JP6823292B2 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
JP6823292B2
JP6823292B2 JP2017121865A JP2017121865A JP6823292B2 JP 6823292 B2 JP6823292 B2 JP 6823292B2 JP 2017121865 A JP2017121865 A JP 2017121865A JP 2017121865 A JP2017121865 A JP 2017121865A JP 6823292 B2 JP6823292 B2 JP 6823292B2
Authority
JP
Japan
Prior art keywords
accelerator pedal
characteristic
muscle
stepping
driver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017121865A
Other languages
Japanese (ja)
Other versions
JP2019006185A (en
Inventor
翔 藪中
翔 藪中
雄策 武田
雄策 武田
雅年 ▲高▼山
雅年 ▲高▼山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2017121865A priority Critical patent/JP6823292B2/en
Publication of JP2019006185A publication Critical patent/JP2019006185A/en
Application granted granted Critical
Publication of JP6823292B2 publication Critical patent/JP6823292B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Auxiliary Drives, Propulsion Controls, And Safety Devices (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Description

本発明は、運転者の筋活動に応じてアクセルペダルの反力値を制御可能な車両用制御装置に関する。 The present invention relates to a vehicle control device capable of controlling the reaction force value of the accelerator pedal according to the muscle activity of the driver.

従来より、ドライブ・バイ・ワイヤ式エンジンを搭載した車両の場合、アクセルペダルとスロットルバルブや燃料噴射装置等の出力制御機器とがケーブルによって接続されていないため、電動式アクチュエータによって踏込量に応じた反力値を運転者に付与している。
アクセルペダルの踏込量と反力値とは、概ね比例関係を有するように設定されているため、運転者はアクセルペダルから付与される反力値によってアクセルペダルの踏込量を認識することが一般的である。それ故、アクセルペダルの反力値を変化させることにより、運転者の好みや走行環境に応じて運転者によるアクセルペダルの踏込操作を誘導するような反力制御装置が提案されている。
Conventionally, in the case of a vehicle equipped with a drive-by-wire engine, the accelerator pedal and output control devices such as a throttle valve and a fuel injection device are not connected by a cable, so the amount of depression is adjusted by an electric actuator. The reaction force value is given to the driver.
Since the accelerator pedal depression amount and the reaction force value are set to have a roughly proportional relationship, the driver generally recognizes the accelerator pedal depression amount based on the reaction force value applied from the accelerator pedal. Is. Therefore, a reaction force control device has been proposed that guides the driver to step on the accelerator pedal according to the driver's preference and the driving environment by changing the reaction force value of the accelerator pedal.

特許文献1の操作補助装置は、現時点を含む過去の所定時間区間における複数の仮想運転者の運転意図系列を動的に生成し、運転意図系列毎に、仮想運転者の運転操作量と実際の運転者の運転操作量との系列的な近似度合を表す運転操作量系列近似度合を算出すると共に複数の運転操作量系列近似度合を比較することにより実際の運転者の運転意図を推定し、推定した運転意図に基づいて実際の運転者の状態を推定している。
アクセルペダルの踏込操作の場合、運転者が車線変更を意図してから運転者の運転意図が車線変更であると推定されるまでの経過時間が長い程、アクセルペダルの反力指令値を速やかに低下させている。
The operation assisting device of Patent Document 1 dynamically generates a driving intention series of a plurality of virtual drivers in a predetermined time section in the past including the present time, and the driving operation amount of the virtual driver and the actual driving operation amount for each driving intention series. The actual driving intention of the driver is estimated and estimated by calculating the degree of series approximation of the driving operation amount series, which represents the degree of series approximation with the driver's driving operation amount, and comparing multiple driving operation amount series approximation degrees. The actual driver's condition is estimated based on the driving intention.
In the case of depressing the accelerator pedal, the longer the elapsed time from the driver's intention to change lanes to the estimation that the driver's driving intention is a lane change, the faster the reaction force command value of the accelerator pedal is set. It is decreasing.

また、本出願人によって人間の知覚特性を考慮したアクセルペダルの反力特性を設定する技術も提案されている。
特許文献2の車両のアクセルペダル制御装置は、アクセルペダルの踏込量とアクセルペダルの踏込速度と運転者に付与される反力値によって規定された三次元マップを有する反力設定手段と、アクセルペダルの踏込速度を検出する踏込速度検出手段とを備え、反力設定手段は、踏込速度が速いとき、踏込速度が遅いときに比べてアクセルペダルの反力値が小さくなるように反力特性を設定している。
これにより、運転者の負担と違和感を軽減しつつ、走行環境や運転意思に適合した反力特性を設定することができる。
In addition, the applicant has also proposed a technique for setting the reaction force characteristics of the accelerator pedal in consideration of human perceptual characteristics.
The accelerator pedal control device of the vehicle of Patent Document 2 includes a reaction force setting means having a three-dimensional map defined by the depression amount of the accelerator pedal, the depression speed of the accelerator pedal, and the reaction force value given to the driver, and the accelerator pedal. The reaction force setting means sets the reaction force characteristic so that the reaction force value of the accelerator pedal becomes smaller when the depression speed is high and when the depression speed is slow. doing.
As a result, it is possible to set the reaction force characteristics suitable for the driving environment and the driving intention while reducing the burden and discomfort of the driver.

運転者によるアクセルペダルの踏込及び踏戻動作は、筋活動の観点から、足関節の底屈及び背屈運動と見做すことができる。
図9に示すように、足関節によるアクセルペダルの操作には、主に、前脛骨筋p、ヒラメ筋q及び腓腹筋r等が関与している。
前脛骨筋pは、足関節の背屈運動を行う単(一)関節筋であり、ヒラメ筋qは、足関節の底屈運動を行う単関節筋である。腓腹筋rは、足関節の底屈運動と膝関節の屈曲運動を行う二関節筋である。これらの骨格筋のうち、単関節筋は、機械的な力比に依存し、重力に抗して体を持ち上げる抗重力性を有し、また、二関節筋は、機械的なエネルギー消費を抑制し、外力の方向制御、所謂体を特定の方向に推進移動させる推進性を有している。
そして、骨格筋は、運動作用による筋収縮によって関節運動を起こす主働筋と、主働筋と対になって逆の働きをする拮抗筋とに分類される。
そこで、踏込動作の際には、主働筋がヒラメ筋q、拮抗筋が前脛骨筋pとなり、主働筋であるヒラメ筋qを主体とした動作が行われる。一方、踏戻動作の際には、拮抗筋である前脛骨筋pを主体とした動作が行われる。
The driver's depression and return movements of the accelerator pedal can be regarded as plantar flexion and dorsiflexion movements of the ankle joint from the viewpoint of muscle activity.
As shown in FIG. 9, the operation of the accelerator pedal by the ankle joint mainly involves the tibialis anterior muscle p, the soleus muscle q, the gastrocnemius muscle r, and the like.
The tibialis anterior muscle p is a biarticular muscle that performs a dorsiflexion movement of the ankle joint, and the soleus muscle q is a biarticular muscle that performs a plantar flexion movement of the ankle joint. The gastrocnemius muscle r is a biarticular muscle that performs plantar flexion movements of the ankle joint and flexion movement of the knee joint. Of these skeletal muscles, monoarticular muscles depend on the mechanical force ratio and have antigravity properties that lift the body against gravity, and biarticular muscles suppress mechanical energy consumption. However, it has the ability to control the direction of external force, so-called propulsion to move the body in a specific direction.
Skeletal muscles are classified into active muscles that cause joint movements due to muscle contraction due to exercise, and antagonistic muscles that pair with the active muscles and perform opposite functions.
Therefore, during the stepping motion, the soleus muscle q is the main muscle and the tibialis anterior muscle p is the antagonist muscle, and the soleus muscle q, which is the main muscle, is the main movement. On the other hand, in the stepping motion, the motion mainly performed by the tibialis anterior muscle p, which is an antagonist muscle, is performed.

