JP6824614B2 - Deterioration judgment device and deterioration judgment method - Google Patents

Deterioration judgment device and deterioration judgment method Download PDF

Info

Publication number
JP6824614B2
JP6824614B2 JP2016053798A JP2016053798A JP6824614B2 JP 6824614 B2 JP6824614 B2 JP 6824614B2 JP 2016053798 A JP2016053798 A JP 2016053798A JP 2016053798 A JP2016053798 A JP 2016053798A JP 6824614 B2 JP6824614 B2 JP 6824614B2
Authority
JP
Japan
Prior art keywords
voltage value
change
deterioration
charging
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016053798A
Other languages
Japanese (ja)
Other versions
JP2017167034A (en
Inventor
功治 倉山
功治 倉山
田島 新治
新治 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimu Electronics Industries Co Inc
Original Assignee
Nishimu Electronics Industries Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimu Electronics Industries Co Inc filed Critical Nishimu Electronics Industries Co Inc
Priority to JP2016053798A priority Critical patent/JP6824614B2/en
Publication of JP2017167034A publication Critical patent/JP2017167034A/en
Application granted granted Critical
Publication of JP6824614B2 publication Critical patent/JP6824614B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、オリビン系(リン酸鉄)リチウムイオン二次電池の劣化状態を判定する劣化判定装置等に関する。 The present invention relates to a deterioration determination device for determining a deterioration state of an olivine-based (iron phosphate) lithium ion secondary battery.

リチウムイオン二次電池は、一般的に保存寿命とサイクル寿命で管理され、約10年使用した場合、初期の容量から約2〜3割程度減少する。この状態で更に利用継続した場合、初期値の6割以下では電池劣化(デンドライド)が加速し、電池システムが危険な状態になってしまう。 Lithium-ion secondary batteries are generally controlled by storage life and cycle life, and when used for about 10 years, the capacity is reduced by about 20 to 30% from the initial capacity. If the use is continued in this state, the battery deterioration (dendride) accelerates at 60% or less of the initial value, and the battery system becomes dangerous.

特に、オリビン系リチウムイオン二次電池の場合は、一般的に広く普及しているマンガン系リチウムイオン二次電池と異なる充電特性を有しており、図6に示すように、電池残量(SOC;State Of Charge)が20%〜80%の領域ではSOCの変化に対して電池電圧がほぼ一定となっており、充電時の二次電池の状態を把握するのが困難であるという問題がある。 In particular, the olivine-based lithium-ion secondary battery has different charging characteristics from the widely used manganese-based lithium-ion secondary battery, and as shown in FIG. 6, the remaining battery level (SOC) In the region where State Of Charge) is 20% to 80%, the battery voltage is almost constant with respect to the change in SOC, and there is a problem that it is difficult to grasp the state of the secondary battery at the time of charging. ..

リチウムイオン二次電池の劣化を判定する技術として、例えば特許文献1ないし3に示す技術が開示されている。特許文献1に示す技術は、充電装置1にリチウムイオン電池、ニッケルカドミウム電池およびニッケル水素電池などの二次電池12が接続されると、識別素子20によってその種類が検出され、制御部18は、その電池電圧に応じて定電流充電処理を開始し、この充電処理中に電池電圧が電池の種類に応じた基準電圧値になると、制御部18に備えられたタイマによって定電流充電時間の計時が開始され、電池の種類に応じた充電制御方式により、定電圧充電に切り替わったかもしくは−ΔVが検出されると計時が終了し、制御部18ではこの計時によって得られた定電流充電時間に基づいて、この電池の充電容量が新品当初の電池に対する定電流充電時間と較べてどの程度であるのかを電池の種類に応じて判定し、電池のサイクル劣化の度合いが判定されると、通知部26よりアラームを出力させてサイクル寿命等のサイクル劣化の度合いを使用者に知らせるものである。 As a technique for determining deterioration of a lithium ion secondary battery, for example, the techniques shown in Patent Documents 1 to 3 are disclosed. In the technique shown in Patent Document 1, when a secondary battery 12 such as a lithium ion battery, a nickel cadmium battery, or a nickel hydrogen battery is connected to the charging device 1, the type is detected by the identification element 20, and the control unit 18 detects the type. The constant current charging process is started according to the battery voltage, and when the battery voltage reaches the reference voltage value according to the type of battery during this charging process, the timer provided in the control unit 18 measures the constant current charging time. The time is started when the battery is switched to constant voltage charging or when −ΔV is detected by the charge control method according to the type of battery, and the control unit 18 ends the time counting based on the constant current charging time obtained by this time measurement. , How much the charging capacity of this battery is compared with the constant current charging time for a new battery is determined according to the type of battery, and when the degree of cycle deterioration of the battery is determined, the notification unit 26 informs. An alarm is output to inform the user of the degree of cycle deterioration such as cycle life.

特許文献2に示す技術は、マイコン50が、基準となる二次電池について、定電圧充電開始前の電池電圧判別値V2と、該電池電圧値V2に対応して充電に必要な定電流充電時間の判別値t2との関係を予め記憶装置(ROM)55に記憶しておき、マイコン50は、充電を行う二次電池について、定電流充電を行った実測時間(t)と、定電圧充電開始前の電池実測電圧(Vo)とを検出し、前記実測電池電圧(Vo)に対応する前記実測時間(t)が予め記憶装置55に記憶された前記判別値(V2、t2)以下であると判別した場合、充電を行った二次電池2は寿命が間近い「寿命間近」であることを表示回路120の表示手段121に表示させるものである。 In the technique shown in Patent Document 2, the microcomputer 50 uses the battery voltage discrimination value V2 before the start of constant voltage charging and the constant current charging time required for charging the secondary battery as a reference in accordance with the battery voltage value V2. The relationship with the discriminant value t2 is stored in advance in the storage device (ROM) 55, and the microcomputer 50 starts charging the secondary battery to be charged with the actual measurement time (t) of constant current charging and constant voltage charging. When the previous measured battery voltage (Vo) is detected and the measured time (t) corresponding to the measured battery voltage (Vo) is equal to or less than the discriminant value (V2, t2) stored in the storage device 55 in advance. When it is determined, the display means 121 of the display circuit 120 indicates that the charged secondary battery 2 is nearing the end of its life.

