JP6820790B2 - Hazardous element removal method and its uses - Google Patents

Hazardous element removal method and its uses Download PDF

Info

Publication number
JP6820790B2
JP6820790B2 JP2017077729A JP2017077729A JP6820790B2 JP 6820790 B2 JP6820790 B2 JP 6820790B2 JP 2017077729 A JP2017077729 A JP 2017077729A JP 2017077729 A JP2017077729 A JP 2017077729A JP 6820790 B2 JP6820790 B2 JP 6820790B2
Authority
JP
Japan
Prior art keywords
arsenic
harmful elements
solution
removal
filtrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017077729A
Other languages
Japanese (ja)
Other versions
JP2018176050A (en
Inventor
進 池田
進 池田
Original Assignee
進 池田
進 池田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 進 池田, 進 池田 filed Critical 進 池田
Priority to JP2017077729A priority Critical patent/JP6820790B2/en
Publication of JP2018176050A publication Critical patent/JP2018176050A/en
Application granted granted Critical
Publication of JP6820790B2 publication Critical patent/JP6820790B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

本発明は、人体に有害な元素を除去する方法に関し、特に、簡易且つ低コストで有害元素を除去できる有害元素除去方法およびその用途に関する。 The present invention relates to a method for removing harmful elements to the human body, and more particularly to a harmful element removing method capable of removing harmful elements easily and at low cost and its use.

現在、食用の安全衛生基準として、人体に有害な元素に対して、厳しい基準値が定められており、このような有害元素の除去技術が盛んに研究されている。 Currently, as edible safety and health standards, strict standard values have been set for elements that are harmful to the human body, and techniques for removing such harmful elements are being actively researched.

例えば、食用塩においても、このような有害元素であるヒ素や水銀等を対象として、厳しい基準値が定められている。食用塩の安全衛生ガイドライン(平成12年9月10日制定、平成25年10月1日改訂、一般社団法人 日本塩工業会)に拠れば、ヒ素の基準値は0.2mg/kg以下であり、水銀の基準値は0.05mg/kg以下とされている。 For example, even in edible salts, strict standard values are set for such harmful elements such as arsenic and mercury. According to the Safety and Health Guidelines for Edible Salt (established on September 10, 2000, revised on October 1, 2013, Japan Salt Industry Association), the standard value of arsenic is 0.2 mg / kg or less. The standard value of mercury is 0.05 mg / kg or less.

また、有害元素の除去技術に関しては、この他にも、資源を豊富に含んでいる泉源の地熱水から、有価物資源を回収する際にも、ヒ素などの有害元素の除去技術は必須とされている。 In addition, regarding the technology for removing harmful elements, it is essential to remove harmful elements such as arsenic when recovering valuable resources from the geothermal water of the spring source, which is rich in resources. Has been done.

地熱水の泉質は、泉源によって様々である。特に、日本の泉源は塩化物泉が多く、その泉源から回収できるNaClやKClは利用価値の高い有価物資源物である。また、二次電池や医薬品の材料となるリチウムは溶存濃度が泉源に関わらず約10ppm程度と高い濃度を示している。これら有価物資源の回収効率が高まれば、有価物資源の回収コストの低減に繋がり、地熱水を利用した有価物資源回収の事業展開も実現できるものと期待されている。 The quality of geothermal water varies depending on the source. In particular, many spring sources in Japan are chloride springs, and NaCl and KCl that can be recovered from those spring sources are valuable resources with high utility value. In addition, lithium, which is a material for secondary batteries and pharmaceuticals, has a high dissolved concentration of about 10 ppm regardless of the source of the spring. If the recovery efficiency of these valuable resources is improved, it is expected that the recovery cost of the valuable resources will be reduced and the business development of the recovery of the valuable resources using geothermal water will be realized.

現在、低コストで高効率の除去技術は難しいのが現状である。ヒ素などの有害物質を効率よく低コストで除去することが可能となれば様々な有価物資源の利用化が期待できる。 At present, low-cost and high-efficiency removal technology is difficult at present. If it becomes possible to remove harmful substances such as arsenic efficiently and at low cost, it is expected that various valuable resources can be utilized.

従来の有害元素除去方法としては、例えば、含有率が30質量%以上、カルシウムの含有率が10質量%以上、且つ、ケイ素含有率が10質量%以下である製鋼スラグを70質量%以上含む有害元素低減材を処理対象物に接触させることによって、該処理対象物のヒ素含有量を低減、若しくは、該処理対象物からのヒ素溶出量を低減させる処理工程を含むものが知られている(特許文献1参照)。 As a conventional method for removing harmful elements, for example, harmful substances containing 70% by mass or more of steelmaking slag having a content of 30% by mass or more, a calcium content of 10% by mass or more, and a silicon content of 10% by mass or less. It is known to include a treatment step of reducing the arsenic content of the treatment target or reducing the arsenic elution amount from the treatment target by bringing the element reducing material into contact with the treatment target (Patent). Reference 1).

また、例えば、従来の有害元素除去方法として、セレン(Se)、ヒ素(As)含有排水に第一鉄塩を添加した後、Ca(OH)2 および/またはCaO を添加、反応せしめ、得られた処理液を固液分離することを特徴とするセレン(Se)、ヒ素(As)含有排水の処理方法が知られている(特許文献2参照)。 Further, for example, as a conventional method for removing harmful elements, ferrous salt is added to selenium (Se) and arsenic (As) -containing wastewater, and then Ca (OH) 2 and / or CaO is added and reacted to obtain the product. A method for treating selenium (Se) and arsenic (As) -containing wastewater, which is characterized by solid-liquid separation of the treated liquid, is known (see Patent Document 2).

特開2013-116465号公報Japanese Unexamined Patent Publication No. 2013-116465 特開2002-192167号公報JP-A-2002-192167

しかし、従来の従来の有害元素除去方法では、例えば特許文献1のように、有害元素低減材を処理対象物に接触させる方法では、有害元素低減材を製造するコストが掛かることのみならず、処理対象物に接触後の有害元素低減材の後処理(例えば廃棄や償却など)にも、別途コストが必要となり、作業が煩雑であり、コストも嵩むという課題がある。 However, in the conventional conventional method for removing harmful elements, for example, in the method of bringing the harmful element reducing material into contact with the object to be treated as in Patent Document 1, not only the cost of manufacturing the harmful element reducing material is high but also the treatment is performed. Post-treatment of the harmful element reducing material after contact with the object (for example, disposal or depreciation) also requires a separate cost, which causes a problem that the work is complicated and the cost is high.

また、従来の従来の有害元素除去方法では、例えば特許文献2のように、反応させて得られた処理液を固液分離する方法では、固液分離の作業自体が煩雑であることのみならず、固液分離の実施条件(pH調整など)がシビアであり、作業が容易ではないという課題がある。 Further, in the conventional conventional method for removing harmful elements, for example, in the method of solid-liquid separation of the treatment liquid obtained by reaction as in Patent Document 2, the solid-liquid separation operation itself is not only complicated. There is a problem that the work is not easy because the conditions for solid-liquid separation (pH adjustment, etc.) are severe.

そのため、簡易な方法によって、有害元素を含有する原料水から、確実に有害元素を除去する有害元素除去方法の実現が期待されているが、現在のところ、そのようなものは見当たらない。 Therefore, it is expected to realize a method for removing harmful elements from raw water containing harmful elements by a simple method, but such a method has not been found at present.

