JP7468863B2 - Sensor and painting device equipped with said sensor - Google Patents

Sensor and painting device equipped with said sensor Download PDF

Info

Publication number
JP7468863B2
JP7468863B2 JP2020078289A JP2020078289A JP7468863B2 JP 7468863 B2 JP7468863 B2 JP 7468863B2 JP 2020078289 A JP2020078289 A JP 2020078289A JP 2020078289 A JP2020078289 A JP 2020078289A JP 7468863 B2 JP7468863 B2 JP 7468863B2
Authority
JP
Japan
Prior art keywords
dimensional shape
identification means
measured
measurement operation
specifying means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020078289A
Other languages
Japanese (ja)
Other versions
JP2021173659A (en
Inventor
達哉 西尾
渉 西連寺
建三 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Sunac Corp
Original Assignee
Asahi Sunac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Sunac Corp filed Critical Asahi Sunac Corp
Priority to JP2020078289A priority Critical patent/JP7468863B2/en
Publication of JP2021173659A publication Critical patent/JP2021173659A/en
Application granted granted Critical
Publication of JP7468863B2 publication Critical patent/JP7468863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Spray Control Apparatus (AREA)

Description

本発明は、センサ、及びこのセンサを備える塗装装置に関するものである。 The present invention relates to a sensor and a coating device equipped with the sensor.

特許文献1には、構成片(被測定物)を挟み、対向する位置に一対のセンサが配置されたコーティング設備が開示されている。このコーティング設備は、構成片を挟み、噴霧器が配置されており、各センサから発する検知光によって測定された構成片の寸法に基づいて各噴霧器が前後方向に移動し、これによって、構成片に対して良好に塗料を噴霧することができる。各センサは、コンベアの移動軸に垂直である鉛直面に対して所定の角度で傾斜している。こうした構成は、各センサが互いに干渉し合うことを抑える目的であると考えられ、各センサが同時に動作していることを示唆するものと考えられる。 Patent Document 1 discloses a coating equipment in which a pair of sensors are arranged at opposing positions, sandwiching a component piece (measurement object). In this coating equipment, sprayers are arranged to sandwich the component piece, and each sprayer moves back and forth based on the dimensions of the component piece measured by detection light emitted from each sensor, thereby allowing paint to be sprayed effectively onto the component piece. Each sensor is inclined at a predetermined angle with respect to a vertical plane that is perpendicular to the conveyor movement axis. This configuration is thought to be intended to prevent the sensors from interfering with each other, and suggests that the sensors are operating simultaneously.

特表2018-506427号公報JP 2018-506427 A

検知光が構成片から反射する向きは一様ではなく、検知光が照射される向きに対して構成片がなす角度等によって様々な向きに反射し得ると考えられる。このため、各センサが同時に動作している場合、構成片によって反射した一方のセンサが発した検知光を、他方のセンサが受光することが起こり得る。このような場合、構成片の寸法を正確に計測できなくなるおそれがある。 The direction in which the detection light is reflected from the component pieces is not uniform, and it is thought that it can be reflected in various directions depending on factors such as the angle the component pieces make with respect to the direction in which the detection light is irradiated. For this reason, when the sensors are operating simultaneously, it is possible that the detection light emitted by one sensor and reflected by a component piece will be received by the other sensor. In such cases, there is a risk that the dimensions of the component pieces cannot be measured accurately.

本発明は上記のような事情に基づいて完成されたものであって、被測定物の外形を良好に測定することができるセンサ、及びこのセンサを備える塗装装置を提供することを目的とする。 The present invention was developed based on the above circumstances, and aims to provide a sensor that can accurately measure the external shape of an object to be measured, and a coating device equipped with this sensor.

第1発明のセンサは、
被測定物の三次元形状を特定する三次元形状特定手段を複数有し、各前記三次元形状特定手段が前記被測定物に対向するように配置された三次元形状認識部と、
各前記三次元形状特定手段の測定動作を個別に制御する制御装置と、
を備えている。
The sensor of the first invention comprises:
a three-dimensional shape recognition unit having a plurality of three-dimensional shape specifying means for specifying a three-dimensional shape of a measurement object, each of the three-dimensional shape specifying means being disposed so as to face the measurement object;
a control device that individually controls the measurement operation of each of the three-dimensional shape specifying means;
It is equipped with:

第2発明の塗装装置は、
第1発明のセンサと、
前記被測定物に対して相対移動しながら前記被測定物に塗料を噴出する塗装ガンと、
を備え、
前記三次元形状特定手段は、前記被測定物の被塗面までの距離を計測して前記被測定物の三次元形状を特定し、
前記制御装置は、前記三次元形状特定手段によって計測された前記距離の情報に基づいて、前記被塗面に塗料を塗着させる際の塗装条件を設定又は変更し、前記塗装ガンの前記被測定物に対する移動を制御する。
The coating device of the second invention is
A sensor according to the first aspect of the present invention;
a paint gun that sprays paint onto the object to be measured while moving relative to the object to be measured;
Equipped with
the three-dimensional shape specifying means measures a distance to a surface of the object to be measured and specifies a three-dimensional shape of the object to be measured;
The control device sets or changes the painting conditions for applying paint to the surface to be painted based on the distance information measured by the three-dimensional shape identification means, and controls the movement of the paint gun relative to the measured object.

第1発明のセンサは、制御装置によって複数の三次元形状特定手段の測定動作を個別に制御するため、各三次元形状特定手段の測定動作のばらつきに起因する被測定物の三次元形状特定結果の精度低下を抑えることができる。 The sensor of the first invention uses a control device to individually control the measurement operations of multiple three-dimensional shape determination means, making it possible to suppress a decrease in accuracy of the three-dimensional shape determination results of the measured object caused by variations in the measurement operations of each three-dimensional shape determination means.

第2発明の塗装装置は、制御装置によって複数の三次元形状特定手段の測定動作を個別に制御するため、各三次元形状特定手段の測定動作のばらつきに起因する被測定物の三次元形状特定結果の精度低下を抑えることができる。これによって、被測定物の三次元形状を良好に特定することができ、これにともない良好に塗装ガンの移動を制御することができる。 The coating device of the second invention uses a control device to individually control the measurement operations of multiple three-dimensional shape identification means, making it possible to suppress a decrease in the accuracy of the three-dimensional shape identification results of the measured object caused by variations in the measurement operations of each three-dimensional shape identification means. This makes it possible to accurately identify the three-dimensional shape of the measured object, and therefore to accurately control the movement of the paint gun.

図1は、本願発明の塗装装置及び三次元形状認識部を左方から見た側面図である。FIG. 1 is a side view of a coating device and a three-dimensional shape recognition unit according to the present invention, as viewed from the left. 図2は、塗装装置を下流側から見た側面図である。FIG. 2 is a side view of the coating device as seen from the downstream side. 図3は、センサを下流側から見た概略側面図であって、各三次元形状特定手段によって被塗物の被塗面を計測している状態を示す。FIG. 3 is a schematic side view of the sensor as seen from the downstream side, showing the state in which the surface of the workpiece is being measured by each three-dimensional shape specifying means. 図4は、三次元形状特定手段から放射する検知光がなす対象範囲を示す概略平面図である。FIG. 4 is a schematic plan view showing the target range of the detection light emitted from the three-dimensional shape specifying means. 図5は、三次元形状認識部、及び制御装置の構成を示すブロック図である。FIG. 5 is a block diagram showing the configuration of the three-dimensional shape recognition unit and the control device.

第1発明のセンサは、測定媒体を発することによって測定動作を行い、制御装置は、複数の三次元形状特定手段が直列に配置された順番に一部ずつ測定動作を行わせ、他の三次元形状特定手段が測定動作を行わせないように各三次元形状特定手段の測定動作を制御してもよい。この構成によれば、複数の三次元形状特定手段が同時に測定動作を行うことがないため、複数の三次元形状特定手段同士から発した測定媒体が互いに干渉し合うおそれがない。これによって、被測定物の三次元形状を良好に測定することができる。 The sensor of the first invention performs a measurement operation by emitting a measurement medium, and the control device may control the measurement operation of each three-dimensional shape determination means so that the measurement operations of the multiple three-dimensional shape determination means are performed one by one in the order in which they are arranged in series, and the measurement operations of the other three-dimensional shape determination means are not performed. With this configuration, the multiple three-dimensional shape determination means do not perform measurement operations at the same time, so there is no risk of the measurement media emitted from the multiple three-dimensional shape determination means interfering with each other. This allows the three-dimensional shape of the object to be measured to be measured satisfactorily.