特許文献3に示す技術は、蓄電素子200の劣化状態を検出する劣化状態検出装置100であって、蓄電素子200を充電または放電した場合の蓄電素子200の電圧に対する通電容量の変化の大きさを第一容量変化量とし、第一容量変化量に対する通電容量の変化の大きさである第二容量変化量を取得する取得部110と、取得された第二容量変化量と所定の閾値とを比較することにより、蓄電素子200の劣化状態を検出する検出部120とを備えるものである。 The technique shown in Patent Document 3 is a deterioration state detection device 100 that detects a deterioration state of the power storage element 200, and determines the magnitude of a change in the energization capacity with respect to the voltage of the power storage element 200 when the power storage element 200 is charged or discharged. The acquisition unit 110 that acquires the second capacitance change amount, which is the magnitude of the change in the energized capacity with respect to the first capacitance change amount, is compared with the acquired second capacitance change amount and a predetermined threshold value. By doing so, the detection unit 120 for detecting the deteriorated state of the power storage element 200 is provided.

特開平11−329512号公報Japanese Unexamined Patent Publication No. 11-329512 特開2008−193797号公報Japanese Unexamined Patent Publication No. 2008-193797 特開2014−109477号公報Japanese Unexamined Patent Publication No. 2014-109477

しかしながら、上記各特許文献に係る技術は、二次電池の劣化を判定するものの、上記に示したオリビン系リチウムイオン二次電池に特有の問題を十分に解決することができるものではない。 However, although the techniques according to the above patent documents determine the deterioration of the secondary battery, they cannot sufficiently solve the problems peculiar to the olivine-based lithium ion secondary battery shown above.

本発明は、オリビン系リチウムイオン二次電池に特有の充電特性を考慮して、二次電池の劣化度合いを適正に判定する劣化判定装置等を提供する。 The present invention provides a deterioration determination device and the like for appropriately determining the degree of deterioration of a secondary battery in consideration of charging characteristics peculiar to an olivine-based lithium ion secondary battery.

本発明に係る劣化判定装置は、オリビン系リチウムイオン二次電池における各セルごとの充電特性の電圧値が平坦となる平坦領域以外の変化領域における前記充電特性が示す任意の前記電圧値を基準電圧値として記憶する基準電圧値記憶手段と、各セルの電圧値が前記基準電圧値に到達したことをトリガーとして、予め設定された所定の時間に対する前記電圧値の変化を演算する変化演算手段と、演算された前記変化量が予め設定された所定の閾値を超えている場合に前記セルが劣化していると判定する劣化判定手段とを備えるものである。 The deterioration determination device according to the present invention uses an arbitrary voltage value indicated by the charging characteristic in a change region other than the flat region where the voltage value of the charging characteristic of each cell in the olivine lithium ion secondary battery becomes flat as a reference voltage. A reference voltage value storage means for storing as a value, a change calculation means for calculating a change in the voltage value with respect to a predetermined time set in advance, triggered by the fact that the voltage value of each cell reaches the reference voltage value. It is provided with a deterioration determining means for determining that the cell is deteriorated when the calculated change amount exceeds a predetermined preset threshold value.

このように、本発明に係る劣化判定装置においては、オリビン系リチウムイオン二次電池における各セルごとの充電特性の電圧値が平坦となる平坦領域以外の変化領域における前記充電特性が示す任意の前記電圧値を基準電圧値として記憶し、各セルの電圧値が前記基準電圧値に到達したことをトリガーとして、予め設定された所定の時間に対する前記電圧値の変化を演算し、演算された前記変化量が予め設定された所定の閾値を超えている場合に前記セルが劣化していると判定するため、オリビン系リチウムイオン二次電池に特有な充電特性における平坦領域を考慮した適正な劣化判定を行うことができるという効果を奏する。 As described above, in the deterioration determination device according to the present invention, any of the above-mentioned charging characteristics shown in the change region other than the flat region where the voltage value of the charging characteristics of each cell in the olivine lithium ion secondary battery becomes flat. The voltage value is stored as a reference voltage value, and when the voltage value of each cell reaches the reference voltage value as a trigger, the change in the voltage value with respect to a preset predetermined time is calculated, and the calculated change is calculated. In order to determine that the cell has deteriorated when the amount exceeds a predetermined threshold set in advance, an appropriate deterioration determination is made in consideration of the flat region in the charging characteristics peculiar to the olivine lithium ion secondary battery. It has the effect of being able to do it.

本発明に係る劣化判定装置は、充電時における充電電流が一定ではない場合に、予め設定されている基準電流値に補正して前記電圧値の変化量を変換する補正手段を備えるものである。 The deterioration determination device according to the present invention is provided with a correction means for correcting a preset reference current value and converting the amount of change in the voltage value when the charging current at the time of charging is not constant.

このように、本発明に係る劣化判定装置においては、充電時における充電電流が一定ではない場合に、予め設定されている基準電流値に補正して前記電圧値の変化量を変換するため、充電電流が常時一定とならないような場合であっても二次電池の状態を正確に把握することが可能となり、適正に劣化判定を行うことができるという効果を奏する。 As described above, in the deterioration determination device according to the present invention, when the charging current at the time of charging is not constant, the charging current is corrected to a preset reference current value and the change amount of the voltage value is converted. Even when the current is not always constant, the state of the secondary battery can be accurately grasped, and the deterioration can be appropriately determined.

本発明に係る劣化判定装置は、充電時における温度情報を測定する温度測定手段と、測定された前記温度情報を予め設定されている基準温度に補正して前記電圧値の変化量を変換する補正手段とを備えるものである。 The deterioration determination device according to the present invention is a temperature measuring means for measuring temperature information during charging, and a correction for correcting the measured temperature information to a preset reference temperature and converting the amount of change in the voltage value. It is provided with means.

このように、本発明に係る劣化判定装置においては、充電時における温度情報を測定する温度測定手段と、測定された前記温度情報を予め設定されている基準温度に補正して前記電圧値の変化量を変換するため、判定時における温度環境に影響を受けることなく正確な劣化判定を行うことが可能になるという効果を奏する。 As described above, in the deterioration determination device according to the present invention, the temperature measuring means for measuring the temperature information during charging and the change in the voltage value by correcting the measured temperature information to a preset reference temperature. Since the amount is converted, there is an effect that accurate deterioration judgment can be performed without being affected by the temperature environment at the time of judgment.