本発明は前記課題を解決するためになされたものであり、簡易な方法によって、有害元素を含有する原料水から、確実に有害元素を除去する有害元素除去方法さらにその用途の提供を目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a harmful element removing method for reliably removing harmful elements from raw material water containing harmful elements by a simple method, and to provide an application thereof. ..

本発明者は、鋭意研究の結果、少なくとも水銀およびヒ素を含む有害元素を含有する原料水から、2種類の共沈処理を連続して行うことによって、原料水から、水銀およびヒ素が沈殿物として、効率的に除去され、原料水から有害元素が簡易に除去できることを見出した。 As a result of diligent research, the present inventor has carried out two types of co-precipitation treatments continuously from raw material water containing at least harmful elements including mercury and arsenic, so that mercury and arsenic are precipitated from the raw material water. It was found that it was efficiently removed and harmful elements could be easily removed from the raw water.

すなわち、本願に開示する有害元素除去方法としては、少なくとも水銀およびヒ素を含む有害元素を含有する原料水から、当該有害元素を除去する有害元素除去方法において、前記原料水に酸化剤を添加する酸化工程と、前記酸化工程により得られた処理溶液に、鉄化合物および過酸化水素水を添加し、当該添加により生成された少なくともヒ素を含む第1の沈殿物を濾過し、第1の濾液を得る第1の除去工程と、 前記第1の除去工程により得られた第1の濾液に、塩化マグネシウム水和物および水酸化ナトリウム溶液を添加し、当該添加により生成された少なくともヒ素および水銀を含む第2の沈殿物を濾過し、第2の濾液を得る第2の除去工程と、を含むものが提供される。 That is, as the method for removing harmful elements disclosed in the present application, in the method for removing harmful elements from raw material water containing at least harmful elements including mercury and arsenic, oxidation by adding an oxidizing agent to the raw material water is performed. An iron compound and a hydrogen peroxide solution are added to the treatment solution obtained by the step and the oxidation step, and the first precipitate containing at least arsenic produced by the addition is filtered to obtain a first filtrate. Magnesium chloride hydrate and a sodium hydroxide solution are added to the first removal step and the first filtrate obtained by the first removal step, and the addition contains at least arsenic and mercury produced by the addition. Provided are those comprising a second removal step of filtering the precipitate of 2 to obtain a second filtrate.

本願の第1の実施形態に係る有害元素除去方法のフローチャートを示す。The flowchart of the harmful element removal method which concerns on 1st Embodiment of this application is shown. 本願の第2の実施形態に係る有害元素除去方法のフローチャートを示す。The flowchart of the harmful element removal method which concerns on 2nd Embodiment of this application is shown. 本願の第3の実施形態に係る有害元素除去方法のフローチャートを示す。The flowchart of the harmful element removal method which concerns on 3rd Embodiment of this application is shown. 本願の実施例1に係る有害元素除去方法の第1の除去工程(一段階共沈)における鉄の添加量と沈殿成分との結果を示す。The results of the addition amount of iron and the precipitation component in the first removal step (one-step coprecipitation) of the harmful element removal method according to Example 1 of the present application are shown. 本願の実施例1に係る有害元素除去方法の第1の除去工程(一段階共沈)における過酸化水素水の添加量とヒ素の除去率との結果、およびEDXパターン結果を示す。The results of the addition amount of hydrogen peroxide solution and the removal rate of arsenic in the first removal step (one-step coprecipitation) of the harmful element removal method according to Example 1 of the present application, and the EDX pattern result are shown. 本願の実施例1に係る有害元素除去方法の第2の除去工程(二段階共沈)における写真、沈殿物のEDXパターン結果、および溶液(苦汁)のEDXパターン結果を示す。The photograph in the second removal step (two-step co-precipitation) of the harmful element removal method which concerns on Example 1 of this application, the EDX pattern result of a precipitate, and the EDX pattern result of a solution (bittern) are shown. 本願の実施例1に係る有害元素除去方法の第2の除去工程(二段階共沈)で得られた溶液(潅水)からの塩化ナトリウムおよび塩化カリウムの分離回収結果であるXRDパターン結果を示す。The XRD pattern result which is the separation recovery result of sodium chloride and potassium chloride from the solution (irrigation) obtained in the 2nd removal step (two-step coprecipitation) of the harmful element removal method which concerns on Example 1 of this application is shown. 本願の実施例2に係る有害元素除去方法の第2の除去工程(二段階共沈)で得られた沈殿物のEDXパターン結果、溶液(潅水)のEDXパターン結果、および溶液(苦汁)のEDXパターン結果、を示す。The EDX pattern result of the precipitate obtained in the second removal step (two-step co-precipitation) of the harmful element removal method according to Example 2 of the present application, the EDX pattern result of the solution (irrigation), and the EDX of the solution (bittern). The pattern result is shown. 本願の実施例2に係る有害元素除去方法の第1の除去工程(一段階共沈)における鉄の添加量と沈殿成分との結果、第2の除去工程(二段階共沈)における鉄の添加量と沈殿成分との結果、および第2の除去工程(二段階共沈)で得られた沈殿物についての塩化マグネシウム6水和物の添加量ごとのEDXパターン結果を示す。As a result of the amount of iron added in the first removal step (one-step coprecipitation) and the precipitation component of the harmful element removing method according to Example 2 of the present application, the addition of iron in the second removal step (two-step coprecipitation). The results of the amount and the precipitation component, and the EDX pattern result for each addition amount of magnesium chloride hexahydrate for the precipitate obtained in the second removal step (two-step coprecipitation) are shown. 本願の実施例2に係る有害元素除去方法の第2の除去工程(二段階共沈)で得られた沈殿物についての塩化マグネシウム6水和物の添加量と成分ピーク強度との結果と、一段階共沈および二段階共沈で得られた各沈殿物についての過酸化水素の添加量ごとの各元素の含有量を示す。The results of the amount of magnesium chloride hexahydrate added to the precipitate obtained in the second removal step (two-step coprecipitation) of the harmful element removal method according to Example 2 of the present application and the component peak intensity, and one The content of each element for each addition amount of hydrogen peroxide for each precipitate obtained by the step coprecipitation and the two step coprecipitation is shown. 本願の実施例2に係る有害元素除去方法の第2の除去工程(二段階共沈)で得られた溶液(潅水)からの塩化ナトリウムおよび塩化カリウムの分離回収結果を示す。The results of separation and recovery of sodium chloride and potassium chloride from the solution (irrigation) obtained in the second removal step (two-step coprecipitation) of the harmful element removal method according to Example 2 of the present application are shown.

(第1の実施形態)
本願の第1の実施形態に係る有害元素除去方法は、図1に示すように、少なくとも水銀およびヒ素を含む有害元素を含有する原料水から、当該有害元素を除去する有害元素除去方法であり、この原料水に酸化剤を添加する酸化工程(S1)と、この酸化工程により得られた処理溶液に、鉄化合物および過酸化水素水を添加し、当該添加により生成された少なくともヒ素を含む第1の沈殿物を濾過し、第1の濾液を得る第1の除去工程(S2)と、この第1の除去工程により得られた第1の濾液に、塩化マグネシウム水和物および水酸化ナトリウム溶液を添加し、当該添加により生成された少なくともヒ素および水銀を含む第2の沈殿物を濾過し、第2の濾液を得る第2の除去工程(S3)と、を含むものである。
(First Embodiment)
As shown in FIG. 1, the harmful element removing method according to the first embodiment of the present application is a harmful element removing method for removing the harmful element from the raw material water containing the harmful element containing at least mercury and arsenic. An oxidation step (S1) in which an oxidizing agent is added to the raw material water, and a first method containing at least arsenic produced by adding an iron compound and a hydrogen peroxide solution to the treatment solution obtained by this oxidation step. In the first removal step (S2) of filtering the precipitate of the above to obtain a first filtrate and the first filtrate obtained by this first removal step, magnesium chloride hydrate and a sodium hydroxide solution were added to the first filtrate. It comprises a second removal step (S3) of adding and filtering a second precipitate containing at least arsenic and mercury produced by the addition to obtain a second filtrate.