<実施例1>
以下、本発明を具体化した実施例1を図1から図5を参照して説明する。尚、以下の説明において、前後の方向については、図1における左方を前方、右方を後方と定義し、上下の方向については、図1にあらわれる向きをそのまま上方、下方と定義し、左右の方向については、図2、3にあらわれる向きをそのまま左方、右方と定義する。なお、左側のレシプロケータ14の塗装ガン13における移動方向については、レシプロケータ14のアーム14Aが上下方向に移動する方向に平行であり、且つコンベア12の左右方向の中心を通る基準線CCを基準にして、被塗物40に向けて塗装ガン13が接近する方向を前進方向F1と定義し、被塗物40から遠ざかる方向を後進方向R1と定義する(図2参照。)。右側のレシプロケータ14の塗装ガン13における移動方向については、レシプロケータ14のアーム14Aが上下方向に移動する方向に平行であり、且つコンベア12の左右方向の中心を通る基準線CCを基準にして、被塗物40に向けて塗装ガン13が接近する方向を前進方向F2と定義し、被塗物40から遠ざかる方向を後進方向R2と定義する(図2参照。)。
Example 1
A first embodiment of the present invention will be described below with reference to Figures 1 to 5. In the following description, the left side in Figure 1 is defined as the front, and the right side as the rear, the up-down direction is defined as the up-down direction as it appears in Figure 1, and the left-right direction is defined as the left-right direction as it appears in Figures 2 and 3. With respect to the direction of movement of the coating gun 13 of the left reciprocator 14, the direction in which the coating gun 13 approaches the workpiece 40 is defined as the forward direction F1, and the direction in which the coating gun 13 moves away from the workpiece 40 is defined as the backward direction R1 (see Figure 2). Regarding the direction of movement of the paint gun 13 of the right-side reciprocator 14, the direction in which the paint gun 13 approaches the workpiece 40 is defined as the forward direction F2, and the direction in which it moves away from the workpiece 40 is defined as the backward direction R2, based on a reference line CC that is parallel to the direction in which the arm 14A of the reciprocator 14 moves up and down and passes through the center of the conveyor 12 in the left-right direction (see Figure 2).

本実施例1の塗装装置10は、図1、2、3に示すように、塗装ブース11と、コンベア12と、塗装ガン13と、一対のレシプロケータ14と、センサ19とを備えている。塗装ブース11は、箱状をなしている。塗装ブース11は、左側部11Aと右側部11Bとが離隔して左右に並んでいる(図2参照。)。左側部11A、及び右側部11Bの各々は、コンベア12の左方と右方とに配置されている(図2参照。)。コンベア12は、塗装ブース11内において、被測定物である被塗物40を、所定間隔を空けて吊り下げた状態で後方向(以下、搬送方向Trともいう)へ水平に搬送する。コンベア12が被塗物40を搬送する搬送速度は、例えば、0.1m/minから6m/minである。コンベア12に吊り下げられた被塗物40は、左側部11Aと右側部11Bとの間を搬送方向Trに通過する。 As shown in Figures 1, 2, and 3, the coating device 10 of this embodiment 1 includes a coating booth 11, a conveyor 12, a coating gun 13, a pair of reciprocators 14, and a sensor 19. The coating booth 11 is box-shaped. The coating booth 11 has a left side 11A and a right side 11B spaced apart from each other (see Figure 2). The left side 11A and the right side 11B are disposed to the left and right of the conveyor 12 (see Figure 2). The conveyor 12 horizontally transports the coating object 40, which is the object to be measured, in the backward direction (hereinafter also referred to as the transport direction Tr) in the coating booth 11 while hanging the coating object 40 at a predetermined interval. The transport speed at which the conveyor 12 transports the coating object 40 is, for example, 0.1 m/min to 6 m/min. The workpiece 40 suspended from the conveyor 12 passes between the left side 11A and the right side 11B in the transport direction Tr.

塗装ガン13は、塗装ブース11外に設置された各レシプロケータ14のアーム14Aの先端部に取り付けられ、被塗物40の被塗面41に向けて塗料を噴出する。各レシプロケータ14は、搬送方向Trにおいて、互いにずれて配置されている(図示せず。)。塗装ブース11の左側部11Aの左面には、上下方向に延びてスリット11Cが開口して形成されている(図2参照。)。塗装ブース11の右側部11Bの右面には、上下方向に延びてスリット11Dが開口して形成されている(図2参照。)。塗装ブース11の左方に配置されたレシプロケータ14のアーム14Aは、スリット11Cに挿通されている(図2参照。)。塗装ブース11の右方に配置されたレシプロケータ14のアーム14Aは、スリット11Dに挿通されている(図2参照。)。塗装ガン13は、塗装ブース11内に配置されている(図2参照。)。各レシプロケータ14は、塗装ガン13を被塗物40の搬送方向Tr(図1参照)と交差する二次元方向(上下方向、及び前進方向F1,F2・後進方向R1,R2(図2参照))に移動させる。つまり、塗装ガン13は、被塗物40に対して相対移動しながら被塗物40に塗料を噴出するのである。各レシプロケータ14は、コンベア12を挟み、塗装ガン13が対向するように配置される。 The paint gun 13 is attached to the tip of the arm 14A of each reciprocator 14 installed outside the paint booth 11, and sprays paint toward the surface 41 of the workpiece 40. The reciprocators 14 are arranged offset from each other in the transport direction Tr (not shown). A slit 11C is formed on the left side of the left side portion 11A of the paint booth 11 and extends in the vertical direction (see FIG. 2). A slit 11D is formed on the right side of the right side portion 11B of the paint booth 11 and extends in the vertical direction (see FIG. 2). The arm 14A of the reciprocator 14 arranged on the left side of the paint booth 11 is inserted into the slit 11C (see FIG. 2). The arm 14A of the reciprocator 14 arranged on the right side of the paint booth 11 is inserted into the slit 11D (see FIG. 2). The paint gun 13 is arranged inside the paint booth 11 (see FIG. 2). Each reciprocator 14 moves the paint gun 13 in two-dimensional directions (up and down, as well as forward directions F1, F2 and backward directions R1, R2 (see FIG. 2)) that intersect with the transport direction Tr (see FIG. 1) of the workpiece 40. In other words, the paint gun 13 sprays paint onto the workpiece 40 while moving relative to the workpiece 40. The reciprocators 14 are positioned so that the paint guns 13 face each other, sandwiching the conveyor 12 between them.

センサ19は、一対の三次元形状認識部20と、制御装置34を有している(図5参照。)。各三次元形状認識部20は、塗装ブース11における一対のレシプロケータ14及び塗装ガン13よりも被塗物40の搬送方向Trにおける上流側に配されている(図1参照。)。三次元形状認識部20は、搬送される被塗物40の被塗面41の三次元形状を計測するものである。各三次元形状認識部20は、複数の三次元形状特定手段21を備えている。一方の三次元形状認識部20の三次元形状特定手段21は、コンベア12の左側に配置されている。他方の三次元形状認識部20の三次元形状特定手段21は、コンベア12の右側に配置されている。 The sensor 19 has a pair of three-dimensional shape recognition units 20 and a control device 34 (see FIG. 5). Each three-dimensional shape recognition unit 20 is arranged upstream of the pair of reciprocators 14 and the painting gun 13 in the painting booth 11 in the conveying direction Tr of the workpiece 40 (see FIG. 1). The three-dimensional shape recognition unit 20 measures the three-dimensional shape of the coating surface 41 of the conveyed workpiece 40. Each three-dimensional shape recognition unit 20 has a plurality of three-dimensional shape identification means 21. The three-dimensional shape identification means 21 of one three-dimensional shape recognition unit 20 is arranged on the left side of the conveyor 12. The three-dimensional shape identification means 21 of the other three-dimensional shape recognition unit 20 is arranged on the right side of the conveyor 12.

