JP2003329424A - Three-dimensional shape measuring instrument - Google Patents

Three-dimensional shape measuring instrument

Info

Publication number
JP2003329424A
JP2003329424A JP2002138313A JP2002138313A JP2003329424A JP 2003329424 A JP2003329424 A JP 2003329424A JP 2002138313 A JP2002138313 A JP 2002138313A JP 2002138313 A JP2002138313 A JP 2002138313A JP 2003329424 A JP2003329424 A JP 2003329424A
Authority
JP
Japan
Prior art keywords
measurement
optical path
measured
target object
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002138313A
Other languages
Japanese (ja)
Inventor
Haruhisa Okuda
晴久 奥田
Manabu Hashimoto
橋本  学
Kazuhiko Washimi
和彦 鷲見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002138313A priority Critical patent/JP2003329424A/en
Publication of JP2003329424A publication Critical patent/JP2003329424A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To easily perform the focusing and slit space adjustment by the optical path difference, and to easily adjust the focus and the position when performing the three-dimensional shape measurement by utilizing a rear-view mirror. <P>SOLUTION: The three-dimensional shape measuring instrument comprises an image accumulation device 16 to accumulate image signals 202 obtained by picking up images, an operation unit 17 to perform conversion from an image pickup coordinate system of a measurement point on an object 1 for measurement which is measured by an image pickup device 11 to an absolute coordinate system on the object 1 for measurement, a mirror 13 which is installed so as to be present in a visual field area of the image pickup device 11, and has a mirror surface characteristic or the reflection characteristic equivalent thereto in a wavelength area which is observed by the image pickup device 11, and further comprises an operation switching means 18 which uses a coordinates conversion calculation formula depending on the installation position of the mirror 13 for a part of the object 1 to be measured via the mirror 13, and uses a coordinates conversion calculation formula of direct measurement for a direct measurement part of the object 1 to be directly measured. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、三次元形状の認
識において計測対象物体につき、ミラーを用いないで計
測光を直接撮像する場合とミラーを用いて反射させた計
測光を撮像する場合との光路長差による弊害を除くよう
にした三次元形状計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a case where a measurement light is directly imaged without using a mirror and a measurement light reflected by a mirror is imaged with respect to an object to be measured in recognition of a three-dimensional shape. The present invention relates to a three-dimensional shape measuring device that eliminates the adverse effects of optical path length differences.

【0002】[0002]

【従来の技術】三次元物体の認識を行う際には、三次元
物体を例えば前後左右それぞれの方向から認識し把握す
る必要がある。このため、三次元物体登録時や形状モデ
リングを行う場合には、三次元物体自体を回転させある
いは三次元計測装置を三次元物体の周りを移動させる駆
動装置を用いて、同一三次元物体から複数視点の計測デ
ータを取得し、合成する必要がある。
2. Description of the Related Art When recognizing a three-dimensional object, it is necessary to recognize and grasp the three-dimensional object from, for example, front, rear, left and right directions. For this reason, when registering a three-dimensional object or performing shape modeling, a drive device that rotates the three-dimensional object itself or moves the three-dimensional measuring device around the three-dimensional object is used to make multiple objects from the same three-dimensional object. It is necessary to acquire the measurement data of the viewpoint and synthesize it.

【0003】従来、こうした駆動装置を動かすことによ
る労力を軽減するために、三次元物体も三次元計測装置
も動かすことなく、正面から見えない部分は背面鏡を用
いて仮想視点からの計測データを取得することで、より
広範囲のデータを得て三次元物体の認識を行うという手
法がある。このような手法は、例えば、文献1(「背面
鏡を用いた三次元物体データ入力システム」電子情報通
信学会論文集D VoL. J70-D No.5 pp.995-1002、198
7)に示されている。
Conventionally, in order to reduce the labor required to move such a driving device, the three-dimensional object and the three-dimensional measuring device are not moved, and a portion which cannot be seen from the front is measured by using a rear-view mirror to obtain measurement data from a virtual viewpoint. There is a method of acquiring a wider range of data and recognizing a three-dimensional object by acquiring the data. Such a method is described, for example, in Reference 1 (“Three-dimensional object data input system using rear-view mirror”, IEICE Transactions D VoL. J70-D No. 5 pp. 995-1002, 198).
7).

【0004】図8は、この文献1に示されている背面鏡
を用いた計測装置を示している。この装置では、CPU
61がD/Aコンバータ62を介して走査用モータ56
を運転制御し、このモータ軸に固定された走査ミラー5
5を走査する。LD光源54から出た計測ビーム59
は、走査ミラー55、背面鏡57、58を経由した後又
は走査ミラー55から直接に、計測対象物体63上に照
射され走査が行われる。この時の映像をCCDカメラ5
2で撮像し、ビデオRAM60に一旦蓄積された後CP
U61で距離情報に演算される。なおターンテーブル5
1は計測対象物体の向きを変え計測部分を変更するため
必要に応じて使用される。
FIG. 8 shows a measuring device using the rear-view mirror shown in this document 1. In this device, the CPU
61 is a scanning motor 56 via the D / A converter 62.
Scan mirror 5 fixed to this motor shaft
Scan 5. Measurement beam 59 emitted from the LD light source 54
After being passed through the scanning mirror 55 and the back mirrors 57 and 58, or directly from the scanning mirror 55, the object 63 to be measured is irradiated and scanned. The image at this time is the CCD camera 5
2 image, and once stored in the video RAM 60, CP
U61 calculates the distance information. Turntable 5
1 is used as necessary to change the direction of the object to be measured and change the measurement portion.

【0005】[0005]

【発明が解決しようとする課題】以上の図8に示す装置
について計測動作を行う場合、計測対象物体63は、背
面鏡57、58を介して又は直接に計測が行われる。こ
の場合、反射鏡57、58を介して計測される部分(反
射計測部分という)と背面鏡57、58を介さずに直接
計測される部分(直接計測部分という)においては、必然
的に光路長の違いが生じる。
When the measurement operation is performed using the above-described apparatus shown in FIG. 8, the measurement target object 63 is directly or indirectly measured via the rear-view mirrors 57 and 58. In this case, the optical path length is inevitably in the portion measured through the reflection mirrors 57 and 58 (referred to as reflection measurement portion) and the portion directly measured without the back mirrors 57 and 58 (referred to as direct measurement portion). Makes a difference.

【0006】しかし、これまでの計測光の観測には、撮
像用レンズ53とCCDカメラ52による観測系を用い
ているだけであり、光路長の違いによる焦点ずれが原因
で上記反射計測部分及び直接計測部分をともに精度良く
計測することができない。もっとも反射計測部分及び直
接計測部分の両部分に焦点が合うように焦点深度の深い
レンズを用いることも考えられるが、この場合には、計
測精度が劣化するという問題が生じる。すなわちいずれ
にしても、光路長の差により計測精度が良くない。
However, for the observation of the measurement light up to now, only the observation system including the imaging lens 53 and the CCD camera 52 is used, and the reflection measurement portion and the direct reflection measurement portion are directly caused by the defocus due to the difference in the optical path length. Both measurement parts cannot be measured with high accuracy. Although it is conceivable to use a lens with a deep depth of focus so that both the reflection measurement portion and the direct measurement portion are in focus, in this case, there is a problem that the measurement accuracy deteriorates. That is, in any case, the measurement accuracy is not good due to the difference in optical path length.

【0007】一方、三次元形状測定手法としては、スリ
ット状の計測光を計測対象物体に照射し、この時の計測
対象物体像を撮像して信号処理する手法も数多く提案さ
れている。例えば特開昭60―152903号公報で
は、スリット状計測光(スリット光)を投影機から照射
し、この照射された計測光をテレビカメラで撮像し、撮
像によって取得した画像を解析することにより三次元形
状情報を抽出する技術が開示されている。この手法によ
る焦点合わせは、計測対象物体付近に焦点を絞って投影
器、テレビカメラ側ともレンズ系を使用して行ってい
る。
On the other hand, as a three-dimensional shape measuring method, many methods of irradiating a measuring object with slit-shaped measuring light, capturing an image of the measuring object at this time, and performing signal processing have been proposed. For example, in Japanese Patent Laid-Open No. 60-152903, slit-shaped measurement light (slit light) is emitted from a projector, the emitted measurement light is imaged by a television camera, and the image obtained by the image analysis is analyzed to obtain the tertiary image. A technique for extracting original shape information is disclosed. Focusing by this method is performed by using a lens system on both the projector side and the TV camera side by focusing on the object to be measured.

【0008】このようなスリット光を利用した三次元形
状測定器にあって、前述した文献1に示したように背面
鏡を利用して三次元形状の計測に適用しようとする場
合、背面鏡を利用する以上先に述べた光路長の違いが生
じ、計測対象物体上に焦点のあった計測光が照射されな
い、計測光であるスリット光の照射(スリット)間隔が一
定しないという問題は解決されていない。
In the three-dimensional shape measuring instrument using such slit light, when the rear-view mirror is used to measure the three-dimensional shape as shown in the above-mentioned document 1, the rear-view mirror is used. The difference in optical path length described above occurs, the problem that the measurement light with the focus on the measurement target object is not emitted, and the irradiation of the slit light that is the measurement light (slit) interval is not fixed has been solved. Absent.

