JP6827058B2 - Current sensor - Google Patents

Current sensor Download PDF

Info

Publication number
JP6827058B2
JP6827058B2 JP2018557667A JP2018557667A JP6827058B2 JP 6827058 B2 JP6827058 B2 JP 6827058B2 JP 2018557667 A JP2018557667 A JP 2018557667A JP 2018557667 A JP2018557667 A JP 2018557667A JP 6827058 B2 JP6827058 B2 JP 6827058B2
Authority
JP
Japan
Prior art keywords
conversion elements
magnetron conversion
magnetron
current path
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018557667A
Other languages
Japanese (ja)
Other versions
JPWO2018116852A1 (en
Inventor
洋文 福井
洋文 福井
蛇口 広行
広行 蛇口
康夫 小寺
康夫 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Alps Alpine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd, Alps Alpine Co Ltd filed Critical Alps Electric Co Ltd
Publication of JPWO2018116852A1 publication Critical patent/JPWO2018116852A1/en
Application granted granted Critical
Publication of JP6827058B2 publication Critical patent/JP6827058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、被測定電流路に流れる電流を検出する電流センサに関し、特に、磁電変換素子を用いて被測定電流路に流れる電流を検出する電流センサに関する。 The present invention relates to a current sensor that detects a current flowing in a current path to be measured, and more particularly to a current sensor that detects a current flowing in a current path to be measured by using a magnetic conversion element.

各種電子機器の制御や監視のために、被測定電流路に取り付けて被測定電流路に流れる電流を検出する電流センサが良く知られている。この種の電流センサとしては、ホール素子や磁気抵抗素子等の磁電変換素子を用いた電流センサが知られており、磁電変換素子の感度向上や外部磁場からの影響低減等のため、複数の磁電変換素子を用いられることがある。
このように複数の磁電変換素子を用いた電流センサでは、被測定電流路の周囲に発生する磁界の向きに合わせて、被測定電流路の周囲の仮想円上に複数の磁電変換素子を配設していた。
A current sensor that is attached to the current path to be measured and detects the current flowing in the current path to be measured is well known for controlling and monitoring various electronic devices. As a current sensor of this type, a current sensor using a magnetoelectric conversion element such as a Hall element or a magnetoresistive element is known. A conversion element may be used.
In a current sensor using a plurality of magnetic-electric conversion elements in this way, a plurality of magnetic-electric conversion elements are arranged on a virtual circle around the current path to be measured according to the direction of the magnetic field generated around the current path to be measured. Was.

しかしながら、上述したように仮想円上に磁電変換素子を配設すると、電流センサが大型化し、被測定電流路と近隣電流路との距離が短い場合に、電流センサを設置できないという問題がある。 However, if the magnetic-electric conversion element is arranged on the virtual circle as described above, there is a problem that the current sensor cannot be installed when the current sensor becomes large and the distance between the current path to be measured and the neighboring current path is short.

このような問題を解決するために、特許文献1の電流センサでは、被測定電流路の位置を中心とし、当該被測定電流路と近隣電流路とを結ぶ方向を短軸とする仮想楕円上に複数の磁電変換素子を配設している。また、特許文献2の電流センサでは、仮想長方形、又は仮想楕円及び仮想長方形の上に複数の磁電変換素子を配設している。
当該電流センサによれば、近隣電流路の外来磁場の影響を大きく受けずに安定した電流検出ができると共に、小型化が図れる。
In order to solve such a problem, the current sensor of Patent Document 1 is on a virtual ellipse centered on the position of the current path to be measured and whose short axis is the direction connecting the current path to be measured and the neighboring current path. A plurality of magnetic-electric conversion elements are arranged. Further, in the current sensor of Patent Document 2, a plurality of magnetron conversion elements are arranged on a virtual rectangle, or a virtual ellipse and a virtual rectangle.
According to the current sensor, stable current detection can be performed without being greatly affected by the external magnetic field of the neighboring current path, and miniaturization can be achieved.

国際公開WO2013/128993号International release WO 2013/128993 国際公開WO2015/122064号International release WO 2015/122064

ところで、近年、電盤やインバーターの小型化によって、隣り合う電線の間隔が更に狭くなった。
このような背景から、電流センサには、被測定電流路と近隣電流路との距離がさらに短い場合においても設置可能であり、近隣電流路の外来磁場の影響を大きく受けずに安定した電流検出したいという要請がある。
By the way, in recent years, due to the miniaturization of switchboards and inverters, the distance between adjacent electric wires has become even narrower.
Against this background, the current sensor can be installed even when the distance between the current path to be measured and the neighboring current path is even shorter, and stable current detection is possible without being significantly affected by the external magnetic field of the neighboring current path. There is a request to do.

本発明はかかる事情に鑑みてなされたものであり、その目的は、さらなる小型化が図れると共に、近隣電流路の外来磁場の影響を大きく受けずに安定した電流検出ができる電流センサを提供することにある。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a current sensor capable of further miniaturization and stable current detection without being greatly affected by an external magnetic field of a neighboring current path. It is in.

上述した従来技術の問題点を解決し、上述した目的を達成するために、本発明の電流センサは、配線基板と、前記配線基板に設けられ、被測定電流路を流れる電流によって発生する磁気を検出する複数の磁電変換素子とを備え、前記配線基板には、仮想矩形の中心に前記被測定電流路を位置させるための切欠が形成され、前記複数の磁電変換素子は、前記仮想矩形の4つの頂点に位置する4つの第1の前記磁電変換素子と、前記仮想矩形の中心に対して点対称位置にある少なくとも4つの第2の前記磁電変換素子とを有し、前記第1の磁電変換素子の感度軸の向きは、前記切欠に沿った前記被測定電流路の着脱方向と直交しており、前記第2の磁電変換素子の感度軸の向きは、前記着脱方向と平行であり、前記仮想矩形の中心に対して点対称位置にある前記第1の磁電変換素子同士及び前記第2の磁電変換素子同士の感度軸の向きは平行であり、第2の前記磁電変換素子が、前記仮想矩形の内側に位置している。 In order to solve the above-mentioned problems of the prior art and achieve the above-mentioned object, the current sensor of the present invention is provided on the wiring board and the magnetism generated by the current flowing through the current path to be measured. A plurality of magnetic and electrical conversion elements to be detected are provided, and a notch for locating the current path to be measured is formed in the center of the virtual rectangle, and the plurality of magnetic and electrical conversion elements are 4 of the virtual rectangle. It has four first magnetic-electric conversion elements located at one apex and at least four second magnetic-electric conversion elements at point-symmetrical positions with respect to the center of the virtual rectangle, and the first magnetic-electric conversion. The direction of the sensitivity axis of the element is orthogonal to the attachment / detachment direction of the current path to be measured along the notch, and the direction of the sensitivity axis of the second magnetic-electric conversion element is parallel to the attachment / detachment direction. The directions of the sensitivity axes of the first magnetic-electric conversion elements and the second magnetic-electric conversion elements located at point-symmetrical positions with respect to the center of the virtual rectangle are parallel, and the second magnetic-electric conversion element is the virtual. It is located inside the rectangle.

この構成によれば、第1の磁電変換素子が頂点に位置する仮想矩形の内側に、第2の磁電変換素子を配置したことで、一直線上に第1の磁電変換素子及び第2の磁電変換素子を配置した場合に比べて、第2の磁電変換素子よりも近隣電流路からの離れた第1の磁電変換素子に生じる近隣電流路の磁界を強くできる。これにより、近隣電流路の磁界に応じた+成分の合計と−成分の合計との絶対値を一致させ、高い精度で相殺できる。 According to this configuration, by arranging the second magnetron conversion element inside the virtual rectangle in which the first magnetron conversion element is located at the apex, the first magnetron conversion element and the second magnetron conversion are formed in a straight line. Compared with the case where the elements are arranged, the magnetic field of the neighboring current path generated in the first magnetron conversion element farther from the neighboring current path than the second magnetron conversion element can be strengthened. As a result, the absolute values of the sum of the + components and the sum of the-components according to the magnetic field of the neighboring current path can be matched and canceled with high accuracy.

好適には、前記中心を通り前記着脱方向に平行な中心線に対して、一方側にある複数の前記第2の磁電変換素子と、他方側にある複数の前記第2の磁電変換素子とは、それぞれ前記中心線に平行な仮想直線上に配設されている。 Preferably, the plurality of the second magnetron conversion elements on one side and the plurality of the second magnetron conversion elements on the other side with respect to the center line passing through the center and parallel to the attachment / detachment direction. , Each arranged on a virtual straight line parallel to the center line.

この構成によれば、仮想直線上で第2の磁電変換素子の位置を調整すればよく、測定精度を高める設計が容易になる。 According to this configuration, the position of the second magnetron conversion element may be adjusted on the virtual straight line, and the design for improving the measurement accuracy becomes easy.