各三次元形状特定手段21は、図5に示すように、モータ22と、モータ22によって回転駆動される投受光用ミラー23と、回転位置検出器24と、投光器25と、受光器26と、受光器26に接続された距離演算部27と、を備えている。各三次元形状特定手段21は、所謂、ToF(Time Of Flight)センサである。ToFセンサは、自身から発した測定媒体であるレーザ光が対象物に照射され、対象物から反射したレーザ光が自身に戻るまでに要した時間に基づいて、自身と対象物との距離を計測することができる。各三次元形状特定手段21の仕様は互いに同じである。各三次元形状特定手段21は、レーザ光(測定媒体)を発することによって被塗物40の被塗面41上の任意の点と自身との距離(すなわち、被塗面41までの距離)を計測する測定動作を行い、これによって、被塗物40の三次元形状を特定する。 As shown in FIG. 5, each three-dimensional shape determination means 21 includes a motor 22, a light projecting and receiving mirror 23 rotated by the motor 22, a rotational position detector 24, a light projector 25, a light receiver 26, and a distance calculation unit 27 connected to the light receiver 26. Each three-dimensional shape determination means 21 is a so-called ToF (Time Of Flight) sensor. A ToF sensor can measure the distance between itself and an object based on the time it takes for a laser beam, which is a measurement medium emitted from itself, to be irradiated onto the object and for the laser beam reflected from the object to return to itself. The specifications of each three-dimensional shape determination means 21 are the same. Each three-dimensional shape determination means 21 performs a measurement operation to measure the distance between itself and any point on the coating surface 41 of the coating object 40 (i.e., the distance to the coating surface 41) by emitting laser beam (measurement medium), thereby determining the three-dimensional shape of the coating object 40.

モータ22の回転中心軸28は被塗物40の搬送方向Trと平行な方向を向いている(図1参照。)。尚、本実施例では、モータ22の回転中心軸28と三次元形状特定手段21の回転中心軸28を同義で用いる。モータ22の回転数は、例えば、2400rpmである。投受光用ミラー23は、モータ22の回転中心軸28に対して45°の角度で傾いている。回転位置検出器24は、投受光用ミラー23の回転中心軸28周りにおける周方向の位置を検出する。例えば、投受光用ミラー23は、モータ22によって回転中心軸28周りに0.025秒で一回回転する。これにより、各三次元形状特定手段21は、0.025秒毎に被塗物40の被塗面41の三次元形状を計測することができる。ここで、コンベア12の搬送速度が6m/minである場合、コンベア12によって被塗物40が0.025秒で搬送される距離は2.5mmである。したがって、この場合、各三次元形状特定手段21は、横方向に2.5mm毎に被塗面41の三次元形状を計測することができる。ここでいう、横方向とは、コンベア12の搬送方向Trである。 The rotation center axis 28 of the motor 22 is oriented in a direction parallel to the transport direction Tr of the workpiece 40 (see FIG. 1). In this embodiment, the rotation center axis 28 of the motor 22 and the rotation center axis 28 of the three-dimensional shape determination means 21 are used synonymously. The rotation speed of the motor 22 is, for example, 2400 rpm. The light projecting and receiving mirror 23 is inclined at an angle of 45° to the rotation center axis 28 of the motor 22. The rotation position detector 24 detects the circumferential position of the light projecting and receiving mirror 23 around the rotation center axis 28. For example, the light projecting and receiving mirror 23 rotates once every 0.025 seconds around the rotation center axis 28 by the motor 22. As a result, each three-dimensional shape determination means 21 can measure the three-dimensional shape of the coating surface 41 of the workpiece 40 every 0.025 seconds. Here, when the conveyor 12 is moving at a speed of 6 m/min, the distance that the conveyor 12 moves the workpiece 40 in 0.025 seconds is 2.5 mm. Therefore, in this case, each three-dimensional shape determination means 21 can measure the three-dimensional shape of the workpiece 41 every 2.5 mm in the horizontal direction. The horizontal direction here refers to the conveying direction Tr of the conveyor 12.

投光器25は、測定媒体である検知光DLとして赤外線レーザ光を水平に照射する。投光器25から発せられた検知光DLは、モータ22によって回転する投受光用ミラー23で反射され、三次元形状特定手段21の外部へ向けて回転中心軸28と直交する径方向外方へ放射される。回転中心軸28から10m離れたところでは、投受光用ミラー23で反射した赤外線レーザ(検知光DL)は、回転中心軸28に直交する方向におよそ160mmに拡がり、回転中心軸28に平行な方向におよそ25mmに拡がる。つまり、投受光用ミラー23で反射した赤外線レーザの放射軌跡は、回転中心軸28から離れるにしたがって回転中心軸28に平行な方向に寸法が拡がる対象範囲29(図4参照)をなす。 The projector 25 horizontally irradiates infrared laser light as the detection light DL, which is the measurement medium. The detection light DL emitted from the projector 25 is reflected by the light projecting and receiving mirror 23, which is rotated by the motor 22, and is emitted radially outwardly perpendicular to the rotation center axis 28 toward the outside of the three-dimensional shape identification means 21. At a distance of 10 m from the rotation center axis 28, the infrared laser (detection light DL) reflected by the light projecting and receiving mirror 23 expands to approximately 160 mm in the direction perpendicular to the rotation center axis 28 and to approximately 25 mm in the direction parallel to the rotation center axis 28. In other words, the radiation trajectory of the infrared laser reflected by the light projecting and receiving mirror 23 forms a target range 29 (see Figure 4) whose dimensions expand in the direction parallel to the rotation center axis 28 as it moves away from the rotation center axis 28.

このように構成された三次元形状特定手段21は、上下方向に直列に複数が配置されて三次元形状認識部20を構成している。具体的には、各三次元形状特定手段21の回転中心軸28は、互いに平行にされている。一つの三次元形状認識部20において、上下方向に隣合う三次元形状特定手段21の回転中心軸28の間の寸法は同じにされている。一方及び他方の三次元形状認識部20において、上下方向に隣合う三次元形状特定手段21の回転中心軸28の間の寸法は、互いに異なっている。一対の三次元形状認識部20は、コンベア12を挟み、各三次元形状特定手段21が被塗物40に対向するように配置されている。一方の三次元形状認識部20の三次元形状特定手段21の対象範囲29と、他方の三次元形状認識部20の三次元形状特定手段21の対象範囲29は、搬送方向Trに所定の距離K(例えば、200mm)ずれて配置されている(図1参照。)。 The three-dimensional shape identification means 21 thus configured are arranged in series in the vertical direction to form the three-dimensional shape recognition unit 20. Specifically, the rotation center axes 28 of the three-dimensional shape identification means 21 are parallel to each other. In one three-dimensional shape recognition unit 20, the dimension between the rotation center axes 28 of the three-dimensional shape identification means 21 adjacent in the vertical direction is the same. In one and the other three-dimensional shape recognition unit 20, the dimension between the rotation center axes 28 of the three-dimensional shape identification means 21 adjacent in the vertical direction is different from each other. The pair of three-dimensional shape recognition units 20 are arranged so that each three-dimensional shape identification means 21 faces the workpiece 40, sandwiching the conveyor 12 therebetween. The target range 29 of the three-dimensional shape identification means 21 of one three-dimensional shape recognition unit 20 and the target range 29 of the three-dimensional shape identification means 21 of the other three-dimensional shape recognition unit 20 are arranged with a predetermined distance K (e.g., 200 mm) offset in the conveying direction Tr (see FIG. 1).

各三次元形状特定手段21から発せられた検知光DLの一部は、図3に示すように、直接、被塗物40の被塗面41に照射される。そして、被塗面41から反射した検知光DLは、検知光DLを発した三次元形状特定手段21に入射して、受光器26によって受光される。各三次元形状特定手段21の受光器26は、対象範囲29の内の、所定の範囲R内における検知光DLを受光し得る構成とされている。例えば、この所定の範囲Rは、投受光用ミラー23で反射した赤外線レーザが被塗物40に向けて水平方向に発せられた状態を中央として、赤外線レーザが水平方向に対して上側に35°傾いた角度から下側に35°傾いた角度までの間の範囲である。つまり、所定の範囲Rは、投受光用ミラー23で反射した赤外線レーザが被塗物40に向けて水平方向に発せられた状態を中央として±35°の範囲である。 As shown in FIG. 3, a portion of the detection light DL emitted from each three-dimensional shape determination means 21 is directly irradiated onto the surface 41 of the workpiece 40. The detection light DL reflected from the surface 41 is then incident on the three-dimensional shape determination means 21 that emitted the detection light DL, and is received by the receiver 26. The receiver 26 of each three-dimensional shape determination means 21 is configured to receive the detection light DL within a predetermined range R within the target range 29. For example, this predetermined range R is a range between an angle at which the infrared laser is tilted 35° upward and an angle at which the infrared laser is tilted 35° downward with respect to the horizontal direction, with the state in which the infrared laser reflected by the light projecting and receiving mirror 23 is emitted horizontally toward the workpiece 40 as the center. In other words, the predetermined range R is a range of ±35° with the state in which the infrared laser reflected by the light projecting and receiving mirror 23 is emitted horizontally toward the workpiece 40 as the center.

