JP6820546B2 - A method for adjusting a reflective member in a three-dimensional shape measuring device, a painting device, and a three-dimensional shape measuring device, and a method for supporting angle adjustment of a reflective member in a three-dimensional shape measuring device - Google Patents

A method for adjusting a reflective member in a three-dimensional shape measuring device, a painting device, and a three-dimensional shape measuring device, and a method for supporting angle adjustment of a reflective member in a three-dimensional shape measuring device Download PDF

Info

Publication number
JP6820546B2
JP6820546B2 JP2016227666A JP2016227666A JP6820546B2 JP 6820546 B2 JP6820546 B2 JP 6820546B2 JP 2016227666 A JP2016227666 A JP 2016227666A JP 2016227666 A JP2016227666 A JP 2016227666A JP 6820546 B2 JP6820546 B2 JP 6820546B2
Authority
JP
Japan
Prior art keywords
range sensor
dimensional shape
measured
measuring device
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016227666A
Other languages
Japanese (ja)
Other versions
JP2018084489A (en
Inventor
達哉 西尾
達哉 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Sunac Corp
Original Assignee
Asahi Sunac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Sunac Corp filed Critical Asahi Sunac Corp
Priority to JP2016227666A priority Critical patent/JP6820546B2/en
Publication of JP2018084489A publication Critical patent/JP2018084489A/en
Application granted granted Critical
Publication of JP6820546B2 publication Critical patent/JP6820546B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、三次元形状計測装置、塗装装置、三次元形状計測装置における反射部材の調整方法及び、三次元形状計測装置における反射部材の角度調整支援方法に関するものである。 The present invention relates to a method for adjusting a reflective member in a three-dimensional shape measuring device, a coating device, and a three-dimensional shape measuring device, and a method for supporting angle adjustment of a reflecting member in the three-dimensional shape measuring device.

特許文献1には、回転しながら被計測物に向けて径方向へ検知光を発するとともに被計測物からの反射光を受光することで被計測物までの距離を演算するスキャニング型レンジセンサを用いることにより、被計測物の三次元形状を計測する技術が開示されている。 Patent Document 1 uses a scanning range sensor that calculates the distance to the object to be measured by emitting detection light in the radial direction toward the object to be measured while rotating and receiving the reflected light from the object to be measured. As a result, a technique for measuring the three-dimensional shape of the object to be measured is disclosed.

特許第3908226号公報Japanese Patent No. 3908226

被計測物の被計測面の凹凸が小さい場合や被計測面にオーバーハング状の段差や突起が存在しない場合は、1つのスキャニング型レンジセンサを被計測面と対向するように配置すればよい。しかし、被計測面が大きな凹凸やオーバーハング状の段差、突起等を有する場合、1つのスキャニング型レンジセンサだけでは検知光の届かない死角が存在することになるため、複数のスキャニング型レンジセンサを配置しなければならない。ところが、スキャニング型レンジセンサは高価であるため、複数のスキャニング型レンジセンサを配置すると、設備コストが高くなる。 When the unevenness of the surface to be measured of the object to be measured is small, or when there are no overhang-shaped steps or protrusions on the surface to be measured, one scanning type range sensor may be arranged so as to face the surface to be measured. However, if the surface to be measured has large irregularities, overhang-like steps, protrusions, etc., there will be blind spots that the detection light cannot reach with just one scanning range sensor, so multiple scanning range sensors may be used. Must be placed. However, since the scanning type range sensor is expensive, the equipment cost becomes high when a plurality of scanning type range sensors are arranged.

本発明は上記のような事情に基づいて完成されたものであって、コスト低減を図ることを目的とする。 The present invention has been completed based on the above circumstances, and an object of the present invention is to reduce costs.

第1の発明の三次元形状計測装置は、
検知光を発する投光器と、前記検知光を受光する受光器と、回転可能な投受光用ミラーとを有するレンジセンサと、
前記検知光を、前記レンジセンサと被計測物との間で反射させる反射部材とを備え、
前記投受光用ミラーは、前記投受光用ミラーの回転中心軸に対して45°の角度で傾いており、
前記投光器から発せられた前記検知光が、回転している前記投受光用ミラーで反射することによって前記被計測物に向けて径方向外方へ放射され、
前記被計測物で反射した前記検知光が、回転している前記投受光用ミラーで反射することによって前記受光器で受光され、
前記反射部材の反射面が、前記レンジセンサから放射状に発せられる前記検知光の二次元軌跡と直交する向きであり、
前記受光器で受光した前記検知光の位相情報と、前記投受光用ミラーの回転位置情報とに基づいて、前記被計測物までの距離を演算し、前記被計測物の二次元形状のデータを得るところに特徴を有する。
The three-dimensional shape measuring device of the first invention is
A range sensor having a floodlight that emits detection light, a receiver that receives the detection light, and a rotatable mirror for projection and light reception .
A reflective member that reflects the detected light between the range sensor and the object to be measured is provided.
The light receiving / receiving mirror is tilted at an angle of 45 ° with respect to the rotation center axis of the light receiving / receiving mirror.
The detection light emitted from the floodlight is reflected by the rotating mirror for projection and reception, and is radiated outward in the radial direction toward the object to be measured.
The detection light reflected by the object to be measured is reflected by the rotating mirror for light emission and reception, and is received by the light receiver.
The direction in which the reflective surface of the reflective member is orthogonal to the two-dimensional locus of the detected light emitted radially from the range sensor.
Based on the phase information of the detection light received by the light receiver and the rotation position information of the light receiving / receiving mirror, the distance to the object to be measured is calculated, and the two-dimensional shape data of the object to be measured is obtained. It has a feature in the place to obtain .

第2の発明の塗装装置は、
第1の発明の三次元形状計測装置と、
前記被計測物に対して相対移動しながら前記被計測物に塗料を塗布する塗装ガンとを備えているところに特徴を有する。
The coating apparatus of the second invention is
The three-dimensional shape measuring device of the first invention and
It is characterized in that it is provided with a coating gun that applies paint to the object to be measured while moving relative to the object to be measured.

第3の発明の三次元形状計測装置における反射部材の調整方法は、
第1の発明の三次元形状計測装置において、
前記レンジセンサから前記投受光用ミラーの回転中心軸と直交する方向へ放射状に発せられる前記検知光の二次元軌跡上に、直線棒状の基準部材を設置し、
前記反射部材の前記反射面が前記投受光用ミラーの回転中心軸に対して傾いている場合には、前記反射部材で反射した前記検知光が前記二次元軌跡及び前記基準部材から外れるようにした上で、
前記レンジセンサから発せられて前記反射部材で反射した前記検知光によって前記被計測物の距離を検出できるように、前記反射部材の向きを調整することを特徴とする。
The method for adjusting the reflective member in the three-dimensional shape measuring device of the third invention is as follows.
In the three-dimensional shape measuring device of the first invention
Wherein the range sensor on a two-dimensional trajectory of the detection light emitted radially to the rotational center axis orthogonal to the direction of the light emitting and receiving mirror has established a reference member of the straight rod-shaped,
When the reflection surface of the reflection member is tilted with respect to the rotation center axis of the light receiving / receiving mirror, the detection light reflected by the reflection member is deviated from the two-dimensional locus and the reference member. Above,
It is characterized in that the orientation of the reflective member is adjusted so that the distance of the object to be measured can be detected by the detection light emitted from the range sensor and reflected by the reflective member.

第4の発明の三次元形状計測装置における反射部材の角度調整支援方法は、
第1の発明の三次元形状計測装置において、
前記反射部材を、その反射面上に設定した傾動軸を中心に傾動し得るように支持し、
前記レンジセンサから前記傾動軸に向かう投光経路と平行な基準面を、前記レンジセンサ及び前記反射面に臨むように設け、
前記レンジセンサから前記投光経路上に検知光を発することにより、前記レンジセンサから前記反射面を経て前記基準面に至る計測経路の距離を検出し、
前記計測経路の検出値が、前記反射部材の角度に応じて演算された演算値と合致するように、前記反射部材の角度を調整することを特徴とする。
The method for supporting the angle adjustment of the reflective member in the three-dimensional shape measuring device of the fourth invention is
In the three-dimensional shape measuring device of the first invention
The reflective member is supported so as to be tilted about a tilt axis set on the reflective surface.
A reference plane parallel to the light projection path from the range sensor to the tilt axis is provided so as to face the range sensor and the reflection surface.
By emitting the detection light from the range sensor on the projection path, the distance of the measurement path from the range sensor to the reference plane via the reflection surface is detected.
The angle of the reflective member is adjusted so that the detected value of the measurement path matches the calculated value calculated according to the angle of the reflective member.

第1の発明の三次元形状計測装置によれば、レンジセンサと被計測物をレンジセンサの回転中心軸と平行に相対移動させながら、レンジセンサで被計測物までの距離を検出することにより、被計測物の三次元形状を計測することができる。被計測物のうちレンジセンサから視て死角となる領域には、反射部材で反射した検知光が当たり、被計測物で反射した検知光は、再び反射部材で反射してレンジセンサで受光される。死角となる領域の距離の検出を反射部材によって行うので、レンジセンサの設置数を減らして、コストを低減することができる。 According to the three-dimensional shape measuring device of the first invention, the range sensor and the object to be measured are relatively moved in parallel with the rotation center axis of the range sensor, and the distance to the object to be measured is detected by the range sensor. The three-dimensional shape of the object to be measured can be measured. The detection light reflected by the reflecting member hits the area of the object to be measured that becomes a blind spot when viewed from the range sensor, and the detection light reflected by the object to be measured is reflected by the reflecting member again and received by the range sensor. .. Since the distance of the blind spot is detected by the reflective member, the number of range sensors installed can be reduced and the cost can be reduced.

第2の発明の塗装装置によれば、レンジセンサで計測した被計測物の三次元形状の計測データは、塗装ガンの塗装時の移動軌跡をティーチングする手段や、そのティーチングを補佐する手段として用いることができる。 According to the painting apparatus of the second invention, the measurement data of the three-dimensional shape of the object to be measured measured by the range sensor is used as a means for teaching the movement locus of the painting gun at the time of painting and a means for assisting the teaching. be able to.

第3の発明の三次元形状計測装置における反射部材の調整方法によれば、反射部材を、レンジセンサから放射状に発せられる検知光の二次元軌跡に対して直角な向きに調整することができる。これにより、被計測物の三次元形状を高い精度で計測することができる。 According to the method for adjusting the reflecting member in the three-dimensional shape measuring device of the third invention, the reflecting member can be adjusted in a direction perpendicular to the two-dimensional locus of the detection light radially emitted from the range sensor. As a result, the three-dimensional shape of the object to be measured can be measured with high accuracy.