本発明に係る劣化判定装置は、前記温度測定手段が、オリビン系リチウムイオン二次電池がおかれている環境下での温度情報をサンプリングし、前記劣化判定手段が、サンプリングされた前記温度情報をパラメータとして前記セルの劣化判定を行うものである。 In the deterioration determination device according to the present invention, the temperature measuring means samples the temperature information in the environment where the olivine lithium ion secondary battery is placed, and the deterioration determining means samples the sampled temperature information. As a parameter, the deterioration of the cell is determined.

このように、本発明に係る劣化判定装置においては、オリビン系リチウムイオン二次電池がおかれている環境下での温度情報をサンプリングし、サンプリングされた前記温度情報をパラメータとして前記セルの劣化判定を行うため、二次電池が普段どのような温度環境下で利用されていたかを考慮した正確な劣化判定を行うことが可能になるという効果を奏する。 As described above, in the deterioration determination device according to the present invention, the temperature information in the environment where the olivine-based lithium ion secondary battery is placed is sampled, and the sampled temperature information is used as a parameter to determine the deterioration of the cell. Therefore, it is possible to make an accurate deterioration judgment in consideration of what kind of temperature environment the secondary battery is usually used in.

第1の実施形態に係るオリビン系リチウムイオン二次電池のシステム構成図である。It is a system block diagram of the olivine lithium ion secondary battery which concerns on 1st Embodiment. 第1の実施形態に係る劣化判定装置におけるBMS(Battery Management System)の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the BMS (Battery Management System) in the deterioration determination apparatus which concerns on 1st Embodiment. 二次電池の劣化状態を示す図である。It is a figure which shows the deterioration state of a secondary battery. 第1の実施形態に係る劣化判定装置の動作を示すフローチャートである。It is a flowchart which shows the operation of the deterioration determination apparatus which concerns on 1st Embodiment. 第2の実施形態に係る劣化判定装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the deterioration determination apparatus which concerns on 2nd Embodiment. オリビン系リチウムイオン二次電池の充放電特性を示す図である。It is a figure which shows the charge / discharge characteristic of an olivine lithium ion secondary battery.

以下、本発明の実施の形態を説明する。また、本実施形態の全体を通して同じ要素には同じ符号を付けている。 Hereinafter, embodiments of the present invention will be described. In addition, the same elements are designated by the same reference numerals throughout the present embodiment.

(本発明の第1の実施形態)
本実施形態に係る劣化判定装置について、図1ないし図4を用いて説明する。本実施形態に係る劣化判定装置は、オリビン系リチウムイオン二次電池(以下、単に二次電池という)における各セルごとの充電特性の電圧値が平坦となる平坦領域以外の変化領域における所定の時間に対する電圧値の変化を確認することで、二次電池の電池劣化度合いを判定するものである。
(First Embodiment of the present invention)
The deterioration determination device according to the present embodiment will be described with reference to FIGS. 1 to 4. The deterioration determination device according to the present embodiment is a predetermined time in a change region other than the flat region where the voltage value of the charging characteristic of each cell in the olivine lithium ion secondary battery (hereinafter, simply referred to as the secondary battery) becomes flat. By confirming the change in the voltage value with respect to the above, the degree of battery deterioration of the secondary battery is determined.

オリビン系リチウムイオン二次電池は、上述したように、一般的に広く普及しているマンガン系リチウムイオン二次電池と異なり、図6に示すような充電特性を有している。図6に示すように、オリビン系リチウムイオン二次電池の場合は、SOCが0%〜20%及び80%〜100%の領域においては、SOCの変化に応じて電池電圧が変化しているが、SOCが20%〜80%の領域ではSOCの変化に対して電池電圧がほぼ一定となっており、この20%〜80%の領域において二次電池の劣化度合いを測定するのは困難である。なお、SOCが0%〜20%及び80%〜100%であるSOCの変化に対して電池電圧が変化する領域を変化領域、SOCが20%〜80%であるSOCの変化に対して電池電圧が変化しない領域を平坦領域とする。 As described above, the olivine-based lithium-ion secondary battery has the charging characteristics as shown in FIG. 6, unlike the manganese-based lithium-ion secondary battery which is widely used in general. As shown in FIG. 6, in the case of the olivine-based lithium ion secondary battery, the battery voltage changes according to the change in SOC in the regions where the SOC is 0% to 20% and 80% to 100%. In the region where the SOC is 20% to 80%, the battery voltage is almost constant with respect to the change in SOC, and it is difficult to measure the degree of deterioration of the secondary battery in the region where the SOC is 20% to 80%. .. The region where the battery voltage changes with respect to the change in SOC of 0% to 20% and 80% to 100% of SOC is the change region, and the battery voltage with respect to the change of SOC with SOC of 20% to 80%. The area where does not change is defined as a flat area.

本実施形態においては、オリビン系リチウムイオン二次電池に特有な充電特性を考慮し、変化領域における所定の時間に対する充電電圧値の変化を見ることで、二次電池の劣化度合いを判定する。また、二次電池の劣化は温度に大きく影響を受けることから、劣化判定時の温度、及び/又は、通常の使用状態における温度環境を考慮して劣化度合いを判定する。 In the present embodiment, the degree of deterioration of the secondary battery is determined by observing the change in the charging voltage value with respect to a predetermined time in the change region in consideration of the charging characteristics peculiar to the olivine lithium ion secondary battery. Further, since the deterioration of the secondary battery is greatly affected by the temperature, the degree of deterioration is determined in consideration of the temperature at the time of deterioration determination and / or the temperature environment under normal operating conditions.

図1は、本実施形態に係るオリビン系リチウムイオン二次電池のシステム構成図である。二次電池システム1は、システム全体を監視、制御するBMS2と、複数のセル3が直列に接続されて形成される二次電池モジュール4と、各二次電池モジュール4の状態を監視するECU(Electronic Control Unit)5と、二次電池システム1の充電/放電を切り替える充放電切替スイッチ6と、放電時に負荷と接続される放電制御部7及び充電時に電源と接続される充電制御部8からなる充放電制御部9とを備える。 FIG. 1 is a system configuration diagram of an olivine-based lithium ion secondary battery according to the present embodiment. The secondary battery system 1 includes a BMS 2 that monitors and controls the entire system, a secondary battery module 4 formed by connecting a plurality of cells 3 in series, and an ECU that monitors the state of each secondary battery module 4. It consists of an Electronic Control Unit) 5, a charge / discharge changeover switch 6 that switches charging / discharging of the secondary battery system 1, a discharge control unit 7 that is connected to the load during discharging, and a charging control unit 8 that is connected to the power supply during charging. It includes a charge / discharge control unit 9.