受光器26は、対象範囲29を通り三次元形状特定手段21に入射し、投受光用ミラー23で反射した検知光DLのみを受光する。距離演算部27には、受光器26にて受光した検知光DLの位相情報と、回転位置検出器24からの投受光用ミラー23の回転位置情報とが入力される。投受光用ミラー23の回転位置情報は、対象範囲29における赤外線レーザ(検知光DL)の放射角度の情報として処理される。 The light receiver 26 receives only the detection light DL that passes through the target range 29, enters the three-dimensional shape identification means 21, and is reflected by the light projecting and receiving mirror 23. The distance calculation unit 27 receives phase information of the detection light DL received by the light receiver 26 and rotational position information of the light projecting and receiving mirror 23 from the rotational position detector 24. The rotational position information of the light projecting and receiving mirror 23 is processed as information on the emission angle of the infrared laser (detection light DL) in the target range 29.

距離演算部27では、入力された情報に基づいて演算が行われ、検知光DLの対象範囲29における被塗面41(被塗物40)の三次元形状のデータが得られる。距離演算部27には、速度センサ30から、コンベア12の搬送速度(三次元形状特定手段21に対する被塗物40の相対変位速度)に応じて所定の周期毎にハイレベルとローレベルの信号が交互に入力される。例えば、速度センサ30は、コンベア12が10mm移動する毎にハイレベルと、ローレベルの2つの信号を1回ずつ交互に出力する構成とされている。 The distance calculation unit 27 performs calculations based on the input information, and obtains data on the three-dimensional shape of the surface 41 (workpiece 40) to be coated within the target range 29 of the detection light DL. The speed sensor 30 alternately inputs high and low level signals to the distance calculation unit 27 at a predetermined cycle according to the transport speed of the conveyor 12 (the relative displacement speed of the workpiece 40 with respect to the three-dimensional shape identification means 21). For example, the speed sensor 30 is configured to alternately output two signals, a high level and a low level, once every 10 mm movement of the conveyor 12.

距離演算部27は、こうして得られた三次元形状のデータと、速度センサ30から入力される信号とを対応付けることによって、被塗物40の被塗面41の横方向における所定の間隔毎の三次元形状のデータを順に生成する。投光器25から検知光DLを発しているにもかかわらず、受光器26が検知光DLを受光しない場合、距離演算部27は、受光していないことを示す値(例えば、65533)を出力する。 The distance calculation unit 27 associates the three-dimensional shape data thus obtained with the signal input from the speed sensor 30, thereby sequentially generating three-dimensional shape data for each predetermined interval in the lateral direction of the coating surface 41 of the workpiece 40. If the light receiver 26 does not receive the detection light DL even though the light projector 25 is emitting the detection light DL, the distance calculation unit 27 outputs a value (e.g., 65533) indicating that the light has not been received.

制御装置34は、例えばマイクロコンピュータを主体として構成されており、CPU(Central Processing Unit)などの演算装置、ROM(Read Only Memory)又はRAM(Random Access Memory)などのメモリ、A/D変換器等を有した構成とされている。制御装置34は、各三次元形状特定手段21の測定動作を個別に制御し得る構成とされている。制御装置34は、距離演算部27において生成された三次元形状のデータ(すなわち、三次元形状特定手段21によって計測された被塗物40の被塗面41までの距離の情報)に基づいて、コンベア12、レシプロケータ14、及び塗装ガン13等の動作を制御して、被塗面41に塗料を塗着させる際の塗装条件を設定又は変更し、塗装ガン13の被塗物40に対する移動を制御し得る構成とされている。 The control device 34 is mainly composed of a microcomputer, and has an arithmetic device such as a CPU (Central Processing Unit), a memory such as a ROM (Read Only Memory) or a RAM (Random Access Memory), an A/D converter, etc. The control device 34 is configured to be able to individually control the measurement operation of each three-dimensional shape identification means 21. The control device 34 is configured to be able to control the operation of the conveyor 12, the reciprocator 14, the paint gun 13, etc. based on the three-dimensional shape data generated in the distance calculation unit 27 (i.e., information on the distance to the surface 41 of the workpiece 40 measured by the three-dimensional shape identification means 21), set or change the painting conditions when applying paint to the surface 41, and control the movement of the paint gun 13 relative to the workpiece 40.

次に、センサ19が被塗物40の被塗面41の三次元形状を計測する方法について説明する。 Next, we will explain how the sensor 19 measures the three-dimensional shape of the coating surface 41 of the coating object 40.

図1から図3に示すように、被塗物40は、全体として板面を上下方向に向けた板状をなす。被塗物40の被塗面41の上端縁部には、左方へリブ状に突出する上部突起42が形成され、被塗面41の高さ方向中央部には、左方へリブ状に突出する中央部突起43が形成され、被塗面41の下端縁部には、左方へリブ状に突出する下部突起44が形成されている。 As shown in Figures 1 to 3, the object 40 to be coated is generally in the form of a plate with the plate surface facing up and down. An upper protrusion 42 that protrudes to the left like a rib is formed on the upper edge of the surface 41 of the object 40 to be coated, a central protrusion 43 that protrudes to the left like a rib is formed on the center of the height direction of the surface 41 to be coated, and a lower protrusion 44 that protrudes to the left like a rib is formed on the lower edge of the surface 41 to be coated.

一方の三次元形状認識部20において、上に位置する三次元形状特定手段21(以下、上の三次元形状特定手段21ともいう)は、上部突起42よりも僅かに上方の位置に配置されている。上下中央に位置する三次元形状特定手段21(以下、中央の三次元形状特定手段21ともいう)は、中央部突起43よりも僅かに下方の位置に配置されている。下に位置する三次元形状特定手段21(以下、下の三次元形状特定手段21ともいう)は、下部突起44よりも僅かに下方の位置に配置されている。 In one of the three-dimensional shape recognition units 20, the upper three-dimensional shape identification means 21 (hereinafter also referred to as the upper three-dimensional shape identification means 21) is located slightly above the upper protrusion 42. The three-dimensional shape identification means 21 located in the vertical center (hereinafter also referred to as the central three-dimensional shape identification means 21) is located slightly below the central protrusion 43. The lower three-dimensional shape identification means 21 (hereinafter also referred to as the lower three-dimensional shape identification means 21) is located slightly below the lower protrusion 44.

他方の三次元形状認識部20において、上の三次元形状特定手段21は、一方の三次元形状認識部20における上の三次元形状特定手段21よりも上方に位置し、上部突起42よりも上方の位置に配置されている。中央の三次元形状特定手段21は、一方の三次元形状認識部20における中央の三次元形状特定手段21よりも上方に位置し、中央部突起43よりも僅かに上方の位置に配置されている。下の三次元形状特定手段21は、一方の三次元形状認識部20における下の三次元形状特定手段21と上下方向の位置が同じであり、下部突起44よりも僅かに下方の位置に配置されている。 In the other three-dimensional shape recognition unit 20, the upper three-dimensional shape identification means 21 is located higher than the upper three-dimensional shape identification means 21 in the one three-dimensional shape recognition unit 20 and is arranged in a position higher than the upper protrusion 42. The central three-dimensional shape identification means 21 is located higher than the central three-dimensional shape identification means 21 in the one three-dimensional shape recognition unit 20 and is arranged in a position slightly higher than the central protrusion 43. The lower three-dimensional shape identification means 21 is located in the same vertical position as the lower three-dimensional shape identification means 21 in the one three-dimensional shape recognition unit 20 and is arranged in a position slightly lower than the lower protrusion 44.