特許第5293784号公報Japanese Patent No. 5293784 特開2016−000581号公報Japanese Unexamined Patent Publication No. 2016-000581

運転者によるアクセルペダルの操作は、運転シーンに応じて、アクセルペダルを初期位置から目標位置まで急激に操作する急加速(急減速)操作と、アクセルペダルを所定の領域内で微調整する緩加速(緩減速)操作とが存在している。
一方、筋の特性上、急加速操作の場合、運転者は高負荷で大きな動作(踏込又は踏戻)を行うため、二関節筋主体の操作によって運転者が認識する操作知覚性を高めることができ、臨場感を得ることができる。また、緩加減速操作の場合、運転者は高精度で小さな動作(微調整)を行うため、単関節筋主体の操作によって操作容易性を高めることができ、操作性を得ることができる。
それ故、臨場感と操作性、所謂操作感を向上するには、急加速操作のとき、二関節筋を主働筋にして単関節筋の寄与率よりも高くし、緩加速操作のとき、単関節筋を主働筋にして二関節筋の寄与率よりも高くすることが好ましい。
The operation of the accelerator pedal by the driver is a sudden acceleration (rapid deceleration) operation in which the accelerator pedal is suddenly operated from the initial position to the target position according to the driving scene, and a slow acceleration in which the accelerator pedal is finely adjusted within a predetermined range. There is a (slow deceleration) operation.
On the other hand, due to the characteristics of the muscles, in the case of sudden acceleration operation, the driver performs a large movement (stepping or stepping back) with a high load, so it is possible to enhance the operation perception recognized by the driver by operating mainly the biarticular muscles. You can get a sense of reality. Further, in the case of the slow acceleration / deceleration operation, since the driver performs a small movement (fine adjustment) with high accuracy, the operability can be improved by the operation mainly of the biarticular muscle, and the operability can be obtained.
Therefore, in order to improve the sense of presence and operability, the so-called operability, the biarticular muscle is used as the main muscle and the contribution rate is higher than that of the single joint muscle during the rapid acceleration operation. It is preferable that the joint muscle is the main muscle and the contribution rate is higher than that of the biarticular muscle.

しかし、緩加減速操作のとき、単関節筋を主働筋にして二関節筋の寄与率よりも高くしてもアクセルペダルの操作感を十分に確保できない虞がある。
アクセルペダルを微調整する緩加減速操作の踏込操作では、ヒラメ筋qが主働筋、前脛骨筋pが拮抗筋として機能している。そして、踏戻操作では、踏込操作を解除するように拮抗筋である前脛骨筋pを主体とする操作が行われている。
即ち、アクセルペダルを微調整する緩加減速操作では、主働筋と拮抗筋共に単関節筋であり、単関節筋と二関節筋の寄与率の調整を行うだけでは、踏込動作から踏戻動作への移行時において、筋活動を主働筋から拮抗筋へ円滑に切替えることが容易ではなく、運転者は感覚的に十分な操作感を知覚することができない。
However, in the slow acceleration / deceleration operation, there is a possibility that the operation feeling of the accelerator pedal cannot be sufficiently secured even if the contribution ratio of the biarticular muscle is higher than that of the biarticular muscle with the single joint muscle as the main muscle.
In the stepping operation of the slow acceleration / deceleration operation in which the accelerator pedal is finely adjusted, the soleus muscle q functions as the main muscle and the tibialis anterior muscle p functions as the antagonist muscle. Then, in the stepping back operation, an operation mainly performed on the tibialis anterior muscle p, which is an antagonist muscle, is performed so as to release the stepping operation.
That is, in the slow acceleration / deceleration operation in which the accelerator pedal is finely adjusted, both the active muscle and the antagonist muscle are monoarticular muscles, and simply adjusting the contribution ratio of the monoarticular muscle and the biarticular muscle changes the stepping motion to the stepping motion. At the time of transition, it is not easy to smoothly switch the muscle activity from the active muscle to the antagonist muscle, and the driver cannot perceive a sufficient sense of operation sensuously.

本発明の目的は、操作主体となる筋の種類に拘らず運転者が感覚的に十分な操作感を知覚することができる車両用制御装置等を提供することである。 An object of the present invention is to provide a vehicle control device or the like that allows a driver to perceive a sufficient sense of operation sensuously regardless of the type of muscle that is the main operating body.

請求項1の車両用制御装置は、往特性及び復特性を有し且つアクセルペダルの踏込量と反力値との相関関係を設定した基準制御マップと、この基準制御マップに基づきアクセルペダルの反力値を制御する反力制御機構と、この反力制御機構を制御する制御手段とを備えた車両用制御装置において、前記アクセルペダルに対する運転者の足の踏込速度を検出する踏込速度検出手段と、運転者による前記アクセルペダルの踏込又は踏戻操作量を検出する踏込量検出手段とを備え、前記制御手段は、前記踏込量検出手段によって検出されたアクセルペダルの踏込又は踏戻操作量に基づき運転者による操作の主体筋が単関節筋である緩加減速操作か、運転者による操作の主体筋が二関節筋である急加減速操作かを判定、緩加減速操作であると判定されたとき、前記基準制御マップの往特性と復特性との間のヒステリシスを前記踏込速度に基づき増加すると共に急加減速操作であると判定されたとき、前記基準制御マップの往特性と復特性を前記踏込速度に基づき増加補正することを特徴としている。 The vehicle control device according to claim 1 has a reference control map which has forward characteristics and return characteristics and sets a correlation between the accelerator pedal depression amount and the reaction force value, and the reaction of the accelerator pedal based on this reference control map. In a vehicle control device including a reaction force control mechanism for controlling a force value and a control means for controlling the reaction force control mechanism, a stepping speed detecting means for detecting the stepping speed of the driver's foot with respect to the accelerator pedal. The control means is provided with a depression amount detecting means for detecting the depression or depression operation amount of the accelerator pedal by the driver, and the control means is based on the depression or depression operation amount of the accelerator pedal detected by the depression amount detection means. slow acceleration and deceleration operation or principal muscles of the operation by the driver is a single joint muscles, is determined mainly muscle operation by the driver is determined rapid acceleration or deceleration operation or a bi-articular muscles, a slow deceleration operation When the hysteresis between the forward characteristic and the return characteristic of the reference control map is increased based on the stepping speed and it is determined that the operation is a rapid acceleration / deceleration operation, the forward characteristic and the return characteristic of the reference control map are changed. It is characterized in that it is increased and corrected based on the stepping speed .