【0009】以上のように、スリット光を利用し背面鏡
を利用した三次元形状計測装置では、計測光路の差異に
より、焦点合わせが不十分で画像がぼやけることにより
計測不能部分が大きくなる、あるいは焦点合わせが不十
分で計測精度が劣化する、更には計測光路の差異に基づ
く計測対象物体への等価的な遠近の違いにより計測(ス
リット)間隔の不均一性が生じるという問題点があっ
た。
As described above, in the three-dimensional shape measuring apparatus using the slit mirror and the rear surface mirror, due to the difference in the measuring optical path, the focusing is insufficient and the image is blurred, so that the unmeasurable portion becomes large, or There is a problem that the measurement accuracy is deteriorated due to insufficient focusing and that the measurement (slit) interval becomes non-uniform due to the difference in equivalent distance to the measurement target object based on the difference in the measurement optical path.

【0010】また、上記文献1では計測対象物体上の計
測点の撮像系座標から、計測対象物体上の絶対座標系へ
の変換を行う座標変換を一括した行列演算式で行ってい
る。このため、撮像系の焦点調整段階や背面鏡の位置調
整段階を複数設けて切り替えようとする場合、これら焦
点や位置の調整の組み合わせ全てに対してその都度前述
の行列演算式のパラメータを同定(キャリブレーション)
しなければならず、非常に煩雑な手順が必要となってし
まうという問題点があった。
Further, in the above-mentioned Document 1, coordinate transformation for converting the image pickup system coordinates of the measurement points on the measurement target object to the absolute coordinate system on the measurement target object is performed by a batch matrix calculation formula. For this reason, when a plurality of focus adjustment stages of the image pickup system and position adjustment stages of the rear surface mirror are provided for switching, the parameters of the above-described matrix calculation formula are identified for each combination of these focus and position adjustments. Calibration)
However, there is a problem that a very complicated procedure is required.

【0011】この発明は上記に鑑みてなされたもので、
背面鏡を利用して三次元形状計測を行うに当たり、光路
長差による焦点合わせやスリット間隔調整を容易に行
い、また焦点調整や位置調整を簡単にした三次元形状計
測装置の提供を目的とする。
The present invention has been made in view of the above,
The objective of the present invention is to provide a three-dimensional shape measuring device that facilitates focusing and slit spacing adjustment based on the difference in optical path length when performing three-dimensional shape measurement using a rearview mirror, and that facilitates focus adjustment and position adjustment. .

【0012】[0012]

【課題を解決するための手段】上記目的を達成するた
め、この発明にかかる三次元形状計測装置は、計測光を
計測対象物体に照射する計測光照射手段と、この計測光
照射手段により計測光が照射された計測対象物体の映像
を撮像する撮像手段と、撮像にて得られる信号を蓄積す
る画像蓄積手段と、蓄積された画像情報について前記撮
像手段において計測される計測対象物体上の計測点の撮
像系座標から計測対象物体上の絶対座標系への変換処理
を行う演算処理手段と、前記撮像手段の視野領域内に存
在するように設置されて前記撮像手段が観測可能な波長
域において鏡面もしくはそれに準じる反射特性を持つ計
測光路変更手段と、を有する三次元形状計測装置におい
て、計測光路変更手段を介して計測される計測対象物体
の部分に関しては、計測光路変更手段の設置位置に依存
した座標変換計算式を用い、直接計測される計測対象物
体の直接計測部分に関しては、直接計測の座標変換計算
式を用いる演算処理切替手段を備えたことを特徴とす
る。
In order to achieve the above object, a three-dimensional shape measuring apparatus according to the present invention comprises a measuring light irradiating means for irradiating an object to be measured with a measuring light, and a measuring light irradiating means for irradiating the measuring light. An image pickup means for picking up an image of a measurement target object illuminated by, an image storage means for storing a signal obtained by the image pickup, and a measurement point on the measurement target object for measuring the stored image information in the image pickup means. Arithmetic processing means for performing conversion processing from the image pickup system coordinates to an absolute coordinate system on the object to be measured, and a mirror surface in a wavelength range observable by the image pickup means installed so as to exist in the visual field area of the image pickup means. Or, in a three-dimensional shape measuring apparatus having a measurement optical path changing means having a reflection characteristic according to the above, in the portion of the measurement target object measured through the measurement optical path changing means, A coordinate conversion calculation formula that depends on the installation position of the photometric path changing unit is used, and for the direct measurement portion of the measurement target object that is directly measured, arithmetic processing switching unit that uses the coordinate conversion calculation formula of direct measurement is provided. And

【0013】この発明によれば、計測光路変更手段を介
して計測される部分と直接計測される直接計測部分とに
おいて、座標変換式の演算処理を切り替えて使用する構
成としたため、双方の計測を区別して的確に計測を行う
ことができ、一回の計測に両計測部分が含まれるような
場合であっても、同時に計測することが可能である。
According to the present invention, the coordinate conversion type arithmetic processing is switched and used in the portion measured through the measuring optical path changing means and the direct measurement portion directly measured. It is possible to perform accurate measurements separately, and even when both measurement parts are included in one measurement, it is possible to perform simultaneous measurement.

【0014】つぎの発明にかかる三次元形状計測装置
は、上記の発明において、撮像手段に直接計測される計
測対象物体の直接計測部分と計測光路変更手段を介して
計測される計測対象物体の部分との光路長の違いを補正
する焦点距離補正手段と、異なる焦点距離設定で計測さ
れた複数の計測結果を合成する計測データ合成手段と、
を備えたことを特徴とする。
In the three-dimensional shape measuring apparatus according to the next invention, in the above invention, the direct measurement portion of the measurement target object directly measured by the image pickup means and the portion of the measurement target object measured through the measurement optical path changing means. A focal length correcting unit that corrects a difference in optical path length between, and a measurement data combining unit that combines a plurality of measurement results measured with different focal length settings,
It is characterized by having.

【0015】この発明によれば、計測光路変更手段によ
って生じる光路長の違いを補正する焦点距離補正手段と
異なる焦点距離設定で計測された複数の計測結果を合成
する計測データ合成手段を備えたことにより、撮像手段
に直接計測される計測対象物体の直接計測部分と計測光
路変更手段を介して計測される計測対象物体の部分にお
いて、略均一な精度で計測することができる。
According to the present invention, the focal length correcting means for correcting the difference in optical path length caused by the measuring optical path changing means and the measuring data synthesizing means for synthesizing a plurality of measurement results measured at different focal length settings are provided. With this, it is possible to perform measurement with substantially uniform accuracy in the direct measurement portion of the measurement target object that is directly measured by the imaging unit and the portion of the measurement target object that is measured through the measurement optical path changing unit.

【0016】つぎの発明にかかる三次元形状計測装置
は、上記の発明において、計測光照射手段によって計測
光が直接照射される計測対象物体の直接計測部分と計測
光路変更手段を介して計測光が照射される計測対象物体
の部分との光路長の違いを補正する照射焦点距離補正手
段と、異なる照射焦点距離設定で照射された複数の計測
結果を合成する計測データ合成手段と、を備えたことを
特徴とする。
In the three-dimensional shape measuring apparatus according to the next invention, in the above invention, the measuring light is radiated by the measuring light irradiating means and the measuring light is directly radiated by the measuring light irradiating means. An irradiation focal length correction unit that corrects a difference in optical path length from a portion of the measurement target object that is irradiated, and a measurement data combining unit that combines a plurality of measurement results irradiated with different irradiation focal length settings are provided. Is characterized by.

【0017】この発明によれば、計測光路変更手段によ
って生じる光路長の違いを補正する照射焦点距離補正手
段を備えたことにより、計測光照射手段により計測光が
直接照射される計測対象物体の直接計測部分と計測光路
変更手段を介して計測光が照射される計測対象物体の部
分とにおいて、略均一に計測光を照射することができて
均一な計測精度が得られる。
According to the present invention, by providing the irradiation focal length correcting means for correcting the difference in optical path length caused by the measuring light path changing means, the measuring light irradiating means directly irradiates the measuring object with the measuring light directly. It is possible to irradiate the measurement light substantially uniformly in the measurement portion and the portion of the measurement target object to which the measurement light is radiated via the measurement optical path changing means, and to obtain uniform measurement accuracy.

【0018】つぎの発明にかかる三次元形状計測装置
は、上記の発明において、撮像手段に直接計測される計
測対象物体の直接計測部分と計測光路変更手段を介して
計測される計測対象物体の部分との光路長の違いを補正
する照射ピッチ補正手段と、異なる照射ピッチ設定で照
射された複数の計測結果を合成する計測データ合成手段
と、を備えたことを特徴とする。
The three-dimensional shape measuring apparatus according to the next invention is, in the above-mentioned invention, a direct measurement portion of the measurement target object directly measured by the image pickup means and a portion of the measurement target object measured through the measurement optical path changing means. Is provided with an irradiation pitch correction means for correcting the difference in optical path length between the two and measurement data combining means for combining a plurality of measurement results irradiated with different irradiation pitch settings.

【0019】この発明によれば、計測光路変更手段によ
って生じる光路長の違いによる、計測対象物体表面上の
計測ピッチの違いを補正するように、計測光の照射ピッ
チを補正する照射ピッチ補正手段を備えたことにより、
計測光が直接照射される計測対象物体の直接計測部分と
計測光路変更手段を介して計測光が照射される計測対象
物体の部分とにおいて、略均一な精度で計測することが
できる。
According to the present invention, there is provided irradiation pitch correction means for correcting the irradiation pitch of the measurement light so as to correct the difference in the measurement pitch on the surface of the object to be measured due to the difference in the optical path length caused by the measurement optical path changing means. By having
It is possible to perform measurement with substantially uniform accuracy in the direct measurement portion of the measurement target object directly irradiated with the measurement light and the portion of the measurement target object irradiated with the measurement light via the measurement optical path changing means.