例えば、図3に示す点Aは、一方の三次元形状認識部20の中央の三次元形状特定手段21が測定し得る範囲に位置している。点Aと回転中心軸28との間における上下方向の距離H、及び塗装ガン13が前進及び後進する方向の距離Lは、H=a×sinθ、L=a×cosθとして求めることができる。つまり、被塗面41上の上下方向における任意の点と、回転中心軸28との間における上下方向の距離H、及び塗装ガン13が前進及び後進する方向の距離Lは三次元形状特定手段21によって計測された距離aに基づいて求めることができる。各三次元形状特定手段21は、被塗面41を上下方向に所定の距離毎(例えば、1cm毎)に自身からの距離aを測定する。各三次元形状認識部20は、例えば、被塗面41の上下方向に1cm毎に、自身からの距離aを測定することができる。 For example, point A shown in FIG. 3 is located within a range that can be measured by the central three-dimensional shape identification means 21 of one of the three-dimensional shape recognition units 20. The vertical distance H between point A and the rotation center axis 28, and the distance L in the direction in which the paint gun 13 moves forward and backward can be calculated as H=a×sinθ and L=a×cosθ. In other words, the vertical distance H between any point on the surface 41 in the vertical direction and the rotation center axis 28, and the distance L in the direction in which the paint gun 13 moves forward and backward can be calculated based on the distance a measured by the three-dimensional shape identification means 21. Each three-dimensional shape identification means 21 measures the distance a from itself at a predetermined distance (for example, every 1 cm) in the vertical direction of the surface 41 to be painted. Each three-dimensional shape recognition unit 20 can measure the distance a from itself at every 1 cm in the vertical direction of the surface 41 to be painted, for example.

領域B1は、中央の三次元形状特定手段21からの検知光DLが中央部突起43によって妨げられる。このため中央の三次元形状特定手段21は、領域B1における自身からの距離を計測することができない。これに対して、一方の三次元形状認識部20の上の三次元形状特定手段21は、領域B1に対して検知光DLを照射することができる。このため、上の三次元形状特定手段21は、領域B1における自身からの距離を計測することができる。 In region B1, the detection light DL from the central three-dimensional shape identification means 21 is blocked by the central protrusion 43. Therefore, the central three-dimensional shape identification means 21 cannot measure its own distance in region B1. In contrast, the upper three-dimensional shape identification means 21 of one of the three-dimensional shape recognition units 20 can irradiate detection light DL onto region B1. Therefore, the upper three-dimensional shape identification means 21 can measure its own distance in region B1.

領域B2は、一方の三次元形状認識部20の下の三次元形状特定手段21からの検知光DLが下部突起44によって妨げられる。このため下の三次元形状特定手段21は、領域B2における自身からの距離を計測することができない。これに対して、中央の三次元形状特定手段21は、領域B2に対して検知光DLを照射することができる。このため、中央の三次元形状特定手段21は、領域B2における自身からの距離を計測することができる。制御装置34は、各三次元形状特定手段21の距離演算部27において演算した被塗面41における自身からの距離のデータを取得して、いずれかの三次元形状特定手段21から取得した距離のデータを用いて領域B1,B2における距離のデータを補うのである。 In region B2, the detection light DL from the lower three-dimensional shape identification means 21 of one of the three-dimensional shape recognition units 20 is blocked by the lower protrusion 44. Therefore, the lower three-dimensional shape identification means 21 cannot measure its own distance from region B2. In contrast, the central three-dimensional shape identification means 21 can irradiate region B2 with detection light DL. Therefore, the central three-dimensional shape identification means 21 can measure its own distance from region B2. The control device 34 acquires data on the distance from itself to the coated surface 41 calculated by the distance calculation unit 27 of each three-dimensional shape identification means 21, and uses the distance data acquired from one of the three-dimensional shape identification means 21 to supplement the distance data in regions B1 and B2.

領域D1は、中央、及び上の三次元形状特定手段21の各々から距離を計測することができる。領域D2は、中央、及び下の三次元形状特定手段21の両方から距離を計測することができる。つまり、領域D1,D2は、一方の三次元形状認識部20によって重複して距離のデータが計測される。制御装置34は、各三次元形状特定手段21の距離演算部27において演算した距離のデータを取得して、各三次元形状特定手段21から取得した領域D1,D2における距離のデータの内の一つを選択する。具体的には、制御装置34は、上下方向における領域D1,D2の所定の点Dxにおいて重複して測定された2つの距離のデータの内、小さい値を採用するのである。こうして、制御装置34は、被塗物40における被塗面41の上端から下端にかけての距離のデータを合成するのである。他方の三次元形状認識部20も、一方の三次元形状認識部20と同様に被塗物40の右側の被塗面41の三次元形状を計測する。 The distance of the area D1 can be measured from each of the central and upper three-dimensional shape identification means 21. The distance of the area D2 can be measured from both the central and lower three-dimensional shape identification means 21. In other words, the distance data of the areas D1 and D2 are measured in an overlapping manner by one of the three-dimensional shape recognition units 20. The control device 34 acquires the distance data calculated by the distance calculation unit 27 of each three-dimensional shape identification means 21 and selects one of the distance data of the areas D1 and D2 acquired from each three-dimensional shape identification means 21. Specifically, the control device 34 adopts the smaller value of the two distance data measured in an overlapping manner at a predetermined point Dx of the areas D1 and D2 in the vertical direction. In this way, the control device 34 synthesizes the distance data from the upper end to the lower end of the coating surface 41 of the coating object 40. The other three-dimensional shape recognition unit 20 also measures the three-dimensional shape of the coating surface 41 on the right side of the coating object 40 in the same way as the other three-dimensional shape recognition unit 20.

制御装置34は、複数の三次元形状特定手段21が直列に配置された順番に一つずつ測定動作を行わせ、他の三次元形状特定手段21が測定動作を行わせないように各三次元形状特定手段21の測定動作を制御して、上記のように被塗面41の上端から下端にかけての距離のデータを合成する。 The control device 34 controls the measurement operation of each of the multiple three-dimensional shape determination means 21 so that they perform a measurement operation one by one in the order in which they are arranged in series, and prevents the other three-dimensional shape determination means 21 from performing a measurement operation, and synthesizes data on the distance from the top to the bottom of the coating surface 41 as described above.

例えば、制御装置34は、一方の三次元形状認識部20において、上の三次元形状特定手段21→中央の三次元形状特定手段21→下の三次元形状特定手段21の順に測定動作を行わせる。次に、制御装置34は、他方の三次元形状認識部20において、上の三次元形状特定手段21→中央の三次元形状特定手段21→下の三次元形状特定手段21の順に測定動作を行わせる。こうして、制御装置34は、所定の時刻において、いずれか一つの三次元形状特定手段21の測定動作を行わせるのである。 For example, the control device 34 causes one of the three-dimensional shape recognition units 20 to perform measurement operations in the order of upper three-dimensional shape identification means 21 → central three-dimensional shape identification means 21 → lower three-dimensional shape identification means 21. Next, the control device 34 causes the other three-dimensional shape recognition unit 20 to perform measurement operations in the order of upper three-dimensional shape identification means 21 → central three-dimensional shape identification means 21 → lower three-dimensional shape identification means 21. In this way, the control device 34 causes one of the three-dimensional shape identification means 21 to perform a measurement operation at a given time.

この場合、各三次元形状特定手段21の投受光用ミラー23は、モータ22によって常に回転する状態とされ、制御装置34が各三次元形状特定手段21の投光器25、及び受光器26を上記の順番で動作させることによって各三次元形状特定手段21に測定動作を行わせることが考えられる。 In this case, the light projecting/receiving mirror 23 of each three-dimensional shape determination means 21 is constantly rotated by the motor 22, and the control device 34 operates the light projector 25 and light receiver 26 of each three-dimensional shape determination means 21 in the above-mentioned order, thereby causing each three-dimensional shape determination means 21 to perform a measurement operation.