好適には、前記一方側にある複数の第2の磁電変換素子と、前記他方側にある複数の第2の磁電変換素子とは、前記中心線に対して線対称に配設されている。 Preferably, the plurality of second magnetron conversion elements on one side and the plurality of second magnetron conversion elements on the other side are arranged line-symmetrically with respect to the center line.

この構成によれば、中心線に対して線対称に第2の磁電変換素子が配置されるので、対称性が保たれ、地磁気のような一様な外来磁場を高い精度で相殺できる。 According to this configuration, since the second magnetic field conversion element is arranged line-symmetrically with respect to the center line, the symmetry is maintained and a uniform external magnetic field such as geomagnetism can be canceled with high accuracy.

好適には、前記仮想矩形の長辺は前記中心線に平行であり、その短辺は前記中心線に直交している。 Preferably, the long side of the virtual rectangle is parallel to the centerline and its short side is orthogonal to the centerline.

この構成によれば、第1の磁電変換素子が頂点に配置される仮想矩形の短辺を中心軸に直交するようにしたことで、磁電変換素子を配設する中心軸に直交する方向における必要な距離を短くできる。すなわち、被測定電流路と近隣電流路との距離を狭くできる。 According to this configuration, the short side of the virtual rectangle arranged at the apex of the first magnetic-electric conversion element is orthogonal to the central axis, so that it is necessary in the direction orthogonal to the central axis in which the magnetic-electric conversion element is arranged. Distance can be shortened. That is, the distance between the current path to be measured and the neighboring current path can be narrowed.

好適には、前記複数の第2の磁電変換素子は、前記仮想矩形の前記中心を中心とする仮想楕円上に配設されている。 Preferably, the plurality of second magnetron conversion elements are arranged on a virtual ellipse centered on the center of the virtual rectangle.

この構成によれば、仮想矩形の中心を中心とする仮想楕円上に第2の磁電変換素子を位置調整をすればよく、測定精度を高める設計が容易になる。また、被測定電流路と近隣電流路との距離を狭くできる。 According to this configuration, the position of the second magnetron conversion element may be adjusted on the virtual ellipse centered on the center of the virtual rectangle, and the design for improving the measurement accuracy becomes easy. In addition, the distance between the current path to be measured and the neighboring current path can be narrowed.

好適には、前記第1の磁電変換素子及び前記第2の磁電変換素子の感度軸が、前記仮想矩形の中心を囲む閉径路に沿って一方向を向くように、前記第1の磁電変換素子及び前記第2の磁電変換素子が配設されている。 Preferably, the first magnetron conversion element is oriented so that the sensitivity axes of the first magnetron conversion element and the second magnetron conversion element point in one direction along a closed path surrounding the center of the virtual rectangle. And the second magnetron conversion element is arranged.

この構成によれば、磁電変換素子の感度軸と被測定電流路の磁界との方向を合わせることができ、被測定電流路の磁界を効率的に検出でき、測定精度を高めることができる。 According to this configuration, the direction of the sensitivity axis of the electromagnetic conversion element and the magnetic field of the current path to be measured can be aligned, the magnetic field of the current path to be measured can be efficiently detected, and the measurement accuracy can be improved.

好適には、前記第1の磁電変換素子及び前記第2の磁電変換素子は、同一特性である。 Preferably, the first magnetron conversion element and the second magnetron conversion element have the same characteristics.

本発明によれば、さらなる小型化が図れると共に、近隣電流路の外来磁場の影響を大きく受けずに安定した電流検出ができる電流センサを提供することができる。 According to the present invention, it is possible to provide a current sensor capable of further miniaturization and stable current detection without being significantly affected by an external magnetic field in a neighboring current path.

本発明の実施形態に係る電流センサを示す分解斜視図である。It is an exploded perspective view which shows the current sensor which concerns on embodiment of this invention. 本発明の実施形態に係る電流センサを示す斜視図である。It is a perspective view which shows the current sensor which concerns on embodiment of this invention. 本発明の実施形態に係る電流センサの磁電変換素子の配置を説明するための図であって、図1に示すZ1側から見た配線基板の上面図である。It is a figure for demonstrating the arrangement of the magnetron conversion element of the current sensor which concerns on embodiment of this invention, and is the top view of the wiring board seen from the Z1 side shown in FIG. 図3に示す電流センサの近隣電流路を説明するための図である。It is a figure for demonstrating the neighborhood current path of the current sensor shown in FIG. 図3に示す電流センサにおいて、図4に示す近隣電流路CN1からの磁界の影響を説明するための図である。It is a figure for demonstrating the influence of the magnetic field from the neighborhood current path CN1 shown in FIG. 4 in the current sensor shown in FIG. 本発明の実施形態に係る電流センサの磁電変換素子の配置の第1変形例を説明するための図であって、図1に示すZ1側から見た配線基板の上面図である。It is a figure for demonstrating the 1st modification of the arrangement of the magnetron conversion element of the current sensor which concerns on embodiment of this invention, and is the top view of the wiring board seen from the Z1 side shown in FIG. 本発明の実施形態に係る電流センサの磁電変換素子の配置の第2変形例を説明するための図であって、図1に示すZ1側から見た配線基板の上面図である。It is a figure for demonstrating the 2nd modification of the arrangement of the magnetron conversion element of the current sensor which concerns on embodiment of this invention, and is the top view of the wiring board seen from the Z1 side shown in FIG.

図1は、本発明の実施形態に係る電流センサ101を示す分解斜視図である。図2は、本発明の実施形態に係る電流センサ101を示す斜視図である。図3は、本発明の実施形態に係る電流センサ101を説明するための図であって、図1に示すZ1側からZ2側に見た配線基板16の上面図である。 FIG. 1 is an exploded perspective view showing a current sensor 101 according to an embodiment of the present invention. FIG. 2 is a perspective view showing the current sensor 101 according to the embodiment of the present invention. FIG. 3 is a diagram for explaining the current sensor 101 according to the embodiment of the present invention, and is a top view of the wiring board 16 seen from the Z1 side to the Z2 side shown in FIG.

図1及び図2に示すように、本発明の実施形態に係る電流センサ101は、被測定電流路CBに電流が流れたときに発生する磁気を検出する複数の磁電変換素子15と、複数の磁電変換素子15が配置された配線基板16とを備えて構成されている。また、電流センサ101は、配線基板16を収納する収納部11sを有する筐体11と、磁電変換素子15からの電気信号を取り出すための取出し端子13tを有したコネクタ13と、被測定電流路CBを固定し保持するための保持部材14と、を備えている。 As shown in FIGS. 1 and 2, the current sensor 101 according to the embodiment of the present invention includes a plurality of magnetic-electric conversion elements 15 for detecting magnetism generated when a current flows through a current path CB to be measured, and a plurality of magnetic-electric conversion elements 15. It is configured to include a wiring board 16 on which the magnetic-electric conversion element 15 is arranged. Further, the current sensor 101 includes a housing 11 having a storage portion 11s for accommodating the wiring board 16, a connector 13 having an extraction terminal 13t for extracting an electric signal from the magnetic-electric conversion element 15, and a current path CB to be measured. It is provided with a holding member 14 for fixing and holding the.

筐体11は、合成樹脂材料で形成されている。この筐体11は、上方が開口した箱状のケース31と、ケース31の開口部を塞ぐような板状のカバー41と、から構成され、ケース31内部に、配線基板16を収納する収納部11sが形成されている。 The housing 11 is made of a synthetic resin material. The housing 11 is composed of a box-shaped case 31 having an opening at the top and a plate-shaped cover 41 that closes the opening of the case 31, and a storage portion for storing the wiring board 16 inside the case 31. 11s is formed.

ケース31には、その一辺側からケース31の中心側に向かって切り欠かれた凹部(凹溝)32が形成され、この凹部32内に被測定電流路CBが導入されて保持されるように構成されている。凹部32の奥壁32aは、被測定電流路CBの外周面と相補形状に形成されている。 A recess (recessed groove) 32 cut out from one side of the case 31 toward the center of the case 31 is formed, and the current path CB to be measured is introduced and held in the recess 32. It is configured. The back wall 32a of the recess 32 is formed in a shape complementary to the outer peripheral surface of the current path CB to be measured.

本実施形態では、凹部32の奥壁32aは、円筒形状の被測定電流路CBの外周面に対応するように円弧状に湾曲して形成されている。また、奥壁32aに連なるケース31の対向する内側壁32bには、クリップバネ14Kの自由端部側を係止する切欠32cが、それぞれ対峙する位置に形成されている。 In the present embodiment, the back wall 32a of the recess 32 is formed to be curved in an arc shape so as to correspond to the outer peripheral surface of the cylindrical current path CB to be measured. Further, notches 32c for locking the free end side of the clip spring 14K are formed at positions facing each other on the facing inner side wall 32b of the case 31 connected to the back wall 32a.