【0020】つぎの発明にかかる三次元形状計測装置
は、上記の発明において、演算処理手段は、形状及び寸
法情報が既知である校正用物体を直接観測した計測位置
と前記計測光路変更手段を介して観測した計測結果とを
基にして、計測光路変更手段の設置位置を特定する演算
処理を行うことを特徴とする。
In the three-dimensional shape measuring apparatus according to the next invention, in the above invention, the arithmetic processing means includes a measuring position directly observing the calibration object whose shape and dimension information are known, and the measuring optical path changing means. It is characterized in that arithmetic processing for specifying the installation position of the measurement optical path changing means is performed based on the measurement result observed.

【0021】この発明によれば、計測光路変更手段の設
置位置を特定する演算処理となっているため、計測光路
変更手段の位置が変更されたときには、この計算式のみ
を変更すれば良い。このため、焦点距離設定等の他の調
整要因との全ての組み合わせ設定分の演算処理を用意す
る必要がなく、設置調整手順を簡素化することができ
る。
According to the present invention, since the arithmetic processing for specifying the installation position of the measuring optical path changing means is performed, only this calculation formula needs to be changed when the position of the measuring optical path changing means is changed. Therefore, it is not necessary to prepare the calculation processing for all the combination settings with other adjustment factors such as the focal length setting, and the installation adjustment procedure can be simplified.

【0022】つぎの発明にかかる三次元形状計測装置
は、上記の発明において、計測光路変更手段の反射特性
を可変とし、拡散反射又は鏡面反射を切り替える反射特
性制御手段を備えたことを特徴とする。
A three-dimensional shape measuring apparatus according to the next invention is characterized in that, in the above-mentioned invention, the measurement light path changing means has a variable reflection characteristic, and a reflection characteristic control means for switching between diffuse reflection and specular reflection is provided. .

【0023】この発明によれば、計測光路変更手段の反
射特性を拡散反射又は鏡面反射と切り替える反射特性制
御手段を設けたことにより、鏡面反射面の直接距離計測
が可能となり、より精度の高い演算処理を行うことがで
きる。
According to the present invention, by providing the reflection characteristic control means for switching the reflection characteristic of the measuring optical path changing means to the diffuse reflection or the specular reflection, it becomes possible to directly measure the distance of the specular reflection surface, and to perform a more accurate calculation. Processing can be performed.

【0024】[0024]

【発明の実施の形態】以下に添付図面を参照して、この
発明にかかる好適な実施の形態を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.

【0025】実施の形態1.図1は、この発明の実施の
形態1である三次元形状計測装置の構成を示す図であ
る。図1において、計測対象物体1に対して計測光10
1を照射するプロジェクタ12及び計測対象物体1の照
射光を撮像する撮像装置11を有し、計測対象物体1の
近傍には、プロジェクタ12の照射用レンズ15からの
計測光101を計測対象物体1の側面及び背面に照射し
またこの側面及び背面の照射光を撮像用レンズ14を介
して撮像装置11に取り込むように配置されたミラー1
3が備えられる。
Embodiment 1. FIG. 1 is a diagram showing the configuration of a three-dimensional shape measuring apparatus that is Embodiment 1 of the present invention. In FIG. 1, measurement light 10 is applied to object 1 to be measured.
1 has a projector 12 that irradiates the measurement target object 1 and an imaging device 11 that captures the irradiation light of the measurement target object 1. In the vicinity of the measurement target object 1, the measurement light 101 from the irradiation lens 15 of the projector 12 is measured. 1 arranged to irradiate the side surface and the back surface of the same and to capture the irradiation light of the side surface and the back surface into the imaging device 11 via the imaging lens 14.
3 is provided.

【0026】プロジェクタ12に対して計測光制御信号
206を出力し、また撮像装置11に対して撮像制御信
号201を出力するようにパーソナルコンピュータ及び
I/Oボードからなる計測制御手段20が配置される。
また、撮像装置11から映像信号202が送られる画像
蓄積手段16を備え、この画像蓄積手段16から画像信
号203が送られる演算処理手段17が備えられる。更
に、演算処理手段17に座標変換演算パラメータ指定情
報204を送る演算処理切替手段18を有し、この演算
処理切替手段18には、計測制御手段20より演算処理
切替制御信号205が送られる。なお、演算処理手段1
7の出力である距離計測情報207はこの実施の形態1
の三次元形状計測装置の出力である。
The measurement control means 20 composed of a personal computer and an I / O board is arranged so as to output the measurement light control signal 206 to the projector 12 and output the imaging control signal 201 to the imaging device 11. .
Further, it is provided with an image storage means 16 to which a video signal 202 is sent from the image pickup device 11, and an arithmetic processing means 17 to which an image signal 203 is sent from the image storage means 16. Further, the arithmetic processing means 17 has an arithmetic processing switching means 18 for transmitting the coordinate conversion arithmetic parameter designation information 204, and the arithmetic processing switching means 18 is supplied with an arithmetic processing switching control signal 205 from the measurement control means 20. The arithmetic processing means 1
The distance measurement information 207, which is the output of No. 7, is given in this first embodiment.
It is the output of the three-dimensional shape measuring device of.

【0027】ここで計測制御手段20は、パソコンとI
/Oボードを組み合わせてソフトウェアにより構築する
こともできるし、専用の制御ボードにて構築してもよ
い。また、 プロジェクタ12は、 通常、ハロゲンラン
プと液晶パネルなどを組み合わせた構成であり、任意の
パターンのスリット光を照射可能なものであれば良い
が、他の照射手段例えば変調させたスリットLD光源と
ガルバノミラーなどの光走査手段を組み合わせてスリッ
ト光のパターン照射をするものであってもよい。
The measurement control means 20 is a personal computer and an I
It is also possible to construct by software by combining the / O boards, or by using a dedicated control board. Further, the projector 12 usually has a configuration in which a halogen lamp and a liquid crystal panel or the like are combined, and may be any one capable of irradiating slit light of an arbitrary pattern, but other irradiating means such as a modulated slit LD light source The slit light pattern irradiation may be performed by combining an optical scanning means such as a galvanometer mirror.

【0028】図1に示す構成において、一連の計測動作
は、計測制御手段20によってコントロールされる。ま
ず、計測制御手段20から計測光制御信号206がプロ
ジェクタ12に与えられ、照射用レンズ15を介して計
測光101が照射される。この計測光101の照射範囲
にミラー13が設置され、計測光101はミラー13に
て反射した後、計測対象物体1に照射される。計測光1
01が照射された計測対象物体1は、再びミラー13を
介して撮像用レンズ14を取りつけたCCDカメラ等の
撮像装置11により撮像され、撮像によって得られた映
像信号202は画像蓄積手段16に取り込まれた後、演
算処理手段17に画像信号203として送られる。この
場合、撮像装置11の動作は、撮像制御信号201によ
り制御される。
In the configuration shown in FIG. 1, a series of measurement operations are controlled by the measurement control means 20. First, the measurement light control signal 206 is given from the measurement control means 20 to the projector 12, and the measurement light 101 is emitted through the irradiation lens 15. The mirror 13 is installed in the irradiation range of the measurement light 101, the measurement light 101 is reflected by the mirror 13, and then is irradiated onto the measurement target object 1. Measuring light 1
The object to be measured 1 irradiated with 01 is imaged again by the imaging device 11 such as a CCD camera having the imaging lens 14 attached via the mirror 13, and the video signal 202 obtained by the imaging is captured by the image storage means 16. After being processed, the image signal 203 is sent to the arithmetic processing means 17. In this case, the operation of the imaging device 11 is controlled by the imaging control signal 201.

【0029】なお、以上の説明はミラー13を介した計
測光101の反射計測部分への照射及び撮像について述
べたが、当然ながらミラー13を介さずに、計測対象物
体1の直接計測部分への計測光照射も行われ、かつこの
直接計測部分での映像を直接撮像することも可能であ
る。そしてこの直接計測に変わる場合には、計測制御手
段20からの計測光制御信号206によりプロジェクタ
12を制御し、撮像制御信号201にて撮像装置11を
制御し、演算処理切替制御信号205にて演算処理切替
手段18を制御することで、対応する。また、計測画像
にあって、直接計測部分とミラー13を介して計測され
る反射計測部分とのそれぞれの該当画像については、演
算処理切替手段18からの座標変換演算パラメータ指定
情報204により演算処理手段17にて予め設定された
処理により校正が行われる。したがって、演算処理手段
17においては、計測対象物体1上でミラー13を介し
て計測される反射計測部分及び直接計測部分において、
各々の光学経路の違いに応じた座標変換演算が行われる
ように制御される。この時、計測制御手段20から演算
処理切替制御信号205が演算処理切替手段18に伝え
られ、座標変換演算パラメータ指定情報204が演算処
理手段17に与えられ、光学経路の違いに応じた距離計
測情報207が出力される。
In the above description, the irradiation of the measurement light 101 on the reflection measurement portion via the mirror 13 and the imaging are described, but it goes without saying that the measurement target object 1 is directly measured on the measurement portion without the mirror 13. Irradiation of measurement light is also performed, and it is also possible to directly capture an image at this direct measurement portion. In the case of changing to this direct measurement, the projector 12 is controlled by the measurement light control signal 206 from the measurement control means 20, the image pickup device 11 is controlled by the image pickup control signal 201, and the calculation processing switching control signal 205 is used for calculation. This is handled by controlling the process switching means 18. Further, regarding the corresponding images of the direct measurement portion and the reflection measurement portion that is measured via the mirror 13 in the measurement image, the arithmetic processing means by the coordinate conversion arithmetic parameter designation information 204 from the arithmetic processing switching means 18 Calibration is performed by the processing preset in 17. Therefore, in the arithmetic processing means 17, in the reflection measurement portion and the direct measurement portion which are measured on the measurement target object 1 via the mirror 13,
Control is performed so that coordinate conversion calculation is performed according to the difference in each optical path. At this time, the arithmetic processing switching control signal 205 is transmitted from the measurement control means 20 to the arithmetic processing switching means 18, the coordinate conversion arithmetic parameter designation information 204 is given to the arithmetic processing means 17, and the distance measurement information according to the difference in the optical path. 207 is output.

