp and the V-phase negative electrode side buffer reactor 22 vm is connected to the three-phase AC V phase. A V-phase positive electrode side arm 21vp is connected to the positive electrode side of the V-phase positive electrode side buffer reactor 22vp. A V-phase negative electrode side arm 21 vm is connected to the negative electrode side of the V-phase negative electrode side buffer reactor 22 vm.

W相正極側バッファリアクトル22wpとW相負極側バッファリアクトル22wmは、直列に接続されている。W相正極側バッファリアクトル22wpとW相負極側バッファリアクトル22wmとの接続点は、三相交流のW相と接続される。W相正極側バッファリアクトル22wpの正極側には、W相正極側アーム21wpが接続されている。W相負極側バッファリアクトル22wmの負極側には、W相負極側アーム21wmが接続されている。 The W-phase positive electrode side buffer reactor 22 hp and the W-phase negative electrode side buffer reactor 22 ww are connected in series. The connection point between the W-phase positive electrode side buffer reactor 22 hp and the W-phase negative electrode side buffer reactor 22 pm is connected to the W phase of three-phase alternating current. A W-phase positive electrode side arm 21 pp is connected to the positive electrode side of the W-phase positive electrode side buffer reactor 22 pp. A W-phase negative electrode side arm 21wm is connected to the negative electrode side of the W-phase negative electrode side buffer reactor 22wm.

制御装置32は、電力変換回路31と各種信号のやり取りをしており、電力変換回路31で短絡故障が発生したことを検出したときに保護動作を実行する。詳細は後述する。 The control device 32 exchanges various signals with the power conversion circuit 31, and executes a protection operation when it detects that a short-circuit failure has occurred in the power conversion circuit 31. Details will be described later.

[チョッパセル回路]
図2は、変換器1の構成の一例を示す図である。電力変換回路31内の変換器1はすべて同様の構成をしている。
[Chopper cell circuit]
FIG. 2 is a diagram showing an example of the configuration of the converter 1. All the converters 1 in the power conversion circuit 31 have the same configuration.

変換器1は、ゲートドライバ2a,2bと、チョッパセル回路3から構成される。チョッパセル回路3は、交互に導通する半導体装置4a,4bからなる。半導体装置4a,4bのそれぞれは、大電流化のために並列に接続された多数の半導体素子からなる圧接型半導体装置により実現される。 The converter 1 includes gate drivers 2a and 2b and a chopper cell circuit 3. The chopper cell circuit 3 includes semiconductor devices 4a and 4b that are alternately conductive. Each of the semiconductor devices 4a and 4b is realized by a pressure welding type semiconductor device composed of a large number of semiconductor elements connected in parallel in order to increase the current.

[圧接型半導体装置]
図3は、圧接型半導体装置4aの等価回路の一例を示す。圧接型半導体装置4bは圧接型半導体装置4aと同じ構造なので、説明は省略する。圧接型半導体装置4aは並列に接続されたスイッチング素子としてのIGBT81〜8と、IGBT81〜8にそれぞれ逆並列に接続された還流ダイオード91〜9からなる。Nは2以上の任意の正整数であり、例えば、42である。圧接型半導体装置4aにI[A]の電流が流れるとすると、圧接型半導体装置4aの各IGBT8〜8にはI/N[A]の電流が流れる。ゲートドライバ2aの出力がIGBT81〜8のゲートに供給される。このため、1つの圧接型半導体装置の全IGBTは共通にオン/オフ制御される。
[Pressure welding type semiconductor device]
FIG. 3 shows an example of an equivalent circuit of the pressure welding type semiconductor device 4a. Since the pressure welding type semiconductor device 4b has the same structure as the pressure welding type semiconductor device 4a, the description thereof will be omitted. The pressure welding type semiconductor device 4a includes IGBTs 8 1 to 8 N as switching elements connected in parallel and freewheeling diodes 9 1 to 9 N connected in antiparallel to IGBTs 8 1 to 8 N , respectively. N is any positive integer greater than or equal to 2, for example 42. Assuming that a current of I [A] flows through the pressure-welding semiconductor device 4a, a current of I / N [A] flows through each of the IGBTs 8 1 to 8 N of the pressure-welding semiconductor device 4a. The output of the gate driver 2a is supplied to the gates of the IGBTs 8 1 to 8 N. Therefore, all the IGBTs of one pressure welding type semiconductor device are commonly on / off controlled.

図4に圧接型半導体装置4a(4bも同様)のパッケージ内の構造の一例を示す。図4(a)は平面構造、図4(b)は断面構造を示す。圧接型半導体素子4aは、数センチメートル程度の高さの円柱状のパッケージ(図4(a)に輪郭のみ示すが、図4(b)には図示せず)内に、それぞれがIGBT8〜8を構成するN個の半導体チップ10〜10が同一平面上に隙間なく配置されてなる。ゲート端子板404がスプリングピン405を介して半導体チップ10〜10に接続される。半導体チップ10〜10は上下からそれぞれモリブデン板403を介してエミッタ銅電極401とコレクタ銅電極402により圧接される。半導体チップ10〜10のコレクタとエミッタの電極は、モリブデン板403を介して、それぞれコレクタ銅電極402とエミッタ銅電極401に機械的圧接力で接触され、電気的接続と放熱が行われる。 FIG. 4 shows an example of the structure inside the package of the pressure welding type semiconductor device 4a (the same applies to 4b). FIG. 4A shows a planar structure, and FIG. 4B shows a cross-sectional structure. Each of the pressure-welded semiconductor elements 4a is contained in a columnar package having a height of about several centimeters (only the outline is shown in FIG. 4A but not shown in FIG. 4B), and each of them is IGBT 8 1 to N semiconductor chips 10 1 to 10 N constituting 8 N are arranged on the same plane without a gap. The gate terminal plate 404 is connected to the semiconductor chips 10 1 to 10 N via the spring pin 405. The semiconductor chips 10 1 to 10 N are pressure-welded from above and below by the emitter copper electrode 401 and the collector copper electrode 402 via the molybdenum plate 403, respectively. The collector and emitter electrodes of the semiconductor chips 10 1 to 10 N are brought into contact with the collector copper electrode 402 and the emitter copper electrode 401 by mechanical pressure contact force, respectively, via the molybdenum plate 403, and electrical connection and heat dissipation are performed.

図示しないが、ダイオード9〜9を構成する半導体チップもパッケージ内に配置される。ダイオードを構成する半導体チップは、IGBTを構成する半導体チップ10からゲート端子板404とスプリングピン405を取り除いたものと同じである。 Although not shown, semiconductor chips constituting the diodes 9 1 to 9 N are also arranged in the package. The semiconductor chip constituting the diode is the same as the semiconductor chip 10 constituting the IGBT from which the gate terminal plate 404 and the spring pin 405 are removed.