第4の発明の三次元形状計測装置における反射部材の角度調整支援方法によれば、反射部材の角度を設定する際には、反射部材の角度を変化させながら、計測経路の距離を検出すると同時に、計測経路の検出値と演算値とを比較する。反射部材の角度が所定角度に至ると、計測経路の検出値が演算値と合致する。この方法よれば、反射部材の角度設定を簡単に行うことができる。 According to the method for supporting the angle adjustment of the reflective member in the three-dimensional shape measuring device of the fourth invention, when setting the angle of the reflective member, the distance of the measurement path is detected while changing the angle of the reflective member. , Compare the detected value of the measurement path with the calculated value. When the angle of the reflective member reaches a predetermined angle, the detected value of the measurement path matches the calculated value. According to this method, the angle of the reflective member can be easily set.

本願発明の塗装装置及び三次元形状計測装置の正面図Front view of the coating apparatus and the three-dimensional shape measuring apparatus of the present invention 塗装装置の側面図Side view of painting equipment 第1被計測物においてレンジセンサの死角とならない領域の三次元形状を計測している状態をあわらす概略側面図Schematic side view showing the state of measuring the three-dimensional shape of the area that does not become the blind spot of the range sensor in the first object to be measured. 第1被計測物においてレンジセンサの死角とる領域の三次元形状を計測している状態をあわらす概略側面図Schematic side view showing the state of measuring the three-dimensional shape of the area where the blind spot of the range sensor is taken in the first object to be measured. 第2被計測物においてレンジセンサの死角とならない領域の三次元形状を計測している状態をあわらす概略側面図Schematic side view showing the state of measuring the three-dimensional shape of the area that does not become the blind spot of the range sensor in the second object to be measured. 第2被計測物においてレンジセンサの死角とる領域の三次元形状を計測している状態をあわらす概略側面図Schematic side view showing the state of measuring the three-dimensional shape of the area where the blind spot of the range sensor is taken in the second object to be measured. 上側反射部材の向きを調整している状態をあらわす概略平面図Schematic plan view showing the state in which the orientation of the upper reflective member is adjusted. 制御装置及び塗装装置の構成をあらわすブロック図Block diagram showing the configuration of the control device and painting device 制御装置の動作をあらわすフローチャートFlowchart showing the operation of the control device 下側反射部材の角度を調整している状態をあらわす概略側面図Schematic side view showing the state where the angle of the lower reflective member is adjusted.

第1の発明は、前記反射部材が、前記レンジセンサと、前記被計測物における前記レンジセンサの死角領域とに面するように配されていてもよい。この構成によれば、レンジセンサと被計測物との間における検知光の往復を、1つの反射部材だけで行わせることができる。 In the first invention, the reflective member may be arranged so as to face the range sensor and the blind spot region of the range sensor in the object to be measured. According to this configuration, the reciprocation of the detected light between the range sensor and the object to be measured can be performed by only one reflecting member.

第1の発明は、前記被計測物を、前記レンジセンサの回転中心軸と平行に搬送するコンベアを備えていてもよい。レンジセンサからの検知光は放射状に発せられるため、レンジセンサと反射部材を移動させながら被計測物までの距離を検出した場合、移動時にレンジセンサが振動することが原因となって検出誤差が大きくなることが懸念される。しかし、本発明では、被計測物を移動させるので、レンジセンサと反射部材を固定しておくことができる。これにより、レンジセンサが振動することに起因する検出誤差を回避できるので、被計測物の形状の計測精度が向上する。 The first invention may include a conveyor that conveys the object to be measured in parallel with the rotation center axis of the range sensor. Since the detection light from the range sensor is emitted radially, if the distance to the object to be measured is detected while moving the range sensor and the reflective member, the detection error will be large due to the vibration of the range sensor during movement. There is concern that it will become. However, in the present invention, since the object to be measured is moved, the range sensor and the reflective member can be fixed. As a result, the detection error caused by the vibration of the range sensor can be avoided, so that the measurement accuracy of the shape of the object to be measured is improved.

第2の発明は、形状の異なる複数種類の前記被計測物に関する三次元の形状データと、前記複数種類の被計測物と対応する複数の制御用データとを記憶し、前記制御用データに基づいて前記塗装ガンの動きを制御する制御装置を備えていてもよい。この構成によれば、塗装対象である被計測物の三次元形状の計測結果と、記憶されている形状データとを比較して、塗装対象である被計測物の種類を特定し、その特定した被計測物に適合する制御用データに基づいて塗装ガンを移動させることにより、良好な塗装を実行することができる。 The second invention stores three-dimensional shape data relating to a plurality of types of objects to be measured having different shapes and a plurality of control data corresponding to the plurality of types of objects to be measured, and is based on the control data. A control device for controlling the movement of the coating gun may be provided. According to this configuration, the measurement result of the three-dimensional shape of the object to be painted is compared with the stored shape data, and the type of the object to be painted is specified and specified. Good coating can be performed by moving the coating gun based on the control data suitable for the object to be measured.

第2の発明は、前記被計測物の三次元の形状データを記憶し、塗装対象である前記被計測物の三次元形状の計測結果が、記憶されている前記形状データに適合しない場合は、前記塗装ガンによる塗装を停止する塗装停止装置を備えていてもよい。この構成によれば、被計測物が傾く等の不正な形態となっている場合は塗装が停止するので、塗装不良を防止できる。 The second invention stores the three-dimensional shape data of the object to be measured, and when the measurement result of the three-dimensional shape of the object to be painted does not match the stored shape data, A painting stop device for stopping painting by the painting gun may be provided. According to this configuration, if the object to be measured is in an irregular shape such as tilting, painting is stopped, so that poor painting can be prevented.

<実施例1>
以下、本発明を具体化した実施例1を図1〜図9を参照して説明する。尚、以下の説明において、前後の方向については、図2〜7における左方を前方と定義する。上下の方向については、図1〜6にあらわれる向きを、そのまま上方、下方と定義する。左右の方向については、図1にあらわれる向きを、そのまま左方、右方と定義する。
<Example 1>
Hereinafter, Example 1 embodying the present invention will be described with reference to FIGS. 1 to 9. In the following description, the left side in FIGS. 2 to 7 is defined as the front direction in the front-back direction. As for the vertical direction, the directions appearing in FIGS. 1 to 6 are defined as upward and downward as they are. Regarding the left and right directions, the directions appearing in FIG. 1 are defined as left and right as they are.

本実施例1の塗装装置10は、図1,2,8に示すように、コンベア12と、塗装ガン13と、レシプロケータ14と、三次元形状計測装置20と、制御装置34(請求項に記載の塗装停止装置)とを備えて構成されている。コンベア12は、塗装ブース11内において、複数種類の被塗物40,50(請求項に記載の被計測物)を所定間隔を空けて吊り下げた状態で右方向へ水平に搬送する。 As shown in FIGS. 1, 2 and 8, the painting device 10 of the first embodiment includes a conveyor 12, a painting gun 13, a reciprocating engine 14, a three-dimensional shape measuring device 20, and a control device 34 (as claimed in the claims). It is configured with the described paint stop device). The conveyor 12 horizontally conveys a plurality of types of objects to be coated 40, 50 (objects to be measured according to claim) in the coating booth 11 in a state of being suspended at predetermined intervals to the right.

塗装ガン13は、塗装ブース11内に設置されたレシプロケータ14に取り付けられ、被塗物40,50の被塗面41,51に向けて塗料を噴出する。本実施例では、被塗面41,51は被塗物40,50の搬送方向と略平行である。レシプロケータ14は、塗装ガン13を被塗物40,50の搬送方向と交差する二次元方向(上下方向及び前後方向)に移動させる。 The coating gun 13 is attached to the reciprocating engine 14 installed in the coating booth 11, and ejects paint toward the coated surfaces 41 and 51 of the objects to be coated 40 and 50. In this embodiment, the surfaces to be coated 41 and 51 are substantially parallel to the transport direction of the objects to be coated 40 and 50. The reciprocating engine 14 moves the coating gun 13 in two-dimensional directions (vertical direction and front-rear direction) intersecting the transport directions of the objects to be coated 40 and 50.

<三次元形状計測装置20>
三次元形状計測装置20は、塗装ブース11におけるレシプロケータ14及び塗装ガン13よりも左方(被塗物40,50の搬送方向における上流側)に配されている。三次元形状計測装置20は、搬送される被塗物40,50の被塗面41,51の三次元形状を計測するものである。三次元形状計測装置20は、1台のレンジセンサ21と、1つの上側反射部材31(請求項に記載の反射部材)と、1つの下側反射部材32(請求項に記載の反射部材)とを備えて構成されている。
<Three-dimensional shape measuring device 20>
The three-dimensional shape measuring device 20 is arranged to the left of the reciprocating engine 14 and the coating gun 13 in the coating booth 11 (upstream side in the transport direction of the objects to be coated 40 and 50). The three-dimensional shape measuring device 20 measures the three-dimensional shape of the surfaces to be coated 41 and 51 of the objects to be coated 40 and 50 to be conveyed. The three-dimensional shape measuring device 20 includes one range sensor 21, one upper reflecting member 31 (reflecting member according to claim), and one lower reflecting member 32 (reflecting member according to claim). It is configured with.

レンジセンサ21は、図8に示すように、モータ22と、モータ22によって回転駆動される投受光用ミラー23と、回転位置検出器24と、投光器25と、受光器26と、受光器26に接続された距離演算回路27とを備えて構成されている。モータ22の回転中心軸28は左右方向(被塗物40,50の搬送方向と平行な方向)を向いている。尚、本実施例では、モータ22の回転中心軸28とレンジセンサ21の回転中心軸28を同義で用いる。投受光用ミラー23は、モータ22の回転中心軸28に対して45°の角度で傾いている。回転位置検出器24は、投受光用ミラー23の周方向の位置を検出する。 As shown in FIG. 8, the range sensor 21 includes a motor 22, a mirror 23 for throwing and receiving light driven by the motor 22, a rotation position detector 24, a floodlight 25, a receiver 26, and a receiver 26. It is configured to include a connected distance calculation circuit 27. The rotation center axis 28 of the motor 22 faces in the left-right direction (direction parallel to the transport direction of the objects to be coated 40 and 50). In this embodiment, the rotation center axis 28 of the motor 22 and the rotation center axis 28 of the range sensor 21 are used interchangeably. The light receiving / receiving mirror 23 is tilted at an angle of 45 ° with respect to the rotation center axis 28 of the motor 22. The rotation position detector 24 detects the position of the light emitting / receiving mirror 23 in the circumferential direction.

投光器25は、レーザーやLEDを光源とする検知光Lを水平に発する。投光器25から発せられた検知光Lは、回転する投受光用ミラー23で反射され、レンジセンサ21の外部へ向けて回転中心軸28と直交する径方向外方へ放射される。この投受光用ミラー23で反射した検知光Lの放射軌跡を、二次元軌跡29(図7を参照)と定義する。 The floodlight 25 horizontally emits detection light L using a laser or LED as a light source. The detection light L emitted from the floodlight 25 is reflected by the rotating light emitting / receiving mirror 23, and is radiated outward in the radial direction orthogonal to the rotation center axis 28 toward the outside of the range sensor 21. The radiation locus of the detection light L reflected by the light emitting / receiving mirror 23 is defined as a two-dimensional locus 29 (see FIG. 7).