切欠32cは、内側壁32bの上端部側から下方に向かって切り欠かれ、入り口側の端面が、外方に向かって傾斜するように形成されている。被測定電流路CBは、その外周面の奥側を凹部32の奥壁32aに当接させた状態で、手前側を切欠32cから凹部32内に突出するクリップバネ14Kによって挟持されることで、筐体11に対して保持される。この凹部32の奥壁32aとクリップバネ14Kとで挟持される位置が、筐体11に対する被測定電流路CBの中心PPとなる。本実施形態では、中心PPが、後述する仮想矩形Lの中心PPとなる。 The notch 32c is notched downward from the upper end side of the inner side wall 32b, and the end surface on the entrance side is formed so as to incline outward. The current path CB to be measured is sandwiched by a clip spring 14K projecting from the notch 32c into the recess 32 with the back side of the outer peripheral surface in contact with the back wall 32a of the recess 32. It is held against the housing 11. The position sandwiched between the back wall 32a of the recess 32 and the clip spring 14K is the central PP of the current path CB to be measured with respect to the housing 11. In the present embodiment, the central PP is the central PP of the virtual rectangle L described later.

カバー41は、一方の辺部に、ケース31の凹部32と対応するように同一形状の開口部42が形成され、この開口部42の形成された辺部と反対側の辺部に、コネクタ13の上端部を筐体11外部に露出させるための開口部43が形成されている。 The cover 41 has an opening 42 having the same shape formed on one side of the cover 41 so as to correspond to the recess 32 of the case 31, and the connector 13 is formed on the side of the opening 42 opposite to the formed side. An opening 43 is formed for exposing the upper end portion of the housing 11 to the outside of the housing 11.

保持部材14は、被測定電流路CBを固定し保持するための部材であり、被測定電流路CBの外縁を挟み込んで保持するクリップバネ14Kと、被測定電流路CBが中心PPに配設された後にクリップバネ14Kを押さえる押し部材14Hとを備えている。 The holding member 14 is a member for fixing and holding the measured current path CB, and the clip spring 14K that sandwiches and holds the outer edge of the measured current path CB and the measured current path CB are arranged in the central PP. After that, it is provided with a pushing member 14H that presses the clip spring 14K.

押し部材14Hは、略直方体形状で形成されており、ケース31に形成された凹部32に強く嵌合されるサイズで作製されている。この押し部材14Hは、クリップバネ14Kを押さえた状態で、ケース31の凹部32内に保持される。 The push member 14H is formed in a substantially rectangular parallelepiped shape, and is manufactured in a size that is strongly fitted in the recess 32 formed in the case 31. The pushing member 14H is held in the recess 32 of the case 31 while pressing the clip spring 14K.

配線基板16は、多層のプリント配線板(PCB)を用いられ、配線板上に設けられた銅(Cu)等の金属箔をパターニングして、配線パターンが形成されている。配線基板16は、ケース31の収納部11sに収納可能な大きさで形成されており、その一辺部に、被測定電流路CBが挿通されて且つ配設される切欠19が形成されている。すなわち、配線基板16は、収納部11sの底面部と相似形状に形成されており、ケース31の凹部32と相補形状の切欠部17が形成されている。 A multilayer printed wiring board (PCB) is used for the wiring board 16, and a metal foil such as copper (Cu) provided on the wiring board is patterned to form a wiring pattern. The wiring board 16 is formed in a size that can be stored in the storage portion 11s of the case 31, and a notch 19 through which the current path CB to be measured is inserted and arranged is formed on one side portion thereof. That is, the wiring board 16 is formed in a shape similar to the bottom surface portion of the storage portion 11s, and a notch portion 17 having a complementary shape is formed with the recess 32 of the case 31.

図1及び図3に示すように、配線基板16の切欠19の近傍には、複数(10個)の磁電変換素子15が配置され、切欠19が形成される辺部と対向する辺部近傍にはコネクタ13が配設されている。なお、磁電変換素子15の詳細な配置位置については後述する。 As shown in FIGS. 1 and 3, a plurality of (10) magnetron conversion elements 15 are arranged in the vicinity of the notch 19 of the wiring board 16 and in the vicinity of the side portion facing the side portion in which the notch 19 is formed. Is provided with a connector 13. The detailed arrangement position of the magnetron conversion element 15 will be described later.

コネクタ13は、相手側コネクタ(図示省略)と電気的に接続する複数の端子を備えており、これら複数の端子の中に、磁電変換素子15からの電気信号を取り出すため取出し端子13tを有している。また、コネクタ13は、相手側コネクタ(図示省略)と嵌合するための絶縁基体13Kを備えている。絶縁基体13Kは、上方が開口した箱状に形成され、その内部に、取出し端子13tを含む複数の端子が、各端子間を絶縁した状態で保持され収納されている。なお、本実施形態では、磁電変換素子15からの電気信号を取り出すためにコネクタ13を用いたが、コネクタ13に限らず、例えば、フレキシブルプリント配線板(FPC:Flexible Printed Circuits)等を用いても良い。 The connector 13 includes a plurality of terminals that are electrically connected to a mating connector (not shown), and has a take-out terminal 13t in the plurality of terminals for extracting an electric signal from the magnetron conversion element 15. ing. Further, the connector 13 includes an insulating base 13K for fitting with a mating connector (not shown). The insulating substrate 13K is formed in a box shape with an opening at the upper side, and a plurality of terminals including the take-out terminal 13t are held and stored in a box shape in which the terminals are insulated from each other. In the present embodiment, the connector 13 is used to extract the electric signal from the magnetron conversion element 15, but the connector 13 is not limited to the connector 13, and for example, a flexible printed circuit board (FPC) or the like may be used. good.

磁電変換素子15は、被測定電流路CBに電流が流れたときに発生する磁気を検出する電流センサ素子であって、例えば、巨大磁気抵抗効果を用いた磁気検出素子(GMR(Giant Magneto Resistive)素子という)を用いることが可能である。この磁電変換素子15は、説明を容易にするため詳細な図示は省略したが、GMR素子をシリコン基板上に作製した後、切り出されたチップを熱硬化性の合成樹脂でパッケージングし、信号の取り出しのためのリード端子がGMR素子と電気的に接続されて構成されている。そして、このリード端子により、配線基板16にはんだ付けがされている。 The magnetoelectric conversion element 15 is a current sensor element that detects magnetism generated when a current flows in the current path CB to be measured. For example, a magnetic detection element (GMR (Giant Magneto Resistive)) using a giant magnetoresistive effect. It is possible to use an element). Although detailed illustration of the magnetron conversion element 15 is omitted for the sake of simplicity, the GMR element is manufactured on a silicon substrate, and then the cut-out chip is packaged with a thermosetting synthetic resin to obtain a signal. The lead terminal for taking out is electrically connected to the GMR element. Then, the lead terminal is soldered to the wiring board 16.

図3に示すように、電流センサ101では、被測定電流路CBの中心PPの周囲に、4個の第1の磁電変換素子15a,15b,15c,15dと、6個の第2の磁電変換素子17a,17b,17c,17d,17e,17fとが配設さている。
第1の磁電変換素子15a,15b,15c,15dと、6個の第2の磁電変換素子17a,17b,17c,17d,17e,17fは、同一の磁電変換特性を有している。これにより、電流センサ101の測定精度を高めるための設計が容易になる。
As shown in FIG. 3, in the current sensor 101, four first magnetron conversion elements 15a, 15b, 15c, 15d and six second magnetron conversion elements are formed around the central PP of the current path CB to be measured. Elements 17a, 17b, 17c, 17d, 17e, 17f are arranged.
The first magnetron conversion elements 15a, 15b, 15c, 15d and the six second magnetron conversion elements 17a, 17b, 17c, 17d, 17e, 17f have the same magnetron conversion characteristics. This facilitates the design for improving the measurement accuracy of the current sensor 101.

仮想矩形L1の中心PPは、前述したように、被測定電流路CBの横断面(X,Y断面)の中心となる。切欠19は、被測定電流路CBに対して電流センサ101を位置決めした際に、仮想矩形L1の中心PPに被測定電流路CBの中心を位置させることが可能な形状を有している。
図3に示すように、中心線L2に対して切欠19の左側(X2方向側)の配線基板16の表面には、第1の磁電変換素子15a,15bと第2の磁電変換素子17a,17b,17cが配設されている。また、Y1方向から見て切欠19の右側(X1方向側)の配線基板16の表面には、第1の磁電変換素子15c,15dと第2の磁電変換素子17d,17e,17fが配設されている。
As described above, the center PP of the virtual rectangle L1 is the center of the cross section (X, Y cross section) of the current path CB to be measured. The notch 19 has a shape capable of locating the center of the current path CB to be measured at the center PP of the virtual rectangle L1 when the current sensor 101 is positioned with respect to the current path CB to be measured.
As shown in FIG. 3, on the surface of the wiring board 16 on the left side (X2 direction side) of the notch 19 with respect to the center line L2, the first magnetron conversion elements 15a and 15b and the second magnetron conversion elements 17a and 17b , 17c are arranged. Further, the first magnetron conversion elements 15c and 15d and the second magnetron conversion elements 17d, 17e and 17f are arranged on the surface of the wiring board 16 on the right side (X1 direction side) of the notch 19 when viewed from the Y1 direction. ing.