このように、両面放熱構造を採用することにより、コレクタ側、エミッタ側の両面冷却も可能である。図示しないが、不活性ガスがパッケージ内に気密封止され、電極表面の酸化による劣化が防止され、熱的に高い信頼性が実現される。このように、全ての電気的な接続が圧接により実現され、ボンディングによる接続は使用していないため、熱疲労に対する高い信頼性が期待できる。セラミックでパッケージを形成すれば、セラミックスと金属による気密封止構造により高い耐湿性を持ち、冷却液に直接浸漬させることもでき、効率のよい冷却が可能である。 By adopting the double-sided heat dissipation structure in this way, it is possible to cool both sides of the collector side and the emitter side. Although not shown, the inert gas is hermetically sealed in the package to prevent deterioration of the electrode surface due to oxidation, and high thermal reliability is realized. In this way, all electrical connections are realized by pressure welding, and bonding by bonding is not used, so high reliability against thermal fatigue can be expected. If the package is made of ceramic, it has a high moisture resistance due to the airtight sealing structure made of ceramic and metal, and can be directly immersed in the coolant, so that efficient cooling is possible.

図4では、1つのパッケージ内にIGBTを構成する半導体チップとダイオードを構成する半導体チップが混在して配置されると説明したが、IGBTを構成する半導体チップとダイオードを構成する半導体チップとを別々にパッケージ化しても良い。 In FIG. 4, it was explained that the semiconductor chips constituting the IGBT and the semiconductor chips constituting the diode are arranged in a mixed manner in one package, but the semiconductor chips constituting the IGBT and the semiconductor chips constituting the diode are separately arranged. It may be packaged in.

圧接型半導体装置4aと圧接型半導体装置4bとは、直列に接続されている。図5に圧接型半導体装置4a,4b同士の直列接続の様子の一例を示す。ここでは、圧接型半導体装置4a,4bも圧接により、直列に接続される。上から順に、冷却フィン7、圧接型半導体装置4a、冷却フィン7、圧接型半導体装置4b、冷却フィン7となるように配置され、上下から冷却フィン7ともに圧接される。冷却フィン7が導体のため、圧接型半導体装置4a,4bは、配線なしで電気的に直列に接続される。以下では、圧接型半導体装置4aと圧接型半導体装置4bとが直列に接続したものを直列接続体と呼ぶ。図4では2つの圧接型半導体装置を直列に接続する例としたが、3以上の複数個の圧接型半導体装置を直列に接続してもよい。 The pressure-welded semiconductor device 4a and the pressure-welded semiconductor device 4b are connected in series. FIG. 5 shows an example of a series connection between the pressure-welded semiconductor devices 4a and 4b. Here, the pressure-welded semiconductor devices 4a and 4b are also connected in series by pressure-welding. The cooling fins 7, the pressure-welded semiconductor device 4a, the cooling fins 7, the pressure-welding semiconductor device 4b, and the cooling fins 7 are arranged in this order from the top, and the cooling fins 7 are pressure-welded from the top and bottom. Since the cooling fins 7 are conductors, the pressure-welded semiconductor devices 4a and 4b are electrically connected in series without wiring. Hereinafter, a pressure-welded semiconductor device 4a and a pressure-welding semiconductor device 4b connected in series are referred to as a series connector. In FIG. 4, two pressure-welded semiconductor devices are connected in series, but three or more pressure-welded semiconductor devices may be connected in series.

図2の説明に戻り、コンデンサ5は、直列接続体に並列に接続されている。電流検出器6は、当該直列接続体と、直流コンデンサ5との間に設けられている。電流検出器6は、当該直列接続体と、直流コンデンサ5とを繋ぐ配線に流れる電流を検出し、その検出結果である電流値を含む検出信号60を制御装置32に出力する。検出信号60は、検出信号60を出力した電流検出器6が含まれるチョッパセル回路3(あるいは変換器1)の識別情報も含む。 Returning to the description of FIG. 2, the capacitor 5 is connected in parallel to the series connector. The current detector 6 is provided between the series connector and the DC capacitor 5. The current detector 6 detects the current flowing through the wiring connecting the series connector and the DC capacitor 5, and outputs a detection signal 60 including the current value as the detection result to the control device 32. The detection signal 60 also includes identification information of the chopper cell circuit 3 (or converter 1) including the current detector 6 that outputs the detection signal 60.

制御装置32は、チョッパセル回路3が有する圧接型半導体装置4a,4bに含まれる全てのIGBT8〜8をオンにする指示を含むオン制御信号40a,40bと、オフにする指示を含むオフ制御信号41a,41bを電力変換回路31の各変換器1が有するゲートドライバ2a,2bに出力する。制御装置32は、電流検出器6からの検出信号60に基づいて、圧接型半導体装置4a,4bに含まれるいずれかのIGBTに短絡故障が生じたことも検出する。さらに、制御装置32は、短絡故障したIGBTを有する圧接型半導体装置を特定し、その結果に応じて、ゲートドライバ2a,2bにオン制御信号40a,40b、オフ制御信号41a,41bを出力する。 The control device 32 includes on control signals 40a and 40b including an instruction to turn on all the IGBTs 8 1 to 8 N included in the pressure welding type semiconductor devices 4a and 4b included in the chopper cell circuit 3, and an off control including an instruction to turn them off. The signals 41a and 41b are output to the gate drivers 2a and 2b of each converter 1 of the power conversion circuit 31. The control device 32 also detects that a short-circuit failure has occurred in any of the IGBTs included in the pressure-welded semiconductor devices 4a and 4b based on the detection signal 60 from the current detector 6. Further, the control device 32 identifies a pressure-welded semiconductor device having a short-circuited IGBT, and outputs on control signals 40a and 40b and off control signals 41a and 41b to the gate drivers 2a and 2b according to the result.

ゲートドライバ2a,2bは、チョッパセル3が有する2つの圧接型半導体装置4a,4bに対応して設けられている。ゲートドライバ2a,2bは、制御装置32からオン制御信号40a,40bあるいはオフ制御信号41a,41bを受けると、対応する圧接型半導体装置4a,4bのIGBT8〜8のゲートに、IGBT8〜8をオン/オフにする駆動信号50a,50bを供給する。具体的には、ゲートドライバ2a,2bは、制御装置32からオン制御信号40a,40bを受けた場合、IGBT8〜8のゲートに閾値以上のゲート電圧を印加し、IGBT8〜8をオンにする。また、ゲートドライバ2a,2bは、制御装置32からオフ制御信号41a,41bを受けた場合、IGBT8〜8に逆バイアスを印加し、IGBT8〜8をオフにする。 The gate drivers 2a and 2b are provided corresponding to the two pressure contact type semiconductor devices 4a and 4b included in the chopper cell 3. The gate driver 2a, 2b is ON control signal 40a from the controller 32, 40b or off control signal 41a, when receiving the 41b, corresponding pressure-contact type semiconductor device 4a, the gate of the IGBT 8 1 to 8 N of 4b, IGBT 8 1 ~ drive signal 50a to the 8 N on / off, supplies 50b. Specifically, the gate driver 2a, 2b is ON control signal 40a from the controller 32, when receiving the 40b, it is applied to IGBT 8 1 to 8 higher than the threshold gate voltage to the gate of the N, the IGBT 8 1 to 8 N turn on. The gate driver 2a, 2b, when the controller 32 receives off control signal 41a, a 41b, a reverse bias is applied to the IGBT 8 1 to 8 N, to turn off the IGBT 8 1 to 8 N.