レンジセンサ21外へ放射された検知光Lの一部は、直接、被塗物40,50の被塗面41,51に照射され、被塗面41,51で反射した検知光Lは、レンジセンサ21内に入射して投受光用ミラー23で反射した後、受光器26で受光される。また、レンジセンサ21外へ放射された検知光Lの別の一部は、一旦、反射部材31,32で反射した後、被塗物40,50の被塗面41,51に照射される。この被塗面41,51で反射した検知光Lは、もう一度、反射部材31,32で反射してからレンジセンサ21内に入射し、投受光用ミラー23で反射した後、受光器26で受光される。 A part of the detection light L radiated to the outside of the range sensor 21 is directly applied to the coated surfaces 41 and 51 of the objects to be coated 40 and 50, and the detection light L reflected by the coated surfaces 41 and 51 is the range. After being incident on the sensor 21 and reflected by the light emitting / receiving mirror 23 , the light is received by the light receiving receiver 26. Further, another part of the detection light L radiated to the outside of the range sensor 21 is once reflected by the reflecting members 31 and 32, and then irradiated to the coated surfaces 41 and 51 of the objects to be coated 40 and 50. The detection light L reflected by the coated surfaces 41 and 51 is once again reflected by the reflecting members 31 and 32, then incident on the range sensor 21, reflected by the light emitting and receiving mirror 23 , and then received by the light receiving receiver 26. Will be done.

上述のように、受光器26は、二次元軌跡29上を通過してレンジセンサ21内に入射し、投受光用ミラー23で反射した検知光Lのみを、受光する。距離演算回路27には、受光器26で受光した検知光Lの位相情報と、回転位置検出器24からの投受光用ミラー23の回転位置情報とが入力される。投受光用ミラー23の回転位置情報は、二次元軌跡29上における検知光Lの放射角度及び入射角度の情報として処理される。 As described above, the light receiver 26 passes only on the two-dimensional locus 29, enters the range sensor 21, and receives only the detection light L reflected by the light emitting / receiving mirror 23. The phase information of the detection light L received by the light receiver 26 and the rotation position information of the light emitting / receiving mirror 23 from the rotation position detector 24 are input to the distance calculation circuit 27. The rotation position information of the light emitting / receiving mirror 23 is processed as information on the radiation angle and the incident angle of the detection light L on the two-dimensional locus 29.

距離演算回路27では、入力された情報に基づいて演算が行われ、検知光Lの二次元軌跡29上における被塗面41,51(被塗物40,50)の二次元形状のデータが得られる。さらに、二次元形状のデータと、速度センサ30(図8を参照)から入力されるコンベア12の搬送速度(レンジセンサ21に対する被塗物40,50の相対変位速度)の情報とに基づき、被塗面41,51の三次元形状が計測される。 In the distance calculation circuit 27, calculation is performed based on the input information, and data on the two-dimensional shape of the surface to be coated 41, 51 (objects 40, 50 to be coated) on the two-dimensional locus 29 of the detection light L is obtained. Be done. Further, based on the two-dimensional shape data and the information of the conveyor 12 transport speed (relative displacement speeds of the objects to be coated 40 and 50 with respect to the range sensor 21) input from the speed sensor 30 (see FIG. 8), the subject is covered. The three-dimensional shapes of the coated surfaces 41 and 51 are measured.

上側反射部材31は、図3〜6に示すように、レンジセンサ21の上方に配されている。上側反射部材31の反射面31Rは、被塗物40,50の搬送方向と平行な平面であり、且つレンジセンサ21と被塗面41,51と対向するように斜め下後方に面している。上側反射部材31の上端の位置は、被塗面41,51の上端よりも高い位置に配され、上側反射部材31の下端の位置は、被塗物40,50の上端よりも低い位置に配されている。上側反射部材31の反射面31Rは、二次元軌跡29上において下方又は斜め下方から入射した検知光Lを、斜め下後方又は下方へ反射する。 The upper reflective member 31 is arranged above the range sensor 21 as shown in FIGS. 3 to 6. The reflection surface 31R of the upper reflection member 31 is a plane parallel to the transport direction of the objects to be coated 40 and 50, and faces diagonally downward and rearward so as to face the range sensor 21 and the surfaces to be coated 41 and 51. .. The upper end of the upper reflective member 31 is located higher than the upper ends of the surfaces 41 and 51 to be coated, and the lower end of the upper reflective member 31 is located lower than the upper ends of the objects 40 and 50 to be coated. Has been done. The reflecting surface 31R of the upper reflecting member 31 reflects the detection light L incident from below or diagonally below on the two-dimensional locus 29 diagonally downward and backward or downward.

下側反射部材32は、図3〜6に示すように、レンジセンサ21の下方に配されている。下側反射部材32の反射面32Rは、被塗物40,50の搬送方向と平行な平面であり、且つレンジセンサ21と被塗面41,51と対向するように斜め上後方に面している。下側反射部材32の下端の位置は、被塗面41,51の下端よりも低い位置に配され、下側反射部材32の上端の位置は、被塗物40,50の下端よりも高い位置に配されている。下側反射部材32の反射面32Rは、二次元軌跡29上において上方又は斜め上方から入射した検知光Lを、斜め上後方又は上方へ反射する。 The lower reflective member 32 is arranged below the range sensor 21 as shown in FIGS. 3 to 6. The reflective surface 32R of the lower reflective member 32 is a flat surface parallel to the transport direction of the objects to be coated 40 and 50, and faces diagonally upward and backward so as to face the range sensor 21 and the surfaces to be coated 41 and 51. There is. The lower end of the lower reflective member 32 is located lower than the lower ends of the surfaces 41 and 51 to be coated, and the upper end of the lower reflective member 32 is higher than the lower ends of the objects 40 and 50 to be coated. It is arranged in. The reflecting surface 32R of the lower reflecting member 32 reflects the detection light L incident on the two-dimensional locus 29 from above or diagonally above diagonally upward and backward or upward.

上側反射部材31の反射面31Rと下側反射部材32の反射面32Rの向きは、直線棒状をなす基準部材33を用いて調整される。図7に示すように、基準部材33は、レンジセンサ21から放射状に発せられる検知光Lの二次元軌跡29上に設置され、レンジセンサ21から発せられた検知光Lが反射部材31,32で反射される。 The orientation of the reflecting surface 31R of the upper reflecting member 31 and the reflecting surface 32R of the lower reflecting member 32 is adjusted by using the reference member 33 having a straight rod shape. As shown in FIG. 7, the reference member 33 is installed on the two-dimensional locus 29 of the detection light L radially emitted from the range sensor 21, and the detection light L emitted from the range sensor 21 is reflected by the reflection members 31 and 32. Be reflected.

このとき、反射部材31,32が正しい向き(角度)で設置されていて、反射面31R,32Rがレンジセンサ21の回転中心軸28と平行をなしている場合は、反射面31R,32Rが二次元軌跡29と直交する向きとなるので、反射部材31,32で反射した検知光Lの軌跡は、二次元軌跡29と合致する。したがって、被塗面41,51で反射した後、再び反射部材31,32で反射した検知光Lは、レンジセンサ21の受光器26で受光される。これにより、距離演算回路27では、被塗物40,50までの距離が計測され、被塗物40,50の二次元形状のデータを得ることができる。 At this time, if the reflecting members 31 and 32 are installed in the correct orientation (angle) and the reflecting surfaces 31R and 32R are parallel to the rotation center axis 28 of the range sensor 21, the reflecting surfaces 31R and 32R are two. Since the orientation is orthogonal to the dimensional locus 29, the locus of the detection light L reflected by the reflecting members 31 and 32 matches the two-dimensional locus 29. Therefore, the detection light L reflected by the surfaces to be coated 41 and 51 and then reflected by the reflection members 31 and 32 again is received by the light receiver 26 of the range sensor 21. As a result, the distance calculation circuit 27 measures the distances to the objects to be coated 40 and 50, and can obtain data on the two-dimensional shapes of the objects to be coated 40 and 50.

しかし、反射部材31,32の向きが不正であって、反射面31R,32Rがレンジセンサ21の回転中心軸28に対して傾いている場合は、図7に破線で示すように、反射部材31,32で反射した検知光Lの軌跡は、二次元軌跡29から外れる。二次元軌跡29から外れた検知光Lは、レンジセンサ21の受光器26では受光されないので、距離演算回路27では被塗物40,50の二次元形状のデータを得ることができない。この場合は、レンジセンサ21から検知光Lを放射しながら、反射部材31,32の向きを変更する。距離演算回路27で被塗物40,50の二次元形状のデータが得られるようになれば、反射部材31,32の調整が完了する。 However, if the directions of the reflecting members 31 and 32 are incorrect and the reflecting surfaces 31R and 32R are tilted with respect to the rotation center axis 28 of the range sensor 21, the reflecting member 31 is shown by a broken line in FIG. The locus of the detection light L reflected at 32, 32 deviates from the two-dimensional locus 29. Since the detection light L deviating from the two-dimensional locus 29 is not received by the light receiver 26 of the range sensor 21, the distance calculation circuit 27 cannot obtain the two-dimensional shape data of the objects to be coated 40 and 50. In this case, the directions of the reflecting members 31 and 32 are changed while emitting the detection light L from the range sensor 21. When the distance calculation circuit 27 can obtain the two-dimensional shape data of the objects to be coated 40 and 50, the adjustment of the reflection members 31 and 32 is completed.

<制御装置34>
制御装置34は、図8に示すように、記憶部35と、比較部36と、制御部37とを備えて構成されている。記憶部35は、被塗面41,51の形状が異なる複数種類(例えば、4種類)の被塗物40,50(他の2種類については、便宜上、図示を省略する)に対して個別に計測して得られた複数の三次元の形状データS1,S2,S3,S4と、複数の形状データS1,S2,S3,S4と個別に対応する複数の制御用データC1,C2,C3,C4とが記憶されている。
<Control device 34>
As shown in FIG. 8, the control device 34 includes a storage unit 35, a comparison unit 36, and a control unit 37. The storage unit 35 is individually used for a plurality of types (for example, four types) of objects to be coated 40, 50 (the other two types are not shown for convenience) having different shapes of the surfaces 41 and 51 to be coated. A plurality of three-dimensional shape data S1, S2, S3, S4 obtained by measurement, and a plurality of control data C1, C2, C3, C4 individually corresponding to the plurality of shape data S1, S2, S3, S4. Is remembered.