各三次元形状認識部20は、被塗物40における横方向(コンベア12の搬送方向Tr)においても、所定の距離毎(例えば、1cm毎)に三次元形状を測定する。被塗物40はコンベア12によって所定の搬送速度で搬送されている。このため、被塗物40における横方向の三次元形状の測定は、被塗物40が所定の距離搬送された毎に上記した上下方向における三次元形状の測定を各三次元形状認識部20によって行うのである。 Each three-dimensional shape recognition unit 20 also measures the three-dimensional shape of the workpiece 40 in the lateral direction (the conveying direction Tr of the conveyor 12) every predetermined distance (e.g., every 1 cm). The workpiece 40 is transported by the conveyor 12 at a predetermined transport speed. Therefore, the measurement of the three-dimensional shape of the workpiece 40 in the lateral direction is performed by each three-dimensional shape recognition unit 20, in addition to measuring the three-dimensional shape in the vertical direction described above, every time the workpiece 40 is transported a predetermined distance.

この場合、各三次元形状特定手段21の測定動作によって得られる被塗物40の三次元形状の横方向の位置は、所定のずれが生じ得る。具体的には、各三次元形状特定手段21は、0.025秒毎に被塗物40の被塗面41の三次元形状を計測することができる。このため、一方の三次元形状認識部20の上の三次元形状特定手段21の測定動作の開始から、他方の三次元形状認識部20の下の三次元形状特定手段21の測定動作の終了までの間には、0.025秒×6=0.15秒程度の時間のずれが生じ得る。 In this case, a certain amount of deviation may occur in the lateral position of the three-dimensional shape of the workpiece 40 obtained by the measurement operation of each three-dimensional shape specifying means 21. Specifically, each three-dimensional shape specifying means 21 can measure the three-dimensional shape of the coating surface 41 of the workpiece 40 every 0.025 seconds. For this reason, a time lag of about 0.025 seconds x 6 = 0.15 seconds may occur between the start of the measurement operation of the three-dimensional shape specifying means 21 above one three-dimensional shape recognition unit 20 and the end of the measurement operation of the three-dimensional shape specifying means 21 below the other three-dimensional shape recognition unit 20.

例えば、コンベア12の搬送速度が6m/minである場合、0.15秒間に被塗物40は1.5cm移動する。したがって、コンベア12の搬送速度が6m/minの場合、一方の三次元形状認識部20の上の三次元形状特定手段21の測定動作によって得られる被塗物40の三次元形状の横方向の位置と、他方の三次元形状認識部20の下の三次元形状特定手段21の測定動作によって得られる被塗物40の三次元形状の横方向の位置との間には、1.5cm程度のずれが生じ得る。このずれは、コンベア12の搬送速度や、モータ22の回転速度等を変更することによって調整し得る。こうして、制御装置34は、被塗物40における被塗面41の上下方向及び横方向の三次元形状のデータを生成するのである。 For example, when the conveyor 12 is moving at a speed of 6 m/min, the workpiece 40 moves 1.5 cm in 0.15 seconds. Therefore, when the conveyor 12 is moving at a speed of 6 m/min, a deviation of about 1.5 cm may occur between the lateral position of the three-dimensional shape of the workpiece 40 obtained by the measurement operation of the three-dimensional shape specifying means 21 above one three-dimensional shape recognition unit 20 and the lateral position of the three-dimensional shape of the workpiece 40 obtained by the measurement operation of the three-dimensional shape specifying means 21 below the other three-dimensional shape recognition unit 20. This deviation can be adjusted by changing the conveyor 12 moving speed, the motor 22 rotation speed, etc. In this way, the control device 34 generates data on the three-dimensional shape of the workpiece 40 in the vertical and horizontal directions of the surface 41 to be coated.

塗装を行う際には、コンベア12を作動させ、コンベア12に被塗物40を適宜配置して吊り下げて被塗物40を塗装ブース11へ搬送する。この搬送の過程において、各三次元形状認識部20は、計測した三次元形状のデータを制御装置34に出力する。制御装置34は、各三次元形状認識部20から入力された三次元形状のデータを被塗物40における横方向における所定の位置の三次元形状のデータとして記憶する。 When painting, the conveyor 12 is operated and the workpiece 40 is appropriately positioned and hung on the conveyor 12 to transport the workpiece 40 to the painting booth 11. During this transport process, each three-dimensional shape recognition unit 20 outputs the measured three-dimensional shape data to the control device 34. The control device 34 stores the three-dimensional shape data input from each three-dimensional shape recognition unit 20 as three-dimensional shape data for a specified position in the lateral direction on the workpiece 40.

ここで、一方の三次元形状認識部20と左側の塗装ガン13との間、及び他方の三次元形状認識部20と右側の塗装ガン13との間の搬送方向Trにおける距離は、所定の値に設定されている。コンベア12の搬送速度も所定の値に設定されている。したがって、被塗物40における任意の点が、一方の三次元形状認識部20に対向する位置から左側の塗装ガン13に対向する位置に到達するまでの時間T1は、一方の三次元形状認識部20と左側の塗装ガン13との間の搬送方向Trにおける距離を、コンベア12の搬送速度によって除することによって求めることができる。また、他方の三次元形状認識部20に対向する位置から右側の塗装ガン13に対向する位置に到達するまでの時間T2は、他方の三次元形状認識部20と右側の塗装ガン13との間の搬送方向Trにおける距離を、コンベア12の搬送速度によって除することによって求めることができる。つまり、制御装置34は、現在測定した被塗物40の三次元形状のデータを記憶しておき、時間T1,T2が経過した後、記憶したデータに基づいて、制御装置34から塗装用制御信号を出力する。 Here, the distance in the conveying direction Tr between one three-dimensional shape recognition unit 20 and the left paint gun 13, and between the other three-dimensional shape recognition unit 20 and the right paint gun 13 are set to a predetermined value. The conveying speed of the conveyor 12 is also set to a predetermined value. Therefore, the time T1 for an arbitrary point on the workpiece 40 to reach a position facing the left paint gun 13 from a position facing one three-dimensional shape recognition unit 20 can be obtained by dividing the distance in the conveying direction Tr between one three-dimensional shape recognition unit 20 and the left paint gun 13 by the conveying speed of the conveyor 12. In addition, the time T2 for an arbitrary point on the workpiece 40 to reach a position facing the right paint gun 13 from a position facing the other three-dimensional shape recognition unit 20 can be obtained by dividing the distance in the conveying direction Tr between the other three-dimensional shape recognition unit 20 and the right paint gun 13 by the conveying speed of the conveyor 12. In other words, the control device 34 stores the currently measured data of the three-dimensional shape of the workpiece 40, and after times T1 and T2 have elapsed, the control device 34 outputs a painting control signal based on the stored data.

そして、この塗装用制御信号によって、図2に実線及び想像線で示すように、各レシプロケータ14が被塗面41の三次元形状に合わせて塗装ガン13を適正に移動させるとともに、塗装ガン13が適正な塗料噴出を行う。制御装置34は、搬送される被塗物40に合わせて、現在塗装ガン13に対向する位置に対応した三次元形状のデータに基づいて塗装用制御信号の出力を行う。これによって、塗装装置10は、被塗物40の被塗面41に満遍なく塗料を塗着させることができる。 Then, as shown by the solid and phantom lines in Figure 2, this painting control signal causes each reciprocator 14 to move the painting gun 13 appropriately in accordance with the three-dimensional shape of the surface 41 to be painted, and the painting gun 13 sprays the appropriate paint. The control device 34 outputs the painting control signal based on the three-dimensional shape data corresponding to the current position facing the painting gun 13 in accordance with the transported workpiece 40 to be painted. This allows the painting device 10 to apply paint evenly to the surface 41 of the workpiece 40 to be painted.

上記のように構成された実施例1によれば、以下の効果を奏する。 The above-described configuration of Example 1 provides the following advantages:

センサ19は、被塗物40の三次元形状を特定する三次元形状特定手段21を複数有し、各三次元形状特定手段21が被塗物40に対向するように配置された三次元形状認識部20と、各三次元形状特定手段21の測定動作を個別に制御する制御装置34とを備えている。この構成によれば、センサ19は、制御装置34によって複数の三次元形状特定手段21の測定動作を個別に制御するため、各三次元形状特定手段21の測定動作のばらつきに起因する被塗物40の三次元形状特定結果の精度低下を抑えることができる。 The sensor 19 has a plurality of three-dimensional shape identification means 21 that identify the three-dimensional shape of the workpiece 40, and is equipped with a three-dimensional shape recognition unit 20 in which each three-dimensional shape identification means 21 is arranged to face the workpiece 40, and a control device 34 that individually controls the measurement operation of each three-dimensional shape identification means 21. With this configuration, the sensor 19 individually controls the measurement operation of the plurality of three-dimensional shape identification means 21 by the control device 34, so that it is possible to suppress a decrease in accuracy of the three-dimensional shape identification result of the workpiece 40 caused by variation in the measurement operation of each three-dimensional shape identification means 21.