次に、電力変換装置の動作例を説明する。 Next, an operation example of the power conversion device will be described.

[通常動作]
通常の電力変換時、制御装置32は、1つのチョッパセル回路3が有するいずれか一方の圧接型半導体装置4a(あるいは4b)に含まれるIGBT8〜8をオンにし、いずれか他方の圧接型半導体装置4b(あるいは4a)に含まれるIGBT8〜8をオフにするように、ゲートドライバ2a,2bに対してオン制御信号あるいはオフ制御信号を出力する。また、制御装置32は、圧接型半導体装置4a,4bに含まれるIGBT8〜8のオン/オフが交互に切り替わるようにゲートドライバ2a,2bへオン制御信号あるいはオフ制御信号を交互に出力する。
[Normal operation]
During normal power conversion, the control device 32 turns on the IGBTs 8 1 to 8 N included in one of the pressure-welding semiconductor devices 4a (or 4b) of one chopper cell circuit 3, and the other pressure-welding semiconductor. An on control signal or an off control signal is output to the gate drivers 2a and 2b so as to turn off the IGBTs 8 1 to 8 N included in the device 4b (or 4a). Further, the control device 32 alternately outputs an on control signal or an off control signal to the gate drivers 2a and 2b so that the on / off of the IGBTs 8 1 to 8 N included in the pressure contact type semiconductor devices 4a and 4b are alternately switched. ..

つまり、制御装置32は、(1)ゲートドライバ2aに対してオン制御信号40aを出力し、ゲートドライバ2bに対してオフ制御信号41bを出力する。一定の時間後、制御装置32は、(2)ゲートドライバ2aに対してオフ制御信号41aを出力し、ゲートドライバ2bに対してオン制御信号40bを出力する。制御装置32は、(1)と(2)を交互に繰り返す。IGBTがオンする期間を調整することにより、電圧値を調整することができる。 That is, the control device 32 outputs (1) an on control signal 40a to the gate driver 2a and an off control signal 41b to the gate driver 2b. After a certain period of time, the control device 32 outputs (2) an off control signal 41a to the gate driver 2a and an on control signal 40b to the gate driver 2b. The control device 32 alternately repeats (1) and (2). The voltage value can be adjusted by adjusting the period during which the IGBT is turned on.

一方のゲートドライバ2a(あるいは2b)は、オン制御信号40a(あるいは40b)を受けると、圧接型半導体装置4a(あるいは4b)に含まれるIGBT8〜8のゲートに閾値以上のゲート電圧を印加する。このとき、他方のゲートドライバ2b(あるいは2a)は、オフ制御信号41a(あるいは41b)を受け、IGBT8〜8に逆バイアスを印加する。これにより、圧接型半導体装置4a(あるいは4b)に含まれるIGBT8〜8はオフからオンになり、圧接型半導体装置4b(あるいは4a)に含まれるIGBT8〜8はオンからオフとなる。ここで、圧接型半導体装置4a(あるいは4b)にI[A]の電流が流れるとすると、圧接型半導体装置4a(あるいは4b)に含まれる各IGBT8〜8にはI/N[A]の電流が流れる。 When one of the gate drivers 2a (or 2b) receives the on-control signal 40a (or 40b), it applies a gate voltage equal to or higher than the threshold value to the gates of the IGBTs 8 1 to 8 N included in the pressure welding type semiconductor device 4a (or 4b). To do. At this time, the other gate driver 2b (or 2a) receives the off control signal 41a (or 41b) and applies a reverse bias to the IGBTs 8 1 to 8 N. Thus, IGBT 8 1 to 8 N contained in the pressure-contact type semiconductor device 4a (or 4b) is turned on from off, IGBT 8 1 to 8 N contained in the pressure-contact type semiconductor device 4b (or 4a) is turned off from on .. Here, assuming that a current of I [A] flows through the pressure-welding semiconductor device 4a (or 4b), I / N [A] is applied to each IGBT 8 1 to 8 N included in the pressure-welding semiconductor device 4a (or 4b). Current flows.

[短絡故障時の動作]
次に、短絡故障時の電力変換装置30の動作例を説明する。ある1つの変換器1が有する圧接型半導体装置4aに含まれるいずれかのIGBT、例えば8が短絡故障したとする。
[Operation at the time of short circuit failure]
Next, an operation example of the power conversion device 30 at the time of a short circuit failure will be described. It is assumed that one of the IGBTs included in the pressure welding type semiconductor device 4a of one converter 1, for example 81, has a short-circuit failure.

その変換器1において、一方のゲートドライバ、例えば2bはIGBT8〜8をオンにする駆動信号50aを出力する。このとき、他方のゲートドライバ2aはIGBT8〜8をオフにする駆動信号50aを出力するが、圧接型半導体装置4aに含まれるIGBT8が短絡故障しているので、IGBT8〜8はオフとなるが、IGBT8はオフとならない。このため、IGBT8に短絡電流が流れる。通常時は圧接型半導体装置4a,4bにI[A]の電流が流れるとすると、I[A]の短絡電流がIGBT8に集中して流れる。IGBT8に電流が集中すると、その材料であるシリコンが昇華して気体となり、急激な内圧の増加を招き、圧接型半導体装置が破損してしまう、さらには、破損した破片が電力変換装置内の他の周辺部品を破損する可能性がある。 In that transducer 1, one of the gate driver, for example 2b outputs a driving signal 50a to turn on the IGBT 8 1 to 8 N. At this time, the other gate driver 2a outputs a drive signal 50a that turns off the IGBTs 8 1 to 8 N , but since the IGBT 8 1 included in the pressure welding type semiconductor device 4a has a short-circuit failure, the IGBTs 8 2 to 8 N are It turns off, but the IGBT 8 1 does not. Therefore, short-circuit current flows in the IGBT 8 1. When normal state and pressure-contact type semiconductor device 4a, a current of I [A] and 4b flows, flows short-circuit current I [A] is concentrated on IGBT 8 1. When the current concentrates on IGBT 8 1, becomes a gas by sublimation silicon is the material, leading to rapid increase in pressure, pressure-contact type semiconductor device is damaged, furthermore, broken pieces of the power converter Other peripheral parts may be damaged.