三次元の形状データS1,S2,S3,S4は、三次元形状計測装置20によって計測されたデータである。制御用データC1,C2,C3,C4は、各形状データS1,S2,S3,S4と対応する被塗面41,51の形状に合わせて塗装ガン13が上下方向及び前後方向に移動するようにレシプロケータ14を制御するためのデータである。 The three-dimensional shape data S1, S2, S3, and S4 are data measured by the three-dimensional shape measuring device 20. In the control data C1, C2, C3, and C4, the coating gun 13 moves in the vertical direction and the front-rear direction according to the shapes of the surfaces to be coated 41 and 51 corresponding to the shape data S1, S2, S3, and S4. This is data for controlling the reciprocating engine 14.

比較部36には、レンジセンサ21の距離演算回路27から被塗物40,50の三次元形状の計測結果が入力される。比較部36は、入力された計測結果と、記憶部35に記憶されている複数の形状データS1,S2,S3,S4とが合致するか否かを判断する。比較部36で判断された比較情報は、制御部37に入力される。制御部37では、比較部36から入力された比較情報に基づいて、コンベア12とレシプロケータ14と塗装ガン13の動作を制御する。 The measurement results of the three-dimensional shapes of the objects to be coated 40 and 50 are input to the comparison unit 36 from the distance calculation circuit 27 of the range sensor 21. The comparison unit 36 determines whether or not the input measurement result matches the plurality of shape data S1, S2, S3, S4 stored in the storage unit 35. The comparison information determined by the comparison unit 36 is input to the control unit 37. The control unit 37 controls the operations of the conveyor 12, the reciprocating engine 14, and the painting gun 13 based on the comparison information input from the comparison unit 36.

<被塗物40,50の三次元形状の計測>
三次元形状計測装置20による被塗物40,50の形状計測は、レシプロケータ14と塗装ガン13のティーチング手段又はティーチング補助手段として行われるとともに、塗装工程で搬送される被塗物40,50の種類を特定するための検出手段としても行われる。本実施例では、被塗面41,51の形状が異なる第1被塗物40と第2被塗物50の形状計測を行う場合について説明する。本実施例では、被塗物40,50の外面のうちレンジセンサ21と対向する表面側の被塗面41,51の形状のみを計測する。
<Measurement of three-dimensional shape of objects 40 and 50 to be coated>
The shape measurement of the objects to be coated 40 and 50 by the three-dimensional shape measuring device 20 is performed as a teaching means or a teaching assisting means of the reciprocating engine 14 and the coating gun 13, and the objects to be coated 40 and 50 conveyed in the coating process. It is also used as a detection means for identifying the type. In this embodiment, a case where the shapes of the first object to be coated 40 and the second object to be coated 50 having different shapes of the surfaces to be coated 41 and 51 are measured will be described. In this embodiment, only the shapes of the surfaces to be coated 41 and 51 on the surface side facing the range sensor 21 among the outer surfaces of the objects to be coated 40 and 50 are measured.

図1〜4に示すように、第1被塗物40は、全体として板面を上下方向に向けた板状をなす。第1被塗物40の被塗面41の上端縁部には、前方へリブ状に突出する上部突起42が形成され、被塗面41の高さ方向中央部には、前方へリブ状に突出する中央部突起43が形成され、被塗面41,51の下端縁部には、前方へリブ状に突出する下部突起44が形成されている。 As shown in FIGS. 1 to 4, the first object to be coated 40 has a plate shape with the plate surface facing in the vertical direction as a whole. An upper protrusion 42 that projects forward in a rib shape is formed on the upper end edge of the surface 41 to be coated of the first object to be coated 40, and a rib shape is formed forward in the central portion in the height direction of the surface 41 to be coated. A protruding central protrusion 43 is formed, and a lower protrusion 44 that protrudes forward in a rib shape is formed at the lower end edges of the surfaces 41 and 51 to be coated.

レンジセンサ21は、中央部の突起よりも少し下方の位置に配置されている。第1被塗物40の被塗面41の大部分は、レンジセンサ21と直接的に対向する直射領域D1となっているので、この直射領域には、レンジセンサ21から放射された検知光Lが、直接、照射される。この直射領域で反射した検知光Lは、直接、レンジセンサ21で受光される。これにより、直射領域の三次元形状が計測される。 The range sensor 21 is arranged at a position slightly below the protrusion at the center. Since most of the surface to be coated 41 of the first object to be coated 40 is a direct irradiation region D1 directly facing the range sensor 21, the detection light L emitted from the range sensor 21 is in this direct irradiation region. However, it is directly irradiated. The detection light L reflected in this direct irradiation region is directly received by the range sensor 21. As a result, the three-dimensional shape of the direct irradiation region is measured.

図3,4に示すように、被塗面41のうち、上部突起42の上面と中央部突起43の上面と下部突起44の下面は、レンジセンサ21から放射された検知光Lが、直接、照射されない死角領域B1,B2,B3となっている。この点に鑑み、レンジセンサ21の上方には、レンジセンサ21と第1被塗物40に対して斜め上前方から対向する上側反射部材31が設けられている。上側反射部材31の反射面31Rに映ったレンジセンサ21の鏡像Mからは、上部突起42の上面の死角領域B1と中央部突起43の上面の死角領域B2が死角にならない。 As shown in FIGS. 3 and 4, of the surface to be coated 41, the upper surface of the upper protrusion 42, the upper surface of the central protrusion 43, and the lower surface of the lower protrusion 44 are directly exposed to the detection light L emitted from the range sensor 21. The blind spot areas B1, B2, and B3 are not irradiated. In view of this point, an upper reflective member 31 is provided above the range sensor 21 so as to face the range sensor 21 and the first object to be coated 40 from diagonally above and forward. From the mirror image M of the range sensor 21 reflected on the reflection surface 31R of the upper reflection member 31, the blind spot region B1 on the upper surface of the upper protrusion 42 and the blind spot region B2 on the upper surface of the central protrusion 43 do not become blind spots.

したがって、レンジセンサ21から放射されて上側反射部材31の反射面31Rで反射した検知光Lは、上部突起42の死角領域B1と中央部突起43の死角領域B2に照射される。そして、上部突起42の死角領域B1と中央部突起43の死角領域B2で反射した検知光Lは、再び上側反射部材31の反射面31Rで反射し、レンジセンサ21で受光される。これにより、上部突起42の死角領域B1と中央部突起43の死角領域B2の三次元形状が計測される。 Therefore, the detection light L radiated from the range sensor 21 and reflected by the reflection surface 31R of the upper reflection member 31 is applied to the blind spot region B1 of the upper protrusion 42 and the blind spot region B2 of the central protrusion 43. Then, the detection light L reflected by the blind spot region B1 of the upper protrusion 42 and the blind spot region B2 of the central protrusion 43 is reflected again by the reflection surface 31R of the upper reflection member 31 and received by the range sensor 21. As a result, the three-dimensional shapes of the blind spot region B1 of the upper protrusion 42 and the blind spot region B2 of the central protrusion 43 are measured.

被塗面41のうち、下部突起44の下面も、レンジセンサ21から放射された検知光Lが、直接、照射されない死角領域B3となっている。この点に鑑み、レンジセンサ21の下方には、レンジセンサ21と第1被塗物40に対して斜め下前方から対向する下側反射部材32が設けられている。下側反射部材32の反射面32Rに映ったレンジセンサ21の鏡像Mからは、下部突起44の下面の死角領域B3は、死角とはならない。 Of the surface to be coated 41, the lower surface of the lower protrusion 44 is also a blind spot region B3 in which the detection light L emitted from the range sensor 21 is not directly irradiated. In view of this point, a lower reflective member 32 is provided below the range sensor 21 so as to face the range sensor 21 and the first object to be coated 40 from diagonally lower front. From the mirror image M of the range sensor 21 reflected on the reflection surface 32R of the lower reflection member 32, the blind spot region B3 on the lower surface of the lower protrusion 44 does not become a blind spot.

したがって、レンジセンサ21から放射されて下側反射部材32の反射面32Rで反射した検知光Lは、下部突起44の下面の死角領域B3に照射される。そして、下部突起44の死角領域B3で反射した検知光Lは、再び下側反射部材32の反射面32Rで反射し、レンジセンサ21で受光される。これにより、下部突起44の死角領域B3の三次元形状が計測される。 Therefore, the detection light L radiated from the range sensor 21 and reflected by the reflecting surface 32R of the lower reflecting member 32 is applied to the blind spot region B3 on the lower surface of the lower projection 44. Then, the detection light L reflected in the blind spot region B3 of the lower projection 44 is reflected again by the reflection surface 32R of the lower reflection member 32, and is received by the range sensor 21. As a result, the three-dimensional shape of the blind spot region B3 of the lower protrusion 44 is measured.

図1,5,6に示すように、第2被塗物50は、全体として板面を上下方向に向けた板状をなす。第2被塗物50の上端縁部には、後方へリブ状に突出する上部突起52が形成されている。第2被塗物50の被塗面51の大部分は、レンジセンサ21と直接的に対向する直射領域D2となっているので、この直射領域D2には、レンジセンサ21から放射された検知光Lが、直接、照射される。この直射領域で反射した検知光Lは、直接、レンジセンサ21で受光される。これにより、直射領域の三次元形状が計測される。 As shown in FIGS. 1, 5 and 6, the second object to be coated 50 has a plate shape with the plate surface facing in the vertical direction as a whole. An upper protrusion 52 that projects rearward in a rib shape is formed on the upper end edge of the second object to be coated 50. Since most of the surface to be coated 51 of the second object to be coated 50 is a direct irradiation region D2 directly facing the range sensor 21, the detection light emitted from the range sensor 21 is in this direct irradiation region D2. L is directly irradiated. The detection light L reflected in this direct irradiation region is directly received by the range sensor 21. As a result, the three-dimensional shape of the direct irradiation region is measured.

上部突起52の上面は、被塗面51を構成するが、レンジセンサ21よりも上方に位置して水平をなしているので、レンジセンサ21から視ると死角領域B4となっている。この死角領域B4には、レンジセンサ21から放射された検知光Lが、直接、照射されないので、レンジセンサ21の上方には、レンジセンサ21と第2被塗物50に対して斜め上前方から対向する上側反射部材31が設けられている。上側反射部材31の反射面31Rに映ったレンジセンサ21の鏡像Mからは、上部突起52の上面の死角領域B4は、死角とはならない。 The upper surface of the upper protrusion 52 constitutes the surface to be coated 51, but since it is located above the range sensor 21 and is horizontal, it is a blind spot region B4 when viewed from the range sensor 21. Since the detection light L emitted from the range sensor 21 is not directly irradiated to the blind spot region B4, the detection light L emitted from the range sensor 21 is not directly irradiated to the range sensor 21, so that the range sensor 21 and the second object to be coated 50 are obliquely above and from the front. The facing upper reflective member 31 is provided. From the mirror image M of the range sensor 21 reflected on the reflection surface 31R of the upper reflection member 31, the blind spot region B4 on the upper surface of the upper protrusion 52 does not become a blind spot.