図3に示すように、中心PPを中心とする仮想矩形L1を規定した場合に、第1の磁電変換素子15a〜15dは、仮想矩形L1の4つの頂点に位置する。
具体的には、図3に示すように、中心PPを通り、被測定電流路CBの切欠32cに沿った着脱方向(Y1−Y2方向)に平行な中心線L2を規定した場合に、仮想矩形L1の長辺は中心線L2に平行であり、その短辺は中心線L2に直交している。
As shown in FIG. 3, when the virtual rectangle L1 centered on the center PP is defined, the first magnetron conversion elements 15a to 15d are located at the four vertices of the virtual rectangle L1.
Specifically, as shown in FIG. 3, when a center line L2 that passes through the center PP and is parallel to the attachment / detachment direction (Y1-Y2 direction) along the notch 32c of the current path CB to be measured is defined, it is a virtual rectangle. The long side of L1 is parallel to the center line L2, and its short side is orthogonal to the center line L2.

また、第2の磁電変換素子17a〜17fは、仮想矩形L1の内側に位置し、仮想矩形L1の中心である中心PPに点対称位置にある。
具体的には、図3に示すように中心線L2に対してX2側に第2の磁電変換素子17a〜17cが位置し、X1側に第2の磁電変換素子17d〜17fが位置している。
図3に示す例では、第2の磁電変換素子17a〜17cはY1−Y2方向に平行な仮想直線L3上に位置し、第2の磁電変換素子17d〜17fはY1−Y2方向に平行な仮想直線L4上に位置している。仮想直線L3とL4とは、中心線L2に対して線対称である。
Further, the second magnetron conversion elements 17a to 17f are located inside the virtual rectangle L1 and are point-symmetrical to the center PP which is the center of the virtual rectangle L1.
Specifically, as shown in FIG. 3, the second magnetron conversion elements 17a to 17c are located on the X2 side and the second magnetron conversion elements 17d to 17f are located on the X1 side with respect to the center line L2. ..
In the example shown in FIG. 3, the second magnetron conversion elements 17a to 17c are located on the virtual straight line L3 parallel to the Y1-Y2 direction, and the second magnetron conversion elements 17d to 17f are virtual parallel to the Y1-Y2 direction. It is located on the straight line L4. The virtual straight lines L3 and L4 are line symmetric with respect to the center line L2.

第1の磁電変換素子15a、第2の磁電変換素子17a,17b,17c及び第1の磁電変換素子15bは、第1の長方形L1の中心PPに対して、それぞれ第1の磁電変換素子15c、第2の磁電変換素子17d,17e,17f及び第1の磁電変換素子15dとそれぞれ点対称に配設されている。 The first magnetron conversion element 15a, the second magnetron conversion elements 17a, 17b, 17c and the first magnetron conversion element 15b have the first magnetron conversion element 15c, respectively, with respect to the central PP of the first rectangle L1. It is arranged point-symmetrically with the second magnetron conversion elements 17d, 17e, 17f and the first magnetron conversion element 15d, respectively.

このように第1の磁電変換素子15a〜15d及び第2の磁電変換素子17a〜17fを配設することで、磁電変換素子が円周上に等間隔で配設されている場合(比較例)と比較して、被測定電流路CBが挿通されて且つ配設される磁電変換素子の配置でありながら、磁電変換素子の配設スペースを小さくできる。 By arranging the first magnetron conversion elements 15a to 15d and the second magnetron conversion elements 17a to 17f in this way, the magnetron conversion elements are arranged at equal intervals on the circumference (comparative example). Compared with the above, the arrangement space of the magnetron conversion element can be reduced while the arrangement of the magnetron conversion element through which the current path CB to be measured is inserted and arranged.

すなわち、比較例に係る磁電変換素子の場合には、被測定電流路CBの配設位置を中心として周方向に等間隔で磁電変換素子が均等配置されている。そのため、磁電変換素子間から被測定電流路CBを導入して配設位置に配設する場合、磁電変換素子同士の素子間隔として、少なくとも被測定電流路CBが通過可能な間隔を確保する必要があるので、全ての磁電変換素子の配設領域が大きくなり、これに伴い配線基板が大型化してしまうことになる。 That is, in the case of the magnetron conversion element according to the comparative example, the magnetron conversion elements are evenly arranged at equal intervals in the circumferential direction around the arrangement position of the current path CB to be measured. Therefore, when the current path CB to be measured is introduced from between the magnetron conversion elements and arranged at the arrangement position, it is necessary to secure at least a distance through which the current path CB to be measured can pass as the element spacing between the magnetron conversion elements. Therefore, the arrangement area of all the magnetron conversion elements becomes large, and the wiring board becomes large accordingly.

一方、本実施形態に係る磁電変換素子15の配置の場合には、3個の第2の磁電変換素子17a,17b,17cが第2の長方形L3の長辺L31上に配設され、3個の第2の磁電変換素子17f,17e,17dが第2の長方形L3の長辺L32上に配設されている。
そのため、第2の磁電変換素子17a,17b,17cと第2の磁電変換素子17f,17e,17dとの配置に必要なX1−X2方向(X方向)の距離を短くできる。すなわち、被測定電流路CBと隣接する近隣電流路CN1,CN2との距離を狭くできる。
その結果、特に切欠19の形成方向と直交する方向(X1−X2方向)における磁電変換素子の配設領域を小さくすることができ、配線基板16の小型化、つまり電流センサ101の小型化が可能である。特に配電盤のように複数の電流路を、できるだけ狭い間隔で設けたい用途では、切欠19の左右の腕部18の幅を狭くできることが重要となる。
On the other hand, in the case of the arrangement of the magnetron conversion element 15 according to the present embodiment, three second magnetron conversion elements 17a, 17b, 17c are arranged on the long side L31 of the second rectangle L3, and three pieces are arranged. The second magnetron conversion elements 17f, 17e, 17d are arranged on the long side L32 of the second rectangle L3.
Therefore, the distance in the X1-X2 direction (X direction) required for arranging the second magnetron conversion elements 17a, 17b, 17c and the second magnetron conversion elements 17f, 17e, 17d can be shortened. That is, the distance between the current path CB to be measured and the adjacent current paths CN1 and CN2 can be narrowed.
As a result, the arrangement region of the magnetron conversion element can be reduced especially in the direction orthogonal to the forming direction of the notch 19 (X1-X2 direction), and the wiring substrate 16 can be downsized, that is, the current sensor 101 can be downsized. Is. In particular, in an application where a plurality of current paths are provided at intervals as narrow as possible, such as a switchboard, it is important that the widths of the left and right arm portions 18 of the notch 19 can be narrowed.

第1の磁電変換素子15a〜15dの感度軸(磁気を感知する方向)の向きSJは、仮想矩形L1の短辺に平行、すなわち、切欠32cへの被測定電流路CBの着脱方向Y1−Y2と直交している。これにより、電流センサ101の測定精度を高める設計が容易になる。
具体的には、第1の磁電変換素子15a,15cの感度軸の向きSJはX1方向であり、第1の磁電変換素子15d,15aの感度軸の向きSJはX2方向である。
また、第2の磁電変換素子17a,17b,17cの感度軸の向きSJはY1方向であり、第2の磁電変換素子17d,17e,17fの感度軸の向きSJはY2方向である。
第1の磁電変換素子15a〜15d及び第2の磁電変換素子17a〜17fは、それらの感度軸の向きSJが、被測定電流路CBの中心である仮想矩形L1の中心PPを囲む閉径路に沿って一方向(本実施形態では時計回り方向)を向くように配設されている。
The orientation SJ of the sensitivity axes (directions for sensing magnetism) of the first magnetic-electric conversion elements 15a to 15d is parallel to the short side of the virtual rectangle L1, that is, the attachment / detachment direction of the current path CB to be measured to the notch 32c Y1-Y2. Is orthogonal to. This facilitates a design that enhances the measurement accuracy of the current sensor 101.
Specifically, the directions SJ of the sensitivity axes of the first magnetron conversion elements 15a and 15c are in the X1 direction, and the directions SJ of the sensitivity axes of the first magnetron conversion elements 15d and 15a are in the X2 direction.
The direction SJ of the sensitivity axes of the second magnetron conversion elements 17a, 17b, 17c is in the Y1 direction, and the direction SJ of the sensitivity axes of the second magnetron conversion elements 17d, 17e, 17f is in the Y2 direction.
In the first magnetron conversion elements 15a to 15d and the second magnetron conversion elements 17a to 17f, the direction SJ of their sensitivity axes is a closed path surrounding the center PP of the virtual rectangle L1 which is the center of the current path CB to be measured. It is arranged so as to face in one direction (clockwise in this embodiment) along the line.