センサ19は、赤外線レーザ光を発することによって測定動作を行う。制御装置34は、複数の三次元形状特定手段21が直列に配置された順番に一つずつ測定動作を行わせ、他の三次元形状特定手段21の測定動作を行わせないように各三次元形状特定手段21の測定動作を制御する。この構成によれば、複数の三次元形状特定手段21が同時に測定動作を行うことがないため、複数の三次元形状特定手段21同士から発した赤外線レーザ光が互いに干渉し合うおそれがない。これによって、被塗物40の三次元形状を良好に測定することができる。 The sensor 19 performs a measurement operation by emitting infrared laser light. The control device 34 controls the measurement operation of each three-dimensional shape specifying means 21 so that the multiple three-dimensional shape specifying means 21 perform a measurement operation one by one in the order in which they are arranged in series, and does not allow the other three-dimensional shape specifying means 21 to perform a measurement operation. With this configuration, the multiple three-dimensional shape specifying means 21 do not perform a measurement operation at the same time, so there is no risk of the infrared laser light emitted from the multiple three-dimensional shape specifying means 21 interfering with each other. This allows the three-dimensional shape of the workpiece 40 to be measured well.

塗装装置10は、センサ19と、被塗物40に対して相対移動しながら被塗物40に塗料を噴出する塗装ガン13とを備えている。三次元形状特定手段21は、被塗物40の被塗面41までの距離を計測して被塗物40の三次元形状を特定する。制御装置34は、三次元形状特定手段21によって計測された距離の情報に基づいて、被塗面41に塗料を塗着させる際の塗装条件を設定又は変更し、塗装ガン13の被塗物40に対する移動を制御する。 The coating device 10 includes a sensor 19 and a coating gun 13 that sprays paint onto the workpiece 40 while moving relative to the workpiece 40. A three-dimensional shape identification means 21 measures the distance to the surface 41 of the workpiece 40 to identify the three-dimensional shape of the workpiece 40. A control device 34 sets or changes the coating conditions for applying paint to the surface 41 based on the distance information measured by the three-dimensional shape identification means 21, and controls the movement of the coating gun 13 relative to the workpiece 40.

この構成によれば、塗装装置10は、制御装置34によって複数の三次元形状特定手段21の測定動作を個別に制御するため、各三次元形状特定手段21の測定動作のばらつきに起因する被塗物40の三次元形状特定結果の精度低下を抑えることができる。これによって、被塗物40の三次元形状を良好に特定することができ、これにともない良好に塗装ガン13の移動を制御することができる。 With this configuration, the coating device 10 individually controls the measurement operations of the multiple three-dimensional shape identification means 21 using the control device 34, making it possible to suppress a decrease in accuracy of the three-dimensional shape identification results of the workpiece 40 caused by variations in the measurement operations of each three-dimensional shape identification means 21. This allows the three-dimensional shape of the workpiece 40 to be accurately identified, and therefore allows the movement of the coating gun 13 to be accurately controlled.

<他の実施例>
本発明は上記記述及び図面によって説明した実施例に限定されるものではなく、例えば次のような実施例も本発明の技術的範囲に含まれる。
(1)上記実施例では、各三次元形状認識部が3つの三次元形状特定手段を有しているが、三次元形状特定手段の数はこれに限定されない。
(2)上記実施例では、コンベアに吊り下げられる被塗物の外形が同じであるが、異なる外形の被塗物を並べてコンベアに吊り下げてもよい。
(3)上記実施例では、一対の三次元形状認識部によって被塗物の前側と後側の被塗面の三次元形状を計測しているが、一つの三次元形状認識部によって、被塗物の前側又は後側のいずれかの被塗面のみの三次元形状を計測する形態としてもよい。
(4)上記実施例では、三次元形状特定手段は、回転中心軸周りに検知光を回転させる方式であるが、三次元形状特定手段として、一方向に検知光を照射する方式のものを所定の間隔(例えば1cm)を設けて上下方向に多数並べてもよい。
(5)上記実施例では、制御装置によって各三次元形状特定手段を1つずつ測定動作させているが、これに限らず、一方の三次元形状認識部の上及び中央の三次元形状特定手段→一方の三次元形状認識部の下の三次元形状特定手段、及び他方の三次元形状認識部の上の三次元形状特定手段→他方の三次元形状認識部の中央及び下の三次元形状特定手段の順に測定動作させたり、一方の三次元形状認識部と他方の三次元形状認識部とを交互に測定動作させたりしてもよい。つまり、制御装置によって、複数の三次元形状特定手段が直列に配置された順番に一部ずつ測定動作を行わせるのである。
(6)上記実施例では、測定媒体として赤外線レーザ光を利用しているが、超音波等を用いてもよい。
<Other Examples>
The present invention is not limited to the embodiments described above and illustrated in the drawings, and the following embodiments, for example, are also included within the technical scope of the present invention.
(1) In the above embodiment, each three-dimensional shape recognition unit has three three-dimensional shape specifying means, but the number of three-dimensional shape specifying means is not limited to this.
(2) In the above embodiment, the outer shapes of the objects to be coated hung from the conveyor are the same, but objects to be coated having different outer shapes may be hung side by side on the conveyor.
(3) In the above embodiment, a pair of three-dimensional shape recognition units are used to measure the three-dimensional shape of the front and rear coating surfaces of the object to be coated, but it is also possible to use a single three-dimensional shape recognition unit to measure the three-dimensional shape of only either the front or rear coating surface of the object to be coated.
(4) In the above embodiment, the three-dimensional shape identification means is a type that rotates the detection light around the central axis of rotation, but the three-dimensional shape identification means may also be a type that irradiates detection light in one direction, and multiple means may be arranged in the vertical direction at a predetermined interval (for example, 1 cm).
(5) In the above embodiment, the control device performs the measurement operation on each of the three-dimensional shape specifying means one by one, but this is not limited to the above. The measurement operation may be performed in the order of the upper and central three-dimensional shape specifying means of one three-dimensional shape recognition unit → the lower three-dimensional shape specifying means of one three-dimensional shape recognition unit, and the upper three-dimensional shape specifying means of the other three-dimensional shape recognition unit → the central and lower three-dimensional shape specifying means of the other three-dimensional shape recognition unit, or the measurement operation may be performed alternately between one three-dimensional shape recognition unit and the other three-dimensional shape recognition unit. In other words, the control device performs the measurement operation on a portion of the multiple three-dimensional shape specifying means in the order in which they are arranged in series.
(6) In the above embodiment, infrared laser light is used as the measurement medium, but ultrasonic waves or the like may also be used.