この車両用制御装置では、前記制御手段が、前記踏込量検出手段によって検出されたアクセルペダルの踏込又は踏戻操作量に基づき運転者による操作の主体筋が単関節筋である緩加減速操作か、運転者による操作の主体筋が二関節筋である急加減速操作かを判定すると共に、緩加減速操作であると判定されたとき、前記基準制御マップの往特性と復特性との間のヒステリシスを前記踏込速度に基づき増加するため、運転者によるアクセルペダルの操作負荷が大きい踏込操作から踏戻操作への操作切替時、拮抗筋に作用する反力を低減しながら主な筋活動を主働筋から拮抗筋へ円滑に切替えることができ、アクセルペダルの操作性を確保することができる。また、急加減速操作であると判定されたとき、拮抗筋に作用する反力を低減しながら筋活動を主働筋から拮抗筋へ円滑に切替えることができ、アクセルペダルの操作性を確保することができる。 In this vehicle control device, whether the control means is a slow acceleration / deceleration operation in which the main muscle of the operation by the driver is a single joint muscle based on the depression or depression operation amount of the accelerator pedal detected by the depression amount detection means. , It is determined whether the main muscle of the operation by the driver is the biarticular muscle, which is the rapid acceleration / deceleration operation, and when it is determined that the operation is the slow acceleration / deceleration operation, between the forward characteristic and the return characteristic of the reference control map. Since the hysteresis is increased based on the stepping speed, the main muscle activity is mainly performed while reducing the reaction force acting on the antagonist muscle when switching from the stepping operation to the stepping operation where the operation load of the accelerator pedal is large by the driver. It is possible to smoothly switch from the working muscle to the antagonist muscle, and the operability of the accelerator pedal can be ensured. In addition, when it is determined that the operation is sudden acceleration / deceleration, the muscle activity can be smoothly switched from the active muscle to the antagonist muscle while reducing the reaction force acting on the antagonist muscle, and the operability of the accelerator pedal is ensured. Can be done.

請求項2の発明は、請求項1の発明において、前記制御手段は、前記緩加減速操作であると判定されたとき、前記基準制御マップの往特性を増加補正すると共に復特性を減少補正することを特徴としている。
この構成によれば、踏込操作時、運動性能に優れた主働筋に作用する反力を高めて運転者の操作知覚性を向上し、踏戻操作時、拮抗筋に作用する反力を低減して運転者の操作容易性を向上している。
According to the invention of claim 2, when it is determined that the control means is the slow acceleration / deceleration operation, the forward characteristic of the reference control map is increased and corrected and the recovery characteristic is decreased. It is characterized by that.
According to this configuration, the reaction force acting on the main muscle having excellent motor performance is increased during the stepping operation to improve the driver's operation perception, and the reaction force acting on the antagonist muscle during the stepping operation is reduced. The operability of the driver is improved.

請求項3の発明は、請求項2の発明において、前記基準制御マップの往特性の増加補正量と復特性の減少補正量が等しく設定されたことを特徴としている。
この構成によれば、踏込操作から踏戻操作への操作切替時、アクセルペダルの操作性を確保しつつ運転者が感じる違和感の発生を抑制することができる。
The invention of claim 3 is characterized in that, in the invention of claim 2, the increase correction amount of the forward characteristic and the decrease correction amount of the return characteristic of the reference control map are set equally.
According to this configuration, when the operation is switched from the stepping operation to the stepping operation, it is possible to suppress the occurrence of discomfort felt by the driver while ensuring the operability of the accelerator pedal.

本発明の車両用制御装置によれば、操作主体となる筋の種類に拘らず、特にアクセルペダルの緩加減速操作において、運転者が感覚的に十分な操作感を知覚することができる。 According to the vehicle control device of the present invention, the driver can perceive a sufficient sense of operation sensuously, particularly in the slow acceleration / deceleration operation of the accelerator pedal, regardless of the type of muscle that is the main operator.

実施例1に係る車両用制御装置のブロック図である。It is a block diagram of the control device for a vehicle which concerns on Example 1. FIG. アクセルペダルと反力制御機構の概略図である。It is the schematic of the accelerator pedal and the reaction force control mechanism. 基準制御マップを示す図である。It is a figure which shows the reference control map. 緩加減速時における補正後の制御マップを示す図である。It is a figure which shows the control map after correction at the time of slow acceleration / deceleration. 急加減速時における補正後の制御マップを示す図である。It is a figure which shows the control map after correction at the time of sudden acceleration / deceleration. 制御装置の処理手順を示すフローチャートである。It is a flowchart which shows the processing procedure of a control device. 動作量検出手段の変形例を示す図である。It is a figure which shows the modification of the motion amount detecting means. 動作量検出手段の別の変形例を示す図である。It is a figure which shows another modification of the motion amount detecting means. アクセルペダル操作時における骨格筋の説明図である。It is explanatory drawing of the skeletal muscle at the time of operating an accelerator pedal.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
以下の説明は、本発明を車両の制御装置に適用したものを例示したものであり、本発明、その適用物、或いは、その用途を制限するものではない。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The following description exemplifies the application of the present invention to a vehicle control device, and does not limit the present invention, its application, or its use.

以下、本発明の実施例1について図1〜図6に基づいて説明する。
車両用制御装置1は、運転者の筋活動に応じてアクセルペダル3の反力値を制御することにより、運転者に対して操作主体になる筋に拘らず操作リニアリティを付与可能に構成されている。
図1に示すように、制御装置1は、ECU(Electronic Control Unit)2(制御手段)を備えている。ECU2は、CPU、ROM、RAM等からなる電子制御ユニットであり、ROMに記憶されているアプリケーションプログラムをRAMにロードし、CPUで実行することにより各種演算処理を行っている。
Hereinafter, Example 1 of the present invention will be described with reference to FIGS. 1 to 6.
By controlling the reaction force value of the accelerator pedal 3 according to the muscle activity of the driver, the vehicle control device 1 is configured to be able to impart operation linearity to the driver regardless of the muscle that is the main operator. There is.
As shown in FIG. 1, the control device 1 includes an ECU (Electronic Control Unit) 2 (control means). The ECU 2 is an electronic control unit composed of a CPU, a ROM, a RAM, and the like, and performs various arithmetic processes by loading an application program stored in the ROM into the RAM and executing the application program in the CPU.