これにより、第2の磁電変換素子17a,17b,17は、中心PPを中心に点対称位置にある第2の磁電変換素子17d,17e,17fと感度軸の向きSJが逆になる。
後段の演算回路では、第1の磁電変換素子15a〜15dの出力と第2の磁電変換素子17a〜17fの出力とを加算することで、被測定電流路CBの磁界に応じた成分を累積して有効化し、近隣電流路CNの磁界に応じた成分をキャンセルする。
As a result, in the second magnetron conversion elements 17a, 17b, 17, the directions SJ of the sensitivity axes are opposite to those of the second magnetron conversion elements 17d, 17e, 17f located at point-symmetrical positions about the center PP.
In the calculation circuit in the latter stage, the components corresponding to the magnetic field of the current path CB to be measured are accumulated by adding the outputs of the first magnetron conversion elements 15a to 15d and the outputs of the second magnetron conversion elements 17a to 17f. To activate and cancel the component corresponding to the magnetic field of the neighboring current path CN.

図4は、図3に示す電流センサ101の近隣電流路を説明するための図である。
図5は、図3に示す電流センサ101において、図4に示す近隣電流路CN1からの磁界の影響を説明するための図である。
図5に示すように、第2の磁電変換素子17d,17e,17fの位置は、X1側の近隣電流路CN1に近く、近隣電流路CN1からの磁界B1からの磁界が強い。しかも、第2の磁電変換素子17d,17e,17fの感度軸の向きと、近隣電流路CN1からの磁界B1の向きが平行に近い。但し、第2の磁電変換素子17d,17e,17fの感度軸の向きと、近隣電流路CN1からの磁界B1の向きは、ほぼ逆方向である。つまり、近隣電流路CN1からの磁界B1の感度軸方向成分は、感度軸方向と逆である。以上より、第2の磁電変換素子17d,17e,17fでは、近隣電流路CN1からの磁界B1が、負の符号の大きな絶対値で計測される。
FIG. 4 is a diagram for explaining a nearby current path of the current sensor 101 shown in FIG.
FIG. 5 is a diagram for explaining the influence of the magnetic field from the neighboring current path CN1 shown in FIG. 4 in the current sensor 101 shown in FIG.
As shown in FIG. 5, the positions of the second magnetron conversion elements 17d, 17e, and 17f are close to the neighboring current path CN1 on the X1 side, and the magnetic field from the magnetic field B1 from the neighboring current path CN1 is strong. Moreover, the directions of the sensitivity axes of the second magnetron conversion elements 17d, 17e, 17f and the direction of the magnetic field B1 from the neighboring current path CN1 are almost parallel. However, the directions of the sensitivity axes of the second magnetron conversion elements 17d, 17e, and 17f and the directions of the magnetic field B1 from the neighboring current path CN1 are substantially opposite directions. That is, the sensitivity axial component of the magnetic field B1 from the neighboring current path CN1 is opposite to the sensitivity axial direction. From the above, in the second magnetron conversion elements 17d, 17e, 17f, the magnetic field B1 from the neighboring current path CN1 is measured with a large absolute value of a negative sign.

X2側の第2の磁電変換素子17a,17b,17cの位置は、X1側の近隣電流路CN1から遠く、近隣電流路CN1からの磁界B1からの磁界が弱い。第2の磁電変換素子17a,17b,17cの感度軸の向きと、近隣電流路CN1からの磁界B1の向きが平行に近い。第2の磁電変換素子17a,17b,17cの感度軸の向きと、近隣電流路CN1からの磁界B1の向きは、ほぼ同一方向である。以上より、第2の磁電変換素子17a,17b,17cでは、近隣電流路CN1からの磁界B1が、正の符号の小さな絶対値で計測される。 The positions of the second electromagnetic conversion elements 17a, 17b, and 17c on the X2 side are far from the neighboring current path CN1 on the X1 side, and the magnetic field from the magnetic field B1 from the neighboring current path CN1 is weak. The direction of the sensitivity axes of the second magnetron conversion elements 17a, 17b, 17c and the direction of the magnetic field B1 from the neighboring current path CN1 are almost parallel. The direction of the sensitivity axes of the second magnetron conversion elements 17a, 17b, 17c and the direction of the magnetic field B1 from the neighboring current path CN1 are substantially the same direction. From the above, in the second magnetron conversion elements 17a, 17b, 17c, the magnetic field B1 from the neighboring current path CN1 is measured with a small absolute value of a positive sign.

X2側の第1の磁電変換素子15a,15bの位置は、X1側の近隣電流路CN1から遠く、近隣電流路CN1からの磁界B1からの磁界が弱い。第1の磁電変換素子15a,15bの感度軸の向きと、近隣電流路CN1からの磁界B1の向きは直交に近い。但し、近隣電流路CN1からの磁界B1の感度軸方向成分は、感度軸方向と同じである。以上より、第1の磁電変換素子15a,15bでは、近隣電流路CN1からの磁界B1が、正の符号の非常に小さな絶対値で計測される。 The positions of the first magnetic electroconversion elements 15a and 15b on the X2 side are far from the neighboring current path CN1 on the X1 side, and the magnetic field from the magnetic field B1 from the neighboring current path CN1 is weak. The direction of the sensitivity axes of the first magnetron conversion elements 15a and 15b and the direction of the magnetic field B1 from the neighboring current path CN1 are close to orthogonal. However, the sensitivity axial component of the magnetic field B1 from the neighboring current path CN1 is the same as the sensitivity axial direction. From the above, in the first magnetron conversion elements 15a and 15b, the magnetic field B1 from the neighboring current path CN1 is measured with a very small absolute value of a positive sign.

X1側の第1の磁電変換素子15c,15dの位置は、X1側の近隣電流路CN1からやや近く、近隣電流路CN1からの磁界B1からの磁界がやや強い。第1の磁電変換素子15a,15bの感度軸の向きと、近隣電流路CN1からの磁界B1の向きは、平行ではなく、直交もしていない。但し、近隣電流路CN1からの磁界B1の感度軸方向成分は、感度軸方向と同じである。以上より、第1の磁電変換素子15c,15dでは、近隣電流路CN1からの磁界B1が、正の符号のやや大きな絶対値で計測される。しかも、本発明では、「X1側の第1の磁電変換素子15c,15d」を、近隣電流路CN1側(X1側)に近づけて配置することで、計測される値を大きくしている。 The positions of the first magnetic electric conversion elements 15c and 15d on the X1 side are slightly closer to the neighboring current path CN1 on the X1 side, and the magnetic field from the magnetic field B1 from the neighboring current path CN1 is slightly stronger. The orientation of the sensitivity axes of the first magnetron conversion elements 15a and 15b and the orientation of the magnetic field B1 from the neighboring current path CN1 are neither parallel nor orthogonal. However, the sensitivity axial component of the magnetic field B1 from the neighboring current path CN1 is the same as the sensitivity axial direction. From the above, in the first magnetron conversion elements 15c and 15d, the magnetic field B1 from the neighboring current path CN1 is measured with a slightly larger absolute value of a positive sign. Moreover, in the present invention, the measured value is increased by arranging the "first magnetron conversion elements 15c and 15d on the X1 side" close to the neighboring current path CN1 side (X1 side).

以上説明したとおり、合計3つの第2の磁電変換素子17d,17e,17fによって、近隣電流路CN1からの磁界B1が、負の符号で計測される。一方、合計7つの第1の磁電変換素子15a,15b,15c,15d,第2の磁電変換素子17a,17b,17cによって、近隣電流路CN1からの磁界B1が、正の符号で計測される。
上述したとおり、第2の磁電変換素子17d,17e,17fによって、近隣電流路CN1からの磁界B1が大きく計測される。第2の磁電変換素子17a,17b,17cによって、近隣電流路CN1からの磁界B1が、小さく計測される。第1の磁電変換素子15a,15bによって、近隣電流路CN1からの磁界B1が、非常に小さく計測される。第1の磁電変換素子15c,15dによって、近隣電流路CN1からの磁界B1が、やや大きく計測される。
As described above, the magnetic field B1 from the neighboring current path CN1 is measured by a total of three second magnetron conversion elements 17d, 17e, 17f with a negative sign. On the other hand, the magnetic field B1 from the neighboring current path CN1 is measured with a positive code by the total of seven first magnetron conversion elements 15a, 15b, 15c, 15d and the second magnetron conversion elements 17a, 17b, 17c.
As described above, the magnetic field B1 from the neighboring current path CN1 is largely measured by the second magnetron conversion elements 17d, 17e, 17f. The magnetic field B1 from the neighboring current path CN1 is measured small by the second magnetron conversion elements 17a, 17b, 17c. The magnetic field B1 from the neighboring current path CN1 is measured very small by the first magnetron conversion elements 15a and 15b. The magnetic field B1 from the neighboring current path CN1 is measured slightly larger by the first magnetron conversion elements 15c and 15d.