10…塗装装置
13…塗装ガン
19…センサ
20…三次元形状認識部
21…三次元形状特定手段
34…制御装置
40…被塗物(被測定物)
41…被塗面
REFERENCE SIGNS LIST 10: Coating device 13: Coating gun 19: Sensor 20: Three-dimensional shape recognition unit 21: Three-dimensional shape identification means 34: Control device 40: Workpiece (workpiece to be measured)
41...Painted surface

Claims (3)

被測定物の三次元形状を特定する三次元形状特定手段を複数有し、各前記三次元形状特定手段が前記被測定物に対向するように配置された三次元形状認識部と、
各前記三次元形状特定手段の測定動作を個別に制御する制御装置と、
を備え、
各前記三次元形状特定手段は、回転中心軸と直交する径方向外方に測定媒体を発することによって前記測定動作を行い、
各前記三次元形状特定手段における前記回転中心軸は、互いに平行であり、且つ前記被測定物の搬送方向に平行にされ、
各前記三次元形状特定手段は、前記被測定物を挟んで、一方と他方とに配置され、
前記一方に配置された前記三次元形状特定手段は、前記他方に配置された前記三次元形状特定手段に対して前記搬送方向にずれており、
前記制御装置は、所定の時刻において、全ての前記三次元形状特定手段のうちのいずれか1つのみに測定動作を行わせるセンサ。
a three-dimensional shape recognition unit having a plurality of three-dimensional shape specifying means for specifying a three-dimensional shape of a measurement object, each of the three-dimensional shape specifying means being disposed so as to face the measurement object;
a control device that individually controls the measurement operation of each of the three-dimensional shape specifying means;
Equipped with
Each of the three-dimensional shape determination means performs the measurement operation by projecting a measurement medium in a radial direction perpendicular to the central axis of rotation,
the rotation central axes of the three-dimensional shape specifying means are parallel to each other and to a conveying direction of the object to be measured;
The three-dimensional shape specifying means are disposed on either side of the object to be measured,
the three-dimensional shape specifying means disposed on one side is shifted in the conveying direction with respect to the three-dimensional shape specifying means disposed on the other side ,
The control device causes only one of all the three-dimensional shape specifying means to perform a measurement operation at a given time .
前記制御装置は、複数の前記三次元形状特定手段が直列に配置された順番に一ずつ前記測定動作を行わせ、前記測定動作を行っている前記三次元形状特定手段以外の前記三次元形状特定手段が前記測定動作を行わせないように各前記三次元形状特定手段の前記測定動作を制御する請求項1に記載のセンサ。 The sensor described in claim 1, wherein the control device controls the measurement operation of each of the three-dimensional shape identification means so that the measurement operation is performed one by one in the order in which the multiple three-dimensional shape identification means are arranged in series, and so that the measurement operation of each of the three-dimensional shape identification means is not performed by any of the three-dimensional shape identification means other than the three-dimensional shape identification means performing the measurement operation. 請求項1から請求項2までのいずれか一項に記載のセンサと、
前記被測定物に対して相対移動しながら前記被測定物に塗料を噴出する塗装ガンと、
を備え、
前記三次元形状特定手段は、前記被測定物の被塗面までの距離を計測して前記被測定物の三次元形状を特定し、
前記制御装置は、前記三次元形状特定手段によって計測された前記距離の情報に基づいて、前記被塗面に塗料を塗着させる際の塗装条件を設定又は変更し、前記塗装ガンの前記被測定物に対する移動を制御する塗装装置。
A sensor according to any one of claims 1 to 2;
a paint gun that sprays paint onto the object to be measured while moving relative to the object to be measured;
Equipped with
the three-dimensional shape specifying means measures a distance to a surface of the object to be measured and specifies a three-dimensional shape of the object to be measured;
The control device of the coating device sets or changes the painting conditions when applying paint to the surface to be coated based on the distance information measured by the three-dimensional shape identification means, and controls the movement of the paint gun relative to the measured object.
JP2020078289A 2020-04-27 2020-04-27 Sensor and painting device equipped with said sensor Active JP7468863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020078289A JP7468863B2 (en) 2020-04-27 2020-04-27 Sensor and painting device equipped with said sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020078289A JP7468863B2 (en) 2020-04-27 2020-04-27 Sensor and painting device equipped with said sensor

Publications (2)

Publication Number Publication Date
JP2021173659A JP2021173659A (en) 2021-11-01
JP7468863B2 true JP7468863B2 (en) 2024-04-16

Family

ID=78281546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020078289A Active JP7468863B2 (en) 2020-04-27 2020-04-27 Sensor and painting device equipped with said sensor

Country Status (1)

Country Link
JP (1) JP7468863B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147604A (en) 1998-11-13 2000-05-26 Matsushita Electric Ind Co Ltd Range finder
JP2007212264A (en) 2006-02-09 2007-08-23 Taisei Corp Scanning method of three-dimensional laser scanner
JP2010085131A (en) 2008-09-30 2010-04-15 Taisei Corp Finished work confirming system, finished work confirmation program, and finished work confirmation method
JP2011186525A (en) 2010-03-04 2011-09-22 Mitsubishi Electric Corp System for management of passing object
JP2014109464A (en) 2012-11-30 2014-06-12 Toshiba Corp Object measuring device and object measuring method
WO2016194728A1 (en) 2015-06-01 2016-12-08 新日鐵住金株式会社 Method and device for inspection of crankshaft
JP2018084489A (en) 2016-11-24 2018-05-31 旭サナック株式会社 Three-dimensional shape measurement device, coating device, reflection member adjustment method in three-dimensional shape measurement device, and assistance method for adjusting angle of reflection member in three-dimensional shape measurement device
JP2018144007A (en) 2017-03-09 2018-09-20 旭サナック株式会社 Coating apparatus
JP2019135027A (en) 2018-02-05 2019-08-15 旭サナック株式会社 Coating apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124468A (en) * 1980-03-06 1981-09-30 Shin Nippon Tanko Kk Method and apparatus for coating

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000147604A (en) 1998-11-13 2000-05-26 Matsushita Electric Ind Co Ltd Range finder
JP2007212264A (en) 2006-02-09 2007-08-23 Taisei Corp Scanning method of three-dimensional laser scanner
JP2010085131A (en) 2008-09-30 2010-04-15 Taisei Corp Finished work confirming system, finished work confirmation program, and finished work confirmation method
JP2011186525A (en) 2010-03-04 2011-09-22 Mitsubishi Electric Corp System for management of passing object
JP2014109464A (en) 2012-11-30 2014-06-12 Toshiba Corp Object measuring device and object measuring method
WO2016194728A1 (en) 2015-06-01 2016-12-08 新日鐵住金株式会社 Method and device for inspection of crankshaft
JP2018084489A (en) 2016-11-24 2018-05-31 旭サナック株式会社 Three-dimensional shape measurement device, coating device, reflection member adjustment method in three-dimensional shape measurement device, and assistance method for adjusting angle of reflection member in three-dimensional shape measurement device
JP2018144007A (en) 2017-03-09 2018-09-20 旭サナック株式会社 Coating apparatus
JP2019135027A (en) 2018-02-05 2019-08-15 旭サナック株式会社 Coating apparatus

Also Published As

Publication number Publication date
JP2021173659A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
JP6773663B2 (en) Method and coating equipment for coating the transported part
EP1023610B1 (en) Method and device for association of anonymous reflectors to detected angle positions
US20170161889A1 (en) Laser projection system and method
US8987634B2 (en) Determining powder feed nozzle misalignment
US4967860A (en) Process and apparatus for locating an obstacle
JP6820555B2 (en) Painting equipment
JP6820546B2 (en) A method for adjusting a reflective member in a three-dimensional shape measuring device, a painting device, and a three-dimensional shape measuring device, and a method for supporting angle adjustment of a reflective member in a three-dimensional shape measuring device
US9491448B2 (en) Laser videogrammetry
US11059172B2 (en) Control apparatus and robot system
US20190186907A1 (en) Multi-dimensional measurement system for precise calculation of position and orientation of a dynamic object
US20100298963A1 (en) Device and method for tracking the movement of a tool of a handling unit
US20150275666A1 (en) Device and method for determining at least one parameter, which determines the application of sprayed concrete
JP7468863B2 (en) Sensor and painting device equipped with said sensor
JP7464222B2 (en) Sensor and painting device equipped with said sensor
JP7431413B2 (en) Sensor and painting device equipped with this sensor
JP2021173661A (en) Sensor and coating device having the same
CN116615287A (en) System for coating an object with a coating and method for coating an object with a coating
CN110609280B (en) Measuring device, reference reflector and method for measuring attenuation
JP2021171718A (en) Coating device
JP2012145550A (en) Inter-target absolute distance measurement method of tracking laser interference measuring apparatus and tracking laser interference measuring apparatus
RU2240540C2 (en) Method and device for determining position of elongated object relatively to surface of barring body by means of electromagnetic radiation
US20230349692A1 (en) New type of device(s) for automatically monitoring a coating and/or structure applied to a substrate with determination of reflective properties and/or geometric dimensions, and a corresponding method
US20230034718A1 (en) Criteria based false positive determination in an active light detection system
JP2002188918A (en) Automated vehicle position measuring method
JPH05257530A (en) Method and device for correcting bearing and position of moving robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240327

R150 Certificate of patent or registration of utility model

Ref document number: 7468863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150