ECU2は、アクセルペダル3の踏込又は踏戻操作量(以下、踏込量と略す)sを検出する踏込量センサ4と、アクセルペダル3の踏込速度Vを検出する踏込速度センサ5と、車両の走行速度を検出する速度センサ6と、車両に作用するヨーレートを検出するヨーレートセンサ7と、車両の走行加速度を検出する加速度センサ8等に電気的に接続されている。 The ECU 2 includes a stepping amount sensor 4 that detects the stepping or stepping back operation amount (hereinafter abbreviated as the stepping amount) s of the accelerator pedal 3, a stepping speed sensor 5 that detects the stepping speed V of the accelerator pedal 3, and traveling of a vehicle. The speed sensor 6 for detecting the speed, the yaw rate sensor 7 for detecting the yaw rate acting on the vehicle, the acceleration sensor 8 for detecting the traveling acceleration of the vehicle, and the like are electrically connected.

図2に示すように、アクセルペダル3は、車体に対して回動可能に保持され、その踏込操作によって運転者によるエンジン出力の増減意図が入力される。
踏込量センサ4は、アクセルペダル3又は回転軸31に設けられ、その回動量からアクセルペダル3の踏込ストローク、所謂踏込量sを検出する。踏込量センサ4で検出されたアクセルペダル3の踏込量sは、ECU2に出力される。尚、運転者の踏込みによる踏力が作用しない場合、アクセルペダル3は、アクセルペダル3に連結されたリターンスプリング32によって踏込量sが零である初期位置に戻るように付勢されている。
踏込速度センサ5は、アクセルペダル3の回転軸31に設けられ、その回転速度からアクセルペダル3の踏込速度Vを検出する。踏込速度センサ5で検出されたアクセルペダル3の踏込速度Vは、ECU2に出力される。
As shown in FIG. 2, the accelerator pedal 3 is rotatably held with respect to the vehicle body, and the driver's intention to increase or decrease the engine output is input by the stepping operation.
The depression amount sensor 4 is provided on the accelerator pedal 3 or the rotation shaft 31, and detects the depression stroke of the accelerator pedal 3, the so-called depression amount s, from the rotation amount thereof. The depression amount s of the accelerator pedal 3 detected by the depression amount sensor 4 is output to the ECU 2. When the pedaling force due to the driver's depression does not act, the accelerator pedal 3 is urged by the return spring 32 connected to the accelerator pedal 3 so as to return to the initial position where the depression amount s is zero.
The stepping speed sensor 5 is provided on the rotation shaft 31 of the accelerator pedal 3, and detects the stepping speed V of the accelerator pedal 3 from the rotation speed. The depression speed V of the accelerator pedal 3 detected by the depression speed sensor 5 is output to the ECU 2.

速度センサ6、ヨーレートセンサ7、加速度センサ8は、各々の検出結果をECU2に出力している。
車両走行部10は、車両の走行制御を実行するための駆動機構や操舵機構である。
この車両走行部10は、エンジン制御部、ステアリングアクチュエータ、ブレーキアクチュエータ、及びシフトアクチュエータ(何れも図示略)等によって構成されている。
車両走行部10は、ECU2からの出力信号に基づいて車両の走行制御を実行している。
The speed sensor 6, the yaw rate sensor 7, and the acceleration sensor 8 output their respective detection results to the ECU 2.
The vehicle traveling unit 10 is a driving mechanism or a steering mechanism for executing traveling control of the vehicle.
The vehicle traveling unit 10 is composed of an engine control unit, a steering actuator, a brake actuator, a shift actuator (all of which are not shown) and the like.
The vehicle traveling unit 10 executes vehicle traveling control based on the output signal from the ECU 2.

図2に示すように、反力制御機構11は、第1,第2摩擦部材41,42と、電磁式アクチュエータ43等を備えている。
第1摩擦部材41は回動軸31の一端部に固着され、第2摩擦部材42が第1摩擦部材41に臨む状態で配設されている。第2摩擦部材42は、回動軸31の軸心延長上に配設された保持軸44に対して、回転不能且つ軸心方向に相対移動可能に保持されている。
アクチュエータ43は、第1,第2摩擦部材41,42を圧接状態と離隔状態との間において相対位置関係を変更し、圧接時における圧接力を調整可能に構成されている。
As shown in FIG. 2, the reaction force control mechanism 11 includes first and second friction members 41 and 42, an electromagnetic actuator 43 and the like.
The first friction member 41 is fixed to one end of the rotating shaft 31, and the second friction member 42 is arranged so as to face the first friction member 41. The second friction member 42 is held so as to be non-rotatable and relatively movable in the axial direction with respect to the holding shaft 44 arranged on the extension of the axial center of the rotating shaft 31.
The actuator 43 is configured to change the relative positional relationship between the first and second friction members 41 and 42 between the pressure contact state and the separation state, and to adjust the pressure contact force at the time of pressure contact.

次に、ECU2について説明する。
図1に示すように、ECU2は、走行制御部21と、記憶部22と、特性補正部23と、反力設定部24等を備えている。
走行制御部21は、アクセルペダル3の踏込量sと速度センサ6によって検出された車速に基づいてエンジンの出力を制御すると共に車両走行状態とエンジンの運転状態とに基づいて変速機の変速比を選択可能に構成されている。
変速機で減速されたエンジンの出力はドライブシャフト(図示略)を介して駆動輪に伝達される。
Next, the ECU 2 will be described.
As shown in FIG. 1, the ECU 2 includes a traveling control unit 21, a storage unit 22, a characteristic correction unit 23, a reaction force setting unit 24, and the like.
The travel control unit 21 controls the output of the engine based on the depression amount s of the accelerator pedal 3 and the vehicle speed detected by the speed sensor 6, and determines the gear ratio of the transmission based on the vehicle traveling state and the operating state of the engine. It is configured to be selectable.
The output of the engine decelerated by the transmission is transmitted to the drive wheels via a drive shaft (not shown).

記憶部22は、運転者によるアクセルペダル3の踏込量sと踏込速度Vとアクセルペダル3から運転者に作用する物理的な反力値に相当している反力fとによって規定された基準制御マップF(F−S特性)を予め格納している。
図3に示すように、基準制御マップFは、アクセルペダル3の踏込量s(s1,s2)に相当するs軸(横軸)と、アクセルペダル3を介して運転者に付与される反力f(f2,f4,f5,f7)に相当するf軸(縦軸)とによって構成されている。
この基準制御マップFは、標準的な運転者を対象として形成され、この運転者による所定のアクセルペダル3の操作、所謂踏込及び踏戻動作(足関節の底屈及び背屈運動)において、二関節筋(例えば、腓腹筋等)と単関節筋(例えば、前脛骨筋やヒラメ筋等)とが所定のバランス範囲(例えば、二関節筋の寄与率が40%以上且つ60%未満)内で動作されることを前提条件として設定されている
The storage unit 22 is a reference control defined by the depression amount s of the accelerator pedal 3 by the driver, the depression speed V, and the reaction force f corresponding to the physical reaction force value acting on the driver from the accelerator pedal 3. Map F (FS characteristic) is stored in advance.
As shown in FIG. 3, the reference control map F has an s-axis (horizontal axis) corresponding to the depression amount s (s1, s2) of the accelerator pedal 3 and a reaction force applied to the driver via the accelerator pedal 3. It is composed of an f-axis (vertical axis) corresponding to f (f2, f4, f5, f7).
This reference control map F is formed for a standard driver, and in a predetermined operation of the accelerator pedal 3 by the driver, so-called stepping and stepping motions (plantar flexion and dorsiflexion motion of the ankle joint), two Joint muscles (eg, gastrocnemius) and monoarticular muscles (eg, tibialis anterior, soleus, etc.) operate within a predetermined balance range (eg, biarticular muscle contributions of 40% or more and less than 60%). Is set as a prerequisite