充電時にはBMS2の制御により充放電切替スイッチ6が充電制御部8に接続され、二次電池モジュール4に充電がなされる。放電時には充放電切替スイッチ6が放電制御部7に接続され、二次電池モジュール4の電力が負荷に供給される。また、BMS2は、各二次電池モジュール4を監視しているECU5からの情報を受信して二次電池モジュール4の異常等を検知し、二次電池システム1全体の安全性を管理する。二次電池の劣化判定処理は、このBMS2で収集された情報に基づいて、BMS2のCPUが劣化判定プログラムを実行することで行われる。 At the time of charging, the charge / discharge changeover switch 6 is connected to the charge control unit 8 under the control of the BMS 2, and the secondary battery module 4 is charged. At the time of discharging, the charge / discharge changeover switch 6 is connected to the discharge control unit 7, and the power of the secondary battery module 4 is supplied to the load. Further, the BMS 2 receives information from the ECU 5 that monitors each secondary battery module 4, detects an abnormality in the secondary battery module 4, and manages the safety of the entire secondary battery system 1. The deterioration determination process of the secondary battery is performed by the CPU of the BMS 2 executing the deterioration determination program based on the information collected by the BMS 2.

図2は、本実施形態に係る劣化判定装置におけるBMSの構成を示す機能ブロック図である。BMS2は、ECU5から送信される二次電池モジュール4の状態に関する情報を受信する受信部21と、受信した二次電池モジュール4の状態が平坦領域における状態か変化領域における状態かを判定する領域判定部22と、電圧値の変化を演算するための基準時間及び劣化判定を行うための電圧値の変化の閾値等を記憶するメモリ部23と、当該メモリ部23に記憶されている基準時間に基づいて、充電における電圧値の変化を演算する電圧変化演算部24と、演算された電圧値の変化及びメモリ部23に記憶されている閾値に基づいて、二次電池の劣化判定を行う劣化判定部25と、劣化判定の結果を出力情報27としてディスプレイや紙に出力する出力制御部26とを備える。 FIG. 2 is a functional block diagram showing a configuration of BMS in the deterioration determination device according to the present embodiment. The BMS 2 has a receiving unit 21 that receives information about the state of the secondary battery module 4 transmitted from the ECU 5, and an area determination that determines whether the received state of the secondary battery module 4 is a state in a flat region or a state in a changing region. Based on the unit 22, the memory unit 23 that stores the reference time for calculating the change in the voltage value, the threshold value of the change in the voltage value for performing the deterioration determination, and the like, and the reference time stored in the memory unit 23. The voltage change calculation unit 24 that calculates the change in the voltage value during charging, and the deterioration determination unit that determines the deterioration of the secondary battery based on the calculated change in the voltage value and the threshold value stored in the memory unit 23. 25 and an output control unit 26 that outputs the result of deterioration determination as output information 27 to a display or paper.

ここで、劣化判定処理について図3を用いて説明する。図3は、二次電池の劣化状態を示す図である。図3のグラフに示すように、電池劣化がない初期状態では充電時間に対する電池容量が(1)のようなグラフとなるのに対して、電池劣化した状態では(2)のようなグラフとなる。つまり、電池が劣化すると短時間で最大容量に達してしまうため、電池の容量(グラフの面積に相当)としては非常に少なくなってしまう。図3のグラフに示されるように、電池の劣化が進むほどグラフの傾きが大きくなる。すなわち、グラフの傾き度合いから電池の劣化度合いを推定することが可能となる。 Here, the deterioration determination process will be described with reference to FIG. FIG. 3 is a diagram showing a deteriorated state of the secondary battery. As shown in the graph of FIG. 3, in the initial state where there is no battery deterioration, the battery capacity with respect to the charging time becomes a graph as shown in (1), whereas in the battery deteriorated state, it becomes a graph as shown in (2). .. That is, when the battery deteriorates, the maximum capacity is reached in a short time, so that the capacity of the battery (corresponding to the area of the graph) becomes very small. As shown in the graph of FIG. 3, the slope of the graph increases as the deterioration of the battery progresses. That is, it is possible to estimate the degree of deterioration of the battery from the degree of inclination of the graph.

本実施形態においては、図6に示すようなオリビン系リチウムイオン二次電池に特有な充電特性から、電流値及び電圧値に基づいて計算されるSOCの直線性が得られず、電池の劣化度を正確に演算するのが困難である。したがって、劣化判定処理において変化領域における時間変化に対する電圧変化の大きさから電池の劣化度を演算する。具体的には、平坦領域以外の変化領域における予め設定された任意の電位をトリガーとし、φ=tan(電圧変化ΔV/時間変化Δt)により傾きを求め、得られた傾きと初期状態における傾きとを比較することで電池の劣化度を判定する。 In the present embodiment, the SOC linearity calculated based on the current value and the voltage value cannot be obtained from the charging characteristics peculiar to the olivine-based lithium ion secondary battery as shown in FIG. 6, and the degree of deterioration of the battery is not obtained. Is difficult to calculate accurately. Therefore, in the deterioration determination process, the degree of deterioration of the battery is calculated from the magnitude of the voltage change with respect to the time change in the change region. Specifically, using an arbitrary potential set in advance in a change region other than the flat region as a trigger, the slope is obtained by φ = tan (voltage change ΔV / time change Δt), and the obtained slope and the slope in the initial state are obtained. The degree of deterioration of the battery is determined by comparing.