【0030】このように、計測光101にて直接計測さ
れる計測対象物体1の直接計測部分とミラー13を介し
て計測される計測対象物体1の反射計測部分において、
適切な座標変換演算処理が行われるため、両部分を区別
して的確に計測することができる。
In this way, in the direct measurement part of the measurement target object 1 directly measured by the measurement light 101 and the reflection measurement part of the measurement target object 1 measured via the mirror 13,
Since appropriate coordinate conversion calculation processing is performed, both parts can be distinguished and accurately measured.

【0031】なお、計測画像中にあって、直接計測部分
と反射計測部分とのそれぞれの該当画像部分が同一画像
にあるとき、その画像部分に対応して座標変換演算処理
が行われ、同時計測が可能となる。
When the corresponding image portions of the direct measurement portion and the reflection measurement portion are in the same image in the measurement image, coordinate conversion calculation processing is performed corresponding to the image portion, and simultaneous measurement is performed. Is possible.

【0032】実施の形態2.つぎに、この発明の実施の
形態2について説明する。この実施の形態2では、上述
した実施の形態1の構成において、計測データ合成手段
19及び焦点距離調整手段21を新たに備える。すなわ
ち計測制御手段20からの焦点距離制御信号209が送
られる焦点距離調整手段21が備えられ、この焦点距離
調整手段21からの焦点距離調整信号210が撮像用レ
ンズ14に送られるようになっている。また、演算処理
手段17の次段には距離計測情報207が送られる計測
データ合成手段19が備えられ、この計測データ合成手
段19から統合距離計測情報208が出力される。図2
にて他の部分は、図1と同じ構成である。
Embodiment 2. Next, a second embodiment of the present invention will be described. In the second embodiment, the measurement data synthesizing means 19 and the focal length adjusting means 21 are newly provided in the configuration of the above-described first embodiment. That is, the focal length adjusting means 21 to which the focal length control signal 209 from the measurement controlling means 20 is sent is provided, and the focal length adjusting signal 210 from this focal length adjusting means 21 is sent to the imaging lens 14. . Further, a measurement data synthesizing unit 19 to which the distance measurement information 207 is sent is provided at the next stage of the arithmetic processing unit 17, and the integrated distance measurement information 208 is output from the measurement data synthesizing unit 19. Figure 2
Other parts have the same structure as in FIG.

【0033】図2の構成において、撮像用レンズ14の
焦点距離を調整する焦点距離調整手段21にて、計測対
象物体1を直接撮像する際の焦点調整及びミラー13を
介して撮像される際の焦点調整が行われる。この時、計
測制御手段20からの焦点距離制御信号209が、焦点
距離調整手段21に与えられ、焦点距離調整信号210
により撮像用レンズ14の焦点が調整され、各々の焦点
設定に基づいて撮像が行われる。こうして、撮像装置1
1によって取得された各々の焦点設定での画像信号20
3は、実施の形態1と同様に、演算処理手段17で座標
変換処理された距離計測情報207として得られ、計測
データ合成手段19において異なる焦点距離設定で計測
された複数の計測結果を合成するよう統合処理され、統
合距離計測情報208として出力される。
In the configuration of FIG. 2, the focal length adjusting means 21 for adjusting the focal length of the imaging lens 14 adjusts the focus when directly imaging the object 1 to be measured and when imaging through the mirror 13. Focus adjustment is performed. At this time, the focal length control signal 209 from the measurement control means 20 is given to the focal length adjustment means 21, and the focal length adjustment signal 210 is supplied.
Thus, the focus of the imaging lens 14 is adjusted, and imaging is performed based on each focus setting. Thus, the imaging device 1
Image signal 20 at each focus setting acquired by
Similar to the first embodiment, 3 is obtained as distance measurement information 207 that has been subjected to coordinate conversion processing by the arithmetic processing means 17, and the measurement data combining means 19 combines a plurality of measurement results measured at different focal length settings. Are integrated and output as integrated distance measurement information 208.

【0034】なお、この時演算処理切替手段18におい
ては、各々の焦点設定に応じた座標変換演算処理が行わ
れるように演算処理の切替がなされる。また、それぞれ
の焦点設定が有効となる該当画像については、実施の形
態1と同様に演算処理切替手段18からの座標変換演算
パラメータ指定情報204により演算処理手段17にて
予め設定された処理により校正が行われる。
At this time, the arithmetic processing switching means 18 switches the arithmetic processing so that the coordinate conversion arithmetic processing is performed according to each focus setting. In addition, as for the corresponding image for which each focus setting is effective, calibration is performed by the processing preset by the arithmetic processing means 17 by the coordinate conversion arithmetic parameter designation information 204 from the arithmetic processing switching means 18 as in the first embodiment. Is done.

【0035】このように、直接計測される計測対象物体
1の直接計測部分とミラー13を介して計測される計測
対象物体1の反射計測部分では、適切な焦点距離調整、
座標変換演算処理が行われるため、両部分を精度よく計
測することができる。
Thus, in the direct measurement part of the measurement target object 1 directly measured and the reflection measurement part of the measurement target object 1 measured via the mirror 13, an appropriate focal length adjustment,
Since the coordinate conversion calculation process is performed, both parts can be measured with high accuracy.

【0036】なお、計測画像中にあって、直接計測部分
と反射計測部分とのそれぞれの該当画像部分が同一画像
にあるとき、その画像部分に対応して焦点の調整及び座
標変換演算処理が行われ、同時計測が可能となる。
When the corresponding image portions of the direct measurement portion and the reflection measurement portion are in the same image in the measurement image, focus adjustment and coordinate conversion calculation processing are performed corresponding to the image portion. Therefore, simultaneous measurement is possible.

【0037】実施の形態3.つぎに、この発明の実施の
形態3について説明する。この実施の形態3では、上述
した実施の形態1の構成において、計測データ合成手段
19及び照射焦点距離調整手段22を新たに備える。す
なわち計測制御手段20からの照射焦点距離制御信号2
10が送られる照射焦点距離調整手段22が備えられ、
この照射焦点距離調整手段22からの照射焦点距離調整
信号211が照射用レンズ15に送られるようになって
いる。また、演算処理手段17の次段には距離計測情報
207が送られる計測データ合成手段19が備えられ、
この計測データ合成手段19から統合距離計測情報20
8が出力される。図3にて他の部分は、図1と同じ構成
である。
Embodiment 3. Next, a third embodiment of the invention will be described. In the third embodiment, the measurement data synthesizing unit 19 and the irradiation focal length adjusting unit 22 are newly provided in the configuration of the first embodiment described above. That is, the irradiation focal length control signal 2 from the measurement control means 20.
An irradiation focal length adjusting means 22 to which 10 is sent is provided,
An irradiation focal length adjustment signal 211 from the irradiation focal length adjusting means 22 is sent to the irradiation lens 15. Further, the measurement data synthesizing means 19 to which the distance measurement information 207 is sent is provided in the next stage of the arithmetic processing means 17,
Integrated distance measurement information 20 from this measurement data synthesizing means 19
8 is output. Other parts in FIG. 3 have the same configuration as in FIG.

【0038】図3の構成にあって、照射用レンズ15の
焦点距離を調整する照射焦点距離調整手段22により、
計測光101を計測対象物体1に直接照射する際の焦点
調整及びミラー13を介して照射する際の焦点調整が行
われる。この時、計測制御手段20からの照射焦点距離
制御信号210が、照射焦点距離調整手段22に与えら
れ、照射焦点距離調整信号211により照射用レンズ1
5が調整され、各々の焦点設定による計測光照射が行わ
れる。
In the structure of FIG. 3, the irradiation focal length adjusting means 22 for adjusting the focal length of the irradiation lens 15 is used.
The focus adjustment when directly irradiating the measurement object 101 with the measurement light 101 and the focus adjustment when irradiating via the mirror 13 are performed. At this time, the irradiation focal length control signal 210 from the measurement control means 20 is given to the irradiation focal length adjustment means 22, and the irradiation lens 1 is irradiated by the irradiation focal length adjustment signal 211.
5 is adjusted, and measurement light irradiation is performed with each focus setting.

【0039】こうして、撮像装置11によって取得され
た各々の照射焦点設定での画像情報203は、実施の形
態1と同様に、演算処理手段17で座標変換処理された
距離計測情報207として計測データ合成手段19にお
いて統合処理され、統合距離計測情報208として出力
される。
In this way, the image information 203 in each irradiation focus setting acquired by the image pickup device 11 is combined with the measurement data as the distance measurement information 207 which is coordinate-converted by the arithmetic processing means 17, as in the first embodiment. The integrated processing is performed by the means 19, and the integrated distance measurement information 208 is output.