基準制御マップFにおいて、踏込側特性は、原点から踏込量s1(反力f5)までの初期往特性F3と踏込量s1から最大踏込量s2(反力f7)までの往特性F1とによって構成されている。往特性F1は、踏込量sに比例する1次関数で表すことができ、反力f7は、反力f5よりも大きい値に設定されている。
また、踏込操作の解除操作に相当する踏戻側特性は、最大踏込量s2(反力f4)から初期踏込量s1(反力f2)までの復特性F2と踏込量s1から原点までの終期復特性F4とによって構成されている。復特性F2は、往特性F1と略平行状に設定され、反力f4は、反力f2よりも大きい値に設定されている。
往特性F1と復特性F2との離隔距離が、基準制御マップFのヒステリシスF5に相当している。
In the reference control map F, the stepping-side characteristic is composed of the initial forward characteristic F3 from the origin to the stepping amount s1 (reaction force f5) and the forward characteristic F1 from the stepping amount s1 to the maximum stepping amount s2 (reaction force f7). ing. The forward characteristic F1 can be expressed by a linear function proportional to the stepping amount s, and the reaction force f7 is set to a value larger than the reaction force f5.
In addition, the return-side characteristics corresponding to the release operation of the stepping operation are the recovery characteristic F2 from the maximum stepping amount s2 (reaction force f4) to the initial stepping amount s1 (reaction force f2) and the final recovery from the stepping amount s1 to the origin. It is composed of the characteristic F4. The recovery characteristic F2 is set to be substantially parallel to the forward characteristic F1, and the reaction force f4 is set to a value larger than the reaction force f2.
The separation distance between the forward characteristic F1 and the return characteristic F2 corresponds to the hysteresis F5 of the reference control map F.

次に、特性補正部23について説明する。
特性補正部23は、アクセルペダル3の操作ストロークが小さい、換言すれば運転者による操作の主体筋が単関節筋(例えば、前脛骨筋、ヒラメ筋等)である緩加減速操作時、基準制御マップFのヒステリシスF5を増加補正した制御マップFAを設定している。
ここで、緩加減速操作とは、運転者の意思として略定速走行を狙いとした操作であり、車両Vの挙動としては、例えば、短時間内における30Km/hから40Km/h、或いは40Km/hから30Km/h等の微小変化を伴う一時的且つ過渡的走行である。
Next, the characteristic correction unit 23 will be described.
The characteristic correction unit 23 controls the reference during slow acceleration / deceleration operation in which the operation stroke of the accelerator pedal 3 is small, in other words, the main muscle of the operation by the driver is a single joint muscle (for example, tibialis anterior muscle, soleus muscle, etc.). A control map FA is set in which the hysteresis F5 of the map F is increased and corrected.
Here, the slow acceleration / deceleration operation is an operation aimed at driving at a substantially constant speed as the driver's intention, and the behavior of the vehicle V is, for example, 30 Km / h to 40 Km / h or 40 Km within a short time. It is a temporary and transient run accompanied by a slight change from / h to 30 km / h.

図4に示すように、特性補正部23は、緩加減速操作時において、踏込速度Vが大きいとき、往特性F1を補正量U1増加した往特性F1aに補正し、復特性F2を補正量D1減少した復特性F2aに補正する。補正量U1,D1は、踏込速度Vに比例するように設定される。そして、往特性F1aの最小値と原点とを結ぶ直線を初期往特性F3a、復特性F2aの最小値と原点とを結ぶ直線を終期復特性F4a、往特性F1aの最大値と復特性F2aの最大値とを結ぶ直線をヒステリシスF5a(F5+U1+D1)に設定する。
本実施例では、アクセルペダル3の操作性を確保しつつ運転者が感じる違和感の発生を抑制するため、緩加減速操作時において踏込速度Vが同じ値のとき、補正量U1,D1を同じ値になるように設定している。
尚、各反力は、f1<f2<f3<f4<f5<f6<f7<f8の関係が成立している。
As shown in FIG. 4, the characteristic correction unit 23 corrects the forward characteristic F1 to the forward characteristic F1a in which the correction amount U1 is increased and the recovery characteristic F2 is the correction amount D1 when the stepping speed V is large during the slow acceleration / deceleration operation. It is corrected to the reduced recovery characteristic F2a. The correction amounts U1 and D1 are set so as to be proportional to the stepping speed V. Then, the straight line connecting the minimum value of the outgoing characteristic F1a and the origin is the initial outgoing characteristic F3a, the straight line connecting the minimum value of the returning characteristic F2a and the origin is the final returning characteristic F4a, and the maximum value of the outgoing characteristic F1a and the maximum of the returning characteristic F2a. The straight line connecting the values is set to hysteresis F5a (F5 + U1 + D1).
In this embodiment, in order to suppress the occurrence of discomfort felt by the driver while ensuring the operability of the accelerator pedal 3, when the depression speed V is the same value during the slow acceleration / deceleration operation, the correction amounts U1 and D1 are the same value. It is set to be.
It should be noted that each reaction force has a relationship of f1 <f2 <f3 <f4 <f5 <f6 <f7 <f8.

また、特性補正部23は、アクセルペダル3の操作ストロークが大きい、換言すれば運転者による操作の主体筋が二関節筋(例えば、腓腹筋等)である急加減速操作時、基準制御マップFの往特性F1及び復特性F2を増加補正した制御マップFBを設定している。
ここで、急加減速操作とは、運転者の意思として速度増加或いは減少走行を狙いとした操作であり、車両Vの挙動としては、例えば、一定時間を要する0Km/hから30Km/h、或いは50Km/hから100Km/h等の加速又は減速を伴う長期的且つ安定的走行である。尚、緩加減速時の微調整よりも大きな操作に相当する中加減速操作については、急加減速操作に含まれるものとして扱う。
Further, the characteristic correction unit 23 has a large operation stroke of the accelerator pedal 3, in other words, during a sudden acceleration / deceleration operation in which the main muscle of the operation by the driver is a biarticular muscle (for example, the gastrocnemius muscle), the reference control map F is used. A control map FB in which the forward characteristic F1 and the return characteristic F2 are increased and corrected is set.
Here, the rapid acceleration / deceleration operation is an operation aimed at speed increase or decrease running as the driver's intention, and the behavior of the vehicle V is, for example, 0 Km / h to 30 Km / h, which requires a certain period of time, or Long-term and stable running with acceleration or deceleration from 50 km / h to 100 km / h. The medium acceleration / deceleration operation, which corresponds to an operation larger than the fine adjustment during slow acceleration / deceleration, is treated as being included in the rapid acceleration / deceleration operation.