このとき、圧接型半導体装置4bに含まれるIGBT8〜8はオンとなり、圧接型半導体装置4aの短絡電流は圧接型半導体装置4bでは全てのIGBTに分散して流れる。 At this time, the IGBTs 8 1 to 8 N included in the pressure-welded semiconductor device 4b are turned on, and the short-circuit current of the pressure-welding semiconductor device 4a is dispersed and flows in all the IGBTs in the pressure-welding semiconductor device 4b.

電流検出器6は、直流コンデンサ5と、圧接型半導体装置4a,4bからなる直列接続体とを繋ぐ配線に流れる電流(短絡電流)を検出し、電流値と電流検出器6が含まれるチョッパセル回路3(あるいは変換器1)の識別情報を含む検出信号60を制御装置32に出力する。 The current detector 6 detects a current (short-circuit current) flowing in the wiring connecting the DC capacitor 5 and the series connector composed of the pressure welding type semiconductor devices 4a and 4b, and includes the current value and the current detector 6 in a chopper cell circuit. The detection signal 60 including the identification information of 3 (or the converter 1) is output to the control device 32.

次に、電流検出器6から検出信号60を受けた制御装置32の動作を説明する。 Next, the operation of the control device 32 that receives the detection signal 60 from the current detector 6 will be described.

制御装置32は、電力変換回路31内の各チョッパセル回路3の電流検出器6からの検出信号60を受けると、当該検出信号60に含まれる電流値と所定の閾値とを比較する。電流値が所定の閾値以上の場合、制御装置32は、検出信号60に含まれる識別情報が示すチョッパセル回路3が有する圧接型半導体装置4a,4bに含まれるIGBT8〜8のいずれかに短絡故障が生じ、短絡電流が流れたと判断する。 When the control device 32 receives the detection signal 60 from the current detector 6 of each chopper cell circuit 3 in the power conversion circuit 31, the control device 32 compares the current value included in the detection signal 60 with a predetermined threshold value. When the current value is equal to or higher than a predetermined threshold value, the control device 32 is short-circuited to any of the IGBTs 8 1 to 8 N included in the pressure-welding semiconductor devices 4a and 4b included in the chopper cell circuit 3 indicated by the identification information included in the detection signal 60. It is judged that a failure has occurred and a short-circuit current has flowed.

続いて、制御装置32は、ゲートドライバ2a、2bにオン制御信号40a、40bを出力する。 Subsequently, the control device 32 outputs the on control signals 40a and 40b to the gate drivers 2a and 2b.

これにより、オン制御信号40aを受けたゲートドライバ2a、2bは、対応する圧接型半導体装置4a、4bに含まれるIGBT8〜8に対してオンにする駆動信号50a、50bを出力する。このため、短絡故障が生じたIGBT8を含む圧接型半導体装置4aに含まれる他のIGBT8〜8がオンあるいは短絡状態となり、短絡電流が短絡故障したIGBT8のみに流れることがなく、圧接型半導体装置4aの全てのIGBT8〜8に分散して流れる。このため、短絡故障したIGBT8のシリコンが昇華して気体となり、内圧が急激に増加し、圧接型半導体装置が破損してしまう、あるいは、破損した破片が電力変換装置内の他の周辺部品を破損することが無い。 As a result, the gate drivers 2a and 2b that have received the on control signal 40a output drive signals 50a and 50b to be turned on for the IGBTs 8 1 to 8 N included in the corresponding pressure-welding semiconductor devices 4a and 4b. For this reason, the other IGBT 8 1 to 8 N is on or short-circuit condition included in the pressure-contact type semiconductor device 4a comprising IGBT 8 1 a short-circuit failure occurs, not flow only in IGBT 8 1 short-circuit current is short-circuited, pressure It is dispersed and flows in all the IGBTs 8 1 to 8 N of the type semiconductor device 4a. Therefore, it becomes a gas IGBT 8 1 of silicon short-circuited sublimes, the internal pressure rapidly increases, pressure-contact type semiconductor device is damaged, or broken pieces is other peripheral components in the power converter It will not be damaged.

いずれかのIGBTが短絡故障した場合でも、電力変換装置30は、短絡故障したIGBTを含む変換器以外の変換器1を使用して変換運転を継続できる。保守点検等の任意のタイミングで電力変換装置30の変換運転が停止され、短絡故障した圧接型半導体装置4aは交換される。 Even if any of the IGBTs has a short-circuit failure, the power converter 30 can continue the conversion operation by using a converter 1 other than the converter including the short-circuited IGBT. The conversion operation of the power conversion device 30 is stopped at an arbitrary timing such as maintenance and inspection, and the pressure welding type semiconductor device 4a having a short-circuit failure is replaced.

実施形態によれば、電力変換装置において、ある圧接型半導体装置に含まれるIGBTの短絡故障が検出されると、当該圧接型半導体装置に含まれる短絡故障したIGBT以外のIGBTがオンにされ、短絡電流が複数のIGBTに分散して流れる。このため、短絡電流が短絡故障しているIGBTに集中して流れることが防止され、シリコンの昇華による内圧が急増することが無い。これにより、圧接型半導体装置の破損、及び圧接型半導体装置が適用された電力変換装置内のその他の周辺部品の破損や故障を防ぐことができる。また、部品交換の際の作業員の負担も軽減される。多数の圧接型半導体装置を含む装置、例えば電力変換装置では、短絡故障したIGBTを含まない他の全ての圧接型半導体装置のIGBTをオフにすることで、電力変換装置の電力変換動作を停止することができる。 According to the embodiment, when a short-circuit failure of the IGBT included in a certain pressure-welding semiconductor device is detected in the power conversion device, the IGBTs other than the short-circuited IGBT included in the pressure-welding semiconductor device are turned on and short-circuited. The current is distributed and flows in a plurality of IGBTs. Therefore, it is prevented that the short-circuit current is concentrated and flows in the IGBT in which the short-circuit failure occurs, and the internal pressure due to the sublimation of silicon does not suddenly increase. This makes it possible to prevent damage to the pressure welding type semiconductor device and damage or failure of other peripheral parts in the power conversion device to which the pressure welding type semiconductor device is applied. In addition, the burden on workers when replacing parts is reduced. In a device including a large number of pressure-welded semiconductor devices, for example, a power conversion device, the power conversion operation of the power conversion device is stopped by turning off the IGBTs of all the other pressure-welding semiconductor devices that do not include the short-circuited IGBT. be able to.

図2の例では、チョッパセル回路3の圧接型半導体装置4a、4bの電流通路に電流検出器6を設け、電流検出器5の検出電流に基づいて短絡電流を検出することにより短絡故障が生じたと判断した。短絡検出の例はこれに限定されず、短絡故障の検出に関する変形例を以下に説明する。 In the example of FIG. 2, a short-circuit failure occurs by providing a current detector 6 in the current passage of the pressure-welding semiconductor devices 4a and 4b of the chopper cell circuit 3 and detecting a short-circuit current based on the current detected by the current detector 5. It was judged. The example of short circuit detection is not limited to this, and a modified example relating to the detection of short circuit failure will be described below.