【0040】なお、この時演算処理切替手段18におい
ては、各々の照射焦点設定に応じた座標変換演算処理が
行われるように演算処理の切替がなされる。また、それ
ぞれの照射焦点設定が有効となる該当画像については、
実施の形態1と同様に演算処理切替手段18からの座標
変換演算パラメータ指定情報204により演算処理手段
17にて予め設定された処理により校正が行われる。
At this time, the arithmetic processing switching means 18 switches the arithmetic processing so that the coordinate conversion arithmetic processing according to each irradiation focus setting is performed. In addition, for the corresponding image for which each irradiation focus setting is effective,
As in the first embodiment, the calibration is performed by the processing preset by the arithmetic processing means 17 by the coordinate conversion arithmetic parameter designation information 204 from the arithmetic processing switching means 18.

【0041】このように、直接計測される計測対象物体
1の直接計測部分とミラー13を介して計測される計測
対象物体1の反射計測部分では、適切な照射焦点距離調
整、座標変換演算処理が行われるため、両部分を精度よ
く計測することができる。
Thus, in the direct measurement portion of the measurement target object 1 directly measured and the reflection measurement portion of the measurement target object 1 measured via the mirror 13, appropriate irradiation focal length adjustment and coordinate conversion calculation processing are performed. Since it is performed, both parts can be accurately measured.

【0042】なお、計測画像中にあって、直接計測部分
と反射計測部分とのそれぞれの該当画像部分が同一画像
にあるとき、その画像部分に対応して照射焦点の調整及
び座標変換演算処理が行われ、同時計測が可能となる。
In the measurement image, when the corresponding image portions of the direct measurement portion and the reflection measurement portion are in the same image, the irradiation focus adjustment and coordinate conversion calculation processing are performed corresponding to the image portion. It is performed and simultaneous measurement becomes possible.

【0043】実施の形態4.つぎに、この発明の実施の
形態4について説明する。この実施の形態4では、上述
した実施の形態1の構成において、計測データ合成手段
19及び照射ピッチ補正手段23を新たに備える。すな
わち計測制御手段20からの照射ピッチ制御信号212
が送られる照射ピッチ補正手段23が備えられ、この照
射ピッチ補正手段23からの照射ピッチ補正信号213
がプロジェクタ12に送られるようになっている。ま
た、演算処理手段17の次段には距離計測情報207が
送られる計測データ合成手段19が備えられ、この計測
データ合成手段19から統合距離計測情報208が出力
される。図4にて他の部分は、図1と同じ構成である。
Fourth Embodiment Next, a fourth embodiment of the invention will be described. In the fourth embodiment, the measurement data synthesizing means 19 and the irradiation pitch correcting means 23 are newly provided in the configuration of the above-described first embodiment. That is, the irradiation pitch control signal 212 from the measurement control means 20.
The irradiation pitch correction means 23 for transmitting the irradiation pitch is provided, and the irradiation pitch correction signal 213 from the irradiation pitch correction means 23 is provided.
Are sent to the projector 12. Further, a measurement data synthesizing unit 19 to which the distance measurement information 207 is sent is provided at the next stage of the arithmetic processing unit 17, and the integrated distance measurement information 208 is output from the measurement data synthesizing unit 19. Other parts in FIG. 4 have the same configuration as in FIG.

【0044】図4に示した構成において、照射ピッチ補
正手段23においては、プロジェクタ12から照射され
る計測光101であるスリット光の間隔である照射ピッ
チをミラー13を介して照射される計測対象物体1の反
射計測部分と直接照射される計測対象物体1の直接計測
部分との双方にあって、概ね等しい照射ピッチとなるよ
うに調整している。この時、計測制御手段20からの照
射ピッチ制御信号212が、照射ピッチ補正手段23に
与えられ、照射ピッチ補正信号213によりプロジェク
タ12からの計測光101の照射ピッチが補正される。
In the configuration shown in FIG. 4, in the irradiation pitch correction means 23, the object to be measured which is irradiated through the mirror 13 with the irradiation pitch which is the interval between the slit light which is the measurement light 101 emitted from the projector 12. It is adjusted so that the irradiation pitch is substantially the same in both the reflection measurement part 1 and the direct measurement part of the measurement target object 1 that is directly irradiated. At this time, the irradiation pitch control signal 212 from the measurement control unit 20 is given to the irradiation pitch correction unit 23, and the irradiation pitch of the measurement light 101 from the projector 12 is corrected by the irradiation pitch correction signal 213.

【0045】通常、計測光101の照射ピッチは、計測
対象物体1までの距離に比例して拡大するため、例え
ば、直接計測部分までの平均距離をD1、ミラー13に反
射して計測される反射計測部分までの平均距離をD2とす
ると、直接計測部分での照射角度ピッチをP1、ミラー1
3に反射して計測される反射計測部分での照射角度ピッ
チをP2とすると、P1:P2 = D1:D2 のような比例関係で求
められる。また、一度計測した結果に基づいて、各部分
の平均距離に応じてさらに細かく連続的に変化させるよ
うなことも可能である。こうして、撮像装置11によっ
て取得された各々の照射ピッチで計測光を照射した画像
情報203は、実施の形態1と同様に、演算処理手段1
7で座標変換処理された距離計測情報207として計測
データ合成手段19において統合処理され、統合距離計
測情報208として出力される。
Since the irradiation pitch of the measuring light 101 normally increases in proportion to the distance to the object 1 to be measured, for example, the average distance to the measurement portion is directly reflected by D1, and the reflection is measured by the mirror 13. If the average distance to the measurement part is D2, the irradiation angle pitch in the direct measurement part is P1, mirror 1
Let P2 be the irradiation angle pitch in the reflection measurement part that is reflected by 3 and measured, and it can be obtained in a proportional relationship such as P1: P2 = D1: D2. Further, it is also possible to make a finer and continuous change according to the average distance of each part based on the result of measurement once. In this way, the image information 203 obtained by irradiating the measurement light at each irradiation pitch acquired by the image pickup device 11 has the arithmetic processing unit 1 as in the first embodiment.
The distance measurement information 207 subjected to the coordinate conversion processing in 7 is integrated in the measurement data synthesizing means 19 and output as integrated distance measurement information 208.

【0046】なお、この時演算処理切替手段18におい
ては、各々の照射ピッチに応じた座標変換演算処理が行
われるように演算処理の切替がなされる。また、それぞ
れの照射ピッチが有効となる該当画像については、実施
の形態1と同様に演算処理切替手段18からの座標変換
演算パラメータ指定情報204により演算処理手段17
にて予め設定された処理により校正が行われる。
At this time, the arithmetic processing switching means 18 switches the arithmetic processing so that the coordinate conversion arithmetic processing is performed according to each irradiation pitch. Further, for the corresponding image in which each irradiation pitch is effective, the arithmetic processing means 17 is designated by the coordinate conversion arithmetic parameter designation information 204 from the arithmetic processing switching means 18 as in the first embodiment.
Calibration is performed by the process set in advance.

【0047】このように、直接計測される計測対象物体
1の直接計測部分とミラー13を介して計測される計測
対象物体1の反射計測部分では、適切な照射ピッチ調
整、座標変換演算処理が行われるため、両部分を均一な
精度で計測することができる。
Thus, in the direct measurement portion of the measurement target object 1 directly measured and the reflection measurement portion of the measurement target object 1 measured via the mirror 13, appropriate irradiation pitch adjustment and coordinate conversion calculation processing are performed. Therefore, both parts can be measured with uniform accuracy.

【0048】なお、計測画像中にあって、直接計測部分
と反射計測部分とのそれぞれの該当画像部分が同一画像
にあるとき、その画像部分に対応して照射ピッチの調整
及び座標変換演算処理が行われ、同時計測が可能とな
る。
In the measurement image, when the corresponding image portions of the direct measurement portion and the reflection measurement portion are in the same image, the irradiation pitch adjustment and coordinate conversion calculation processing are performed corresponding to the image portion. It is performed and simultaneous measurement becomes possible.

【0049】実施の形態5.つぎに、この発明の実施の
形態5について説明する。この実施の形態5では、上述
した実施の形態1の構成において、計測対象物体として
校正用物体を配置するものである。図5にて他の部分
は、図1と同じ構成である。
Embodiment 5. Next, a fifth embodiment of the invention will be described. In the fifth embodiment, the calibration object is arranged as the measurement target object in the configuration of the first embodiment described above. Other parts in FIG. 5 have the same configuration as in FIG.

【0050】図5の構成において、形状及び寸法情報が
既知である校正用物体2は、例えばサイズが既知の立方
体で構成されており、図5では図示していないが表面に
は等間隔で格子模様が描かれている物体などが適当であ
る。この校正用物体2に対し、まず直接計測により前面
の平面部分3を計測する。
In the configuration of FIG. 5, the calibration object 2 whose shape and size information is known is composed of, for example, a cube whose size is known, and although not shown in FIG. An object on which a pattern is drawn is suitable. With respect to this calibration object 2, first, the front plane portion 3 is measured by direct measurement.

【0051】次に、図6に示すようにミラー13を介し
て校正用物体2の鏡像6の側面平面部分7、あるいは背
面平面部分8を計測し、ミラー13が存在しないものと
して計測値 M7、M8を得る。
Next, as shown in FIG. 6, the side plane portion 7 or the back plane portion 8 of the mirror image 6 of the calibration object 2 is measured via the mirror 13, and it is assumed that the mirror 13 does not exist. Get the M8.