次に、本実施形態に係る劣化判定装置の動作について説明する。図4は、本実施形態に係る劣化判定装置の動作を示すフローチャートである。まず、BMS2がECU6にて測定された電池電圧を受信部21で受信し(S1)、領域判定部22が、測定された電圧値が基準電圧値に到達しているかどうかを判定する(S2)。基準電圧値は予め設定されている電圧値であり、変化領域における任意の電圧値が設定されている。すなわち、基準電圧値に到達している場合は変化領域における状態、基準電圧値に到達していない場合は平坦領域における状態として判定することができる。基準電圧値に到達していない場合は、ステップS1に戻って電圧値の測定を継続する。基準電圧値に到達している場合は、電圧変化演算部24が、基準電圧値に到達してからの時間変化Δtと電圧変化ΔVからφ=tan(ΔV/Δt)を演算する(S3)。 Next, the operation of the deterioration determination device according to the present embodiment will be described. FIG. 4 is a flowchart showing the operation of the deterioration determination device according to the present embodiment. First, the BMS 2 receives the battery voltage measured by the ECU 6 at the receiving unit 21 (S1), and the area determination unit 22 determines whether or not the measured voltage value has reached the reference voltage value (S2). .. The reference voltage value is a preset voltage value, and an arbitrary voltage value in the change region is set. That is, when the reference voltage value is reached, it can be determined as a state in the change region, and when it has not reached the reference voltage value, it can be determined as a state in the flat region. If the reference voltage value has not been reached, the process returns to step S1 and the voltage value measurement is continued. When the reference voltage value has been reached, the voltage change calculation unit 24 calculates φ = tan (ΔV / Δt) from the time change Δt and the voltage change ΔV after reaching the reference voltage value (S3).

劣化判定部25が、予め運用の初期動作時において演算され、メモリ部23に記憶されていたφと、ステップS3で演算されたφとの比較を行う(S4)。比較した結果、φとφとの差が所定の閾値未満である場合は(S5)、二次電池は劣化していないと判断し、通常運用を継続してステップS1に戻る。φとφとの差が所定の閾値以上である場合は(S5)、二次電池は劣化していると判断し、出力制御部46が二次電池が劣化している旨の出力情報47を出力して(S6)、劣化判定処理を終了する。 The deterioration determination unit 25 compares φ 0 calculated in advance in the initial operation of the operation and stored in the memory unit 23 with φ calculated in step S3 (S4). As a result of comparison, when the difference between φ and φ 0 is less than a predetermined threshold value (S5), it is determined that the secondary battery has not deteriorated, and normal operation is continued and the process returns to step S1. When the difference between φ and φ 0 is equal to or greater than a predetermined threshold value (S5), it is determined that the secondary battery is deteriorated, and the output control unit 46 determines that the secondary battery is deteriorated. Is output (S6), and the deterioration determination process is terminated.

なお、劣化判定部25は、φとφとの差分から二次電池の劣化度合い(差分が大きい程、劣化度合いが大きい)を割り出し、二次電池が完全に劣化していない状態、すなわち多少劣化しているものの運用継続は可能な許容範囲の状態であっても必要に応じて二次電池の劣化度合いを出力するようにしてもよい。 The deterioration determination unit 25 determines the degree of deterioration of the secondary battery from the difference between φ and φ 0 (the larger the difference, the greater the degree of deterioration), and the secondary battery is not completely deteriorated, that is, to some extent. Although it is deteriorated, the degree of deterioration of the secondary battery may be output as necessary even if the operation can be continued within the allowable range.

また、上記は充電電流が一定であることを前提としている。すなわち、例えば運用の初期動作時に10Aの定電流で充電されたとすると、劣化判定処理時も10Aの定電流で充電されていることを前提としている。しかしながら、例えば太陽光のような自然エネルギーで発電した電力を充電するような場合は、必ずしも充電電流が一定になるとは限らない。このような場合には、測定された電流値を初期動作時の電流値に補正した上でφの演算を行うようにしてもよい。具体的には、測定された時間変化Δtに対して、測定時の電流値Iと初期動作時の電流値Iとの比率(I/I)を掛けて得られる時間変化Δtsに基づいてφを求めることで、初期動作時と異なる電流値で充電した場合であっても劣化判定を適正に行うことができる。 Further, the above assumes that the charging current is constant. That is, for example, assuming that the battery is charged with a constant current of 10 A during the initial operation of operation, it is assumed that the battery is charged with a constant current of 10 A even during the deterioration determination process. However, when charging electric power generated by natural energy such as sunlight, the charging current is not always constant. In such a case, the measured current value may be corrected to the current value at the time of initial operation, and then the calculation of φ may be performed. Specifically, it is based on the time change Δts obtained by multiplying the measured time change Δt by the ratio (I / I 0 ) of the current value I at the time of measurement and the current value I 0 at the time of initial operation. By obtaining φ, deterioration can be properly determined even when charging with a current value different from that at the time of initial operation.

このように、本実施形態に係る劣化判定装置においては、オリビン系リチウムイオン二次電池における変化領域における電圧値を基準電圧値として記憶し、各セルの電圧値が前記基準電圧値に到達したことをトリガーとして、予め設定された所定の時間に対する電圧値の変化を演算し、演算された変化量が予め設定された所定の閾値を超えている場合にセルが劣化していると判定するため、オリビン系リチウムイオン二次電池に特有な充電特性における平坦領域を考慮した適正な劣化判定を行うことができる。 As described above, in the deterioration determination device according to the present embodiment, the voltage value in the change region in the olivine lithium ion secondary battery is stored as the reference voltage value, and the voltage value of each cell reaches the reference voltage value. Is used as a trigger to calculate the change in voltage value with respect to a preset predetermined time, and when the calculated change amount exceeds a preset predetermined threshold, it is determined that the cell has deteriorated. Appropriate deterioration determination can be performed in consideration of the flat region in the charging characteristics peculiar to the olivine lithium ion secondary battery.

また、充電時における充電電流が一定ではない場合に、予め設定されている基準電流値に補正して電圧値の変化量を変換するため、充電電流が常時一定とならない場合であっても二次電池の状態を正確に把握することが可能となり、適正に劣化判定を行うことができる。 In addition, when the charging current during charging is not constant, it is corrected to a preset reference current value and the amount of change in the voltage value is converted. Therefore, even if the charging current is not always constant, it is secondary. It becomes possible to accurately grasp the state of the battery, and it is possible to properly determine the deterioration.