[短絡検出の変形例1]
本変形例では、コンデンサ5に生じる電圧の変化を検出することで、IGBTの短絡を検出する。
[Modification example 1 of short circuit detection]
In this modification, the short circuit of the IGBT is detected by detecting the change in the voltage generated in the capacitor 5.

本変形例における変換器1の構成の一例を図6(a)に示す。各変換器1のチョッパセル回路3には電圧検出器12を設ける。電圧検出器12は、コンデンサ5の電圧を検出し、その電圧値と、電圧検出器12が含まれるチョッパセル回路3(あるいは変換器1)の識別情報を含む検出信号60を制御装置32に出力する。なお、電流検出器6の代わりに電圧検出器12を設けたこと以外は図2と同様である。 An example of the configuration of the converter 1 in this modification is shown in FIG. 6A. A voltage detector 12 is provided in the chopper cell circuit 3 of each converter 1. The voltage detector 12 detects the voltage of the capacitor 5 and outputs a detection signal 60 including the voltage value and identification information of the chopper cell circuit 3 (or the converter 1) including the voltage detector 12 to the control device 32. .. It is the same as FIG. 2 except that the voltage detector 12 is provided instead of the current detector 6.

制御装置32は、各変換器1に含まれる電圧検出器12からの検出信号60に含まれる電圧値を監視する。短絡時は、コンデンサ5の電圧が急激に変化する。制御装置32は、その電圧値の時間微分dv/dt、コンデンサ5の静電容量Cからチョッパセル回路3の電流iを、i=C・dv/dtの式に従って計算する。制御装置32は、コンデンサ5の電圧が急激に変化し、電流iが所定の閾値以上である場合、その電流iの計算に用いた電圧値を含む検出信号60に含まれる識別情報が示すチョッパセル回路3に含まれる圧接型半導体装置4a,4bに含まれるいずれかのIGBTで短絡故障が生じたと判断する。 The control device 32 monitors the voltage value included in the detection signal 60 from the voltage detector 12 included in each converter 1. At the time of a short circuit, the voltage of the capacitor 5 changes abruptly. The control device 32 calculates the current i of the chopper cell circuit 3 from the time derivative dv / dt of the voltage value and the capacitance C of the capacitor 5 according to the equation of i = C · dv / dt. When the voltage of the capacitor 5 changes abruptly and the current i is equal to or higher than a predetermined threshold value, the control device 32 is a chopper cell circuit indicated by identification information included in a detection signal 60 including a voltage value used for calculating the current i. It is determined that a short-circuit failure has occurred in any of the IGBTs included in the pressure-welded semiconductor devices 4a and 4b included in 3.

ある変換器1において、圧接型半導体装置4a,4bに含まれるIGBTのいずれかが短絡故障した場合、圧接型半導体装置4a,4bの両方がオンし、チョッパセル回路3に短絡電流が流れるため、当該短絡電流によってコンデンサ5の電圧が上昇する。ゆえに、当該電圧に急激な変化が生じた場合、当該変換器1が有する圧接型半導体装置4a,4bに含まれるいずれかのIGBTに短絡故障が生じたと判断できる。 When any of the IGBTs included in the pressure-welded semiconductor devices 4a and 4b fails in a short circuit in a certain converter 1, both the pressure-welded semiconductor devices 4a and 4b are turned on and a short-circuit current flows through the chopper cell circuit 3. The voltage of the capacitor 5 rises due to the short-circuit current. Therefore, when a sudden change occurs in the voltage, it can be determined that a short-circuit failure has occurred in any of the IGBTs included in the pressure-welding semiconductor devices 4a and 4b of the converter 1.

上述したように、電圧検出器12によりコンデンサ5の電圧を検出することによっても、IGBTに短絡故障が生じたことを検出することができる。 As described above, it is also possible to detect that a short-circuit failure has occurred in the IGBT by detecting the voltage of the capacitor 5 with the voltage detector 12.

[短絡検出の変形例2]
本変形例では、変換器1が有する圧接型半導体装置4a,4bに含まれるIGBT8〜8がオンであるときの圧接型半導体装置4a,4bのオン電圧を検出することで、IGBTに短絡が生じたことを検出する。オン期間中のオン電圧は電流に略比例するので、オン電圧が大きい場合、電流も大きいと判断できる。
[Modification 2 of short circuit detection]
In this modification, the on voltage of the pressure-welding semiconductor devices 4a and 4b when the IGBTs 8 1 to 8 N included in the pressure-welding semiconductor devices 4a and 4b of the converter 1 are on is detected to short-circuit the IGBT. Is detected. Since the on-voltage during the on-period is substantially proportional to the current, it can be determined that the current is also large when the on-voltage is large.

本変形例における変換器1の構成の一例を図6(b)に示す。各変換器1のチョッパセル回路3には電圧検出器12a,12bを設ける。電圧検出器12a,12bは、圧接型半導体装置4a,4bのオン期間にオン電圧をそれぞれ検出し、その電圧値と電圧検出器12a,12bが含まれるチョッパセル回路3(あるいは変換器1)の識別情報とを含む検出信号60を制御装置32に出力する。なお、電流検出器6の代わりに電圧検出器12を設けたこと以外は図2と同様である。 An example of the configuration of the converter 1 in this modification is shown in FIG. 6 (b). Voltage detectors 12a and 12b are provided in the chopper cell circuit 3 of each converter 1. The voltage detectors 12a and 12b detect the on-voltage during the on-period of the pressure-welding semiconductor devices 4a and 4b, respectively, and identify the voltage value and the chopper cell circuit 3 (or converter 1) including the voltage detectors 12a and 12b. The detection signal 60 including the information is output to the control device 32. It is the same as FIG. 2 except that the voltage detector 12 is provided instead of the current detector 6.

チョッパ回路3に短絡電流が流れると、圧接型半導体装置4a,4bのオン電圧は短絡電流が流れない場合よりも大きくなる。制御装置32は、各変換器1のオン期間の圧接型半導体装置4aあるいは4bからの検出信号60aあるいは60bに含まれるオン電圧値を監視し、オン電圧値が所定の閾値以上の場合、当該検出信号60aあるいは60bに含まれる識別情報が示すチョッパセル回路3が有する圧接型半導体装置4aあるいは4bに含まれるいずれかのIGBTで短絡故障が生じたと判断する。 When a short-circuit current flows through the chopper circuit 3, the on-voltage of the pressure-welding semiconductor devices 4a and 4b becomes larger than when the short-circuit current does not flow. The control device 32 monitors the on-voltage value included in the detection signal 60a or 60b from the pressure welding type semiconductor device 4a or 4b during the on-period of each converter 1, and if the on-voltage value is equal to or higher than a predetermined threshold value, the detection is performed. It is determined that a short-circuit failure has occurred in any of the IGBTs included in the pressure welding type semiconductor device 4a or 4b included in the chopper cell circuit 3 indicated by the identification information included in the signal 60a or 60b.