以下、本願の第1の実施形態に係る有害元素除去方法について、図1に示すフローチャートに従って、詳細に説明する。 Hereinafter, the method for removing harmful elements according to the first embodiment of the present application will be described in detail with reference to the flowchart shown in FIG.

(酸化工程)
先ず、少なくとも水銀(Hg)およびヒ素(As)を含む有害元素を含有する原料水に酸化剤を添加する(S1)。原料水とは、少なくとも水銀およびヒ素を含む有害元素を含有するものであれば、自然界に存在する水溶液、工場排液などの人工的に製造された水溶液のいずれでも可能である。自然界に存在する原料水としては、例えば、海水または地熱水を対象とすることが可能である。
(Oxidation process)
First, an oxidizing agent is added to the raw water containing harmful elements including at least mercury (Hg) and arsenic (As) (S1). The raw material water can be either an aqueous solution existing in nature or an artificially produced aqueous solution such as factory effluent, as long as it contains at least harmful elements including mercury and arsenic. As the raw material water existing in the natural world, for example, seawater or geothermal water can be targeted.

また、この原料水としての海水または地熱水(海水熱水ともいう)は、各々、一般的な海水または地熱水であれば特に制限されるものではなく、例えば、比重dが1.03を示すものを用いることができる。なお、この比重dの定義に関しては、市販の比重計(例えば、標準比重計No.4、アズワン(株)製)を用いて測定することができる無次元数である。 Further, the seawater or geothermal water (also referred to as seawater hydrothermal water) as the raw material water is not particularly limited as long as it is general seawater or geothermal water, and for example, the specific gravity d is 1.03. Can be used. The definition of the specific gravity d is a dimensionless number that can be measured using a commercially available hydrometer (for example, standard hydrometer No. 4, manufactured by AS ONE Corporation).

この原料水として、海水または地熱水を用いた場合には、栄養分が豊富な海水または地熱水から、有害元素が除去された溶液が得られることによって、食品をはじめとする各種用途への応用が可能となる。 When seawater or geothermal water is used as the raw material water, a solution in which harmful elements are removed from seawater or geothermal water rich in nutrients can be obtained, so that it can be used for various purposes including foods. It can be applied.

特に、本実施形態に係る有害元素除去方法を用いることによって、有害元素のうち特に水銀(Hg)およびヒ素(As)を効率的に除去できることから(後述の実施例参照)、水銀(Hg)およびヒ素(As)の規制が厳しい食品分野にも適用することが可能である。そのような好適な適用例としては、栄養分が豊富な海水または地熱水を原料とする食塩や苦汁の製造が挙げられる。 In particular, since mercury (Hg) and arsenic (As) among the harmful elements can be efficiently removed by using the harmful element removing method according to the present embodiment (see Examples described later), mercury (Hg) and It can also be applied to the food sector, where arsenic (As) regulations are strict. Such a suitable application example includes the production of salt and bittern from nutrient-rich seawater or geothermal water as a raw material.

酸化剤とは、特に限定されないが、過酸化水素水、硝酸カリウム、次亜塩素酸 、亜塩素酸、塩素酸、過塩素酸、ハロゲン化合物、過マンガン酸塩、硝酸セリウムアンモニウム、クロム酸などを用いることができ、取り扱いの容易さから、過酸化水素水を用いることが好ましい。この酸化剤の添加によって、ヒ素(As)について、As(III)から、As(V)に、酸化されることとなり、後段の各除去工程において、ヒ素を沈殿させ易くすることができる。 The oxidizing agent is not particularly limited, but hydrogen peroxide solution, potassium nitrate, hypochlorous acid, chloric acid, chloric acid, perchloric acid, halogen compounds, permanganate, cerium ammonium nitrate, chromic acid and the like are used. It is preferable to use a hydrogen peroxide solution because it can be handled easily. By adding this oxidizing agent, arsenic (As) is oxidized from As (III) to As (V), and arsenic can be easily precipitated in each of the subsequent removal steps.

(第1の除去工程)
次に、上記の酸化工程により得られた処理溶液に、鉄化合物および過酸化水素水を添加し、当該添加により生成された少なくともヒ素を含む第1の沈殿物を濾過し、第1の濾液を得る(S2)。
(First removal step)
Next, an iron compound and a hydrogen peroxide solution are added to the treatment solution obtained by the above oxidation step, and the first precipitate containing at least arsenic produced by the addition is filtered to obtain a first filtrate. Get (S2).

鉄化合物とは、鉄を含有する化合物であれば、特に限定されないが、取り扱いの容易さから、金属の鉄を用いることが好ましく、さらに、入手のし易さから、鉄釘を用いることが好ましい。この他にも、ハロゲン化鉄を用いることも可能であり、例えば、塩化鉄を用いることも可能である。塩化鉄を用いることによって、ハロゲン元素である塩素由来の高反応性が得られ、反応をより促進させることができる。 The iron compound is not particularly limited as long as it is a compound containing iron, but it is preferable to use metallic iron from the viewpoint of ease of handling, and further, it is preferable to use iron nails from the viewpoint of easy availability. .. In addition to this, iron halide can be used, and for example, iron chloride can also be used. By using iron chloride, high reactivity derived from chlorine, which is a halogen element, can be obtained, and the reaction can be further promoted.

鉄の使用量については、特に限定されないが、過酸化水素水の量に拠らず、25g〜100gであることが好ましく、例えば、過酸化水素水5ml〜10mlに対して、25g〜100gとすることができる。 The amount of iron used is not particularly limited, but is preferably 25 g to 100 g regardless of the amount of hydrogen peroxide solution, and is, for example, 25 g to 100 g with respect to 5 ml to 10 ml of hydrogen peroxide solution. be able to.

過酸化水素水とは、過酸化水素(H)を含有する水溶液であれば、特に限定されず、例えば、濃度3%の過酸化水素水を用いることができる。 The hydrogen peroxide solution is not particularly limited as long as it is an aqueous solution containing hydrogen peroxide (H 2 O 2 ), and for example, a hydrogen peroxide solution having a concentration of 3% can be used.

このような鉄および過酸化水素水を添加した溶液については、より反応を促進させるという観点から、加熱し、濃縮することが好ましい。この加熱・濃縮は、例えば、100℃で行い、溶液の比重(d)を1.21〜1.22まで濃縮することである。濃縮に際しては、逆浸透膜(RO膜)を用いることもできる。 It is preferable to heat and concentrate such a solution to which iron and hydrogen peroxide solution are added from the viewpoint of further promoting the reaction. This heating / concentration is performed, for example, at 100 ° C., and the specific gravity (d) of the solution is concentrated to 1.21 to 1.22. A reverse osmosis membrane (RO membrane) can also be used for concentration.