(本発明の第2の実施形態)
本実施形態に係る劣化判定装置について、図5を用いて説明する。本実施形態に係る劣化判定装置は、劣化判定処理の際に温度を考慮することでより正確に劣化判定を行うものである。なお、本実施形態において前記第1の実施形態と重複する説明は省略する。
(Second Embodiment of the present invention)
The deterioration determination device according to the present embodiment will be described with reference to FIG. The deterioration determination device according to the present embodiment makes a more accurate deterioration determination by considering the temperature during the deterioration determination process. In this embodiment, the description overlapping with the first embodiment will be omitted.

二次電池の使用において温度環境は非常に重要な要素である。例えば、高温や低温の環境で長期間使用した場合は、常温で使用した場合に比べて劣化が早く進んでしまう。また、比較的高温下では電池が活性化しやすく出力が出やすいが、低温下においては電池が活性化しにくいため出力があまり出ない。このように、温度環境により二次電池の劣化や出力が異なる。そこで、本実施形態においては、高温、常温、低温における基準となるφを予め記憶し、普段の使用温度や劣化判定処理時の温度等を考慮して補正をすることで、より正確に劣化判定を行う。 The temperature environment is a very important factor in the use of secondary batteries. For example, when it is used for a long time in a high temperature or low temperature environment, it deteriorates faster than when it is used at room temperature. Further, the battery is easily activated and the output is easy to be output at a relatively high temperature, but the output is not so much because the battery is difficult to be activated at a low temperature. In this way, the deterioration and output of the secondary battery differ depending on the temperature environment. Therefore, in the present embodiment, the deterioration is determined more accurately by storing the reference φ at high temperature, normal temperature, and low temperature in advance and making corrections in consideration of the normal operating temperature, the temperature at the time of deterioration determination processing, and the like. I do.

図5は、本実施形態に係る劣化判定装置の構成を示す機能ブロック図である。前記第1の実施形態における図2の構成と異なるのは、ECU6の温度センサにて測定された温度情報を取得する温度情報取得部51を備え、取得された温度情報は定期的にメモリ部23に記憶されると共に、劣化判定処理が実行される際にその時の温度情報が劣化判定部25に渡されることである。また、メモリ部23には、例えば60℃の高温状態における基準となるφ、25℃の常温状態における基準となるφ、−20℃の低温状態における基準となるφが予め記憶されている。さらに、メモリ部23には、例えば60℃、20℃及び−20℃の各温度環境下で使用された場合の劣化の目安となる基準情報(例えば、60℃の場合は7年で劣化、25℃の場合は10年で劣化、−20℃の場合は8年で劣化といった情報)が予め記憶されている。 FIG. 5 is a functional block diagram showing the configuration of the deterioration determination device according to the present embodiment. The configuration of FIG. 2 in the first embodiment is different from that of the temperature information acquisition unit 51 that acquires the temperature information measured by the temperature sensor of the ECU 6, and the acquired temperature information is periodically stored in the memory unit 23. When the deterioration determination process is executed, the temperature information at that time is passed to the deterioration determination unit 25. Further, in the memory unit 23, for example, φ H as a reference in a high temperature state of 60 ° C., φ M as a reference in a normal temperature state of 25 ° C., and φ L as a reference in a low temperature state of −20 ° C. are stored in advance. There is. Further, the memory unit 23 has reference information (for example, in the case of 60 ° C., deterioration in 7 years, 25) which is a guideline for deterioration when used in each temperature environment of 60 ° C., 20 ° C. and -20 ° C. Information such as deterioration in 10 years at ℃ and deterioration in 8 years at -20 ℃) is stored in advance.

劣化判定部25は、温度情報取得部51で取得された温度情報及びメモリ部23に記憶されている情報に基づいて、総合的に二次電池の劣化判定を行う。具体的には、現在の温度情報を取得し、現在の温度に最も合致する適切な基準となるφをφ、φ、又はφから選択し、選択された基準φを用いて劣化判定を行う。そうすることで、温度パラメータを考慮したより正確な劣化判定を行うことが可能となる。 The deterioration determination unit 25 comprehensively determines the deterioration of the secondary battery based on the temperature information acquired by the temperature information acquisition unit 51 and the information stored in the memory unit 23. Specifically, the current temperature information is acquired, the appropriate reference φ that best matches the current temperature is selected from φ H , φ M , or φ L, and the deterioration judgment is made using the selected reference φ. I do. By doing so, it becomes possible to perform a more accurate deterioration determination in consideration of the temperature parameter.

また、劣化判定部25は、劣化判定の対象となる二次電池がどのような温度環境下で使用されてきたかをメモリ部23に蓄積された測定された温度情報から演算し、これまでの使用環境を考慮した劣化判定を行う。すなわち、例えば、通常(常温環境下)であれば10年は劣化しない二次電池について、7年ぐらいで劣化の傾向が生じたような場合には、この7年間の使用温度環境を演算し、高温や低温環境下での使用であると判断された場合には、劣化判定処理が正確であると判断することができる。逆に、通常10年は劣化しないとされる常温環境下での使用にも関わらず、7年程度で劣化が生じたような場合は、温度以外に使用環境において何か問題が生じている可能性があり、早期にメンテナンスを行うことができる。 Further, the deterioration determination unit 25 calculates from the measured temperature information stored in the memory unit 23 under what temperature environment the secondary battery to be determined for deterioration has been used, and has used it so far. Deterioration judgment is performed in consideration of the environment. That is, for example, for a secondary battery that does not deteriorate for 10 years under normal conditions (under normal temperature environment), if a tendency for deterioration occurs in about 7 years, the operating temperature environment for these 7 years is calculated. When it is determined that the product is used in a high temperature or low temperature environment, it can be determined that the deterioration determination process is accurate. On the contrary, if the product deteriorates in about 7 years even though it is used in a normal temperature environment, which is normally not deteriorated for 10 years, there may be some problem in the usage environment other than the temperature. It has the property and can be maintained at an early stage.

なお、上記のように温度情報を電池劣化判定のパラメータとして利用することで、正確な劣化判定を行うことができるが、現在の温度情報を加味した基準φの選択と、これまでの使用温度環境を加味した劣化判定とは、双方を考慮して劣化判定処理を行うようにしてもよいし、いずれか一方の温度情報のみをパラメータとして利用するようにしてもよい。 By using the temperature information as a parameter for battery deterioration judgment as described above, accurate deterioration judgment can be performed. However, selection of the reference φ in consideration of the current temperature information and the operating temperature environment so far In the deterioration determination in consideration of, the deterioration determination process may be performed in consideration of both, or only one of the temperature information may be used as a parameter.