【0052】なお、ここでM7、M8は側面平面部分7、背
面平面部分8の各N個の計測点のX、Y、Zの三次元座標を
並べた 3 x N ベクトルである。ところで、校正用物体
2 の形状寸法は既知であることから、先に計測した前
面平面部分3の計測値を基にして側面平面部分4及び背
面平面部分5の存在位置を推定することが可能であり、
それぞれM4、M5(3x Nベクトル)とする。この時、M4と
M7、M5とM8の各対応点、M41とM71、M42とM72、M51とM81
を結んだ線分を垂直2等分する面が鏡面反射面24であ
り、ミラー13の鏡面反射面24を特定することができ
る。なお、計測点の対応を取る際に先に述べた格子模様
を基準にすると対応を取りやすい。
Here, M7 and M8 are 3 × N vectors in which the three-dimensional X, Y, and Z coordinates of each N measurement points on the side surface plane portion 7 and the back surface plane portion 8 are arranged. By the way, since the shape and size of the calibration object 2 are known, it is possible to estimate the existing positions of the side surface flat surface portion 4 and the rear surface flat surface portion 5 based on the measurement values of the front surface flat portion 3 measured previously. Yes,
Let M4 and M5 (3x N vector) respectively. At this time, with M4
Corresponding points of M7, M5 and M8, M41 and M71, M42 and M72, M51 and M81
The surface that divides the line segment connecting the lines into two is a specular reflection surface 24, and the specular reflection surface 24 of the mirror 13 can be specified. It should be noted that when the measurement points are associated with each other, the lattice pattern described above is used as a reference to facilitate the association.

【0053】また、以上の説明では、校正用物体2とし
て立方体を例に挙げたが、形状、サイズが既知であり、
計測点の対応が取れるものであれば、任意の曲面から構
成される物体であっても構わない。
In the above description, a cube is taken as an example of the calibration object 2, but the shape and size are known,
The object may be an arbitrary curved surface as long as the measurement points can be associated with each other.

【0054】このように、予めミラー13の設置位置に
対して、鏡面反射面24を特定することができるため、
演算処理手段17及び演算処理切替手段18における座
標変換演算式の切替を、焦点調整、照射ピッチ調整とは
独立に行うことができる。このため、焦点距離設定等の
他の調整要因との全ての組み合わせ設定分の座標演算式
を用意する必要がなく、設置調整手順を簡素化すること
ができる。
As described above, since the specular reflection surface 24 can be specified in advance with respect to the installation position of the mirror 13,
The coordinate conversion calculation formulas in the calculation processing means 17 and the calculation processing switching means 18 can be switched independently of the focus adjustment and the irradiation pitch adjustment. For this reason, it is not necessary to prepare coordinate calculation expressions for all combinations and settings with other adjustment factors such as focal length settings, and the installation adjustment procedure can be simplified.

【0055】実施の形態6.つぎに、この発明の実施の
形態6について説明する。この実施の形態6では、上述
した実施の形態1の構成において、反射特性制御手段2
5を新たに備える。すなわち計測制御手段20からの反
射特性制御信号214が送られる反射特性制御手段25
が備えられ、この反射特性制御手段25からの反射特性
調整信号215がミラー13に送られるようになってい
る。図7にて他の部分は、図1と同じ構成である。
Sixth Embodiment Next, a sixth embodiment of the invention will be described. In the sixth embodiment, the reflection characteristic control unit 2 is provided in the configuration of the first embodiment described above.
5 is newly provided. That is, the reflection characteristic control means 25 to which the reflection characteristic control signal 214 from the measurement control means 20 is sent.
Is provided, and the reflection characteristic adjustment signal 215 from the reflection characteristic control means 25 is sent to the mirror 13. Other parts in FIG. 7 have the same configuration as in FIG.

【0056】図7に示した構成において、反射特性制御
手段25においては、ミラー13の表面反射特性を拡散
反射、鏡面反射と制御する機構を設けている。この時、
計測制御手段20からの反射特性制御信号214は反射
特性制御手段25で反射特性調整信号215となり、ミ
ラー13の表面反射特性を制御する。
In the structure shown in FIG. 7, the reflection characteristic control means 25 is provided with a mechanism for controlling the surface reflection characteristic of the mirror 13 to be diffuse reflection or specular reflection. At this time,
The reflection characteristic control signal 214 from the measurement control unit 20 becomes the reflection characteristic adjustment signal 215 by the reflection characteristic control unit 25, and controls the surface reflection characteristic of the mirror 13.

【0057】なお、反射特性制御手段25の構成として
は、例えば、ミラー13が金属蒸着面とガラスにより構
成されており、ガラス面が非常に薄く、計測精度に対し
て無視し得る場合には、単純に拡散反射特性を持つ薄い
可動シートを配置することで実現できる。また、ミラー
13が鏡面反射金属面で構成されるような場合は、金属
表面自体が反射面と見なせるため、さらに都合がよい。
更には、ミラー13の金属蒸着面と保護ガラスの間に微
細な間隙を設け、拡散反射特性を持つシート状物体ある
いは液体を挿入あるいは引出すことにより反射特性を可
変とすることができる。また、液晶を満たした保護ガラ
ス板を配し、透過、遮蔽といった電圧制御により反射特
性を可変にすることもできる。
As the structure of the reflection characteristic control means 25, for example, when the mirror 13 is composed of a metal vapor deposition surface and glass and the glass surface is very thin and can be ignored for the measurement accuracy, This can be achieved by simply arranging a thin movable sheet having diffuse reflection characteristics. Further, when the mirror 13 is formed of a specular reflection metal surface, the metal surface itself can be regarded as a reflection surface, which is more convenient.
Furthermore, the reflection characteristics can be made variable by providing a minute gap between the metal vapor deposition surface of the mirror 13 and the protective glass and inserting or withdrawing a sheet-like object having a diffuse reflection characteristic or a liquid. Further, it is also possible to arrange a protective glass plate filled with liquid crystal and make the reflection characteristic variable by voltage control such as transmission and shielding.

【0058】このように、ミラー13自体を直接計測可
能とするため、拡散反射特性を持たせるように制御可能
としたため、他の計測パラメータの推定誤差の影響を受
けることなく、反射面パラメータの直接的な決定が可能
であり、より精度の高い演算処理を行うことができる。
As described above, since the mirror 13 itself can be directly measured, the mirror 13 can be controlled so as to have the diffuse reflection characteristic. Therefore, the reflection surface parameter can be directly measured without being affected by the estimation error of other measurement parameters. Determination can be made, and more accurate arithmetic processing can be performed.

【0059】[0059]

【発明の効果】以上説明したように、この発明によれ
ば、計測光を計測対象物体に照射する計測光照射手段
と、この計測光照射手段により計測光が照射された計測
対象物体の映像を撮像する撮像手段と、撮像にて得られ
る信号を蓄積する画像蓄積手段と、蓄積された画像情報
について前記撮像手段において計測される計測対象物体
上の計測点の撮像系座標から計測対象物体上の絶対座標
系への変換処理を行う演算処理手段と、前記撮像手段の
視野領域内に存在するように設置されて前記撮像手段が
観測可能な波長域において鏡面もしくはそれに準じる反
射特性を持つ計測光路変更手段と、を有する三次元形状
計測装置において、計測光路変更手段を介して計測され
る計測対象物体の部分に関しては、計測光路変更手段の
設置位置に依存した座標変換計算式を用い、直接計測さ
れる計測対象物体の直接計測部分に関しては、直接計測
の座標変換計算式を用いる演算処理切替手段を備えたこ
とにより、計測光路変更手段を介して計測される部分と
直接計測される直接計測部分とにおいて、座標変換式の
演算処理を切り替えて使用する構成としたため、双方の
計測を区別して的確に計測を行うことができ、一回の計
測に両計測部分が含まれるような場合であっても、同時
に計測することが可能である。
As described above, according to the present invention, the measuring light irradiation means for irradiating the measuring object with the measuring light and the image of the measuring object irradiated with the measuring light by the measuring light irradiating means are displayed. An image pickup means for picking up an image, an image storage means for storing a signal obtained by the image pickup, and an image pickup system coordinate of a measurement point on the measurement target object measured by the image pickup means with respect to the stored image information on the measurement target object. Arithmetic processing means for performing conversion processing to an absolute coordinate system, and measurement optical path change that is installed so as to exist in the visual field area of the image pickup means and has a mirror surface or a reflection characteristic similar to that in a wavelength range observable by the image pickup means In the three-dimensional shape measuring apparatus having the means, the part of the object to be measured which is measured via the measuring optical path changing means is a seat depending on the installation position of the measuring optical path changing means. With respect to the direct measurement portion of the measurement target object that is directly measured by using the conversion calculation formula, the portion that is measured through the measurement optical path changing means by providing the arithmetic processing switching means that uses the coordinate conversion calculation formula of direct measurement. In the direct measurement part that is directly measured with, the calculation processing of the coordinate conversion formula is switched and used, so it is possible to distinguish between both measurements and perform accurate measurement, and both measurement parts can be performed once. Even if it is included, it is possible to measure at the same time.

【0060】つぎの発明によれば、撮像手段に直接計測
される計測対象物体の直接計測部分と計測光路変更手段
を介して計測される計測対象物体の部分との光路長の違
いを補正する焦点距離補正手段と、異なる焦点距離設定
で計測された複数の計測結果を合成する計測データ合成
手段と、を備えたことにより、撮像手段に直接計測され
る計測対象物体の直接計測部分と計測光路変更手段を介
して計測される計測対象物体の部分において、略均一な
精度で計測することができる。
According to the next invention, the focus for correcting the difference in optical path length between the direct measurement portion of the measurement target object directly measured by the image pickup means and the portion of the measurement target object measured through the measurement optical path changing means. By providing the distance correction means and the measurement data synthesis means for synthesizing a plurality of measurement results measured at different focal length settings, the direct measurement portion of the measurement target object directly measured by the imaging means and the measurement optical path change It is possible to measure with substantially uniform accuracy in the portion of the measurement target object that is measured via the means.