第1の沈殿物とは、少なくともヒ素を含む沈殿物であり、特に、原料水として、海水または地熱水を用いた場合には、ヒ素のみならず、マンガン(Mn)も、沈殿物として含まれるものとなる(後述の実施例参照)。これは、H2O2添加でマンガン(Mn)の酸化が促進され、酸化マンガンの生成(沈殿)が促進されるものと考えられる。 The first precipitate is a precipitate containing at least arsenic, and in particular, when seawater or geothermal water is used as the raw material water, not only arsenic but also manganese (Mn) is contained as the precipitate. (See Examples below). It is considered that the addition of H 2 O 2 promotes the oxidation of manganese (Mn) and promotes the production (precipitation) of manganese oxide.

第1の濾液とは、第1の沈殿物を濾過して得られる溶液を指す。この濾過は、例えば、100μメッシュのろ紙(例えば、東洋ろ紙製、131−100)を用いることができる。 The first filtrate refers to a solution obtained by filtering the first precipitate. For this filtration, for example, a 100 μme mesh filter paper (for example, manufactured by Toyo Filter Paper, 131-100) can be used.

(第2の除去工程)
次に、上記の第1の除去工程により得られた第1の濾液に、塩化マグネシウム水和物および水酸化ナトリウム溶液を添加し、当該添加により生成された少なくともヒ素および水銀を含む第2の沈殿物を濾過し、第2の濾液を得る(S2)。
(Second removal step)
Next, a magnesium chloride hydrate and a sodium hydroxide solution are added to the first filtrate obtained by the above first removal step, and a second precipitate containing at least arsenic and mercury produced by the addition is added. The material is filtered to obtain a second filtrate (S2).

塩化マグネシウム水和物とは、特に限定されないが、塩化マグネシウム6水和物(MgCl・6HO)を用いることができる。水酸化ナトリウム溶液は、濃度等特に限定されない。 The magnesium chloride hydrate is not particularly limited, but magnesium chloride hexahydrate (MgCl · 6H 2 O) can be used. The concentration of the sodium hydroxide solution is not particularly limited.

第2の沈殿物とは、少なくともヒ素および水銀を含む沈殿物であり、特に、原料水として、海水または地熱水を用いた場合には、ヒ素および水銀のみならず、マンガン(Mn)も、沈殿物として含まれるものとなる(後述の実施例参照)。 The second precipitate is a precipitate containing at least arsenic and mercury, and in particular, when seawater or geothermal water is used as the raw material water, not only arsenic and mercury but also manganese (Mn) It will be contained as a precipitate (see Examples below).

このように、本願の第1の実施形態に係る有害元素除去方法に拠れば、第1の除去工程によって、第1の沈殿物として、主にヒ素が除去され、第2の除去工程によって、第2の沈殿物として、主にヒ素および水銀が除去され、結果として、極めて有害元素が除去された溶液が得られる。 As described above, according to the harmful element removing method according to the first embodiment of the present application, arsenic is mainly removed as the first precipitate by the first removing step, and the second removing step is used. As the precipitate of 2, mainly arsenic and mercury are removed, and as a result, a solution in which extremely harmful elements are removed is obtained.

特に、原料水として、海水または地熱水を用いた場合には、第1の除去工程によって、第1の沈殿物として、主にヒ素およびマンガンの大部分が除去され、第2の除去工程によって、第2の沈殿物として、主に水銀が除去されると共に、ヒ素およびマンガンの残部が除去され、結果として、極めて簡易な手法で、且つ確実に、有害元素が除去された溶液が得られるものとなる。 In particular, when seawater or geothermal water is used as the raw material water, most of arsenic and manganese are mainly removed as the first precipitate by the first removal step, and the second removal step removes the majority. As the second precipitate, mainly mercury is removed and the balance of arsenic and manganese is removed, resulting in a solution from which harmful elements have been removed by a very simple method and reliably. It becomes.

このように本願に係る食塩の製造方法が優れた効果を奏するメカニズムは、詳細には解明されていないが、第1の除去工程によって、鉄と過酸化水素が添加されて、主にヒ素およびマンガンの大部分が除去された状況下で、塩化マグネシウム水和物および水酸化ナトリウム溶液が加えられる(第2の除去工程)ことによって、新たに水銀が除去されると共に、ヒ素およびマンガンの残部も、同時に沈殿し易くなるイオン状態が形成されているものと推察される。 As described above, the mechanism by which the method for producing salt according to the present application exerts an excellent effect has not been elucidated in detail, but iron and hydrogen peroxide are added by the first removal step, and mainly arsenic and manganese are added. Magnesium chloride hydrate and sodium hydroxide solution are added (second removal step) to remove most of the arsenic and manganese residue as well as new mercury removal. At the same time, it is presumed that an ionic state is formed that facilitates precipitation.

(第2の実施形態)
上記の第1の実施形態に係る有害元素除去方法において、前記原料水は、少なくとも水銀およびヒ素を含む有害元素を含有する原料水であれば特に限定されないが、特に、海水または地熱水を用いた場合に、特に、食品用途として、有害元素が除去された溶液を得る場合には、好適には、第2の濾液を中和させることである。
(Second Embodiment)
In the method for removing harmful elements according to the first embodiment, the raw material water is not particularly limited as long as it is a raw material water containing harmful elements including at least mercury and arsenic, but seawater or geothermal water is particularly used. If so, especially in the case of obtaining a solution from which harmful elements have been removed for food use, it is preferable to neutralize the second filtrate.

このような点から、本願の第2の実施形態に係る有害元素除去方法を、図2のフローチャートに従い説明する。 From this point of view, the method for removing harmful elements according to the second embodiment of the present application will be described with reference to the flowchart of FIG.

第2の実施形態に係る有害元素除去方法は、図2のフローチャートに示すように、上述した第1の実施形態と同じく、前記酸化工程(S1)と、前記第1の除去工程(S2)と、前記第2の除去工程(S3)とを含み、さらに、前記第2の除去工程により得られた第2の濾液に、酸性溶液を添加し、この第2の濾液を中和させ、中性溶液を得る中和工程(S4)を含むものである。 As shown in the flowchart of FIG. 2, the harmful element removing method according to the second embodiment includes the oxidation step (S1) and the first removing step (S2), as in the first embodiment described above. , The second removal step (S3) is included, and an acidic solution is added to the second filtrate obtained by the second removal step to neutralize the second filtrate and neutralize the second filtrate. It includes a neutralization step (S4) for obtaining a solution.

(中和工程)
すなわち、上述の第2の除去工程(S3)の後工程として、第2の除去工程(S3)により得られた第2の濾液に、酸性溶液を添加し、この第2の濾液を中和させ、中性溶液を得る(S4)。酸性溶液とは、特に限定されないが、例えば、塩酸を用いることができる。
(Neutralization process)
That is, as a subsequent step of the above-mentioned second removal step (S3), an acidic solution is added to the second filtrate obtained by the second removal step (S3) to neutralize the second filtrate. , Obtain a neutral solution (S4). The acidic solution is not particularly limited, but for example, hydrochloric acid can be used.

このように、第2の除去工程(S3)により得られた第2の濾液に、酸性溶液を添加することによって、アルカリ性に偏っている第2の濾液が中和され、特に食品分野での使用がより好適なものとなる。 As described above, by adding the acidic solution to the second filtrate obtained in the second removal step (S3), the alkaline-biased second filtrate is neutralized, and the second filtrate is particularly used in the food field. Will be more suitable.

(第3の実施形態)
本願の第3の実施形態に係る有害元素除去方法では、上記の第2の実施形態に係る有害元素除去方法において、前記原料水として、地熱水を用いて、特に、食品用途として、塩化ナトリウムと共に苦汁を得るものである。さらに、その一連の処理に付随して、各種の有価物資源の回収も同時に行えるものである。
(Third Embodiment)
In the method for removing harmful elements according to the third embodiment of the present application, sodium chloride is used as the raw material water in the method for removing harmful elements according to the second embodiment, and particularly for food use. You get bittern with it. Furthermore, along with the series of processing, various valuable resources can be recovered at the same time.