したがって、レンジセンサ21から放射されて上側反射部材31の反射面32Rで反射した検知光Lは、上部突起52の上面の死角領域B4に照射される。そして、上部突起52の死角領域B4で反射した検知光Lは、再び上側反射部材31の反射面31Rで反射し、レンジセンサ21で受光される。これにより、上部突起52の死角領域B4の三次元形状が計測される。 Therefore, the detection light L radiated from the range sensor 21 and reflected by the reflection surface 32R of the upper reflection member 31 is applied to the blind spot region B4 on the upper surface of the upper projection 52. Then, the detection light L reflected in the blind spot region B4 of the upper projection 52 is reflected again by the reflection surface 31R of the upper reflection member 31 and received by the range sensor 21. As a result, the three-dimensional shape of the blind spot region B4 of the upper protrusion 52 is measured.

被塗面51のうち下端部は、段差部53を境界として、後方へ段差状に奥まった奥面領域DRとなっている。段差部53の下面も、被塗面51を構成するが、レンジセンサ21より下方に位置して水平をなしているので、レンジセンサ21から視ると死角領域B5となっている。また、奥面領域DRの上端部も、レンジセンサ21から視ると段差部53の陰に隠れた死角領域B6となっている。 The lower end portion of the surface to be coated 51 is a back surface region DR that is recessed rearward in a stepped shape with the stepped portion 53 as a boundary. The lower surface of the step portion 53 also constitutes the surface to be coated 51, but since it is located below the range sensor 21 and is horizontal, it is a blind spot region B5 when viewed from the range sensor 21. Further, the upper end portion of the back surface region DR is also a blind spot region B6 hidden behind the step portion 53 when viewed from the range sensor 21.

これらの死角領域B5,B6には、レンジセンサ21から放射された検知光Lが、直接、照射されないので、レンジセンサ21の下方には、レンジセンサ21と第2被塗物50に対して斜め下前方から対向する下側反射部材32が設けられている。下側反射部材32の反射面32Rに映ったレンジセンサ21の鏡像Mからは、段差部53の下面の死角領域B5と奥面領域DRの上端部の死角領域B6は、死角とはならない。 Since the detection light L emitted from the range sensor 21 is not directly irradiated to these blind spot areas B5 and B6, the range sensor 21 and the second object to be coated 50 are obliquely below the range sensor 21. A lower reflective member 32 facing from the lower front is provided. From the mirror image M of the range sensor 21 reflected on the reflection surface 32R of the lower reflection member 32, the blind spot region B5 on the lower surface of the step portion 53 and the blind spot region B6 on the upper end portion of the back surface region DR do not become blind spots.

したがって、レンジセンサ21から放射されて下側反射部材32の反射面32Rで反射した検知光Lは、段差部53の死角領域B5と奥面領域DRの死角領域B6に照射される。そして、段差部53の死角領域B5と奥面領域DRの死角領域B6で反射した検知光Lは、再び下側反射部材32の反射面32Rで反射し、レンジセンサ21で受光される。これにより、段差部53の死角領域B5と奥面領域DRの死角領域B6の三次元形状が計測される。 Therefore, the detection light L radiated from the range sensor 21 and reflected by the reflection surface 32R of the lower reflection member 32 is applied to the blind spot region B5 of the step portion 53 and the blind spot region B6 of the back surface region DR. Then, the detection light L reflected by the blind spot region B5 of the step portion 53 and the blind spot region B6 of the back surface region DR is reflected again by the reflection surface 32R of the lower reflection member 32 and received by the range sensor 21. As a result, the three-dimensional shapes of the blind spot region B5 of the step portion 53 and the blind spot region B6 of the back surface region DR are measured.

<塗装工程>
塗装を行う際には、コンベア12を作動させ、コンベア12に第1被塗物40と第2被塗物50を適宜配置して吊り下げ、塗装ブース11へ搬送する。搬送過程では、まず、被塗物40,50の三次元形状が三次元形状計測装置20によって計測され、その三次元形状の計測結果が、図9に示すように、レンジセンサ21から制御装置34の比較部36に入力される(ステップS101)。入力された計測結果は、記憶部35に記憶されている形状データS1,S2,S3,S4と合致するかどうか比較される(ステップS102)。
<Painting process>
When painting is performed, the conveyor 12 is operated, the first object to be coated 40 and the second object to be coated 50 are appropriately arranged on the conveyor 12, suspended, and conveyed to the coating booth 11. In the transport process, first, the three-dimensional shapes of the objects to be coated 40 and 50 are measured by the three-dimensional shape measuring device 20, and the measurement results of the three-dimensional shapes are measured from the range sensor 21 to the control device 34 as shown in FIG. Is input to the comparison unit 36 of (step S101). The input measurement result is compared with whether or not it matches the shape data S1, S2, S3, S4 stored in the storage unit 35 (step S102).

入力された計測結果がいずれかの形状データS1,S2,S3,S4と合致する場合は、その合致した形状データS1,S2,S3,S4と対応する制御用データC1,C2,C3,C4が選択され、その選択された制御用データC1,C2,C3,C4に従って制御部37から塗装用制御信号が出力される(ステップS103)。この塗装用制御信号により、コンベア12による被塗物40,50の搬送が行われ、図2に実線及び想像線で示すように、レシプロケータ14が被塗面41,51の三次元形状に合わせて塗装ガン13を適正に移動させるとともに、塗装ガン13が適正な塗料噴出を行う。 If the input measurement result matches any of the shape data S1, S2, S3, S4, the matching shape data S1, S2, S3, S4 and the corresponding control data C1, C2, C3, C4 A coating control signal is output from the control unit 37 according to the selected control data C1, C2, C3, and C4 (step S103). By this coating control signal, the objects to be coated 40 and 50 are conveyed by the conveyor 12, and as shown by the solid line and the imaginary line in FIG. 2, the reciprocating engine 14 conforms to the three-dimensional shape of the surfaces to be coated 41 and 51. The paint gun 13 is properly moved, and the paint gun 13 ejects the paint properly.

また、被塗物40,50をコンベア12に吊り下げたときに、被塗物40,50の前後左右の向きが逆であったり、被塗物40,50が斜めの姿勢であったような場合、レンジセンサ21から比較部36に入力された計測結果は、記憶されている形状データS1,S2,S3,S4のいずれとも合致しない。この場合、制御部37は、コンベア12による被塗物40,50の搬送状態が不適切であると判断して塗装停止信号を出力する(ステップS104)。この塗装停止信号により、コンベア12による被塗物40,50の搬送が停止し、レシプロケータ14が停止し、塗装ガン13における塗料の噴出が停止する。 Further, when the objects to be coated 40 and 50 are hung on the conveyor 12, the directions of the objects to be coated 40 and 50 are opposite to each other, and the objects to be coated 40 and 50 are in an oblique posture. In this case, the measurement result input from the range sensor 21 to the comparison unit 36 does not match any of the stored shape data S1, S2, S3, and S4. In this case, the control unit 37 determines that the transport state of the objects to be coated 40 and 50 by the conveyor 12 is inappropriate, and outputs a coating stop signal (step S104). Due to this coating stop signal, the conveyor 12 stops the transportation of the objects to be coated 40 and 50, the reciprocating engine 14 stops, and the spraying of the paint on the coating gun 13 stops.

<実施例1の作用及び効果>
本実施例の三次元形状計測装置20は、回転しながら被塗物40,50に向けて放射状に検知光Lを発するとともに被塗物40,50で反射した検知光Lを受光することで被塗物40,50までの距離を検出するレンジセンサ21と、検知光Lを、レンジセンサ21と被塗物40,50との間で反射させる反射部材31,32とを備えている。
<Action and effect of Example 1>
The three-dimensional shape measuring device 20 of the present embodiment emits detection light L radially toward the objects to be coated 40 and 50 while rotating, and receives the detection light L reflected by the objects to be coated 40 and 50 to be covered. It includes a range sensor 21 that detects the distance to the coating objects 40 and 50, and reflective members 31 and 32 that reflect the detection light L between the range sensor 21 and the objects to be coated 40 and 50.

レンジセンサ21は、検出した距離情報と、検知光Lの放射角度に基づいて、被塗物40,50の被塗面41,51の二次元形状のデータを演算する。レンジセンサ21と被塗物40,50は、レンジセンサ21の回転中心軸28と平行に相対移動する。レンジセンサ21は、被塗物40,50との相対移動速度と、被塗物40,50までの距離を検出して得られた二次元形状のデータとに基づいて、被塗物40,50の三次元形状を計測する。 The range sensor 21 calculates the two-dimensional shape data of the coated surfaces 41 and 51 of the objects to be coated 40 and 50 based on the detected distance information and the radiation angle of the detected light L. The range sensor 21 and the objects to be coated 40 and 50 move relative to each other in parallel with the rotation center axis 28 of the range sensor 21. The range sensor 21 is based on the relative movement speed with the objects to be coated 40 and 50 and the two-dimensional shape data obtained by detecting the distances to the objects to be coated 40 and 50, and the objects to be coated 40 and 50. Measure the three-dimensional shape of.

1つの被塗物40,50を1つのレンジセンサ21だけで計測するため、被塗物40,50の被塗面41,51の一部は、レンジセンサ21から放射された検知光Lが直接照射されない死角領域B1〜B6となっている。この対策として、本実施例の三次元形状計測装置20には、上下2つの反射部材31,32が設けられている。つまり、1つのレンジセンサ21に対して2つの反射部材31,32を設けており、換言すると、1つの被塗物40,50に対して2つの反射部材31,32を設けている。 Since one object to be coated 40, 50 is measured only by one range sensor 21, the detection light L emitted from the range sensor 21 is directly applied to a part of the surface to be coated 41, 51 of the object to be coated 40, 50. The blind spot areas B1 to B6 are not irradiated. As a countermeasure, the three-dimensional shape measuring device 20 of this embodiment is provided with two upper and lower reflecting members 31, 32. That is, two reflecting members 31 and 32 are provided for one range sensor 21, in other words, two reflecting members 31 and 32 are provided for one object to be coated 40 and 50.

被塗物40,50の三次元形状を計測する際には、レンジセンサ21が発せられて上下いずれかの反射部材31,32で反射した検知光Lが、死角領域B1〜B6に当たり、被塗物40,50の死角領域B1〜B6で反射した検知光Lは、再び反射部材31,32で反射してレンジセンサ21で受光される。レンジセンサ21と1つの死角領域B1〜B6との間の検知光Lの往復は、1つの反射部材31,32だけを経由して行われる。本実施例の三次元形状計測装置20は、死角領域B1〜B6の距離の検出を反射部材31,32を用いて行うことができるので、レンジセンサ21の設置数を減らして、コスト低減を実現できる。 When measuring the three-dimensional shapes of the objects to be coated 40 and 50, the detection light L emitted by the range sensor 21 and reflected by either the upper or lower reflecting member 31 or 32 hits the blind spot areas B1 to B6 and is coated. The detection light L reflected by the blind spot areas B1 to B6 of the objects 40 and 50 is reflected again by the reflection members 31 and 32 and received by the range sensor 21. The reciprocation of the detection light L between the range sensor 21 and one blind spot area B1 to B6 is performed via only one reflection member 31 or 32. Since the three-dimensional shape measuring device 20 of this embodiment can detect the distance between the blind spot regions B1 to B6 by using the reflecting members 31 and 32, the number of installations of the range sensors 21 is reduced and the cost is reduced. it can.