【0061】つぎの発明によれば、計測光照射手段によ
って計測光が直接照射される計測対象物体の直接計測部
分と計測光路変更手段を介して計測光が照射される計測
対象物体の部分との光路長の違いを補正する照射焦点距
離補正手段と、異なる照射焦点距離設定で照射された複
数の計測結果を合成する計測データ合成手段と、を備え
たことにより、計測光照射手段により計測光が直接照射
される計測対象物体の直接計測部分と計測光路変更手段
を介して計測光が照射される計測対象物体の部分とにお
いて、略均一に計測光を照射することができて均一な計
測精度が得られる。
According to the next invention, the direct measurement portion of the measurement target object directly irradiated with the measurement light by the measurement light irradiation means and the portion of the measurement target object irradiated with the measurement light via the measurement optical path changing means. By providing the irradiation focal length correction means for correcting the difference in the optical path length and the measurement data synthesizing means for synthesizing a plurality of measurement results irradiated with different irradiation focal length settings, the measurement light irradiating means can measure the measurement light. It is possible to irradiate the measurement light substantially uniformly between the direct measurement portion of the measurement target object that is directly irradiated and the portion of the measurement target object that is irradiated with the measurement light via the measurement optical path changing means, and to obtain uniform measurement accuracy. can get.

【0062】つぎの発明によれば、撮像手段に直接計測
される計測対象物体の直接計測部分と計測光路変更手段
を介して計測される計測対象物体の部分との光路長の違
いを補正する照射ピッチ補正手段と、異なる照射ピッチ
設定で照射された複数の計測結果を合成する計測データ
合成手段と、を備えたことにより、計測光が直接照射さ
れる計測対象物体の直接計測部分と計測光路変更手段を
介して計測光が照射される計測対象物体の部分とにおい
て、略均一な精度で計測することができる。
According to the next invention, the irradiation for correcting the difference in optical path length between the direct measurement portion of the measurement target object directly measured by the image pickup means and the portion of the measurement target object measured through the measurement optical path changing means. By providing the pitch correction means and the measurement data synthesizing means for synthesizing a plurality of measurement results irradiated with different irradiation pitch settings, the measurement light path is directly changed with the measurement portion directly radiated with the measurement light. The measurement can be performed with substantially uniform accuracy in the portion of the measurement target object irradiated with the measurement light via the means.

【0063】つぎの発明によれば、演算処理手段は、形
状及び寸法情報が既知である校正用物体を直接観測した
計測位置と前記計測光路変更手段を介して観測した計測
結果とを基にして、計測光路変更手段の設置位置を特定
する演算処理を行うことにより、計測光路変更手段の設
置位置を特定する演算処理となっているため、計測光路
変更手段の位置が変更されたときには、この計算式のみ
を変更すれば良い。このため、焦点距離設定等の他の調
整要因との全ての組み合わせ設定分の演算処理を用意す
る必要がなく、設置調整手順を簡素化することができ
る。
According to the next invention, the arithmetic processing means is based on the measurement position obtained by directly observing the calibration object whose shape and dimension information are known and the measurement result obtained through the measurement optical path changing means. Since the calculation processing for specifying the installation position of the measurement optical path changing means is performed to perform the calculation processing for specifying the installation position of the measurement optical path changing means, this calculation is performed when the position of the measurement optical path changing means is changed. You only have to change the formula. Therefore, it is not necessary to prepare the calculation processing for all the combination settings with other adjustment factors such as the focal length setting, and the installation adjustment procedure can be simplified.

【0064】つぎの発明によれば、計測光路変更手段の
反射特性を可変とし、拡散反射又は鏡面反射を切り替え
る反射特性制御手段を備えたことにより、鏡面反射面の
直接距離計測が可能となり、より精度の高い演算処理を
行うことができる。
According to the next invention, the reflection characteristic of the measuring optical path changing means is made variable, and the reflection characteristic control means for switching between the diffuse reflection and the specular reflection is provided, so that the direct distance measurement of the specular reflection surface becomes possible. It is possible to perform highly accurate arithmetic processing.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施の形態1である三次元形状計
測装置の構成図である。
FIG. 1 is a configuration diagram of a three-dimensional shape measuring apparatus that is Embodiment 1 of the present invention.

【図2】 この発明の実施の形態2である三次元形状計
測装置の構成図である。
FIG. 2 is a configuration diagram of a three-dimensional shape measuring apparatus which is Embodiment 2 of the present invention.

【図3】 この発明の実施の形態3である三次元形状計
測装置の構成図である。
FIG. 3 is a configuration diagram of a three-dimensional shape measuring apparatus that is Embodiment 3 of the present invention.

【図4】 この発明の実施の形態4である三次元形状計
測装置の構成図である。
FIG. 4 is a configuration diagram of a three-dimensional shape measuring apparatus which is Embodiment 4 of the present invention.

【図5】 この発明の実施の形態5である三次元形状計
測装置の構成図である。
FIG. 5 is a configuration diagram of a three-dimensional shape measuring apparatus which is Embodiment 5 of the present invention.

【図6】 この発明の実施の形態5の原理説明図であ
る。
FIG. 6 is a diagram illustrating the principle of Embodiment 5 of the present invention.

【図7】 この発明の実施の形態6である三次元形状計
測装置の構成図である。
FIG. 7 is a configuration diagram of a three-dimensional shape measuring apparatus according to a sixth embodiment of the present invention.

【図8】 従来技術の三次元形状計測装置の構成図であ
る。
FIG. 8 is a configuration diagram of a conventional three-dimensional shape measuring apparatus.

【符号の説明】[Explanation of symbols]

1 計測対象物体、2 校正用物体、11 撮像装置、
12 プロジェクタ、13 ミラー、14 撮像用レン
ズ、15 照射用レンズ、16 画像蓄積手段、17
演算処理手段、18 演算処理切替手段、19 計測デ
ータ合成手段、20 計測制御手段、21 焦点距離調
整手段、22 照射焦点距離調整手段、23 照射ピッ
チ補正手段、25 反射特性制御手段。
1 object to be measured, 2 object for calibration, 11 imaging device,
12 projector, 13 mirror, 14 imaging lens, 15 irradiation lens, 16 image storage means, 17
Arithmetic processing means, 18 arithmetic processing switching means, 19 measurement data synthesizing means, 20 measurement control means, 21 focal length adjusting means, 22 irradiation focal length adjusting means, 23 irradiation pitch correcting means, 25 reflection characteristic control means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鷲見 和彦 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 2F065 AA04 AA53 BB05 EE00 EE05 FF01 FF02 FF09 FF61 FF65 GG02 GG08 HH05 JJ03 JJ26 LL13 LL28 LL30 LL49 LL62 LL63 MM16 NN00 NN01 QQ00   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazuhiko Sumi             2-3 2-3 Marunouchi, Chiyoda-ku, Tokyo             Inside Ryo Electric Co., Ltd. F term (reference) 2F065 AA04 AA53 BB05 EE00 EE05                       FF01 FF02 FF09 FF61 FF65                       GG02 GG08 HH05 JJ03 JJ26                       LL13 LL28 LL30 LL49 LL62                       LL63 MM16 NN00 NN01 QQ00