すなわち、本願の第3の実施形態に係る有害元素除去方法は、図3に示すように、前記原料水として、地熱水(比重d=1.03、100℃)を用いて、上記第2の実施形態と同様に、前記酸化工程(S1)と、前記第1の除去工程(S2)と、前記第2の除去工程(S3)とを実施する。前記酸化工程(S1)の実施前には、地熱水を自然放冷により冷却することによってシリカ(メタケイ酸)を回収することができる。シリカ(メタケイ酸)は、化粧品等の原料として利用することができる。さらにこのシリカ(メタケイ酸)の回収と共に生成された脱シリカ海水熱水に対して、前記酸化工程(S1)を実施することができる。 That is, in the method for removing harmful elements according to the third embodiment of the present application, as shown in FIG. 3, geothermal water (specific gravity d = 1.03, 100 ° C.) is used as the raw material water, and the second method is described. The oxidation step (S1), the first removal step (S2), and the second removal step (S3) are carried out in the same manner as in the embodiment. Before carrying out the oxidation step (S1), silica (metasilicic acid) can be recovered by cooling the geothermal water by natural cooling. Silica (meta-silicic acid) can be used as a raw material for cosmetics and the like. Further, the oxidation step (S1) can be carried out on the de-silica hot water produced by recovering the silica (meta-silicic acid).

前記第1の除去工程(S2)と、前記第2の除去工程(S3)を実施後、酸性溶液(例えば、塩酸)によって、中和させて(S4)、潅水を得る。得られた潅水を、100℃で加熱晶析することによって、塩化ナトリウムが得られる。 After performing the first removal step (S2) and the second removal step (S3), the process is neutralized with an acidic solution (for example, hydrochloric acid) (S4) to obtain irrigation. Sodium chloride is obtained by heat-crystallizing the obtained irrigation water at 100 ° C.

この得られた塩化ナトリウム(食塩)は、海水由来のミネラル分が豊富であると共に、水銀およびヒ素が、除去されたものとなる(後述の実施例参照)。前記原料水の採水地域によっては、水銀やヒ素の含有率が高いことがあり、従来では食塩として製造できなかった地域の原料水であっても、本実施形態に係る有害元素除去方法を用いることによって、海水由来のミネラル分が豊富な食塩を製造することができるという優れた効果を奏する。 The obtained sodium chloride (salt) is rich in minerals derived from seawater, and mercury and arsenic are removed (see Examples described later). Depending on the water sampling area of the raw material water, the content of mercury and arsenic may be high, and even if the raw material water is in a region that could not be produced as salt in the past, the harmful element removal method according to the present embodiment is used. As a result, it has an excellent effect that salt rich in minerals derived from seawater can be produced.

その後の工程においても、前記有害元素が除去された苦汁を用いることによって、この苦汁を原料とした各種の資源回収が可能となる。例えば、得られた苦汁に電解法(ダイヤ電極を使用)や塩素法の酸化処理によって、臭素を得ることや、冷凍晶析を行って、塩化カリウムを得ることや、さらに、この塩化カリウムの製造と同時に得られた苦汁(脱塩化カリウム苦汁)に対して、吸着・脱着を用いた炭酸化処理を行うことによって、ホウ素やリチウム(炭酸化によりLiCOとなる)を得ることができる。リチウムは、電池や医薬品の原料として利用できる。 Also in the subsequent steps, by using bittern from which the harmful elements have been removed, various resources can be recovered using this bittern as a raw material. For example, the obtained bittern is oxidized by an electrolytic method (using a diamond electrode) or a chlorine method to obtain bromine, frozen crystallization is performed to obtain potassium chloride, and further, the production of this potassium chloride is performed. Boron and lithium (which become Li 2 CO 3 by carbonation) can be obtained by performing a carbonation treatment using adsorption / desorption on the bittern (potassium dechloride bittern) obtained at the same time. Lithium can be used as a raw material for batteries and pharmaceuticals.

このように、本願の第3の実施形態に係る有害元素除去方法では、前記有害元素が除去されて生成された苦汁を用いることによって、この苦汁を原料とした各種の有価物資源の回収が可能となるという優れた効果を奏する。また、前記有害元素が除去されて生成された塩化ナトリウム(食塩)を得ることもできる。 As described above, in the method for removing harmful elements according to the third embodiment of the present application, various valuable resources using the bittern as a raw material can be recovered by using bittern produced by removing the harmful elements. It has an excellent effect of becoming. It is also possible to obtain sodium chloride (salt) produced by removing the harmful elements.

特に、従来では、地熱水には、ミネラル分が豊富に含まれているものの、水銀やヒ素などの有害元素の含有量が多いケースが多く、通常の加熱・晶析では、食品安全基準を満たす塩化ナトリウム(食塩)や苦汁を製造(製塩)することは困難とされていたが、本実施形態に従えば、食品安全基準を満たす塩化ナトリウム(食塩)や苦汁を製造(製塩)することが可能となるという優れた効果を奏するものである。 In particular, in the past, although geothermal water contains abundant minerals, there are many cases where the content of harmful elements such as mercury and arsenic is high, and in normal heating and crystallization, food safety standards are met. It has been considered difficult to produce (salt) sodium chloride (salt) or bittern that meets the requirements, but according to this embodiment, it is possible to produce (salt) sodium chloride (salt) or bittern that meets food safety standards. It has an excellent effect of being possible.

本発明の特徴を更に明らかにするため、以下に実施例を示すが、本発明はこの実施例によって制限されるものではない。 In order to further clarify the features of the present invention, examples are shown below, but the present invention is not limited to these examples.

(実施例1)
上記原料水として、鹿児島県指宿市から採取(湧出量約2m/h)した地熱水2000ml(比重d=1.03、100℃、pH7、ヒ素含有量2.4ppm)を用意した。
(Example 1)
As the raw material water, 2000 ml of geothermal water (specific gravity d = 1.03, 100 ° C., pH 7, arsenic content 2.4 ppm) collected from Ibusuki City, Kagoshima Prefecture (spring amount of about 2 m 3 / h) was prepared.

(1−1)第1の除去工程(一段階共沈)
この地熱水に対して、過酸化水素水(3%)5mlとして、市販の鉄釘の添加量を50〜600gに変化させた複数のサンプルに対して、第1の除去工程(一段階共沈)として、過酸化水素水と鉄釘を添加し、100℃に加熱して濃縮(d=1.21〜1.22)し、濾紙(東洋ろ紙、131−100)で濾過して、一段階共沈潅水を得た。得られた沈殿物の成分含有量を図4に示す。得られた結果から、鉄の添加量として、ヒ素(As)の含有量が1.5〜2.5の範囲内に含まれている50〜300gが好ましく、より好ましくは、ヒ素(As)の含有量が1.5〜2.0の範囲内に含まれている50〜100gであることが確認された。
(1-1) First removal step (one-step coprecipitation)
The first removal step (both in one step) was applied to a plurality of samples in which the amount of commercially available iron nails added was changed to 50 to 600 g with 5 ml of hydrogen peroxide solution (3%) with respect to this geothermal water. As a sink), add hydrogen peroxide solution and iron nails, heat to 100 ° C. to concentrate (d = 1.21-1.22), filter with filter paper (Toyo filter paper, 131-100), and then 1 Staged coprecipitation irrigation was obtained. The component content of the obtained precipitate is shown in FIG. From the obtained results, the amount of iron added is preferably 50 to 300 g in which the content of arsenic (As) is in the range of 1.5 to 2.5, and more preferably 50 to 300 g of arsenic (As). It was confirmed that the content was 50 to 100 g contained in the range of 1.5 to 2.0.