図5に示すように、特性補正部23は、急加減速操作時において、踏込速度Vが大きいとき、往特性F1を補正量U2増加した往特性F1bに補正し、復特性F2を補正量D2増加した復特性F2bに補正する。補正量U2,D2は、踏込速度Vに比例するように設定される。そして、往特性F1bの最小値と原点とを結ぶ直線を初期往特性F3b、復特性F2bの最小値と原点とを結ぶ直線を終期復特性F4b、往特性F1bの最大値と復特性F2bの最大値とを結ぶ直線をヒステリシスF5b(F5)に設定する。
本実施例では、運転者が感じる違和感の発生を抑制するため、急加減速操作時における踏込速度Vが同じ値のとき、補正量U2,D2を同じ値になるように設定しており、操作知覚性を向上するため、踏込速度Vが同じ値のとき、U1<U2の関係が成り立ち、各反力は、f2<f9,f4<f10,f6<f11,f8<f12の関係が成立している。
As shown in FIG. 5, in the sudden acceleration / deceleration operation, when the stepping speed V is large, the characteristic correction unit 23 corrects the forward characteristic F1 to the forward characteristic F1b in which the correction amount U2 is increased, and the recovery characteristic F2 is the correction amount D2. It is corrected to the increased recovery characteristic F2b. The correction amounts U2 and D2 are set so as to be proportional to the stepping speed V. Then, the straight line connecting the minimum value of the outgoing characteristic F1b and the origin is the initial outgoing characteristic F3b, the straight line connecting the minimum value of the returning characteristic F2b and the origin is the final returning characteristic F4b, and the maximum value of the outgoing characteristic F1b and the maximum of the returning characteristic F2b. The straight line connecting the values is set to hysteresis F5b (F5).
In this embodiment, in order to suppress the occurrence of discomfort felt by the driver, the correction amounts U2 and D2 are set to have the same value when the stepping speed V during the sudden acceleration / deceleration operation is the same value. In order to improve the perceptuality, when the stepping speed V is the same value, the relationship of U1 <U2 is established, and the relationship of f2 <f9, f4 <f10, f6 <f11, f8 <f12 is established for each reaction force. There is.

次に、反力設定部24について説明する。
反力設定部24は、F−S特性に基づく反力fに関する指令信号を出力している。
具体的には、緩加減速操作時には、制御マップFA、急加減速操作時には、制御マップFB、緩加減速操作と急加減速操作の何れにも該当しない場合、基準制御マップFを用いて、踏込量sに対応する反力fを読み出し、この読み出された反力fがアクセルペダル3の操作反力fとして出力されている。
Next, the reaction force setting unit 24 will be described.
The reaction force setting unit 24 outputs a command signal regarding the reaction force f based on the FS characteristic.
Specifically, the control map FA is used during the slow acceleration / deceleration operation, the control map FB is used during the rapid acceleration / deceleration operation, and the reference control map F is used when neither the slow acceleration / deceleration operation nor the rapid acceleration / deceleration operation is applicable. The reaction force f corresponding to the depression amount s is read out, and the read reaction force f is output as the operation reaction force f of the accelerator pedal 3.

次に、図6のフローチャートに基づいて、制御装置1の制御処理手順について説明する。
尚、Si(i=1,2…)は、各処理のためのステップを示す。
図6のフローチャートに示すように、まず、S1にて、イグニッション(Ig)がオン操作されたか否か判定する。
S1の判定の結果、イグニッションがオン操作された場合、各種センサ4〜8から入力された情報を読み込み(S2)、S3に移行する。
S1の判定の結果、イグニッションがオフ操作された場合、既に設定されている制御マップを基準制御マップFに初期化して(S9)、リターンする。
Next, the control processing procedure of the control device 1 will be described based on the flowchart of FIG.
In addition, Si (i = 1, 2, ...) Indicates a step for each process.
As shown in the flowchart of FIG. 6, first, in S1, it is determined whether or not the ignition (Ig) is turned on.
As a result of the determination in S1, when the ignition is turned on, the information input from the various sensors 4 to 8 is read (S2), and the process proceeds to S3.
As a result of the determination in S1, when the ignition is turned off, the control map that has already been set is initialized to the reference control map F (S9), and the control map is returned.

S3では、アクセルペダル3の操作ストロークにより運転者が緩加減速操作を行ったか否か判定する。
S3の判定の結果、運転者が緩加減速操作を行った場合、S4に移行し、踏込速度Vに比例する補正量U1と補正量U1と同じ値の補正量D1を演算する。
次に、S5では、往特性F1から補正量U1増加した往特性F1a、復特性F2から補正量D1減少した復特性F2a、初期往特性F3a、終期復特性F4a、ヒステリシスF5aからなる制御マップFAを設定し、S6に移行する。
S6では、補正後の制御マップFAに基づいて反力制御機構11を作動させて、リターンする。
In S3, it is determined whether or not the driver has performed the slow acceleration / deceleration operation based on the operation stroke of the accelerator pedal 3.
As a result of the determination in S3, when the driver performs the slow acceleration / deceleration operation, the process proceeds to S4, and the correction amount U1 proportional to the stepping speed V and the correction amount D1 having the same value as the correction amount U1 are calculated.
Next, in S5, the control map FA including the forward characteristic F1a in which the correction amount U1 is increased from the forward characteristic F1, the recovery characteristic F2a in which the correction amount D1 is decreased from the recovery characteristic F2, the initial forward characteristic F3a, the final recovery characteristic F4a, and the hysteresis F5a is displayed. Set and move to S6.
In S6, the reaction force control mechanism 11 is operated based on the corrected control map FA and returns.

S3の判定の結果、運転者が緩加減速操作を行っていない場合、S7に移行し、運転者が急加減速操作を行ったか否か判定する。
S7の判定の結果、運転者が急加減速操作を行った場合、S8に移行し、踏込速度Vに比例する補正量U2と補正量U2と同じ値にされた補正量D2を演算する。
次に、S9では、往特性F1から補正量U2増加した往特性F1b、復特性F2から補正量D2増加した復特性F2b、初期往特性F3b、終期復特性F4b、ヒステリシスF5bからなる制御マップFBを設定し、S6に移行し、補正後の制御マップFBに基づいて反力制御機構11を作動させる。
S7の判定の結果、運転者が急加減速操作を行っていない場合、S6に移行し、基準制御マップFに基づいて反力制御機構11を作動させる。
As a result of the determination in S3, if the driver has not performed the slow acceleration / deceleration operation, the process proceeds to S7, and it is determined whether or not the driver has performed the rapid acceleration / deceleration operation.
As a result of the determination in S7, when the driver performs a sudden acceleration / deceleration operation, the process proceeds to S8, and the correction amount U2 proportional to the stepping speed V and the correction amount D2 set to the same value as the correction amount U2 are calculated.
Next, in S9, a control map FB composed of a forward characteristic F1b in which the correction amount U2 is increased from the forward characteristic F1, a recovery characteristic F2b in which the correction amount D2 is increased from the recovery characteristic F2, an initial forward characteristic F3b, a final recovery characteristic F4b, and a hysteresis F5b is provided. After setting, the process shifts to S6, and the reaction force control mechanism 11 is operated based on the corrected control map FB.
As a result of the determination in S7, if the driver has not performed the rapid acceleration / deceleration operation, the process proceeds to S6 and the reaction force control mechanism 11 is operated based on the reference control map F.