従って、「合計3つの第2の磁電変換素子17d,17e,17fによって計測される近隣電流路CN1からの磁界B1の合計(符号は負になる)」と、「合計7つの第1の磁電変換素子15a,15b,15c,15d,第2の磁電変換素子17a,17b,17cによって計測される近隣電流路CN1からの磁界B1の合計(符号は正になる)」とが概ね一致する。本実施形態では、第1の磁電変換素子15c,15dの位置を近隣電流路CN1に近づけることによって、全ての磁電変換素子(第1の磁電変換素子15a,15b,15c,15d,第2の磁電変換素子17a,17b,17c,17d,17e,17f)で計測される近隣電流路CN1からの磁界B1の合計を、精度良く0に近づけることができる。 Therefore, "the total of the magnetic fields B1 from the neighboring current paths CN1 measured by the total of three second magnetron conversion elements 17d, 17e, 17f (the sign becomes negative)" and "the total of seven first magnetron conversions". The sum of the magnetic fields B1 from the neighboring current paths CN1 measured by the elements 15a, 15b, 15c, 15d and the second magnetron conversion elements 17a, 17b, 17c (the sign becomes positive) ”generally agrees. In the present embodiment, by moving the positions of the first magnetron conversion elements 15c and 15d closer to the neighboring current path CN1, all the magnetron conversion elements (first magnetron conversion elements 15a, 15b, 15c, 15d and second magnetron) are used. The total of the magnetic fields B1 from the neighboring current path CN1 measured by the conversion elements 17a, 17b, 17c, 17d, 17e, 17f) can be accurately approached to 0.

なお、第1の磁電変換素子15aと15bは、第1の磁電変換素子15c,15dと、中心線L2に対して、線対称な位置である。このため、第1の磁電変換素子15c,15dを近隣電流路CN1に近づけると、第1の磁電変換素子15a,15bは、近隣電流路CN1から遠ざかる。このため、第1の磁電変換素子15cと15dによって計測される近隣電流路CN1からの磁界B1を大きくすると、第1の磁電変換素子15aと15bによって計測される近隣電流路CN1からの磁界B1は小さくなる。つまり、変化の大小方向だけで考えると、第1の磁電変換素子15a〜15dの中心線L2からの距離を変えたことによる「第1の磁電変換素子15cと15dによって計測される近隣電流路CN1からの磁界B1の大きさの変化」と、「第1の磁電変換素子15aと15bによって計測される近隣電流路CN1からの磁界B1の大きさの変化」とは、相殺する。 The first magnetron conversion elements 15a and 15b are in line-symmetrical positions with respect to the first magnetron conversion elements 15c and 15d and the center line L2. Therefore, when the first magnetron conversion elements 15c and 15d are brought closer to the neighboring current path CN1, the first magnetron conversion elements 15a and 15b are moved away from the neighboring current path CN1. Therefore, when the magnetic field B1 from the neighboring current path CN1 measured by the first magnetron conversion elements 15c and 15d is increased, the magnetic field B1 from the neighboring current path CN1 measured by the first magnetron conversion elements 15a and 15b becomes large. It becomes smaller. That is, considering only the magnitude of the change, the "neighboring current path CN1 measured by the first magnetron conversion elements 15c and 15d" due to changing the distance from the center line L2 of the first magnetron conversion elements 15a to 15d The change in the magnitude of the magnetic field B1 from the above and the "change in the magnitude of the magnetic field B1 from the neighboring current path CN1 measured by the first magnetron conversion elements 15a and 15b" cancel each other out.

しかし、上述したとおり、「第1の磁電変換素子15aと15bによって計測される近隣電流路CN1からの磁界B1の大きさ」は、非常に小さい。このため、「第1の磁電変換素子15cと15dによって計測される近隣電流路CN1からの磁界B1の大きさの変化』と、『第1の磁電変換素子15aと15bによって計測される近隣電流路CN1からの磁界B1の大きさの変化』とは、完全には相殺されない。よって、第1の磁電変換素子15a〜15dの中心線からの距離を変えることで、全ての磁電変換素子(第1の磁電変換素子15a,15b,15c,15d,第2の磁電変換素子17a,17b,17c,17d,17e,17f)で計測される近隣電流路CN1からの磁界B1の合計を、ほぼ0にできる。 However, as described above, the "magnitude of the magnetic field B1 from the neighboring current path CN1 measured by the first magnetron conversion elements 15a and 15b" is very small. Therefore, "change in the magnitude of the magnetic field B1 from the neighboring current path CN1 measured by the first magnetron conversion elements 15c and 15d" and "the neighborhood current path measured by the first magnetron conversion elements 15a and 15b". The "change in the magnitude of the magnetic field B1 from CN1" is not completely canceled. Therefore, by changing the distance from the center line of the first magnetron conversion elements 15a to 15d, all the magnetron conversion elements (first). The total of the magnetic fields B1 from the neighboring current path CN1 measured by the magnetron conversion elements 15a, 15b, 15c, 15d and the second magnetron conversion elements 17a, 17b, 17c, 17d, 17e, 17f) can be made almost 0. ..

以上説明したように、電流センサ101によれば、近隣電流路CN1からの磁界の影響を精度良くキャンセルして、被測定電流路CBの電流を正確に検出できる。これにより、電流センサ101の検出精度を落とすことなく、さらなる小型化が図れる。 As described above, the current sensor 101 can accurately cancel the influence of the magnetic field from the neighboring current path CN1 and accurately detect the current in the current path CB to be measured. As a result, the size of the current sensor 101 can be further reduced without deteriorating the detection accuracy.

図4のように電流センサ101が、2つの近隣電流路CN1、近隣電流路CN2に挟まれた場合、重ね合わせの理が成立する。このため、電流路CN1、CN、CN2が等間隔で配置されていれば、2つの近隣電流路CN1、近隣電流路CN2の磁界の影響を共に精度良く相殺できる。 When the current sensor 101 is sandwiched between two neighboring current paths CN1 and neighboring current paths CN2 as shown in FIG. 4, the superposition theory holds. Therefore, if the current paths CN1, CN, and CN2 are arranged at equal intervals, the effects of the magnetic fields of the two neighboring current paths CN1 and the neighboring current paths CN2 can be canceled out with high accuracy.

また、電流センサ101によれば、図3に示すように第1の磁電変換素子15a〜15d及び第2の磁電変換素子17a〜17fを配置したことで、磁電変換素子の配置エリアのX方向の幅を最小限にでき、被測定電流路CBと近隣電流路CN1,CN2との距離を狭くできる。これにより、配線基板16の小型化、つまり電流センサ101の小型化が可能である。特に、切欠19の左右の腕部18の幅が狭くできる。 Further, according to the current sensor 101, as shown in FIG. 3, the first magnetron conversion elements 15a to 15d and the second magnetron conversion elements 17a to 17f are arranged, so that the arrangement area of the magnetron conversion elements is in the X direction. The width can be minimized, and the distance between the current path CB to be measured and the neighboring current paths CN1 and CN2 can be narrowed. As a result, the wiring board 16 can be miniaturized, that is, the current sensor 101 can be miniaturized. In particular, the width of the left and right arm portions 18 of the notch 19 can be narrowed.

また、電流センサ101によれば、図3に示すように第1の磁電変換素子15a〜15d及び第2の磁電変換素子17a〜17fの感度軸の方向SJを規定したことで、磁電変換素子が円周上に等間隔で配設されている場合(比較例)と比較して、各磁電変換素子を配線基板16に実装する際に、容易に実装することができると共に、配線基板16と第1の磁電変換素子15a〜15d及び第2の磁電変換素子17a〜17fとの位置関係を容易に設計することができる。従って、被測定電流路CBの取付け角度や取付け位置等の精度を高めることができるので、測定精度を向上させることができる。 Further, according to the current sensor 101, as shown in FIG. 3, the magnetron conversion element is formed by defining the direction SJ of the sensitivity axes of the first magnetron conversion elements 15a to 15d and the second magnetron conversion elements 17a to 17f. Compared with the case where they are arranged at equal intervals on the circumference (comparative example), when each magnetron conversion element is mounted on the wiring board 16, it can be easily mounted, and the wiring board 16 and the first The positional relationship between the magnetron conversion elements 15a to 15d of 1 and the magnetron conversion elements 17a to 17f of the second magnetron conversion elements 17a to 17f can be easily designed. Therefore, the accuracy of the mounting angle, mounting position, etc. of the current path CB to be measured can be improved, so that the measurement accuracy can be improved.