次に、第1の除去工程(一段階共沈)における過酸化水素水(3%)の添加量とヒ素の除去率との結果を図5(a)および以下の表に示す。鉄釘の添加量は100gであり、過酸化水素水と鉄釘の添加後の濃縮時間は40分とした。 Next, the results of the amount of hydrogen peroxide solution (3%) added and the arsenic removal rate in the first removal step (one-step coprecipitation) are shown in FIG. 5 (a) and the table below. The amount of iron nails added was 100 g, and the concentration time after the addition of hydrogen peroxide solution and iron nails was 40 minutes.

得られた結果から、過酸化水素水(3%)の添加量は、5mlの場合が最も良好であり、ほぼ100%が除去されたことが確認された。この5mlの場合に得られた沈殿物について、沈殿物に含まれる元素成分を、エネルギー分散型蛍光X線分析装置(Rayny EDX-800HS、島津製作所製)により解析したEDXパターン結果を、図5(b)に示す。得られた結果から、ヒ素は0.1ppm未満まで除去され、水銀も検出限度以下であることが確認された。 From the obtained results, it was confirmed that the addition amount of the hydrogen peroxide solution (3%) was the best when it was 5 ml, and almost 100% was removed. Regarding the precipitate obtained in the case of 5 ml, the EDX pattern result obtained by analyzing the elemental components contained in the precipitate with an energy dispersive fluorescent X-ray analyzer (Rayny EDX-800HS, manufactured by Shimadzu Corporation) is shown in FIG. Shown in b). From the obtained results, it was confirmed that arsenic was removed to less than 0.1 ppm and mercury was also below the detection limit.

(1−2)第2の除去工程(二段階共沈)
第1の除去工程(一段階共沈)で得られた溶液(一段階共沈潅水)に対して、図6(a)に示すように、塩化マグネシウム6水和物を14g、1M−水酸化ナトリウムを14ml添加して共沈を起こし、濾紙(東洋ろ紙、131−100)で濾過して、二段階共沈潅水を得た。
(1-2) Second removal step (two-step coprecipitation)
As shown in FIG. 6A, 14 g of magnesium chloride hexahydrate was added to the solution (one-step coprecipitation irrigation) obtained in the first removal step (one-step coprecipitation), and 1M-hydroxide was added. 14 ml of sodium was added to cause coprecipitation, and the mixture was filtered through a filter paper (Toyo filter paper, 131-100) to obtain two-step coprecipitation irrigation.

得られた沈殿物について、沈殿物に含まれる元素成分を、エネルギー分散型蛍光X線分析装置(Rayny EDX-800HS、島津製作所製)により解析したEDXパターン結果を、図6(b)に示す。得られた結果から、第2の除去工程(二段階共沈)によって、水銀が除去され、さらにヒ素、マンガンについても、さらなる除去が行われたことが確認された。 FIG. 6 (b) shows the results of an EDX pattern in which the elemental components contained in the obtained precipitate were analyzed by an energy dispersive fluorescent X-ray analyzer (Rayny EDX-800HS, manufactured by Shimadzu Corporation). From the obtained results, it was confirmed that mercury was removed by the second removal step (two-step coprecipitation), and that arsenic and manganese were further removed.

得られた溶液(二段階共沈潅水、d=1.27、60ml)について、沈殿物に含まれる元素成分を、エネルギー分散型蛍光X線分析装置(Rayny EDX-800HS、島津製作所製)により解析したEDXパターン結果を、図6(c)に示す。得られた結果から、第2の除去工程(二段階共沈)によって、水銀が除去され、さらにヒ素、マンガンについても、さらなる除去が行われ、いずれも検出限界以下であったことが確認された。 For the obtained solution (two-step co-precipitation irrigation, d = 1.27, 60 ml), the elemental components contained in the precipitate were analyzed by an energy dispersive fluorescent X-ray analyzer (Rayny EDX-800HS, manufactured by Shimadzu Corporation). The result of the EDX pattern is shown in FIG. 6 (c). From the obtained results, it was confirmed that mercury was removed by the second removal step (two-step coprecipitation), and arsenic and manganese were further removed, both of which were below the detection limit. ..

(1−3)塩化ナトリウムの回収
得られた溶液(二段階共沈潅水、d=1.27、360ml)を加熱晶析した。析出した結晶について、水平型X線構造解析装置(XRD7000、島津製作所製)で解析したXRDパターン結果を図7(a)に示す。得られた結果から、カリウムを2.8%含み、有害元素が除去された塩化ナトリウム(食塩)が得られたことが確認された。
(1-3) Recovery of sodium chloride The obtained solution (two-step coprecipitation irrigation, d = 1.27, 360 ml) was heat-crystallized. The XRD pattern results analyzed by a horizontal X-ray structure analyzer (XRD7000, manufactured by Shimadzu Corporation) for the precipitated crystals are shown in FIG. 7 (a). From the obtained results, it was confirmed that sodium chloride (salt) containing 2.8% of potassium and from which harmful elements were removed was obtained.

(1−4)塩化カリウムの回収
さらに、得られた溶液(二段階共沈潅水、d=1.27、360ml)を、冷凍晶析法に従って、塩化カリウムを晶析した。析出した結晶について、水平型X線構造解析装置(XRD7000、島津製作所製)で解析したXRDパターン結果を図7(b)に示す。得られた結果から明らかなように、塩化カリウムが極めて高い分離精度で回収できたことが確認された。
(1-4) Recovery of Potassium Chloride Further, the obtained solution (two-step coprecipitation irrigation, d = 1.27, 360 ml) was crystallized from potassium chloride according to a freezing crystallization method. The XRD pattern results analyzed by a horizontal X-ray structure analyzer (XRD7000, manufactured by Shimadzu Corporation) for the precipitated crystals are shown in FIG. 7 (b). As is clear from the obtained results, it was confirmed that potassium chloride could be recovered with extremely high separation accuracy.

(実施例2)
上記と同じ手順で、再現性を確かめるべく、確認を行った。上記と同様に、原料水として、鹿児島県指宿市から採取(湧出量約2m/h)した地熱水4000ml(比重d=1.03、20℃、pH7、ヒ素含有量2.4ppm)を用意した。
(Example 2)
Confirmation was performed in the same procedure as above to confirm the reproducibility. In the same manner as above, 4000 ml of geothermal water (specific gravity d = 1.03, 20 ° C., pH 7, arsenic content 2.4 ppm) collected from Ibusuki City, Kagoshima Prefecture (with a discharge amount of about 2 m 3 / h) was prepared as the raw material water. ..

(2−1)一段階共沈および二段階共沈
過酸化水素水(3%)7.5mlとして、市販の鉄釘の添加量を5〜100gに変化させた複数のサンプルに対して、鉄釘と、過酸化水素水15mlを添加して、第1の除去工程(一段階共沈)を行い、一段階共沈かん水(360ml、pH5)を得た。さらに、MgCl26H2O:14g、1M-NaOH:14mlを用いて、第2の除去工程(二段階共沈)を20℃で行い、pH9の二段階共沈かん水を得た。1M-HClを用いて、pH7にpH調整を行った。
(2-1) One-step co-precipitation and two-step co-precipitation Hydrogen peroxide solution (3%) was 7.5 ml, and iron was added to a plurality of samples in which the addition amount of commercially available iron nails was changed to 5 to 100 g. A nail and 15 ml of hydrogen peroxide solution were added to perform a first removal step (one-step coprecipitation) to obtain one-step coprecipitation water (360 ml, pH 5). Furthermore, MgCl 2 6H 2 O: 14g , 1M-NaOH: with 14 ml, a second removal step (two-step co-precipitation) is performed at 20 ° C., to obtain a pH9 two-stage co-precipitation brine. The pH was adjusted to pH 7 using 1M-HCl.