上述したように、電圧検出器12により圧接型半導体装置4a,4bのオン電圧を検出することによっても、IGBTに短絡故障が生じたことを検出することができる。 As described above, it is also possible to detect that a short-circuit failure has occurred in the IGBT by detecting the on-voltage of the pressure-welding semiconductor devices 4a and 4b with the voltage detector 12.

[短絡検出の変形例3]
本変形例では、コンデンサ5と圧接型半導体装置4a,4bとの間の導線に生じる一巡インダクタンス(寄生インダクタンスとも称する)による電圧を検出することで、IGBTの短絡を検出する。
[Modification 3 of short circuit detection]
In this modification, the short circuit of the IGBT is detected by detecting the voltage due to the one-circular inductance (also referred to as parasitic inductance) generated in the conducting wire between the capacitor 5 and the pressure-welded semiconductor devices 4a and 4b.

本変形例における変換器1の構成の一例を図6(c)に示す。各変換器1のチョッパセル回路3には電圧検出器12を設ける。電圧検出器12は、圧接型半導体装置4a,4bの直列接続体とコンデンサ5とを繋ぐ配線に生じる一巡インダクタンスに発生する電圧を検出し、その電圧値と電圧検出器12が含まれるチョッパセル回路3(あるいは変換器1)の識別情報とを含む検出信号60を制御装置32に出力する。なお、電流検出器6の代わりに電圧検出器12を設けたこと以外は図2と同様である。 An example of the configuration of the converter 1 in this modification is shown in FIG. 6 (c). A voltage detector 12 is provided in the chopper cell circuit 3 of each converter 1. The voltage detector 12 detects a voltage generated in a circular inductance generated in the wiring connecting the series connection of the pressure welding type semiconductor devices 4a and 4b and the capacitor 5, and the voltage value and the chopper cell circuit 3 including the voltage detector 12 are included. (Or, the detection signal 60 including the identification information of the converter 1) is output to the control device 32. It is the same as FIG. 2 except that the voltage detector 12 is provided instead of the current detector 6.

制御装置32は、各変換器1からの検出信号60に含まれる電圧値を監視し、電圧値が所定の閾値以上の場合、当該検出信号60に含まれる識別情報が示すチョッパセル回路3が有する圧接型半導体装置4a,4bに含まれるいずれかのIGBTで短絡故障が生じたと判断する。 The control device 32 monitors the voltage value included in the detection signal 60 from each converter 1, and when the voltage value is equal to or higher than a predetermined threshold value, the pressure welding of the chopper cell circuit 3 indicated by the identification information included in the detection signal 60. It is determined that a short-circuit failure has occurred in any of the IGBTs included in the type semiconductor devices 4a and 4b.

圧接型半導体装置4a,4bの直列接続体とコンデンサ5とを繋ぐ配線には、一巡インダクタンスL、電流iを用いて、V=Ldi/dtで示される電圧Vが生じる。つまり、急激な電流(短絡電流)が流れた場合、コンデンサ5と圧接型半導体装置4a、4bとの間の配線に、所定の閾値以上の大きさの電圧が生じる。そのため、当該電圧を検出すれば短絡故障を検出できる。 In the wiring connecting the series connection of the pressure-welded semiconductor devices 4a and 4b and the capacitor 5, a voltage V represented by V = Ldi / dt is generated by using a one-round inductance L and a current i. That is, when a sudden current (short-circuit current) flows, a voltage having a magnitude equal to or larger than a predetermined threshold value is generated in the wiring between the capacitor 5 and the pressure-welding semiconductor devices 4a and 4b. Therefore, if the voltage is detected, a short circuit failure can be detected.

上述したように、電圧検出器12により直列接続体とコンデンサ5とを繋ぐ配線に生じる一巡インダクタンスによる電圧を検出することによっても、IGBTに短絡故障が生じたことを検出することができる。 As described above, it is also possible to detect that a short-circuit failure has occurred in the IGBT by detecting the voltage due to the circular inductance generated in the wiring connecting the series connector and the capacitor 5 by the voltage detector 12.

IGBTの短絡故障の検出方法は、上述した実施形態及び変形例1〜3の方法に限定されない。他の同様な検出方法を用いても良い。また、2つ以上の検出方法を組み合わせて実施し、いずれかの方法で検出したら短絡検出としても良いし、全ての方法で検出した場合のみ短絡検出としても良い。 The method for detecting a short-circuit failure of the IGBT is not limited to the methods of the above-described embodiments and modifications 1 to 3. Other similar detection methods may be used. Further, two or more detection methods may be combined and executed, and if any of the methods is detected, short-circuit detection may be performed, or only when all methods are detected, short-circuit detection may be performed.

本実施形態は、直列接続体が複数個並列に接続した回路にも適用できる。例えば、単相インバータ回路や、三相インバータ回路にも適用可能である。一例として、単相インバータ回路の回路図を図7に示す。単相インバータ回路は、ブリッジ接続される4つの圧接型半導体装置63、63、63、63を含む。各圧接型半導体装置63、63、63、63は、図3に示すように、多数の並列に接続されたIGBT62と還流ダイオード64とを含む。圧接型半導体装置63、63が直列に接続され、圧接型半導体装置63、63が直列に接続される。直列に接続された圧接型半導体装置63、63と、直列に接続された圧接型半導体装置63、63に、コンデンサ61が並列に接続される。直流電源66がコンデンサ61に並列に接続される。圧接型半導体装置63、63の接続点と、圧接型半導体装置63、63の接続点が交流端子68に接続される。このような単相インバータ回路においても、圧接型半導体装置63、63、63、63に含まれるいずれかのIGBTが短絡故障した場合、圧接型半導体装置の破損を防ぐことができる。 This embodiment can also be applied to a circuit in which a plurality of series connectors are connected in parallel. For example, it can be applied to a single-phase inverter circuit and a three-phase inverter circuit. As an example, a circuit diagram of a single-phase inverter circuit is shown in FIG. Single-phase inverter circuit includes four pressure-contact type semiconductor device 63 1, 63 2, 63 3, 63 4 are bridge-connected. Each pressure-contact type semiconductor device 63 1, 63 2, 63 3, 63 4, as shown in FIG. 3, including the IGBT62 connected to a number of parallel and reflux diode 64. Pressure-contact type semiconductor device 63 1, 63 2 are connected in series, pressure-contact type semiconductor device 63 3, 63 4 are connected in series. A pressure-contact type semiconductor device 63 1, 63 2 connected in series, the pressure contact type semiconductor device 63 3, 63 4 connected in series, the capacitor 61 is connected in parallel. The DC power supply 66 is connected in parallel with the capacitor 61. A connection point of the pressure-contact type semiconductor device 63 1, 63 2, a connection point of the pressure-contact type semiconductor device 63 3, 63 4 are connected to the AC terminal 68. In such a single-phase inverter circuit, if any of the IGBT included in the pressure-contact type semiconductor device 63 1, 63 2, 63 3, 63 4 are short-circuited, it is possible to prevent damage to the pressure-contact type semiconductor device.