また、上側反射部材31の反射面31Rと下側反射部材32の反射面32Rは、いずれも、レンジセンサ21と、被塗物40,50におけるレンジセンサ21の死角領域B1〜B6とに面するように配されている。この構成によれば、レンジセンサ21と被塗物40,50(死角領域B1〜B6)との間における検知光Lの往復を、1つの反射部材31,32だけで行わせることができる。 Further, the reflective surface 31R of the upper reflective member 31 and the reflective surface 32R of the lower reflective member 32 both face the range sensor 21 and the blind spot regions B1 to B6 of the range sensors 21 in the objects to be coated 40 and 50. It is arranged like this. According to this configuration, the reciprocation of the detection light L between the range sensor 21 and the objects to be coated 40 and 50 (blind spot regions B1 to B6) can be performed by only one reflecting member 31 and 32.

検知光Lはレンジセンサ21から放射状に発せられるため、レンジセンサ21と反射部材31,32を移動させながら被塗物40,50までの距離を検出した場合、移動時にレンジセンサ21が振動することが原因となって検出誤差が大きくなることが懸念される。この対策として、本実施例では、被塗物40,50を、レンジセンサ21の回転中心軸28と平行に搬送するためのコンベア12を設け、レンジセンサ21と反射部材31,32を固定して設置している。これにより、レンジセンサ21が振動することに起因する検出誤差を回避できるので、被塗物40,50の形状の計測精度が高められている。 Since the detection light L is emitted radially from the range sensor 21, when the distance to the objects to be coated 40 and 50 is detected while moving the range sensor 21 and the reflecting members 31 and 32, the range sensor 21 vibrates during the movement. There is a concern that the detection error will increase due to this. As a countermeasure, in this embodiment, a conveyor 12 for transporting the objects to be coated 40 and 50 in parallel with the rotation center axis 28 of the range sensor 21 is provided, and the range sensor 21 and the reflection members 31 and 32 are fixed. It is installed. As a result, the detection error caused by the vibration of the range sensor 21 can be avoided, so that the measurement accuracy of the shapes of the objects to be coated 40 and 50 is improved.

また、本実施例1の塗装装置10は、三次元形状計測装置20と、被塗物40,50に対して相対移動しながら被塗物40,50に塗料を塗布する塗装ガン13とを備えて構成されている。この塗装装置10は、レンジセンサ21で計測した被塗物40,50の三次元形状の計測データは、塗装ガン13の塗装時の移動軌跡をティーチングする手段や、そのティーチングを補佐する手段として用いることができる。 Further, the coating device 10 of the first embodiment includes a three-dimensional shape measuring device 20 and a coating gun 13 that applies paint to the objects to be coated 40 and 50 while moving relative to the objects to be coated 40 and 50. It is composed of. The coating device 10 uses the measurement data of the three-dimensional shapes of the objects to be coated 40 and 50 measured by the range sensor 21 as a means for teaching the movement locus of the coating gun 13 at the time of painting and a means for assisting the teaching. be able to.

また、塗装装置10は制御装置34を備えており、制御装置34は、形状の異なる複数種類の被塗物40,50に関する三次元の形状データS1,S2,S3,S4と、複数種類の被塗物40,50と対応する複数の制御用データC1,C2,C3,C4とを記憶しており、制御用データC1,C2,C3,C4に基づいて塗装ガン13の動きを制御する。この構成によれば、塗装対象である被塗物40,50の三次元形状の計測結果と、記憶されている形状データS1,S2,S3,S4とを比較して、被塗物40,50の種類を特定し、その特定した被塗物40,50に適合する制御用データC1,C2,C3,C4に基づいて塗装ガン13を移動させることができる。これにより、良好な塗装を実行することができる。 Further, the coating device 10 includes a control device 34, and the control device 34 includes three-dimensional shape data S1, S2, S3, S4 relating to a plurality of types of objects to be coated 40, 50 having different shapes, and a plurality of types of objects to be coated. A plurality of control data C1, C2, C3, C4 corresponding to the coating materials 40 and 50 are stored, and the movement of the coating gun 13 is controlled based on the control data C1, C2, C3, C4. According to this configuration, the measurement results of the three-dimensional shapes of the objects to be coated 40 and 50 to be coated are compared with the stored shape data S1, S2, S3 and S4, and the objects to be coated 40 and 50 are compared. The coating gun 13 can be moved based on the control data C1, C2, C3, and C4 that are compatible with the identified objects 40 and 50. As a result, good painting can be performed.

また、被塗物40,50の三次元の形状データS1,S2,S3,S4を記憶している制御装置34は、塗装対象である被塗物40,50の三次元形状の計測結果が、記憶されている形状データS1,S2,S3,S4に適合しない場合、塗装ガン13による塗装を停止する塗装停止装置としての機能も兼ね備えている。この制御装置34によれば、被塗物40,50が傾く等の不正な形態となっている場合に塗装を停止することができるので、塗装不良を防止できる。 Further, the control device 34 that stores the three-dimensional shape data S1, S2, S3, and S4 of the objects to be coated 40 and 50 can obtain the measurement result of the three-dimensional shapes of the objects to be coated 40 and 50 to be coated. When it does not conform to the stored shape data S1, S2, S3, S4, it also has a function as a painting stop device for stopping painting by the painting gun 13. According to this control device 34, painting can be stopped when the objects to be coated 40 and 50 are in an improper form such as tilting, so that coating defects can be prevented.

また、本実施例1の三次元形状計測装置20では、次のような方法で、反射部材31,32の向きを調整する。まず、レンジセンサ21から放射状に発せられる検知光Lの二次元軌跡29上に直線棒状の基準部材33を設置し、レンジセンサ21から発せられて反射部材31,32で反射した検知光Lによって被塗物40,50の距離を検出できるように、反射部材31,32の向きを変更する。この調整方法によれば、反射部材31,32の向きを、レンジセンサ21から放射状に発せられる検知光Lの二次元軌跡29に対して直角となるように調整することができる。これにより、被塗物40,50の三次元形状を高い精度で計測することができる。 Further, in the three-dimensional shape measuring device 20 of the first embodiment, the orientations of the reflecting members 31 and 32 are adjusted by the following method. First, a straight rod-shaped reference member 33 is installed on the two-dimensional locus 29 of the detection light L radially emitted from the range sensor 21, and is covered by the detection light L emitted from the range sensor 21 and reflected by the reflection members 31 and 32. The orientations of the reflective members 31 and 32 are changed so that the distances of the coatings 40 and 50 can be detected. According to this adjustment method, the orientations of the reflecting members 31 and 32 can be adjusted so as to be perpendicular to the two-dimensional locus 29 of the detection light L radially emitted from the range sensor 21. As a result, the three-dimensional shapes of the objects to be coated 40 and 50 can be measured with high accuracy.

また、本実施例1では、以下の角度調整支援方法により、水平面Hに対する下側反射部材32の傾きの角度αを調整することができる。図10に示すように、この角度調整支援方法では、レンジセンサ21の下方に配した下側反射部材32を、その反射面32R上に設定した傾動軸54を中心に傾動し得るように支持する。傾動軸54は、レンジセンサ21の真下に配され、レンジセンサ21と被塗物40,50の移動経路とを結ぶ水平面Hに対して直角であり、且つレンジセンサと傾動軸54とを結ぶ投光経路55に対して直角である。被塗物40,50の移動経路上には、レンジセンサ21と下側反射部材32とに対向し、且つ投光経路55と平行をなす基準面56が設置されている。 Further, in the first embodiment, the angle α of the inclination of the lower reflective member 32 with respect to the horizontal plane H can be adjusted by the following angle adjustment support method. As shown in FIG. 10, in this angle adjustment support method, the lower reflecting member 32 arranged below the range sensor 21 is supported so as to be tilted about the tilting shaft 54 set on the reflecting surface 32R. .. The tilting shaft 54 is arranged directly below the range sensor 21, is perpendicular to the horizontal plane H connecting the range sensor 21 and the moving paths of the objects 40 and 50, and is a throwing shaft connecting the range sensor and the tilting shaft 54. It is perpendicular to the optical path 55. On the movement paths of the objects to be coated 40 and 50, a reference surface 56 is installed so as to face the range sensor 21 and the lower reflection member 32 and to be parallel to the light projection path 55.

下側反射部材21の角度αを調整する際には、傾動軸54を支点として下側反射部材32を傾動させながら、レンジセンサ21から傾動軸54に向けて検知光Lを発する。この検知光Lは、投光経路55上を進み、反射面32Rにおける傾動軸54の設置位置で反射して反射経路57上を進み、基準面56で反射して反射経路57と投光経路55を逆行してレンジセンサ21に戻る。これにより、レンジセンサ21では、レンジセンサ21から、基準面56における検知光Lの照射位置に至る計測経路58(投光経路55と反射経路57を併せた経路)の距離Gを検知する。この計測経路58の距離Gは、下側反射部材32の角度αが変化するのに伴って増減する。 When adjusting the angle α of the lower reflecting member 21, the range sensor 21 emits the detection light L toward the tilting shaft 54 while tilting the lower reflecting member 32 with the tilting shaft 54 as a fulcrum. The detection light L travels on the light projection path 55, is reflected at the installation position of the tilt axis 54 on the reflection surface 32R, travels on the reflection path 57, is reflected by the reference surface 56, and is reflected by the reflection path 57 and the light projection path 55. Is reversed and returns to the range sensor 21. As a result, the range sensor 21 detects the distance G from the range sensor 21 to the measurement path 58 (the path in which the projection path 55 and the reflection path 57 are combined) from the range sensor 21 to the irradiation position of the detection light L on the reference surface 56. The distance G of the measurement path 58 increases or decreases as the angle α of the lower reflective member 32 changes.

レンジセンサ21で検出された計測経路58の距離Gは、下側反射部材32の角度αに応じて予め設定された演算値と比較される。下側反射部材32が設定すべき角度に至らない間は、計測経路58の距離Gの検出値は、演算値と合致しない。下側反射部材32の角度αが設定すべき角度αと合致すると、計測経路58の距離Gの検出値が演算値と合致するので、合致したことを条件として、下側反射部材32の傾動を停止する。以上により、下側反射部材32が所定の角度αに設定される。上側反射部材31の角度についても、上記と同様の角度調整支援方法によって調整することができる。 The distance G of the measurement path 58 detected by the range sensor 21 is compared with a preset calculated value according to the angle α of the lower reflection member 32. While the lower reflective member 32 does not reach the angle to be set, the detected value of the distance G of the measurement path 58 does not match the calculated value. When the angle α of the lower reflective member 32 matches the angle α to be set, the detected value of the distance G of the measurement path 58 matches the calculated value. Therefore, the tilt of the lower reflective member 32 is performed on condition that the angle α matches the calculated value. Stop. As described above, the lower reflective member 32 is set to a predetermined angle α. The angle of the upper reflective member 31 can also be adjusted by the same angle adjustment support method as described above.