得られた溶液(二段階共沈潅水)について、沈殿物に含まれる元素成分を、エネルギー分散型蛍光X線分析装置(Rayny EDX-800HS、島津製作所製)により解析したEDXパターン結果を、鉄釘が12.5gの場合と鉄釘が5gの場合について、図8(a)に示す。得られた結果から、第2の除去工程(二段階共沈)によって、水銀が除去され、さらにヒ素、マンガンについても、さらなる除去が行われたことが確認された。 For the obtained solution (two-step co-precipitation irrigation), the EDX pattern results obtained by analyzing the elemental components contained in the precipitate with an energy dispersive X-ray fluorescence analyzer (Rayny EDX-800HS, manufactured by Shimadzu Corporation) were obtained with iron nails. 8 (a) shows the case where the weight is 12.5 g and the case where the iron nail is 5 g. From the obtained results, it was confirmed that mercury was removed by the second removal step (two-step coprecipitation), and that arsenic and manganese were further removed.

また、得られた溶液(二段階共沈潅水)について、鉄釘が12.5gの場合の溶液中に含まれる元素成分を、エネルギー分散型蛍光X線分析装置(Rayny EDX-800HS、島津製作所製)により解析したEDXパターン結果を、図8(b)に示す。得られた結果から、第2の除去工程(二段階共沈)によって、水銀が除去され、さらにヒ素、マンガンについても、さらなる除去が行われたことが確認された。 In addition, regarding the obtained solution (two-step co-precipitation irrigation), the elemental components contained in the solution when the iron nail is 12.5 g are energy-dispersive fluorescent X-ray analyzer (Rayny EDX-800HS, manufactured by Shimadzu Corporation). The EDX pattern result analyzed by) is shown in FIG. 8 (b). From the obtained results, it was confirmed that mercury was removed by the second removal step (two-step coprecipitation), and that arsenic and manganese were further removed.

さらに、得られた溶液(二段階共沈潅水)を加熱して得た苦汁(d=1.27)について、溶液中に含まれる元素成分を、エネルギー分散型蛍光X線分析装置(Rayny EDX-800HS、島津製作所製)により解析したEDXパターン結果を、図8(c)に示す。得られた結果から、第2の除去工程(二段階共沈)によって、水銀が除去され、さらにヒ素、マンガンについても、さらなる除去が行われたことが確認された。 Furthermore, with respect to bittern (d = 1.27) obtained by heating the obtained solution (two-step co-precipitation irrigation), the elemental components contained in the solution were subjected to energy dispersive fluorescent X-ray analyzer (Rayny EDX-). The EDX pattern results analyzed by 800HS (manufactured by Shimadzu Corporation) are shown in FIG. 8 (c). From the obtained results, it was confirmed that mercury was removed by the second removal step (two-step coprecipitation), and that arsenic and manganese were further removed.

次に、各共沈での沈殿物の成分含有量を確認した。第1の除去工程(一段階共沈)における鉄釘の添加量と沈殿成分との結果を図9(a)に示す。また、第2の除去工程(二段階共沈)における第2の除去工程(二段階共沈)における鉄釘の添加量と沈殿成分との結果(一段階共沈かん水(360ml) /MgCl2 6H2O: 14g, 1M-NaOH: 14ml)を図9(b)に示す。得られた結果から、特に、鉄釘の添加量が25〜100gである場合に、ヒ素が検出限界以下まで除去されることが確認された。 Next, the component content of the precipitate in each coprecipitation was confirmed. The results of the amount of iron nails added and the precipitation component in the first removal step (one-step coprecipitation) are shown in FIG. 9A. The second removal step (two-step co-precipitation) second removal step (two-step co-precipitation) results between the mixing amount of the precipitate component iron nail in the (one-step co-precipitation brine (360 ml) / MgCl 2 6H 2 O: 14 g, 1M-NaOH: 14 ml) is shown in FIG. 9 (b). From the obtained results, it was confirmed that arsenic was removed to the detection limit or less, especially when the amount of iron nail added was 25 to 100 g.

さらに、第2の除去工程(二段階共沈)で得られた沈殿物についての塩化マグネシウム6水和物の添加量ごとのEDXパターン結果を図9(c)に示す。得られた結果から、水銀、ヒ素が検出限界以下まで除去されることが確認された。 Further, the EDX pattern results for each addition amount of magnesium chloride hexahydrate for the precipitate obtained in the second removal step (two-step coprecipitation) are shown in FIG. 9 (c). From the obtained results, it was confirmed that mercury and arsenic were removed below the detection limit.

次に、有害元素除去方法の第2の除去工程(二段階共沈)で得られた沈殿物についての塩化マグネシウム6水和物の添加量と成分ピーク強度との結果を図10(a)に示す。また、酸化剤(3%-H2O2)の添加量依存性について確認した。得られた結果として、一段階共沈および二段階共沈で得られた各沈殿物について、過酸化水素の添加量ごとの各元素の含有量を、各々、図10(b)および(c)に示す。図10(b)の横軸は、3%-H2O2添加量(ml) / 地熱水(4000ml)を示しており、As除去の最適添加量条件としては、H2O2添加量が、5〜30mlであることが確認された。また、図10(b)の横軸は、3%-H2O2添加量(ml) / Fe潅水(一段階共沈潅水:360ml)を示しており、As除去の最適添加量条件としては、H2O2添加量が、確かに、5〜30mlであることが確認された。 Next, the results of the addition amount of magnesium chloride hexahydrate and the component peak intensity for the precipitate obtained in the second removal step (two-step coprecipitation) of the harmful element removal method are shown in FIG. 10 (a). Shown. In addition, the dependence on the amount of oxidizing agent (3% -H 2 O 2 ) added was confirmed. As a result, for each of the precipitates obtained by the one-step coprecipitation and the two-step coprecipitation, the content of each element for each addition amount of hydrogen peroxide is shown in FIGS. 10 (b) and 10 (c), respectively. Shown in. The horizontal axis of FIG. 10B shows 3% -H 2 O 2 addition amount (ml) / geothermal water (4000 ml), and the optimum addition amount condition for As removal is the H 2 O 2 addition amount. However, it was confirmed that the amount was 5 to 30 ml. The horizontal axis of FIG. 10B shows 3% -H 2 O 2 addition amount (ml) / Fe irrigation (one-step coprecipitation irrigation: 360 ml), and the optimum addition amount condition for As removal is , H 2 O 2 addition amount was confirmed to be 5 to 30 ml.

(2−2)塩化ナトリウムの回収
得られた溶液(二段階共沈潅水、d=1.27、360ml)を加熱晶析した。析出した結晶について、水平型X線構造解析装置(XRD7000、島津製作所製)で解析したXRDパターン結果を図7(a)に示す。得られた結果から、有害元素が除去された塩化ナトリウム(食塩)が、収量80〜95g/地熱水4000mlで得られたことが確認された。
(2-2) Recovery of Sodium Chloride The obtained solution (two-step coprecipitation irrigation, d = 1.27, 360 ml) was heat-crystallized. The XRD pattern results analyzed by a horizontal X-ray structure analyzer (XRD7000, manufactured by Shimadzu Corporation) for the precipitated crystals are shown in FIG. 7 (a). From the obtained results, it was confirmed that sodium chloride (salt) from which harmful elements were removed was obtained with a yield of 80 to 95 g / 4000 ml of geothermal water.