(本発明のその他の実施形態)
本実施形態に係る劣化判定装置は、二次電池の温度上昇変化に基づいて、劣化度合いを判定するものである。すなわち、上記各実施形態においては、二次電池の劣化が進んだ場合のφの変化を見ることで劣化しているか否かを判定したが、本実施形態においては所定の時間Δtに対する温度変化ΔTを演算することで劣化判定を行う。
(Other Embodiments of the present invention)
The deterioration determination device according to the present embodiment determines the degree of deterioration based on the temperature rise change of the secondary battery. That is, in each of the above embodiments, it is determined whether or not the secondary battery is deteriorated by observing the change in φ when the deterioration of the secondary battery progresses, but in the present embodiment, the temperature change ΔT with respect to the predetermined time Δt Deterioration is determined by calculating.

二次電池は劣化が進むと電池内に析出される阻害物により抵抗値が大きくなる。つまり、抵抗値が大きくなることで温度上昇が発生する。これは二次電池の劣化が進むに連れて温度上昇が大きくなるものであるため、その温度上昇の変化を見ることで二次電池の劣化度合いを判定することが可能となる。具体的には、充電を開始してから二次電池が所定の基準温度Tに達するまでの時間Δtを測定し、予め記憶されている初期起動時のΔtと比較することで劣化判定を行うことができる。二次電池の劣化が進んでいる程、Δtの値が小さくなる(早く高温に達する)。 As the deterioration of the secondary battery progresses, the resistance value increases due to the inhibitors deposited in the battery. That is, the temperature rises as the resistance value increases. This is because the temperature rise increases as the deterioration of the secondary battery progresses, so that it is possible to determine the degree of deterioration of the secondary battery by observing the change in the temperature rise. Specifically, the deterioration is determined by measuring the time Δt from the start of charging until the secondary battery reaches a predetermined reference temperature T and comparing it with the pre-stored Δt at the time of initial startup. Can be done. As the deterioration of the secondary battery progresses, the value of Δt becomes smaller (the temperature reaches a high temperature sooner).

このように、二次電池の劣化を判定するに当たって、電圧値の変化ではなく温度上昇を見ることで、充電特性に関係なくどのような二次電池であっても正確に劣化判定を行うことが可能になる。 In this way, when determining the deterioration of the secondary battery, it is possible to accurately determine the deterioration of any secondary battery regardless of the charging characteristics by observing the temperature rise rather than the change in the voltage value. It will be possible.

1 二次電池システム
2 BMS
3 セル
4 二次電池モジュール
5 ECU
6 充放電切替スイッチ
7 放電制御部
8 充電制御部
9 充放電制御部
21 受信部
22 領域判定部
23 メモリ部
24 電圧変化演算部
25 劣化判定部
26 出力制御部
27 出力情報
51 温度情報取得部
1 Rechargeable battery system 2 BMS
3 cell 4 rechargeable battery module 5 ECU
6 Charge / discharge changeover switch 7 Discharge control unit 8 Charge control unit 9 Charge / discharge control unit 21 Reception unit 22 Area determination unit 23 Memory unit 24 Voltage change calculation unit 25 Deterioration judgment unit 26 Output control unit 27 Output information 51 Temperature information acquisition unit

Claims (3)

オリビン系リチウムイオン二次電池における各セルごとの充電特性の電圧値が平坦となる平坦領域以外の変化領域における前記充電特性が示す任意の前記電圧値を基準電圧値として記憶する基準電圧値記憶手段と、
各セルの電圧値が前記基準電圧値に到達したことをトリガーとして、予め設定された所定の時間に対する前記電圧値の変化量を演算する変化演算手段と、
演算された前記変化量が予め設定された所定の閾値を超えている場合に前記セルが劣化していると判定する劣化判定手段と、
充電時における充電電流が一定ではない場合に、前記電圧値の変化量を補正する補正手段とを備え、
当該補正手段が、測定時の電流値(I)と初期動作時の電流値(I)との比率(I/I)を前記所定の時間に掛けて得られる当該所定の時間に基づいて、前記電圧値の変化量を補正することを特徴とする劣化判定装置。
Reference voltage value storage means for storing an arbitrary voltage value indicated by the charging characteristics in a change region other than the flat region where the voltage value of the charging characteristics of each cell in the olivine lithium ion secondary battery becomes flat as a reference voltage value. When,
A change calculation means for calculating the amount of change in the voltage value with respect to a predetermined time set in advance, triggered by the fact that the voltage value of each cell reaches the reference voltage value.
Deterioration determination means for determining that the cell has deteriorated when the calculated amount of change exceeds a predetermined threshold value set in advance.
It is provided with a correction means for correcting the amount of change in the voltage value when the charging current at the time of charging is not constant.
Based on the predetermined time obtained by the correction means by multiplying the ratio (I / I 0 ) of the current value (I) at the time of measurement and the current value (I 0 ) at the time of initial operation by the predetermined time. , A deterioration determination device characterized in that the amount of change in the voltage value is corrected.
請求項1に記載の劣化判定装置において、
充電時における温度情報を測定する温度測定手段と、
複数の温度環境下で使用された場合の所定の時間に対する前記電圧値の変化量であり、劣化の目安となる基準情報を各温度環境下ごとに記憶するメモリ部とを備え、
前記劣化判定手段が、測定された前記温度情報を取得し、当該温度情報に最も合致する温度帯の前記基準情報を選択し、前記電圧値の変化量と前記基準情報とを比較して劣化判定を行うことを特徴とする劣化判定装置。
In the deterioration determination device according to claim 1,
Temperature measuring means for measuring temperature information during charging,
It is equipped with a memory unit that stores reference information that is the amount of change in the voltage value with respect to a predetermined time when used in a plurality of temperature environments and is a guideline for deterioration for each temperature environment.
The deterioration determination means acquires the measured temperature information, selects the reference information in the temperature zone that best matches the temperature information, and compares the amount of change in the voltage value with the reference information to determine deterioration. Deterioration determination device characterized by performing.
オリビン系リチウムイオン二次電池における各セルごとの充電特性の電圧値が平坦となる平坦領域以外の変化領域における前記充電特性が示す任意の前記電圧値が基準電圧値として基準電圧値記憶手段に記憶されており、
CPUが、各セルの電圧値が前記基準電圧値に到達したことをトリガーとして、予め設定された所定の時間に対する前記電圧値の変化量を演算する変化演算ステップと、充電時における充電電流が一定ではない場合に、前記電圧値の変化量を補正する補正ステップと、補正された前記変化量が予め設定された所定の閾値を超えている場合に前記セルが劣化していると判定する劣化判定ステップとを実行し、
前記補正ステップが、測定時の電流値(I)と初期動作時の電流値(I)との比率(I/I)を前記所定の時間に掛けて得られる当該所定の時間に基づいて、前記電圧値の変化量を補正することを特徴とする劣化判定方法。
Any said voltage value indicated by the charging characteristic in a change region other than the flat region where the voltage value of the charging characteristic of each cell in the olivine lithium ion secondary battery becomes flat is stored in the reference voltage value storage means as a reference voltage value. Has been
The change calculation step in which the CPU calculates the amount of change in the voltage value with respect to a preset predetermined time triggered by the fact that the voltage value of each cell reaches the reference voltage value, and the charging current at the time of charging are constant. If not, a correction step for correcting the amount of change in the voltage value, and a deterioration determination for determining that the cell has deteriorated when the corrected amount of change exceeds a predetermined threshold set in advance. Step and perform,
The correction step is based on the predetermined time obtained by multiplying the predetermined time by the ratio (I / I 0 ) of the current value (I) at the time of measurement and the current value (I 0 ) at the time of initial operation. , A deterioration determination method characterized by correcting the amount of change in the voltage value.
JP2016053798A 2016-03-17 2016-03-17 Deterioration judgment device and deterioration judgment method Active JP6824614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016053798A JP6824614B2 (en) 2016-03-17 2016-03-17 Deterioration judgment device and deterioration judgment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016053798A JP6824614B2 (en) 2016-03-17 2016-03-17 Deterioration judgment device and deterioration judgment method