電流センサ101では、切欠19の両側の2列の仮想直線L3,L4上に第2の磁電変換素子17a〜17fを配置すると共にでき仮想の長方形Lの4つの頂点に第1の磁電変換素子15a〜15dを位置調整をすればよく、測定精度を高める設計が容易になる。 In the current sensor 101, the second magnetic-electric conversion elements 17a to 17f are arranged on the two rows of virtual straight lines L3 and L4 on both sides of the notch 19, and the first magnetic-electric conversion elements 15a are formed at the four vertices of the virtual rectangle L. The position of ~ 15d may be adjusted, and the design for improving the measurement accuracy becomes easy.

本発明は上述した実施形態には限定されない。
すなわち、当業者は、本発明の技術的範囲またはその均等の範囲内において、上述した実施形態の構成要素に関し、様々な変更、コンビネーション、サブコンビネーション、並びに代替を行ってもよい。
The present invention is not limited to the embodiments described above.
That is, one of ordinary skill in the art may make various changes, combinations, sub-combinations, and alternatives with respect to the components of the above-described embodiments within the technical scope of the present invention or the equivalent thereof.

図6は、本発明の実施形態に係る電流センサの磁電変換素子の配置の第1変形例を説明するための図であって、図1に示すZ1側から見た配線基板の上面図である。
なお、図6に示すように、第1の磁電変換素子15dの感度軸の向きSJを第1の磁電変換素子15aとは逆のX1方向とし、第1の磁電変換素子15cの感度軸の向きSJを第1の磁電変換素子15bとは逆のX2方向とし、第2の磁電変換素子17d,17e,17fの感度軸の向きSJを第2の磁電変換素子17a,17b,17cと同じY1方向としてもよい。
FIG. 6 is a diagram for explaining a first modification of the arrangement of the magnetron conversion element of the current sensor according to the embodiment of the present invention, and is a top view of the wiring board seen from the Z1 side shown in FIG. ..
As shown in FIG. 6, the direction SJ of the sensitivity axis of the first magnetron conversion element 15d is set to the X1 direction opposite to that of the first magnetron conversion element 15a, and the direction of the sensitivity axis of the first magnetron conversion element 15c. The SJ is in the X2 direction opposite to that of the first magnetron conversion element 15b, and the direction of the sensitivity axes of the second magnetron conversion elements 17d, 17e, 17f is the same Y1 direction as the second magnetron conversion elements 17a, 17b, 17c. May be.

この場合は、後段の演算回路では、第1の磁電変換素子15a,15b及び第2の磁電変換素子17a,17b,17cの出力から、第1の磁電変換素子15c,15d及び第2の磁電変換素子17d,17e,17fの出力を減算することで、被測定電流路CBの磁界に応じた成分を累積して有効化し、近隣電流路CNの磁界に応じた成分をキャンセルする。 In this case, in the subsequent arithmetic circuit, from the outputs of the first magnetron conversion elements 15a and 15b and the second magnetron conversion elements 17a, 17b and 17c, the first magnetron conversion elements 15c and 15d and the second magnetron conversion By subtracting the outputs of the elements 17d, 17e, and 17f, the components corresponding to the magnetic field of the current path CB to be measured are accumulated and activated, and the components corresponding to the magnetic field of the neighboring current path CN are canceled.

図7は、本発明の実施形態に係る電流センサの磁電変換素子の配置の第2変形例を説明するための図であって、図1に示すZ1側から見た配線基板の上面図である。
図7に示すように、中心PPを中心とする仮想矩形L1を規定した場合に、第1の磁電変換素子15a〜15dは、仮想矩形L1の4つの頂点に位置する。
また、第2の磁電変換素子17a〜17fは、仮想矩形L1の内側に位置し、仮想矩形L1の中心である中心PPに点対称位置にある。
FIG. 7 is a view for explaining a second modification of the arrangement of the magnetron conversion element of the current sensor according to the embodiment of the present invention, and is a top view of the wiring board seen from the Z1 side shown in FIG. ..
As shown in FIG. 7, when the virtual rectangle L1 centered on the center PP is defined, the first magnetron conversion elements 15a to 15d are located at the four vertices of the virtual rectangle L1.
Further, the second magnetron conversion elements 17a to 17f are located inside the virtual rectangle L1 and are point-symmetrical to the center PP which is the center of the virtual rectangle L1.

具体的には、第2の磁電変換素子17a〜17fは、図6に示すように仮想楕円L5上に位置し、中心線L2に対してX2側に第2の磁電変換素子17a〜17cが位置し、X1側に第2の磁電変換素子17d〜17fが位置している。
第2の磁電変換素子17a〜17cと第2の磁電変換素子17d〜17fとはそれぞれ中心線L2に対して線対称に位置している。
図7の構成によっても、近隣電流路CNの磁界に応じた成分を精度良くキャンセルできる。
Specifically, the second magnetron conversion elements 17a to 17f are located on the virtual ellipse L5 as shown in FIG. 6, and the second magnetron conversion elements 17a to 17c are located on the X2 side with respect to the center line L2. The second magnetron conversion elements 17d to 17f are located on the X1 side.
The second magnetron conversion elements 17a to 17c and the second magnetron conversion elements 17d to 17f are located line-symmetrically with respect to the center line L2, respectively.
Also with the configuration of FIG. 7, the component corresponding to the magnetic field of the neighboring current path CN can be accurately canceled.

なお、図7では、第2の磁電変換素子17b、17eが部分的に仮想矩形L1からはみ出ている。しかし、本発明における、磁電変換素子の位置は、磁電変換素子の中心の位置を意味する。このため、第2の磁電変換素子17a〜17fのパッケージの一部が、第1の磁電変換素子15a〜15dの中心を結ぶ仮想矩形L1からはみ出ていても、本発明に含まれる。 In FIG. 7, the second magnetron conversion elements 17b and 17e partially protrude from the virtual rectangle L1. However, the position of the magnetron conversion element in the present invention means the position of the center of the magnetron conversion element. Therefore, even if a part of the package of the second magnetron conversion elements 17a to 17f protrudes from the virtual rectangle L1 connecting the centers of the first magnetron conversion elements 15a to 15d, it is included in the present invention.

また、上述した実施形態では、第1の磁電変換素子15a〜15d及び第2の磁電変換素子17a〜17fの全てを配線基板16の一方の面に配設した場合を例示したが、一部あるいは全部の磁電変換素子を他方の面に配設してもよい。 Further, in the above-described embodiment, the case where all of the first magnetron conversion elements 15a to 15d and the second magnetron conversion elements 17a to 17f are arranged on one surface of the wiring board 16 has been illustrated, but some of them or All magnetron conversion elements may be arranged on the other surface.

また、上述した実施形態において、磁電変換素子の数は、第1の磁電変換素子が4つ、第2の磁電変換素子が4つ以上であれば、特に限定されない。 Further, in the above-described embodiment, the number of magnetron-converting elements is not particularly limited as long as the first magnetron-converting element has four and the second magnetron-converting element has four or more.

また、磁電変換素子間の距離についても特に限定されない。 Further, the distance between the magnetron conversion elements is not particularly limited.

また、上述した実施形態では、磁電変換素子としてGMR素子を好適に用いたが、磁気の方向を検知できる磁気検出素子であれば良く、MR(Magneto Resistive)素子、AMR(Anisotropic Magneto Resistive)素子、TMR(Tunnel Magneto Resistive)素子、ホール素子等であっても良い。但し、ホール素子等の場合は、GMR素子やMR素子の感度軸と異なるので、使用するホール素子の感度軸に合わせて、実装に工夫が必要である。 Further, in the above-described embodiment, the GMR element is preferably used as the magnetoelectric conversion element, but any magnetic detection element capable of detecting the direction of magnetism may be used, and MR (Magneto Resistive) element, AMR (Anisotropic Magneto Resistive) element, It may be a TMR (Tunnel Magneto Resistive) element, a Hall element, or the like. However, in the case of a Hall element or the like, since it is different from the sensitivity axis of the GMR element or MR element, it is necessary to devise the mounting according to the sensitivity axis of the Hall element to be used.