圧接型半導体装置であれば、当該装置に含まれる半導体素子は、IGBTに限らず、スイッチング機能を有する半導体装置、例えば、IEGT(Injection Enhanced Gate Transistor)、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)等でも良い。 If it is a pressure welding type semiconductor device, the semiconductor element included in the device is not limited to the IGBT, but a semiconductor device having a switching function, for example, IEGT (Injection Enhanced Gate Transistor), MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). ) Etc. may be used.

以上説明した実施形態によれば、圧接型半導体装置に含まれる並列に接続された半導体素子のいずれかが短絡した場合、短絡故障した半導体素子に電流が集中して流れることが防止され、圧接型半導体装置の破損が防止される。 According to the embodiment described above, when any of the semiconductor elements connected in parallel included in the pressure welding type semiconductor device is short-circuited, the current is prevented from concentrating and flowing through the semiconductor element having the short-circuit failure, and the pressure welding type Damage to the semiconductor device is prevented.

なお、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することを意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1…変換器、2a,2b…ゲートドライバ、3…チョッパセル回路、4a,4b…圧接型半導体装置、5…コンデンサ、6…電流検出器、7…冷却フィン、8〜8…IGBT、9〜9…ダイオード、10〜10…半導体チップ、12…電圧検出器、30…電力変換器、31…電力変換回路、32…制御装置、40a,40b…オン制御信号、41a,41b…オフ制御信号、50a,50b…オン信号、60…検出信号 1 ... transformer, 2a, 2b ... gate driver, 3 ... Choppaseru circuit, 4a, 4b ... pressure-contact type semiconductor device, 5 ... capacitor, 6 ... current detector, 7 ... cooling fins, 8 1 to 8 N ... IGBT, 9 1 to 9 N ... diode, 10 1 to 10 N ... semiconductor chip, 12 ... voltage detector, 30 ... power converter, 31 ... power conversion circuit, 32 ... control device, 40a, 40b ... on control signal, 41a, 41b ... Off control signal, 50a, 50b ... On signal, 60 ... Detection signal

Claims (4)

それぞれが並列に接続されたスイッチング機能を有する複数の半導体素子からなり、直列に接続された2つの圧接型半導体装置と、直列に接続された前記2つの圧接型半導体装置と並列に接続されるコンデンサとからなる電力変換部と、
前記2つの圧接型半導体装置を交互にオンにする駆動手段と、
前記2つの圧接型半導体装置のいずれかの圧接型半導体装置の前記複数の半導体素子のいずれかの半導体素子の短絡を検出する検出手段と、
前記検出手段が前記短絡を検出した場合、前記短絡が検出された前記半導体素子を含む前記圧接型半導体装置の前記複数の半導体素子をオンにする制御手段と、
を具備し、
前記電力変換部が直列に複数個接続された正極側アームと、前記電力変換部が直列に複数個接続され前記正極側アームと接続される負極側アームと、を含むアーム回路を備え、
前記検出手段は、前記正極側アームと前記負極側アームとに含まれる複数の前記電力変換部それぞれに個別に設けられ、前記電力変換部それぞれを互いに区別する識別情報を含む検出信号を前記制御手段に送信し、
前記制御手段は、前記短絡が検出された前記半導体素子を含む前記圧接型半導体装置を備えた電力変換部以外の電力変換部を使用して変換運転を継続する電力変換装置。
A capacitor composed of a plurality of semiconductor elements, each of which has a switching function connected in parallel, and connected in parallel with two pressure-welded semiconductor devices connected in series and the two pressure-welded semiconductor devices connected in series. Power conversion unit consisting of
A driving means for alternately turning on the two pressure-welded semiconductor devices and
A detection means for detecting a short circuit of any one of the plurality of semiconductor elements of the pressure-welding semiconductor device of either of the two pressure-welding semiconductor devices,
When the detection means detects the short circuit, the control means for turning on the plurality of semiconductor elements of the pressure welding type semiconductor device including the semiconductor element in which the short circuit is detected, and
Equipped with
An arm circuit including a positive electrode side arm in which a plurality of the power conversion units are connected in series and a negative electrode side arm in which a plurality of the power conversion units are connected in series and connected to the positive electrode side arm is provided.
Said detecting means, said positive electrode-side arm negative electrode side each of the plurality of the power conversion unit to be provided separately included in the arm, said including detection signals of the power conversion unit distinguishing identification information respectively from each other Send to control means
The control means is a power conversion device that continues a conversion operation by using a power conversion unit other than the power conversion unit including the pressure welding type semiconductor device including the semiconductor element in which the short circuit is detected .
それぞれが並列に接続されたスイッチング機能を有する複数の半導体素子からなり、直列に接続された2つの圧接型半導体装置と、直列に接続された前記2つの圧接型半導体装置と並列に接続されるコンデンサとからなる電力変換部と、
前記2つの圧接型半導体装置を交互にオンにする駆動手段と、
前記2つの圧接型半導体装置のいずれかの圧接型半導体装置の前記複数の半導体素子のいずれかの半導体素子の短絡を検出する検出手段と、
前記検出手段が前記短絡を検出した場合、前記短絡が検出された前記半導体素子を含む前記圧接型半導体装置の前記複数の半導体素子をオンにする制御手段と、
を具備し、
前記電力変換部が直列に複数個接続された第一相正極側アームと、前記電力変換部が直列に複数個接続され前記第一相正極側アームと接続される第一相負極側アームと、を含む第一相アーム回路と、
前記電力変換部が直列に複数個接続された第二相正極側アームと、前記電力変換部が直列に複数個接続され前記第二相正極側アームと接続される第二相負極側アームと、を含む第二相アーム回路と、
前記電力変換部が直列に複数個接続された第三相正極側アームと、前記電力変換部が直列に複数個接続され前記第三相正極側アームと接続される第三相負極側アームと、を含む第三相アーム回路と、
をさらに備え、
前記第一相アーム回路と前記第二相アーム回路と前記第三相アーム回路とが三相電力変換回路を構築し、
前記検出手段は、前記第一相正極側アームと前記第一相負極側アームと前記第二相正極側アームと前記第二相負極側アームと前記第三相正極側アームと前記第三相負極側アームとに含まれる複数の前記電力変換部それぞれに個別に設けられ、前記電力変換部それぞれを互いに区別する識別情報を含む検出信号を前記制御手段に送信し
前記制御手段は、前記短絡が検出された前記半導体素子を含む前記圧接型半導体装置を備えた電力変換部以外の電力変換部を使用して変換運転を継続する電力変換装置。
A capacitor composed of a plurality of semiconductor elements, each of which has a switching function connected in parallel, and connected in parallel with two pressure-welded semiconductor devices connected in series and the two pressure-welded semiconductor devices connected in series. Power conversion unit consisting of
A driving means for alternately turning on the two pressure-welded semiconductor devices and
A detection means for detecting a short circuit of any one of the plurality of semiconductor elements of the pressure-welding semiconductor device of either of the two pressure-welding semiconductor devices,
When the detection means detects the short circuit, the control means for turning on the plurality of semiconductor elements of the pressure welding type semiconductor device including the semiconductor element in which the short circuit is detected, and
Equipped with
A first-phase positive electrode side arm in which a plurality of the power conversion units are connected in series, and a first-phase negative electrode side arm in which a plurality of the power conversion units are connected in series and connected to the first-phase positive electrode side arm. 1st phase arm circuit including
A second-phase positive electrode side arm in which a plurality of the power conversion units are connected in series, and a second-phase negative electrode side arm in which a plurality of the power conversion units are connected in series and connected to the second-phase positive electrode side arm. Two-phase arm circuit, including
A third-phase positive electrode side arm in which a plurality of the power conversion units are connected in series, and a third-phase negative electrode side arm in which a plurality of the power conversion units are connected in series and connected to the third-phase positive electrode side arm. With a three-phase arm circuit, including
With more
The first-phase arm circuit, the second-phase arm circuit, and the third-phase arm circuit form a three-phase power conversion circuit.
The detection means includes the first phase positive electrode side arm, the first phase negative electrode side arm, the second phase positive electrode side arm, the second phase negative electrode side arm, the third phase positive electrode side arm, and the third phase negative electrode side arm. each of the plurality of the power conversion unit to be provided separately contained in a side arm, sends including detection signals of the power conversion unit distinguishing identification information respectively from each other to the control means,
The control means is a power conversion device that continues a conversion operation by using a power conversion unit other than the power conversion unit including the pressure welding type semiconductor device including the semiconductor element in which the short circuit is detected .
前記2つの圧接型半導体装置は、第一圧接型半導体装置と、前記第一圧接型半導体装置に直列に接続された第二圧接型半導体装置とからなり、
前記検出手段は、前記第一圧接型半導体装置のオン電圧に基づいて短絡を検出したときに第一検出信号を出力する第一検出手段と、前記第二圧接型半導体装置のオン電圧に基づいて短絡を検出したときに第二検出信号を出力する第二検出手段と、を含む請求項1または請求項2に記載の電力変換装置。
The two pressure-welded semiconductor devices are composed of a first pressure-welded semiconductor device and a second pressure-welded semiconductor device connected in series with the first pressure-welded semiconductor device.
The detection means is based on the first detection means that outputs a first detection signal when a short circuit is detected based on the on voltage of the first pressure contact type semiconductor device and the on voltage of the second pressure contact type semiconductor device. The power conversion device according to claim 1 or 2 , further comprising a second detection means that outputs a second detection signal when a short circuit is detected.
前記2つの圧接型半導体装置はチョッパセルあるいは単相インバータ回路を構成する請求項1乃至請求項3のいずれか一項記載の電力変換装置。 The power conversion device according to any one of claims 1 to 3 , wherein the two pressure welding type semiconductor devices constitute a chopper cell or a single-phase inverter circuit.
JP2016251370A 2016-12-26 2016-12-26 Power converter Active JP6828425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016251370A JP6828425B2 (en) 2016-12-26 2016-12-26 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016251370A JP6828425B2 (en) 2016-12-26 2016-12-26 Power converter