図10に示すように、レンジセンサ21から傾動軸54(反射面32R)までの投光経路55の上下方向の距離をE1、レンジセンサ21から基準面56までの水平距離をF、傾動軸54(反射面32R)から基準面56における検知光Lの照射位置までの距離をE2、水平面Hに対する反射面32R(下側反射部材32)の傾き角度をα、水平面Hに対する反射経路57の傾き角度をβとする。計測経路58の距離Gは、G=E1+E2の式であらわされる。反射経路57の距離E2は、E2=F/cosβとなる。また、下側反射部材32の傾き角度αと水平面Hに対する反射経路57の角度βは、2(α+β)+(90−β)=180の関係式であらわされるので、β=90−2αとなる。 As shown in FIG. 10, the vertical distance of the projection path 55 from the range sensor 21 to the tilt axis 54 (reflection surface 32R) is E1, the horizontal distance from the range sensor 21 to the reference surface 56 is F, and the tilt axis 54. The distance from (reflection surface 32R) to the irradiation position of the detection light L on the reference surface 56 is E2, the inclination angle of the reflection surface 32R (lower reflection member 32) with respect to the horizontal plane H is α, and the inclination angle of the reflection path 57 with respect to the horizontal plane H. Let be β. The distance G of the measurement path 58 is expressed by the equation G = E1 + E2. The distance E2 of the reflection path 57 is E2 = F / cosβ. Further, since the inclination angle α of the lower reflecting member 32 and the angle β of the reflection path 57 with respect to the horizontal plane H are expressed by the relational expression of 2 (α + β) + (90-β) = 180, β = 90-2α. ..

演算値は、想定され得る下側反射部材32の複数の角度αの値に応じて、夫々、予め演算されている。具体例としては、投光経路55の距離E1を2,000mmとし、レンジセンサ21から基準面56までの水平距離Fを2,440mmとし、下側反射部材32の設定すべき角度αと反射経路57の傾き角度βを30°とした場合、反射経路57の距離E2の演算値は2817.5mmとなるので、計測経路58の距離Gの演算値は4817.5mmと設定されている。この場合、計測経路58の距離Gの検出値が4817.5mmであると検出された時点で、下側反射部材32の傾動を停止する。 The calculated values are pre-calculated according to the values of the plurality of angles α of the lower reflective member 32 that can be assumed. As a specific example, the distance E1 of the light projection path 55 is 2,000 mm, the horizontal distance F from the range sensor 21 to the reference surface 56 is 2,440 mm, and the angle α to be set and the reflection path of the lower reflection member 32. When the inclination angle β of 57 is 30 °, the calculated value of the distance E2 of the reflection path 57 is 2817.5 mm, so the calculated value of the distance G of the measurement path 58 is set to 4817.5 mm. In this case, when the detected value of the distance G of the measurement path 58 is detected to be 4817.5 mm, the tilting of the lower reflective member 32 is stopped.

また、投光経路55の距離E1とレンジセンサ21から基準面56までの水平距離Fが一定であって、下側反射部材32の設定すべき角度αを37.5°とし、反射経路57の傾き角度βを15°とした場合は、反射経路57の距離E2の演算値が2526.1mmとなるので、計測経路58の距離Gの演算値は4526.1mmであると設定されている。下側反射部材32の設定すべき角度αを22.5°とし、反射経路57の傾き角度βを45°とした場合は、反射経路57の距離E2の演算値が3450.7mmとなるので、計測経路58の距離Gの演算値は5450.7mmと設定されている。これらの場合、計測経路58の距離Gの検出値が4526.1mm又は5450.7mmになると、傾動中の下側反射部材32の角度αが15°又は45°になったということが判る。 Further, the distance E1 of the light projection path 55 and the horizontal distance F from the range sensor 21 to the reference surface 56 are constant, and the angle α to be set of the lower reflection member 32 is 37.5 °, and the reflection path 57 When the tilt angle β is 15 °, the calculated value of the distance E2 of the reflection path 57 is 2526.1 mm, so that the calculated value of the distance G of the measurement path 58 is set to 4526.1 mm. When the angle α to be set of the lower reflection member 32 is 22.5 ° and the inclination angle β of the reflection path 57 is 45 °, the calculated value of the distance E2 of the reflection path 57 is 3450.7 mm. The calculated value of the distance G of the measurement path 58 is set to 5450.7 mm. In these cases, when the detected value of the distance G of the measurement path 58 becomes 4526.1 mm or 5450.7 mm, it can be seen that the angle α of the lower reflective member 32 during tilting becomes 15 ° or 45 °.

本実施例1の反射部材31,32の角度調整支援方法は、三次元形状計測装置20において、反射部材31,32を、その反射面31R,32R上に設定した傾動軸54を中心に傾動し得るように支持し、レンジセンサ21から傾動軸54に向かう投光経路55と平行な基準面56を、レンジセンサ21及び反射面31R,32Rに臨むように設けた上で、レンジセンサ21から投光経路55上に検知光Lを発する。この検知光Lにより、レンジセンサ21から反射面31R,32Rを経て基準面56に至る計測経路58の距離Gが検出される。そして、この計測経路58の距離Gの検出値が、反射部材の角度αに応じて演算された計測経路58の距離Gの演算値と合致するように、反射部材31,32の角度αを調整する。この角度調整支援方法よれば、反射部材31,32の角度設定を簡単に行うことができる。 In the angle adjustment support method for the reflecting members 31 and 32 of the first embodiment, in the three-dimensional shape measuring device 20, the reflecting members 31 and 32 are tilted about a tilting shaft 54 set on the reflecting surfaces 31R and 32R. A reference surface 56 parallel to the light projection path 55 from the range sensor 21 toward the tilt axis 54 is provided so as to face the range sensor 21 and the reflection surfaces 31R and 32R, and then projected from the range sensor 21. The detection light L is emitted on the optical path 55. With this detection light L, the distance G of the measurement path 58 from the range sensor 21 to the reference surface 56 via the reflection surfaces 31R and 32R is detected. Then, the angles α of the reflective members 31 and 32 are adjusted so that the detected value of the distance G of the measurement path 58 matches the calculated value of the distance G of the measurement path 58 calculated according to the angle α of the reflective member. To do. According to this angle adjustment support method, the angles of the reflecting members 31 and 32 can be easily set.

<他の実施例>
本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
(1)上記実施例では、1つの被計測物を1つのレンジセンサで計測したが、1つの被計測物を複数のレンジセンサで計測してもよい。
(2)上記実施例では、レンジセンサと1つの死角領域との間の検知光の往復を、1つの反射部材だけで行わせるようにしたが、レンジセンサと1つの死角領域との間の検知光の往復を、複数の反射部材で行ってもよい。
(3)上記実施例では、1つのレンジセンサに対して2つの反射部材を設けたが、1つのレンジセンサに対して設ける反射部材の数は、1つだけでもよく、3つ以上であってもよい。
(4)上記実施例では、1つの被計測物に対して2つの反射部材を設けたが、1つの被計測物に対して設ける反射部材の数は、1つだけでもよく、3つ以上であってもよい。
(5)上記実施例では、被計測物の外面のうちレンジセンサと対向する表面側の形状のみを計測したが、被計測物の表面側の形状に加え、裏面側の形状も併せて計測してもよい。この場合、レンジセンサの設置位置と設置数、及び反射部材の設置位置、設置の向き、設置数は、適宜に設定すればよい。
(6)上記実施例では、被計測物が被塗物であるが、第1及び第3の発明は、被計測物が被塗物以外のものである場合にも適用できる。
<Other Examples>
The present invention is not limited to the examples described by the above description and drawings, and for example, the following examples are also included in the technical scope of the present invention.
(1) In the above embodiment, one object to be measured is measured by one range sensor, but one object to be measured may be measured by a plurality of range sensors.
(2) In the above embodiment, the reciprocation of the detection light between the range sensor and one blind spot area is performed by only one reflecting member, but the detection between the range sensor and one blind spot area is performed. The light reciprocates may be performed by a plurality of reflecting members.
(3) In the above embodiment, two reflective members are provided for one range sensor, but the number of reflective members provided for one range sensor may be only one or three or more. May be good.
(4) In the above embodiment, two reflective members are provided for one object to be measured, but the number of reflective members provided for one object to be measured may be only one or three or more. There may be.
(5) In the above embodiment, only the shape of the outer surface of the object to be measured on the front surface side facing the range sensor was measured, but in addition to the shape on the front surface side of the object to be measured, the shape on the back surface side was also measured. You may. In this case, the installation position and number of range sensors, the installation position of the reflective member, the direction of installation, and the number of installations may be appropriately set.
(6) In the above embodiment, the object to be measured is the object to be coated, but the first and third inventions can be applied even when the object to be measured is something other than the object to be coated.

10…塗装装置
12…コンベア
13…塗装ガン
20…三次元形状計測装置
21…レンジセンサ
28…回転中心軸
29…二次元軌跡
31…上側反射部材(反射部材)
32…下側反射部材(反射部材)
32R…反射面
33…基準部材
34…制御装置(塗装停止装置)
40…第1被塗物(被計測物)
50…第2被塗物(被計測物)
54…傾動軸
55…投光経路
56…基準面
58…計測経路
α…反射部材の角度
B1,B2,B3,B4,B5,B6…死角領域
C1,C2,C3,C4…制御用データ
L…検知光
S1,S2,S3,S4…形状データ
10 ... Painting device 12 ... Conveyor 13 ... Painting gun 20 ... Three-dimensional shape measuring device 21 ... Range sensor 28 ... Rotation center axis 29 ... Two-dimensional locus 31 ... Upper reflective member (reflecting member)
32 ... Lower reflective member (reflecting member)
32R ... Reflective surface 33 ... Reference member 34 ... Control device (painting stop device)
40 ... First object to be coated (object to be measured)
50 ... Second object to be coated (object to be measured)
54 ... Tilt axis 55 ... Light projection path 56 ... Reference surface 58 ... Measurement path α ... Angle of reflective member B1, B2, B3, B4, B5, B6 ... Blind spot area C1, C2, C3, C4 ... Control data L ... Detection light S1, S2, S3, S4 ... Shape data

Claims (8)