(2−3)塩化カリウムの回収
さらに、得られた溶液(二段階共沈潅水、d=1.27、360ml)を、冷凍晶析法に従って、塩化カリウムを晶析した。析出した結晶について、水平型X線構造解析装置(XRD7000、島津製作所製)で解析したXRDパターン結果を図7(b)に示す。得られた結果から明らかなように、塩化カリウムが極めて高い分離精度で回収でき、収量1.6〜2.2g/地熱水4000mlで得られたことが確認された。
(2-3) Recovery of Potassium Chloride Further, the obtained solution (two-step coprecipitation irrigation, d = 1.27, 360 ml) was crystallized from potassium chloride according to a freezing crystallization method. The XRD pattern results analyzed by a horizontal X-ray structure analyzer (XRD7000, manufactured by Shimadzu Corporation) for the precipitated crystals are shown in FIG. 7 (b). As is clear from the obtained results, it was confirmed that potassium chloride could be recovered with extremely high separation accuracy, and the yield was 1.6 to 2.2 g / 4000 ml of geothermal water.

Claims (5)

少なくとも水銀およびヒ素を含む有害元素を含有する原料水から、当該有害元素を除去する有害元素除去方法において、
前記原料水に酸化剤を添加する酸化工程と、
前記酸化工程により得られた処理溶液に、鉄化合物および過酸化水素水を添加し、当該添加により生成された少なくともヒ素を含む第1の沈殿物を濾過し、第1の濾液を得る第1の除去工程と、
前記第1の除去工程により得られた第1の濾液に、塩化マグネシウム水和物および水酸化ナトリウム溶液を添加し、当該添加により生成された少なくともヒ素および水銀を含む第2の沈殿物を濾過し、第2の濾液を得る第2の除去工程と、
を含むことを特徴とする
有害元素除去方法。
In the method for removing harmful elements from raw water containing harmful elements including at least mercury and arsenic, the harmful elements are removed.
An oxidation step of adding an oxidizing agent to the raw water and
An iron compound and a hydrogen peroxide solution are added to the treatment solution obtained by the oxidation step, and the first precipitate containing at least arsenic produced by the addition is filtered to obtain a first filtrate. Removal process and
Magnesium chloride hydrate and sodium hydroxide solution are added to the first filtrate obtained by the first removal step, and the second precipitate containing at least arsenic and mercury produced by the addition is filtered. , A second removal step to obtain a second filtrate,
A method for removing harmful elements, which comprises.
請求項1に記載の有害元素除去方法において、
前記原料水が、海水または地熱水であることを特徴とする
有害元素除去方法。
In the method for removing harmful elements according to claim 1,
A method for removing harmful elements, wherein the raw material water is seawater or geothermal water.
請求項2に記載の有害元素除去方法において、
前記第2の除去工程により得られた第2の濾液に、酸性溶液を添加し、当該第2の濾液を中和させ、中性溶液を得る中和工程を含むことを特徴とする
有害元素除去方法。
In the method for removing harmful elements according to claim 2,
Harmful element removal, which comprises a neutralization step of adding an acidic solution to the second filtrate obtained by the second removal step to neutralize the second filtrate to obtain a neutral solution. Method.
請求項3に記載の有害元素除去方法を用いて、前記原料水としての海水または地熱水から得られた前記中性溶液を加熱晶析し、当該中性溶液中の塩化ナトリウムを濾過して得ることを特徴とする
塩化ナトリウムの製造方法。
Using the method for removing harmful elements according to claim 3, the neutral solution obtained from seawater or geothermal water as the raw material water is heat-crystallized, and sodium chloride in the neutral solution is filtered. A method for producing sodium chloride, which comprises obtaining.
請求項3に記載の有害元素除去方法を用いて、前記原料水としての海水または地熱水から得られた前記中性溶液を加熱晶析し、当該中性溶液中の塩化ナトリウムを濾過し、当該濾過後の濾液として苦汁を生成することを特徴とする
苦汁の製造方法。



Using the method for removing harmful elements according to claim 3, the neutral solution obtained from seawater or geothermal water as the raw material water is heat-crystallized, and sodium chloride in the neutral solution is filtered. A method for producing bittern, which comprises producing bittern as a filtrate after the filtration.



JP2017077729A 2017-04-10 2017-04-10 Hazardous element removal method and its uses Active JP6820790B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017077729A JP6820790B2 (en) 2017-04-10 2017-04-10 Hazardous element removal method and its uses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017077729A JP6820790B2 (en) 2017-04-10 2017-04-10 Hazardous element removal method and its uses

Publications (2)

Publication Number Publication Date
JP2018176050A JP2018176050A (en) 2018-11-15
JP6820790B2 true JP6820790B2 (en) 2021-01-27

Family

ID=64280529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017077729A Active JP6820790B2 (en) 2017-04-10 2017-04-10 Hazardous element removal method and its uses

Country Status (1)

Country Link
JP (1) JP6820790B2 (en)

Also Published As

Publication number Publication date
JP2018176050A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
Linneen et al. Purification of industrial grade lithium chloride for the recovery of high purity battery grade lithium carbonate
JP2019099901A (en) Method for recovering lithium from lithium-containing solution
JP7558647B2 (en) How lithium hydroxide is produced
JP5336932B2 (en) Water purification material, water purification method, phosphate fertilizer precursor and method for producing phosphate fertilizer precursor
JP6820790B2 (en) Hazardous element removal method and its uses
CN109777948A (en) Technological method for extracting rubidium by flash cycle leaching of silicate
Xia et al. Ca removal and Mg recovery from flue gas desulfurization (FGD) wastewater by selective precipitation
Tallmadge et al. Minerals from sea salt
BG112342A (en) Improved method of a closed cycle for extracting gold and silver through halogens
WO2012143394A1 (en) Method for recovery of thallium from an aqueous solution
US20050211631A1 (en) Method for the separation of zinc and a second metal which does not form an anionic complex in the presence of chloride ions
JP2010075805A (en) Water purification material and water purification method
JP5187199B2 (en) Fluorine separation method from fluorine-containing wastewater
KR20230091320A (en) Selective removal method of calcium ion from rejected seawater from refined salt manufacturing process
CN109173340B (en) Method for removing chlorine from strong acidic solution by adsorption
JP2004345912A (en) Heavy metal-free magnesium oxide and method for preparing raw material for the same
JP6484782B2 (en) Wastewater treatment method
CN110869524B (en) Method for obtaining cesium from a starting aqueous solution
JP5553646B2 (en) Purification method of ammonium tungstate solution
JP5565339B2 (en) Effective chlorine removal method and cobalt recovery method
JP6989840B2 (en) Phosphoric acid recovery method
JP2012091980A (en) Method for preparing sodium compound having reduced potassium concentration and the sodium compound
JP2016040034A (en) Method of removing molybdenum from molybdenum containing waste water
JP6907791B2 (en) How to recover iridium
Bologo et al. Treatment of mine water for sulphate and metal removal using magnesium hydroxide and barium hydroxide

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

R150 Certificate of patent or registration of utility model

Ref document number: 6820790

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250