Publications (2)

Publication Number Publication Date
JP2017167034A JP2017167034A (en) 2017-09-21
JP6824614B2 true JP6824614B2 (en) 2021-02-03

Family

ID=59913713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016053798A Active JP6824614B2 (en) 2016-03-17 2016-03-17 Deterioration judgment device and deterioration judgment method

Country Status (1)

Country Link
JP (1) JP6824614B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3698657B1 (en) 2017-10-18 2023-09-20 Japan Tobacco Inc. Inhalation component generation device
WO2019077710A1 (en) 2017-10-18 2019-04-25 日本たばこ産業株式会社 Inhalation component generation device, method of controlling inhalation component generation device, and program
JP7204820B2 (en) * 2017-10-18 2023-01-16 日本たばこ産業株式会社 Suction Component Generating Device, Method and Program for Controlling Suction Component Generating Device
CN111278308B (en) 2017-10-18 2022-05-31 日本烟草产业株式会社 Attraction component generation device, method of controlling attraction component generation device, and storage medium
JP6891357B2 (en) * 2017-10-18 2021-06-18 日本たばこ産業株式会社 Suction component generator, method of controlling the suction component generator, and program
EP3698658B1 (en) 2017-10-18 2022-07-20 Japan Tobacco Inc. Inhalation component generation device and inhalation component generation system
US11391780B2 (en) * 2018-04-10 2022-07-19 Lg Energy Solution, Ltd. Battery diagnostic device and method
JP2020010494A (en) * 2018-07-06 2020-01-16 東芝テック株式会社 Charger and program
JP2020010493A (en) * 2018-07-06 2020-01-16 東芝テック株式会社 Charger and program
JP2021072819A (en) * 2021-01-21 2021-05-13 日本たばこ産業株式会社 Suction ingredient generation device, method for controlling suction ingredient generation device, and program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3659772B2 (en) * 1997-08-07 2005-06-15 三菱自動車工業株式会社 Battery deterioration judgment device
JP4797640B2 (en) * 2006-01-18 2011-10-19 トヨタ自動車株式会社 Secondary battery life estimation device
TWI286218B (en) * 2006-04-27 2007-09-01 Ablerex Electronics Co Ltd Method for determining state-of-health of batteries
JP5619744B2 (en) * 2010-10-20 2014-11-05 古河電気工業株式会社 Method and apparatus for detecting state of power storage device

Also Published As

Publication number Publication date
JP2017167034A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
JP6824614B2 (en) Deterioration judgment device and deterioration judgment method
JP6895771B2 (en) Storage battery deterioration judgment method and storage battery deterioration judgment device
JP6477733B2 (en) Charge state estimation device
KR101256079B1 (en) Balancing Method and Balancing System of Battery Pack
JP6119402B2 (en) Internal resistance estimation device and internal resistance estimation method
JP5397679B2 (en) Secondary battery deterioration diagnosis method and secondary battery deterioration diagnosis device
JP5994240B2 (en) Battery control device
JP5439126B2 (en) Status detector for power supply
US9490646B2 (en) Device for controlling assembled battery
EP2711727B1 (en) Battery condition estimation device and method of generating open circuit voltage characteristic
JP6414336B2 (en) Deterioration degree estimation device and deterioration degree estimation method
EP2492702A1 (en) Power supply apparatus
JP6066163B2 (en) Open circuit voltage estimation device, state estimation device, and open circuit voltage estimation method
CN108604711B (en) Method and system for efficient cell balancing via duty control
JP5879983B2 (en) Battery control device
JP6565446B2 (en) Battery deterioration determination device, battery deterioration determination method, and vehicle
JP6379956B2 (en) Storage element abnormality determination device
JP4817647B2 (en) Secondary battery life judgment method.
JP2012253975A (en) Charging/discharging control method for alkali storage battery, and charging/discharging system
WO2008072436A1 (en) Secondary battery deterioration judging device and backup power supply
US20150192643A1 (en) Method and device for determining the actual capacity of a battery
KR102350920B1 (en) device for detecting the state of charge of a battery
JP5131533B2 (en) Battery charge / discharge control method and charge / discharge control apparatus
JP2004271342A (en) Charging and discharging control system
CN108064429B (en) Method for controlling charging capacity of UPS battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210113

R150 Certificate of patent or registration of utility model

Ref document number: 6824614

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250