検知光を発する投光器と、前記検知光を受光する受光器と、回転可能な投受光用ミラーとを有するレンジセンサと、
前記検知光を、前記レンジセンサと被計測物との間で反射させる反射部材とを備え、
前記投受光用ミラーは、前記投受光用ミラーの回転中心軸に対して45°の角度で傾いており、
前記投光器から発せられた前記検知光が、回転している前記投受光用ミラーで反射することによって前記被計測物に向けて径方向外方へ放射され、
前記被計測物で反射した前記検知光が、回転している前記投受光用ミラーで反射することによって前記受光器で受光され、
前記反射部材の反射面が、前記レンジセンサから放射状に発せられる前記検知光の二次元軌跡と直交する向きであり、
前記受光器で受光した前記検知光の位相情報と、前記投受光用ミラーの回転位置情報とに基づいて、前記被計測物までの距離を演算し、前記被計測物の二次元形状のデータを得ることを特徴とする三次元形状計測装置。
A range sensor having a floodlight that emits detection light, a receiver that receives the detection light, and a rotatable mirror for projection and light reception .
A reflective member that reflects the detected light between the range sensor and the object to be measured is provided.
The light receiving / receiving mirror is tilted at an angle of 45 ° with respect to the rotation center axis of the light receiving / receiving mirror.
The detection light emitted from the floodlight is reflected by the rotating mirror for projection and reception, and is radiated outward in the radial direction toward the object to be measured.
The detection light reflected by the object to be measured is reflected by the rotating mirror for light emission and reception, and is received by the light receiver.
The direction in which the reflective surface of the reflective member is orthogonal to the two-dimensional locus of the detected light emitted radially from the range sensor.
Based on the phase information of the detected light received by the light receiver and the rotation position information of the light receiving / receiving mirror, the distance to the measured object is calculated, and the two-dimensional shape data of the measured object is obtained. A three-dimensional shape measuring device characterized by obtaining .
前記反射部材が、前記レンジセンサと、前記被計測物における前記レンジセンサの死角領域とに面するように配されていることを特徴とする請求項1記載の三次元形状計測装置。 The three-dimensional shape measuring device according to claim 1, wherein the reflecting member is arranged so as to face the range sensor and the blind spot region of the range sensor in the object to be measured. 前記被計測物を、前記レンジセンサの回転中心軸と平行に搬送するコンベアを備えていることを特徴とする請求項1又は請求項2記載の三次元形状計測装置。 The three-dimensional shape measuring device according to claim 1 or 2, further comprising a conveyor that conveys the object to be measured in parallel with the rotation center axis of the range sensor. 請求項1記載の三次元形状計測装置と、
前記被計測物に対して相対移動しながら前記被計測物に塗料を塗布する塗装ガンとを備えていることを特徴とする塗装装置。
The three-dimensional shape measuring device according to claim 1 and
A coating apparatus including a coating gun that applies paint to the object to be measured while moving relative to the object to be measured.
形状の異なる複数種類の前記被計測物に関する三次元の形状データと、前記複数種類の被計測物と対応する複数の制御用データとを記憶し、前記制御用データに基づいて前記塗装ガンの動きを制御する制御装置を備えていることを特徴とする請求項4記載の塗装装置。 Three-dimensional shape data relating to a plurality of types of objects to be measured having different shapes and a plurality of control data corresponding to the plurality of types of objects to be measured are stored, and the movement of the coating gun is based on the control data. The coating device according to claim 4, further comprising a control device for controlling the above. 前記被計測物の三次元の形状データを記憶し、塗装対象である前記被計測物の三次元形状の計測結果が、記憶されている前記形状データに適合しない場合は、前記塗装ガンによる塗装を停止する塗装停止装置を備えていることを特徴とする請求項4又は請求項5記載の塗装装置。 The three-dimensional shape data of the object to be measured is stored, and if the measurement result of the three-dimensional shape of the object to be coated does not match the stored shape data, painting with the coating gun is performed. The coating device according to claim 4 or 5, further comprising a coating stop device for stopping. 請求項1ないし請求項3のいずれか1項に記載の三次元形状計測装置において、
前記レンジセンサから前記投受光用ミラーの回転中心軸と直交する方向へ放射状に発せられる前記検知光の二次元軌跡上に、直線棒状の基準部材を設置し、
前記反射部材の前記反射面が前記投受光用ミラーの回転中心軸に対して傾いている場合には、前記反射部材で反射した前記検知光が前記二次元軌跡及び前記基準部材から外れるようにした上で、
前記レンジセンサから発せられて前記反射部材で反射した前記検知光によって前記被計測物の距離を検出できるように、前記反射部材の向きを調整することを特徴とする三次元形状計測装置における反射部材の調整方法。
In the three-dimensional shape measuring device according to any one of claims 1 to 3.
Wherein the range sensor on a two-dimensional trajectory of the detection light emitted radially to the rotational center axis orthogonal to the direction of the light emitting and receiving mirror has established a reference member of the straight rod-shaped,
When the reflection surface of the reflection member is tilted with respect to the rotation center axis of the light receiving / receiving mirror, the detection light reflected by the reflection member is deviated from the two-dimensional locus and the reference member. Above,
A reflective member in a three-dimensional shape measuring device, characterized in that the orientation of the reflective member is adjusted so that the distance of the object to be measured can be detected by the detection light emitted from the range sensor and reflected by the reflective member. Adjustment method.
請求項1ないし請求項3のいずれか1項に記載の三次元形状計測装置において、
前記反射部材を、その反射面上に設定した傾動軸を中心に傾動し得るように支持し、
前記レンジセンサから前記傾動軸に向かう投光経路と平行な基準面を、前記レンジセンサ及び前記反射面に臨むように設け、
前記レンジセンサから前記投光経路上に検知光を発することにより、前記レンジセンサから前記反射面を経て前記基準面に至る計測経路の距離を検出し、
前記計測経路の検出値が、前記反射部材の傾き角度に応じて演算された演算値と合致するように、前記反射部材の角度を調整することを特徴とする三次元形状計測装置における反射部材の角度調整支援方法。
In the three-dimensional shape measuring device according to any one of claims 1 to 3.
The reflective member is supported so as to be tilted about a tilt axis set on the reflective surface.
A reference plane parallel to the light projection path from the range sensor to the tilt axis is provided so as to face the range sensor and the reflection surface.
By emitting the detection light from the range sensor on the projection path, the distance of the measurement path from the range sensor to the reference plane via the reflection surface is detected.
A reflective member in a three-dimensional shape measuring device, characterized in that the angle of the reflective member is adjusted so that the detected value of the measurement path matches the calculated value calculated according to the tilt angle of the reflective member. Angle adjustment support method.
JP2016227666A 2016-11-24 2016-11-24 A method for adjusting a reflective member in a three-dimensional shape measuring device, a painting device, and a three-dimensional shape measuring device, and a method for supporting angle adjustment of a reflective member in a three-dimensional shape measuring device Active JP6820546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016227666A JP6820546B2 (en) 2016-11-24 2016-11-24 A method for adjusting a reflective member in a three-dimensional shape measuring device, a painting device, and a three-dimensional shape measuring device, and a method for supporting angle adjustment of a reflective member in a three-dimensional shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016227666A JP6820546B2 (en) 2016-11-24 2016-11-24 A method for adjusting a reflective member in a three-dimensional shape measuring device, a painting device, and a three-dimensional shape measuring device, and a method for supporting angle adjustment of a reflective member in a three-dimensional shape measuring device

Publications (2)

Publication Number Publication Date
JP2018084489A JP2018084489A (en) 2018-05-31
JP6820546B2 true JP6820546B2 (en) 2021-01-27

Family

ID=62238228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016227666A Active JP6820546B2 (en) 2016-11-24 2016-11-24 A method for adjusting a reflective member in a three-dimensional shape measuring device, a painting device, and a three-dimensional shape measuring device, and a method for supporting angle adjustment of a reflective member in a three-dimensional shape measuring device

Country Status (1)

Country Link
JP (1) JP6820546B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11536807B2 (en) * 2019-09-13 2022-12-27 Waymo Llc Systems and methods for modifying LIDAR field of view
JP2021135155A (en) * 2020-02-27 2021-09-13 株式会社東芝 System and method
JP7464222B2 (en) 2020-04-27 2024-04-09 旭サナック株式会社 Sensor and painting device equipped with said sensor
JP7468863B2 (en) * 2020-04-27 2024-04-16 旭サナック株式会社 Sensor and painting device equipped with said sensor
JP7431413B2 (en) * 2020-04-27 2024-02-15 旭サナック株式会社 Sensor and painting device equipped with this sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58141804U (en) * 1982-03-19 1983-09-24 トキコ株式会社 Object shape identification device
JPS6342411A (en) * 1986-08-08 1988-02-23 Maki Seisakusho:Kk Method and instrument for inspecting three-dimensional measurement of body
JPS63256155A (en) * 1987-04-14 1988-10-24 Parker Aresutaa Kk Automatic painting device
US6122045A (en) * 1997-10-28 2000-09-19 Materials Technologies Corporation Apparatus and method for viewing and inspecting a circumferential surface area of an object
JP4075191B2 (en) * 1999-02-22 2008-04-16 アイシン精機株式会社 Shape measuring apparatus and shape measuring method
JP2003329424A (en) * 2002-05-14 2003-11-19 Mitsubishi Electric Corp Three-dimensional shape measuring instrument

Also Published As

Publication number Publication date
JP2018084489A (en) 2018-05-31

Similar Documents

Publication Publication Date Title
JP6820546B2 (en) A method for adjusting a reflective member in a three-dimensional shape measuring device, a painting device, and a three-dimensional shape measuring device, and a method for supporting angle adjustment of a reflective member in a three-dimensional shape measuring device
JP6771994B2 (en) Measurement method and laser scanner
US11009607B2 (en) Surveying system
US20170161889A1 (en) Laser projection system and method
JP6855316B2 (en) Surveying system
US8699036B2 (en) Device for optically scanning and measuring an environment
US20100318319A1 (en) Projection apparatus
JP6817097B2 (en) Surveying system
JP2008533479A (en) Posture measurement method and system for measuring the position and orientation of an object to be measured
JP2017019072A (en) Position measurement system
CN106716056B (en) Method and apparatus for measuring surface shape
US20170082748A1 (en) Polygon mirror, fan beam output device, and survey system
JP6943742B2 (en) Assembling method of surveying device and total station and 2D laser scanner
US10935636B2 (en) Laser scanner
US20230305152A2 (en) Three-dimensional survey apparatus, three-dimensional survey method, and three-dimensional survey program
JP6603289B2 (en) Robot, robot system, and robot coordinate system setting method
JP5823367B2 (en) measuring device
JP7431413B2 (en) Sensor and painting device equipped with this sensor
JP2001075645A (en) Method and equipment for detecting position of mobing object
JP6913422B2 (en) Surveying system
JP7468863B2 (en) Sensor and painting device equipped with said sensor
JP2021173661A (en) Sensor and coating device having the same
JP7464222B2 (en) Sensor and painting device equipped with said sensor
JP6749191B2 (en) Scanner and surveying equipment
JP2002188918A (en) Automated vehicle position measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201222

R150 Certificate of patent or registration of utility model

Ref document number: 6820546

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250