101…電流センサ
11…筐体
13…コネクタ
15a〜15d…第1の磁電変換素子
16…配線基板
17a〜17f…第2の磁電変換素子
31…ケース
BB…中心
CB…被測定電流路
CN1,CN2…近隣電流路
L1…仮想矩形
L2…中心線
L3、L4…仮想直線
L5…仮想楕円
101 ... Current sensor 11 ... Housing 13 ... Connector 15a to 15d ... First magnetic-electric conversion element 16 ... Wiring board 17a to 17f ... Second magnetic-electric conversion element 31 ... Case BB ... Center CB ... Current path to be measured CN1, CN2 ... Neighborhood current path L1 ... Virtual rectangle L2 ... Center line L3, L4 ... Virtual straight line L5 ... Virtual ellipse

Claims (8)

配線基板と、
前記配線基板に設けられ、被測定電流路を流れる電流によって発生する磁気を検出する複数の磁電変換素子と
を備え、
前記配線基板には、仮想矩形の中心に前記被測定電流路を位置させるための切欠が形成され、
前記複数の磁電変換素子は、
前記被測定電流路の延伸方向から見たときに、前記仮想矩形の4つの頂点のそれぞれ中心が位置する4つの第1の前記磁電変換素子と、
前記被測定電流路の延伸方向から見たときに、前記仮想矩形の中心に対して、それぞれの中心が点対称位置にある少なくとも4つの第2の前記磁電変換素子と
を有し、
前記第1の磁電変換素子の感度軸の向きは、前記切欠に沿った前記被測定電流路の着脱方向と直交しており、
前記第2の磁電変換素子の感度軸の向きは、前記着脱方向と平行であり、
前記仮想矩形の中心に対して点対称位置にある前記第1の磁電変換素子同士及び前記第2の磁電変換素子同士の感度軸の向きは平行であり、
前記被測定電流路の延伸方向から見たときに、前記第2の磁電変換素子は、いずれも、それらの中心が、前記仮想矩形よりも内側に位置していることを特徴とする
電流センサ。
Wiring board and
It is provided on the wiring board and is provided with a plurality of magnetic-electric conversion elements for detecting magnetism generated by a current flowing through a current path to be measured.
A notch for locating the current path to be measured is formed in the center of the virtual rectangle on the wiring board.
The plurality of magnetron conversion elements
When viewed from the extending direction of the current path to be measured, the four first magnetron conversion elements whose centers are located at each of the four vertices of the virtual rectangle,
When viewed from the extending direction of the current path to be measured , it has at least four second magnetron conversion elements whose centers are point-symmetrical with respect to the center of the virtual rectangle.
The direction of the sensitivity axis of the first magnetron conversion element is orthogonal to the attachment / detachment direction of the current path to be measured along the notch.
The direction of the sensitivity axis of the second magnetron conversion element is parallel to the attachment / detachment direction.
The directions of the sensitivity axes of the first magnetron conversion elements and the second magnetron conversion elements located at point-symmetrical positions with respect to the center of the virtual rectangle are parallel.
A current sensor characterized in that , when viewed from the extending direction of the current path to be measured , the centers of the second magnetron conversion elements are located inside the virtual rectangle.
前記一方側にある複数の第2の磁電変換素子と、前記他方側にある複数の第2の磁電変換素子とは、前記中心線に対して線対称に配設されている
請求項1に記載の電流センサ。
The first aspect of claim 1, wherein the plurality of second magnetron conversion elements on one side and the plurality of second magnetron conversion elements on the other side are arranged line-symmetrically with respect to the center line. Current sensor.
前記中心を通り前記着脱方向に平行な中心線に対して、一方側にある複数の前記第2の磁電変換素子と、他方側にある複数の前記第2の磁電変換素子とは、それぞれ前記中心線に平行な仮想直線上に配設されている
請求項2に記載の電流センサ。
The plurality of second magnetic-electric conversion elements on one side and the plurality of second magnetic-electric conversion elements on the other side of the center line passing through the center and parallel to the attachment / detachment direction are the centers, respectively. The current sensor according to claim 2, which is arranged on a virtual straight line parallel to the line.
前記仮想矩形の長辺は前記中心線に平行であり、その短辺は前記中心線に直交している
請求項2に記載の電流センサ。
The current sensor according to claim 2, wherein the long side of the virtual rectangle is parallel to the center line, and the short side thereof is orthogonal to the center line.
前記被測定電流路及び、複数の近隣電流路とが、等間隔で一直線上に配置されていることを特徴とする請求項1〜4の何れかに記載の電流センサ。 The current sensor according to any one of claims 1 to 4, wherein the current path to be measured and a plurality of neighboring current paths are arranged in a straight line at equal intervals. 前記第2の磁電変換素子は、前記仮想矩形の前記中心を中心とする仮想楕円上に配設されている
請求項2に記載の電流センサ。
The current sensor according to claim 2, wherein the second magnetron conversion element is arranged on a virtual ellipse centered on the center of the virtual rectangle.
前記第1の磁電変換素子及び前記第2の磁電変換素子の感度軸が、前記仮想矩形の中心を囲む閉径路に沿って一方向を向くように、前記第1の磁電変換素子及び前記第2の磁電変換素子が配設されている
請求項1〜6のいずれかに記載の電流センサ。
The first magnetron conversion element and the second magnetron conversion element so that the sensitivity axes of the first magnetron conversion element and the second magnetron conversion element point in one direction along a closed path surrounding the center of the virtual rectangle. The current sensor according to any one of claims 1 to 6, wherein the magnetron conversion element is provided.
前記第1の磁電変換素子及び前記第2の磁電変換素子は、同一特性である
請求項1〜7のいずれかに記載の電流センサ。



The current sensor according to any one of claims 1 to 7, wherein the first magnetron conversion element and the second magnetron conversion element have the same characteristics.



JP2018557667A 2016-12-22 2017-12-07 Current sensor Active JP6827058B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016249418 2016-12-22
JP2016249418 2016-12-22
PCT/JP2017/044056 WO2018116852A1 (en) 2016-12-22 2017-12-07 Current sensor

Publications (2)

Publication Number Publication Date
JPWO2018116852A1 JPWO2018116852A1 (en) 2019-06-24
JP6827058B2 true JP6827058B2 (en) 2021-02-10

Family

ID=62627615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018557667A Active JP6827058B2 (en) 2016-12-22 2017-12-07 Current sensor

Country Status (2)

Country Link
JP (1) JP6827058B2 (en)
WO (1) WO2018116852A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019124405A1 (en) 2019-09-11 2021-03-11 Schaeffler Technologies AG & Co. KG CURRENT SENSOR
DE102019132593B4 (en) 2019-12-02 2021-07-22 Schaeffler Technologies AG & Co. KG Current sensor
DE102020100297B4 (en) 2020-01-09 2023-01-19 Schaeffler Technologies AG & Co. KG Current sensor and electrical system with the current sensor
WO2021166134A1 (en) * 2020-02-19 2021-08-26 三菱電機株式会社 Current sensor and terminal cover for circuit breaker

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013088349A (en) * 2011-10-20 2013-05-13 Alps Green Devices Co Ltd Current sensor
WO2013128993A1 (en) * 2012-02-28 2013-09-06 アルプス・グリーンデバイス株式会社 Current sensor
WO2015029736A1 (en) * 2013-08-29 2015-03-05 アルプス・グリーンデバイス株式会社 Current sensor
WO2015122064A1 (en) * 2014-02-13 2015-08-20 アルプス・グリーンデバイス株式会社 Current sensor
JP6484045B2 (en) * 2015-01-30 2019-03-13 アルプスアルパイン株式会社 Current sensor

Also Published As

Publication number Publication date
JPWO2018116852A1 (en) 2019-06-24
WO2018116852A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
JP6827058B2 (en) Current sensor
JP5531218B2 (en) Current sensor
JP6467696B2 (en) Current measuring device
US20170242058A1 (en) Current sensor
US10048295B2 (en) Current sensor
JP2015017862A (en) Electric current sensor
US9599642B2 (en) Current sensor
JP2014134458A (en) Current sensor
JP6384677B2 (en) Current sensor
JP6232080B2 (en) Current sensor
JP2007271608A (en) Magnetometric sensor device and magnetic encoder device
JP6720295B2 (en) Current sensor
JP2014055791A (en) Current sensor
JPWO2012111362A1 (en) Spiral shape current sensor
JP5704352B2 (en) Current sensor
JP7242887B2 (en) current detector
JP2012215488A (en) Current sensor
JP6051459B2 (en) Current sensor
JP2014098634A (en) Current sensor
JP6076860B2 (en) Current detector
JP2615962B2 (en) Current detection unit
JP2015031647A (en) Current sensor and manufacturing method therefor
WO2015125232A1 (en) Current detection device
JP2017026573A (en) Current sensor
JP2013142548A (en) Current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210118

R150 Certificate of patent or registration of utility model

Ref document number: 6827058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150