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 計測光を計測対象物体に照射する計測光
照射手段と、この計測光照射手段により計測光が照射さ
れた計測対象物体の映像を撮像する撮像手段と、撮像に
て得られる信号を蓄積する画像蓄積手段と、蓄積された
画像情報について前記撮像手段において計測される計測
対象物体上の計測点の撮像系座標から計測対象物体上の
絶対座標系への変換処理を行う演算処理手段と、前記撮
像手段の視野領域内に存在するように設置されて前記撮
像手段が観測可能な波長域において鏡面もしくはそれに
準じる反射特性を持つ計測光路変更手段と、を有する三
次元形状計測装置において、 計測光路変更手段を介して計測される計測対象物体の部
分に関しては、計測光路変更手段の設置位置に依存した
座標変換計算式を用い、直接計測される計測対象物体の
直接計測部分に関しては、直接計測の座標変換計算式を
用いる演算処理切替手段を備えたことを特徴とする三次
元形状計測装置。
1. A measurement light irradiating means for irradiating a measurement target object with the measurement light, an image pickup means for picking up an image of the measurement target object irradiated with the measurement light by the measurement light irradiating means, and a signal obtained by the image pickup. And an image processing means for converting the imaged system coordinates of the measurement points on the measurement target object measured by the imaging means from the imaging system coordinates of the stored image information into the absolute coordinate system on the measurement target object. In the three-dimensional shape measuring device having a measurement optical path changing unit that is installed so as to be present in the visual field region of the image pickup unit and has a mirror surface or a reflection characteristic similar to that in a wavelength range in which the image pickup unit can observe, For the part of the object to be measured which is measured through the measuring optical path changing means, the coordinate conversion calculation formula depending on the installation position of the measuring optical path changing means is used for direct measurement. For the direct measurement portion of the elephant body, three-dimensional shape measuring apparatus characterized by having an arithmetic processing switching means using a coordinate transformation formula for direct measurement.
【請求項2】 撮像手段に直接計測される計測対象物体
の直接計測部分と計測光路変更手段を介して計測される
計測対象物体の部分との光路長の違いを補正する焦点距
離補正手段と、 異なる焦点距離設定で計測された複数の計測結果を合成
する計測データ合成手段と、を備えたことを特徴とする
請求項1に記載の三次元形状計測装置。
2. Focal length correction means for correcting the difference in optical path length between the direct measurement portion of the measurement target object directly measured by the image pickup means and the portion of the measurement target object measured through the measurement optical path changing means, The three-dimensional shape measuring apparatus according to claim 1, further comprising: a measurement data synthesizing unit that synthesizes a plurality of measurement results measured at different focal length settings.
【請求項3】 計測光照射手段によって計測光が直接照
射される計測対象物体の直接計測部分と計測光路変更手
段を介して計測光が照射される計測対象物体の部分との
光路長の違いを補正する照射焦点距離補正手段と、 異なる照射焦点距離設定で照射された複数の計測結果を
合成する計測データ合成手段と、を備えたことを特徴と
する請求項1に記載の三次元形状計測装置。
3. A difference in optical path length between a direct measurement portion of a measurement target object to which the measurement light is directly irradiated by the measurement light irradiation means and a portion of the measurement target object to which the measurement light is irradiated via the measurement light path changing means. The three-dimensional shape measuring apparatus according to claim 1, further comprising: an irradiation focal length correcting unit that corrects; and a measurement data combining unit that combines a plurality of measurement results irradiated with different irradiation focal length settings. .
【請求項4】 撮像手段に直接計測される計測対象物体
の直接計測部分と計測光路変更手段を介して計測される
計測対象物体の部分との光路長の違いを補正する照射ピ
ッチ補正手段と、 異なる照射ピッチ設定で照射された複数の計測結果を合
成する計測データ合成手段と、を備えたことを特徴とす
る請求項1に記載の三次元形状計測装置。
4. An irradiation pitch correction means for correcting the difference in optical path length between the direct measurement portion of the measurement target object directly measured by the imaging means and the portion of the measurement target object measured through the measurement optical path changing means, The three-dimensional shape measuring apparatus according to claim 1, further comprising: a measurement data synthesizing unit that synthesizes a plurality of measurement results emitted at different irradiation pitch settings.
【請求項5】 演算処理手段は、形状及び寸法情報が既
知である校正用物体を直接観測した計測位置と計測光路
変更手段を介して観測した計測結果とを基にして、計測
光路変更手段の設置位置を特定する演算処理を行うこと
を特徴とする請求項1に記載の三次元形状計測装置。
5. The calculation processing means determines the measurement optical path changing means based on the measurement position obtained by directly observing the calibration object whose shape and size information is known and the measurement result obtained through the measurement optical path changing means. The three-dimensional shape measuring apparatus according to claim 1, wherein arithmetic processing for specifying an installation position is performed.
【請求項6】 計測光路変更手段の反射特性を可変と
し、拡散反射又は鏡面反射を切り替える反射特性制御手
段を備えたことを特徴とする請求項1に記載の三次元形
状計測装置。
6. The three-dimensional shape measuring apparatus according to claim 1, further comprising a reflection characteristic control unit that changes a reflection characteristic of the measurement optical path changing unit and switches diffuse reflection or specular reflection.
JP2002138313A 2002-05-14 2002-05-14 Three-dimensional shape measuring instrument Pending JP2003329424A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002138313A JP2003329424A (en) 2002-05-14 2002-05-14 Three-dimensional shape measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002138313A JP2003329424A (en) 2002-05-14 2002-05-14 Three-dimensional shape measuring instrument

Publications (1)

Publication Number Publication Date
JP2003329424A true JP2003329424A (en) 2003-11-19

Family

ID=29699788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002138313A Pending JP2003329424A (en) 2002-05-14 2002-05-14 Three-dimensional shape measuring instrument

Country Status (1)

Country Link
JP (1) JP2003329424A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164493A (en) * 2006-12-28 2008-07-17 Pulstec Industrial Co Ltd Method for measuring three-dimensional shape, and calibrating body
JP2012185158A (en) * 2011-03-04 2012-09-27 Boeing Co:The Measurement system using photogrammetry
CN106767394A (en) * 2015-11-23 2017-05-31 深圳超多维光电子有限公司 A kind of method, apparatus and system that 3-D scanning is carried out to object
JP2018084489A (en) * 2016-11-24 2018-05-31 旭サナック株式会社 Three-dimensional shape measurement device, coating device, reflection member adjustment method in three-dimensional shape measurement device, and assistance method for adjusting angle of reflection member in three-dimensional shape measurement device
JP2018144007A (en) * 2017-03-09 2018-09-20 旭サナック株式会社 Coating apparatus
CN110174077A (en) * 2018-02-21 2019-08-27 Juki株式会社 3 dimension measuring devices, electronic component mounting apparatus and 3 dimension measurement methods
CN111473743A (en) * 2018-12-26 2020-07-31 Juki株式会社 Three-dimensional measuring device
WO2021115299A1 (en) * 2019-12-12 2021-06-17 左忠斌 Image collecting device for collecting 3d information and method of selecting same
JP2021113687A (en) * 2020-01-16 2021-08-05 株式会社東芝 System and method
JP7328609B1 (en) 2022-05-24 2023-08-17 日本製鉄株式会社 Thread shape dimension measuring device and thread shape dimension measuring method
WO2023228543A1 (en) * 2022-05-24 2023-11-30 日本製鉄株式会社 Screw shape dimension measurement device and screw shape dimension measurement method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164493A (en) * 2006-12-28 2008-07-17 Pulstec Industrial Co Ltd Method for measuring three-dimensional shape, and calibrating body
JP2012185158A (en) * 2011-03-04 2012-09-27 Boeing Co:The Measurement system using photogrammetry
EP2495527A3 (en) * 2011-03-04 2016-07-27 The Boeing Company Photogrammetry measurement system
CN106767394A (en) * 2015-11-23 2017-05-31 深圳超多维光电子有限公司 A kind of method, apparatus and system that 3-D scanning is carried out to object
JP2018084489A (en) * 2016-11-24 2018-05-31 旭サナック株式会社 Three-dimensional shape measurement device, coating device, reflection member adjustment method in three-dimensional shape measurement device, and assistance method for adjusting angle of reflection member in three-dimensional shape measurement device
JP2018144007A (en) * 2017-03-09 2018-09-20 旭サナック株式会社 Coating apparatus
CN110174077A (en) * 2018-02-21 2019-08-27 Juki株式会社 3 dimension measuring devices, electronic component mounting apparatus and 3 dimension measurement methods
JP2019144137A (en) * 2018-02-21 2019-08-29 Juki株式会社 Three-dimensional measuring device, electronic component equipment device, and method for three-dimensional measurement
JP7215826B2 (en) 2018-02-21 2023-01-31 Juki株式会社 Three-dimensional measuring device, electronic component mounting device, and three-dimensional measuring method
CN111473743A (en) * 2018-12-26 2020-07-31 Juki株式会社 Three-dimensional measuring device
WO2021115299A1 (en) * 2019-12-12 2021-06-17 左忠斌 Image collecting device for collecting 3d information and method of selecting same
JP2021113687A (en) * 2020-01-16 2021-08-05 株式会社東芝 System and method
JP7297694B2 (en) 2020-01-16 2023-06-26 株式会社東芝 System and method
JP7328609B1 (en) 2022-05-24 2023-08-17 日本製鉄株式会社 Thread shape dimension measuring device and thread shape dimension measuring method
WO2023228543A1 (en) * 2022-05-24 2023-11-30 日本製鉄株式会社 Screw shape dimension measurement device and screw shape dimension measurement method

Similar Documents

Publication Publication Date Title
JP4032603B2 (en) 3D measuring device
JP4565115B2 (en) Multifocal imaging device
EP2194414B1 (en) Microscope system and method of operation thereof
US7456377B2 (en) System and method for creating magnified images of a microscope slide
US20050089208A1 (en) System and method for generating digital images of a microscope slide
US11189012B2 (en) Arrangement having a coordinate measuring machine or microscope
WO2012053521A1 (en) Optical information processing device, optical information processing method, optical information processing system, and optical information processing program
US6291817B1 (en) Moire apparatus having projection optical system and observation optical system which have optical axes parallel to each other
JP2006258809A (en) Surface displacement transducer
US8810799B2 (en) Height-measuring method and height-measuring device
US8634131B2 (en) Spherical aberration correction for non-descanned applications
JP2003329424A (en) Three-dimensional shape measuring instrument
JP2000346618A (en) Method and apparatus for precise alignment for rectangular beam
JPH10290389A (en) Multi-focus image formation method and image formation device
US10867771B2 (en) Electron microscope and specimen tilt angle adjustment method
JP5162783B2 (en) Method and apparatus for phase correction of position and detection signals in scanning microscopy and scanning microscope
US11423528B2 (en) Image inspection apparatus
JP7152223B2 (en) Image measuring device
JP5798099B2 (en) Image quality adjusting method, program, and electron microscope
JP3450406B2 (en) Position adjustment device for observation image and scanning optical microscope
JP2007225403A (en) Adjustment mechanism of distance measuring apparatus and stereoscopic shape recognition system provided with it
US5949900A (en) Fine pattern inspection device capable of carrying out inspection without pattern recognition
JPH11231223A (en) Scanning optical microscope
JP2001280917A (en) Instrument for three-dimensional measurement
KR20010017027A (en) Method of checking products and computer vision system using rotating mirror