Publications (2)

Publication Number Publication Date
JP2018107888A JP2018107888A (en) 2018-07-05
JP6828425B2 true JP6828425B2 (en) 2021-02-10

Family

ID=62787466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016251370A Active JP6828425B2 (en) 2016-12-26 2016-12-26 Power converter

Country Status (1)

Country Link
JP (1) JP6828425B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020095371A1 (en) * 2018-11-06 2020-05-14 株式会社 東芝 Semiconductor device
CN110247417B (en) * 2019-07-02 2021-04-20 国网江苏省电力有限公司经济技术研究院 Control method for reducing short-circuit current of converter station of flexible direct-current transmission system at two ends
KR102155497B1 (en) * 2019-09-19 2020-09-14 주식회사 에코세미텍 Testing circuit for the switching characteristics of semiconductor device
JP7483187B1 (en) 2023-11-08 2024-05-14 三菱電機株式会社 Power Conversion Equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005151664A (en) * 2003-11-13 2005-06-09 Nissan Motor Co Ltd Switched reluctance motor drive controller
JP2007184999A (en) * 2005-12-29 2007-07-19 Toshiba Mitsubishi-Electric Industrial System Corp Power converter
EP2330740B1 (en) * 2009-12-03 2016-05-25 ABB Technology AG System and method for controlling at least two power semiconductors connected in parallel
JP6334201B2 (en) * 2014-02-28 2018-05-30 株式会社日立製作所 Power converter and control method of power converter
JP6483963B2 (en) * 2014-06-11 2019-03-13 株式会社日立製作所 Power converter
DE102015103247A1 (en) * 2015-03-05 2016-09-08 Ge Energy Power Conversion Technology Limited Switch module with short-circuit protection and power electronics module with this
JP2016208706A (en) * 2015-04-24 2016-12-08 株式会社日立製作所 Power conversion device
JP6203353B2 (en) * 2016-09-20 2017-09-27 株式会社日立製作所 Power conversion device and power conversion method

Also Published As

Publication number Publication date
JP2018107888A (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP6828425B2 (en) Power converter
US11355477B2 (en) Power semiconductor module and power conversion device
US10134718B2 (en) Power semiconductor module
US20170110395A1 (en) Semiconductor device
US9116532B2 (en) Power semiconductor device module
JP6373702B2 (en) Semiconductor power module and semiconductor drive device
US20100213915A1 (en) Semiconductor switching device
JP2004214452A (en) Semiconductor module for power and method for connecting to external electrode
CN102347685A (en) Three level power converting device
CN112335043A (en) Power module
JP2017092789A (en) Power conversion device
JP2015032984A (en) Device for driving semiconductor element, and power conversion device using the same
JP2013162690A (en) Vvvf inverter and vehicle controller
US11127603B2 (en) Semiconductor module and power conversion device
JP3896940B2 (en) Semiconductor device
US11710685B2 (en) Semiconductor module and power conversion device
JP2015033222A (en) Drive unit of semiconductor device and power conversion device using the same
US11894780B2 (en) Power conversion unit
Muehlfeld et al. Automotive Traction Inverter for Highest Power Density
JP6156131B2 (en) Semiconductor device
JP2001238460A (en) Power converter
JP2013140889A (en) Power module
JP4246040B2 (en) Semiconductor device package
CN111630401B (en) Semiconductor device and power conversion device
JP7444529B2 (en) power converter

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170602

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210104

R150 Certificate of patent or registration of utility model

Ref document number: 6828425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250