次に、上記車両用制御装置1の作用、効果について説明する。
本制御装置1によれば、反力設定部24は、転者によりアクセルペダル3が緩加減速操作されたとき、基準制御マップFの往特性F1と復特性F2との間のヒステリシスF5を緩加減速操作に該当しないときよりも増加するため、運転者によるアクセルペダル3の操作負荷が大きい踏込操作から踏戻操作への操作切替時、拮抗筋に作用する反力fを低減しながら主な筋活動を主働筋から拮抗筋へ円滑に切替えることができ、アクセルペダル3の操作性を確保することができる。
Next, the operation and effect of the vehicle control device 1 will be described.
According to the control apparatus 1, the reaction force setting section 24, when the accelerator pedal 3 is slow acceleration or deceleration operation by OPERATION person, and往特resistance F1 of the reference control map F hysteresis F5 between the recovery characteristic F2 Since it increases more than when it does not correspond to the slow acceleration / deceleration operation, the operation load of the accelerator pedal 3 by the driver is large. When switching the operation from the stepping operation to the stepping operation, the reaction force f acting on the antagonist muscle is reduced. The muscle activity can be smoothly switched from the active muscle to the antagonist muscle, and the operability of the accelerator pedal 3 can be ensured.

反力設定部24は、踏込速度センサ5によって検出された運転者の踏込速度が大きいとき、基準制御マップFの往特性F1を増加補正すると共に復特性F2を減少補正するため、踏込操作時、運動性能に優れた主働筋に作用する反力fを高めて運転者の操作知覚性を向上し、踏戻操作時、拮抗筋に作用する反力fを低減して運転者の操作容易性を向上している。 When the driver's stepping speed detected by the stepping speed sensor 5 is high, the reaction force setting unit 24 increases and corrects the forward characteristic F1 of the reference control map F and decreases and corrects the return characteristic F2. The reaction force f acting on the main muscles with excellent athletic performance is increased to improve the driver's operational perception, and the reaction force f acting on the antagonist muscles is reduced during the stepping back operation to improve the driver's operability. It is improving.

基準制御マップFの往特性F1の増加補正量U1と復特性F2の減少補正量D1が等しく設定されたため、踏込操作から踏戻操作への操作切替時、アクセルペダル3の操作性を確保しつつ運転者が感じる違和感の発生を抑制することができる。 Since the increase correction amount U1 of the forward characteristic F1 of the reference control map F and the decrease correction amount D1 of the return characteristic F2 are set to be equal, the operability of the accelerator pedal 3 is ensured when the operation is switched from the stepping operation to the stepping operation. It is possible to suppress the occurrence of discomfort felt by the driver.

次に、前記実施形態を部分的に変更した変形例について説明する。
1〕前記実施形態においては、アクセルペダル3に対する運転者の踏込量sが小さいにも拘らず踏込速度Vが大きいときの操作性改善を狙いとして、アクセルペダル3の踏込速度Vを検出した例を説明したが、アクセルペダル3に対する足の接触面積をパラメータとして検出しても良い。
図7に示すように、アクセルペダル3Aに複数の圧電素子12が埋設されている。
これら複数の圧電素子12は、上下に亙って均等間隔に配置されているため、圧電素子12の検出個数により運転者の足の接触面積を求めることができる。
図8に示すように、アクセルペダル3Bに3つの歪ゲージ13が配設されている。
これら歪ゲージ13は、上端部と左右両端部とに配置されているため、運転者の足による歪を介して運転者の足の接触面積を求めることができる。
これにより、運転者の足の動作量を高精度に検出することができる。
Next, a modified example in which the embodiment is partially modified will be described.
1] In the above embodiment, an example in which the depression speed V of the accelerator pedal 3 is detected with the aim of improving operability when the depression speed V is large despite the small depression amount s of the driver with respect to the accelerator pedal 3. As described above, the contact area of the foot with respect to the accelerator pedal 3 may be detected as a parameter.
As shown in FIG. 7, a plurality of piezoelectric elements 12 are embedded in the accelerator pedal 3A.
Since these plurality of piezoelectric elements 12 are arranged at equal intervals over the top and bottom, the contact area of the driver's foot can be determined from the number of detected piezoelectric elements 12.
As shown in FIG. 8, three strain gauges 13 are arranged on the accelerator pedal 3B.
Since these strain gauges 13 are arranged at the upper end portion and the left and right end portions, the contact area of the driver's foot can be obtained through the strain caused by the driver's foot.
As a result, the amount of movement of the driver's foot can be detected with high accuracy.

2〕前記実施形態においては、緩加減速操作時、基準制御マップFの往特性F1の補正量U1と復特性F2の補正量D1が等しく設定された例を説明したが、増加補正量U1と復特性F2の減少補正量D1とを異なる値(U1<D1又はD1<U1)に設定しても良い。
また、急加減速操作時、基準制御マップFの往特性F1の補正量U2と復特性F2の補正量D2が等しく設定された例を説明したが、増加補正量U2と復特性F2の増加補正量D2とを異なる値(U2<D2又はD2<U2)に設定しても良い。
2] In the above embodiment, an example in which the correction amount U1 of the forward characteristic F1 of the reference control map F and the correction amount D1 of the return characteristic F2 are set to be equal during the slow acceleration / deceleration operation has been described, but the increase correction amount U1 and The reduction correction amount D1 of the recovery characteristic F2 may be set to a different value (U1 <D1 or D1 <U1).
Further, an example in which the correction amount U2 of the forward characteristic F1 of the reference control map F and the correction amount D2 of the recovery characteristic F2 are set to be equal during the rapid acceleration / deceleration operation has been described, but the increase correction amount U2 and the recovery characteristic F2 are increased. The quantity D2 may be set to a different value (U2 <D2 or D2 <U2).

3〕前記実施形態においては、制御マップの往特性と復特性を踏込量に比例する1次関数で形成された例を説明したが、必ずしも線形性を備える必要はなく、上に凸状又は下に凸状の湾曲形状に形成しても良い。 3] In the above embodiment, an example in which the forward characteristic and the return characteristic of the control map are formed by a linear function proportional to the stepping amount has been described, but it is not always necessary to have linearity, and it is convex upward or downward. It may be formed into a convex curved shape.

4〕その他、当業者であれば、本発明の趣旨を逸脱することなく、前記実施形態に種々の変更を付加した形態や各実施形態を組み合わせた形態で実施可能であり、本発明はそのような変更形態も包含するものである。 4] In addition, a person skilled in the art can carry out the embodiment in a form in which various modifications are added to the above-described embodiment or in a combination of the respective embodiments without departing from the gist of the present invention. It also includes various modified forms.

1 制御装置
3,3A,3B アクセルペダル
5 踏込速度センサ
24 反力設定部
s 踏込量
V 踏込速度
f 反力
F,FA,FB 制御マップ
F1,F1a,F1b 往特性
F2,F2a,F2b 復特性
1 Control device 3, 3A, 3B Accelerator pedal 5 Stepping speed sensor 24 Reaction force setting unit s Stepping amount V Stepping speed f Reaction force F, FA, FB Control map F1, F1a, F1b Forward characteristics F2, F2a, F2b Recovery characteristics

Claims (3)

往特性及び復特性を有し且つアクセルペダルの踏込量と反力値との相関関係を設定した基準制御マップと、この基準制御マップに基づきアクセルペダルの反力値を制御する反力制御機構と、この反力制御機構を制御する制御手段とを備えた車両用制御装置において、
前記アクセルペダルに対する運転者の足の踏込速度を検出する踏込速度検出手段と、
運転者による前記アクセルペダルの踏込又は踏戻操作量を検出する踏込量検出手段とを備え、
前記制御手段は、前記踏込量検出手段によって検出されたアクセルペダルの踏込又は踏戻操作量に基づき運転者による操作の主体筋が単関節筋である緩加減速操作か、運転者による操作の主体筋が二関節筋である急加減速操作かを判定、緩加減速操作であると判定されたとき、前記基準制御マップの往特性と復特性との間のヒステリシスを前記踏込速度に基づき増加すると共に急加減速操作であると判定されたとき、前記基準制御マップの往特性と復特性を前記踏込速度に基づき増加補正することを特徴とする車両用制御装置。
A reference control map that has forward and return characteristics and sets the correlation between the accelerator pedal depression amount and the reaction force value, and a reaction force control mechanism that controls the reaction force value of the accelerator pedal based on this reference control map. In a vehicle control device provided with a control means for controlling this reaction force control mechanism,
A stepping speed detecting means for detecting the stepping speed of the driver's foot with respect to the accelerator pedal, and
It is provided with a stepping amount detecting means for detecting the stepping or stepping back operation amount of the accelerator pedal by the driver.
The control means is either a slow acceleration / deceleration operation in which the main muscle of the operation by the driver is a single joint muscle based on the amount of depression or stepping back operation of the accelerator pedal detected by the depression amount detection means, or the main body of the operation by the driver. It is determined whether the muscle is a biarticular muscle, which is a rapid acceleration / deceleration operation, and when it is determined that the muscle is a slow acceleration / deceleration operation, the hysteresis between the forward characteristic and the return characteristic of the reference control map is increased based on the stepping speed. A vehicle control device, characterized in that, when it is determined that the sudden acceleration / deceleration operation is performed, the forward characteristic and the return characteristic of the reference control map are increased and corrected based on the stepping speed .
前記制御手段は、前記緩加減速操作であると判定されたとき、前記基準制御マップの往特性を増加補正すると共に復特性を減少補正することを特徴とする請求項1に記載の車両用制御装置。 The vehicle control according to claim 1 , wherein when the control means is determined to be the slow acceleration / deceleration operation, the forward characteristic of the reference control map is increased and corrected and the recovery characteristic is decreased. apparatus. 前記基準制御マップの往特性の増加補正量と復特性の減少補正量が等しく設定されたことを特徴とする請求項2に記載の車両用制御装置。 The vehicle control device according to claim 2, wherein the increase correction amount of the forward characteristic and the decrease correction amount of the return characteristic of the reference control map are set equally.
JP2017121865A 2017-06-22 2017-06-22 Vehicle control device Active JP6823292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017121865A JP6823292B2 (en) 2017-06-22 2017-06-22 Vehicle control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017121865A JP6823292B2 (en) 2017-06-22 2017-06-22 Vehicle control device

Publications (2)

Publication Number Publication Date
JP2019006185A JP2019006185A (en) 2019-01-17
JP6823292B2 true JP6823292B2 (en) 2021-02-03

Family

ID=65027300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017121865A Active JP6823292B2 (en) 2017-06-22 2017-06-22 Vehicle control device

Country Status (1)

Country Link
JP (1) JP6823292B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10166889A (en) * 1996-12-04 1998-06-23 Suzuki Motor Corp Alarm device
KR100851321B1 (en) * 2007-05-11 2008-08-08 주식회사 동희산업 Pedal device with function for adjusting pedal effort and hysteresis
JP5806480B2 (en) * 2011-02-23 2015-11-10 株式会社ミクニ Accelerator pedal device
JP6121179B2 (en) * 2013-02-04 2017-04-26 本田技研工業株式会社 Reaction force control device
JP6173119B2 (en) * 2013-08-22 2017-08-02 本田技研工業株式会社 Accelerator pedal reaction force control device
JP6274024B2 (en) * 2014-06-12 2018-02-07 マツダ株式会社 Accelerator pedal control device for vehicle

Also Published As

Publication number Publication date
JP2019006185A (en) 2019-01-17

Similar Documents

Publication Publication Date Title
JP4980576B2 (en) Pedal device and automobile equipped with the same
WO2003090978A1 (en) Control device of legged mobile robot
JP7197413B2 (en) steering control system
JP6274024B2 (en) Accelerator pedal control device for vehicle
CN110315969B (en) Vehicle control device
JP3897293B2 (en) Vehicle operation control device
JP6686824B2 (en) Pedal device
CN110325429B (en) Operating method for a steer-by-wire steering system, control unit for a steer-by-wire steering system, steer-by-wire steering system and vehicle
JP2006283561A (en) Pedal device and automobile having this pedal device
JP6823292B2 (en) Vehicle control device
JP6528806B2 (en) Vehicle control device
CN106314147B (en) Method for controlling and/or regulating the power of a motor
JP2008296605A (en) Operational reaction force controller for vehicle
CN110062842B (en) Vehicle control device
JP6304513B1 (en) Vehicle control device
JP6846735B2 (en) Vehicle control device
EP3846007A1 (en) Wearable device with force feedback and operation method thereof
CN107415930B (en) The control device of vehicle
JP6278100B1 (en) Vehicle control device
CN116529696A (en) Information processing system, controller, information processing method, and information processing program
CN116490842A (en) Information processing system, controller, information processing method, and information processing program
CN108475080B (en) Device for electrically controlling a clutch
Tanaka et al. Analysis of haptic interaction between limbs in operations of vehicular driving interfaces
JP2006281810A (en) Pedal device and automobile having the same
CN106285962A (en) For controlling and/or the method for adjusting power of engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201222

R150 Certificate of patent or registration of utility model

Ref document number: 6823292

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150