JP4565115B2 - Multifocal imaging device - Google Patents

Multifocal imaging device Download PDF

Info

Publication number
JP4565115B2
JP4565115B2 JP2006233346A JP2006233346A JP4565115B2 JP 4565115 B2 JP4565115 B2 JP 4565115B2 JP 2006233346 A JP2006233346 A JP 2006233346A JP 2006233346 A JP2006233346 A JP 2006233346A JP 4565115 B2 JP4565115 B2 JP 4565115B2
Authority
JP
Japan
Prior art keywords
optical path
light
imaging
beam splitter
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006233346A
Other languages
Japanese (ja)
Other versions
JP2008059121A (en
Inventor
一文 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2006233346A priority Critical patent/JP4565115B2/en
Publication of JP2008059121A publication Critical patent/JP2008059121A/en
Application granted granted Critical
Publication of JP4565115B2 publication Critical patent/JP4565115B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Input (AREA)
  • Studio Devices (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Stroboscope Apparatuses (AREA)

Description

本発明は、撮像装置に関するものであり、より詳細には、被撮像体における複数の遠近位置に焦点の合った画像を1回の撮像操作により取得できる多焦点撮像装置に関する。   The present invention relates to an imaging apparatus, and more particularly to a multifocal imaging apparatus that can acquire images focused on a plurality of perspective positions on an imaging target by a single imaging operation.

現在、撮像装置は、画像認識装置と組み合わせて用いることを含めて、製品の検査、品質の管理、製造工程の管理のような製造業分野をはじめ、情報提示のための画像取得、建造物の管理等、さまざまな形で利用されている。   Currently, imaging devices are used in combination with image recognition devices, including manufacturing industries such as product inspection, quality control, manufacturing process management, image acquisition for information presentation, building It is used in various forms such as management.

例えば製造工程において利用するものにおいて、一般に製品は3次元形状をもっているが、微細な部品の検査を行う場合に、より正確な検査を行うために、撮像レンズとして高いNAをもったものを使用するようになってきている。高いNAの撮像レンズを用いることにより、光量が多く取り込まれて、微細な部品の状況がより鮮明になるのであるが、一方において、被写界深度が浅くなり、被写体の合焦点以外の遠近位置ではぼけてくる。そのため、部品の特定の遠近位置だけでなく、全体的な状況を見ようとすると、他の遠近位置に再度合焦させる必要があり、一つの合焦位置における一度の撮像では、微細な部品の検査を的確に行うことは難しい。   For example, in products used in the manufacturing process, products generally have a three-dimensional shape, but when performing inspection of minute parts, in order to perform more accurate inspection, an image pickup lens having a high NA is used. It has become like this. By using an imaging lens with a high NA, a large amount of light is captured, and the situation of fine parts becomes clearer. On the other hand, the depth of field is shallow, and the perspective position other than the focal point of the subject Then it will be blurred. Therefore, if you want to see not only a specific perspective position of the part but also the overall situation, it is necessary to refocus on another perspective position. It is difficult to do exactly.

顕微鏡で立体画像を得るためには複数の焦点位置における画像を合成する必要があり、何回かに分けて異なる焦点位置の画像をそれぞれ取得し合成するということになり、1回の撮像操作でこのような画像を取得することはできない。画像処理により、デコンボリューションを用いて行う手法もあるが、それによっても、点応答関数を求める必要があり、複雑な画像処理過程になり、処理時間が長くなるため、簡易に3次元画像が求められるというわけではない。   In order to obtain a stereoscopic image with a microscope, it is necessary to synthesize images at a plurality of focal positions. This means that images at different focal positions are acquired and synthesized in several times, and a single imaging operation is performed. Such an image cannot be acquired. There is also a technique that uses deconvolution by image processing. However, it is necessary to obtain a point response function, which results in a complicated image processing process and a long processing time. Therefore, a three-dimensional image can be easily obtained. It does n’t mean you can.

多焦点画像形成について、次のような文献に開示されている。
特開平6−70212号公報 特開平4−329775号公報 特開平11−311832号公報 特開平10−254055号公報 特開平10−260471号公報 特許文献1は、同一画枠内でフォーカス位置の相異なる複数枚の原画像について、画素または領域毎に画像データの変化量を検出し、この変化量を基準にしてフォーカスの合った画像データを選択し、この画像データを用いて画面全体としてフォーカスの合った合成画像を生成する画像処理装置に関するものである。しかしながら、撮像装置としてフォーカス位置の異なる複数枚の画像をどのように取得するかということについて特に開示してはおらず、一般的な撮像手段としてみれば、複数回の撮像を行うことになり、それに基づいた画像処理の手法を示したものであって、多焦点の複数の画像を取得するための撮像装置として新たな特徴を与えるものではない。
Multifocal image formation is disclosed in the following documents.
JP-A-6-70212 JP-A-4-329775 JP 11-311832 A Japanese Patent Laid-Open No. 10-254055 In Japanese Patent Laid-Open No. 10-260471, a change amount of image data is detected for each pixel or region of a plurality of original images having different focus positions in the same image frame, and this change amount is used as a reference. The present invention relates to an image processing apparatus that selects focused image data and generates a focused composite image as a whole screen using the image data. However, it does not specifically disclose how to acquire a plurality of images with different focus positions as an imaging device, and as a general imaging means, imaging is performed a plurality of times. This is an image processing method based on the above, and does not give a new feature as an imaging device for acquiring a plurality of multi-focus images.

特許文献2は、同一被写体からの光を光学系を介して導き、その光を分光手段により複数に分光し、各分光された光に対して露光量や焦点位置等の撮影条件を互いに異ならせて同時に撮影し、各分光路に配置された固体撮像素子により得られた画像を記憶した上で、複数の画像を撮影条件に応じて合成するようにした固体撮像装置に関するものである。しかしながら、この撮影条件のうち、露光量については各分光路について条件を異ならせ、同時に撮像を行うことができるにしても、光学系(対物レンズ)としては共通のものを用いているので、焦点位置を異ならせた複数の画像を同時に撮像することはできず、一般的な撮像の手法を用いたとすれば、焦点位置毎に対物レンズを調整する等により、複数回の撮像を行わざるを得ないものである。   In Patent Document 2, light from the same subject is guided through an optical system, the light is divided into a plurality of light by a spectroscopic means, and photographing conditions such as an exposure amount and a focal position are made different from each other. The present invention relates to a solid-state imaging device that stores images simultaneously and stores images obtained by a solid-state imaging device arranged in each spectral path, and combines a plurality of images according to imaging conditions. However, among these imaging conditions, although the exposure amount is different for each spectral path and imaging can be performed simultaneously, the same optical system (objective lens) is used. Multiple images with different positions cannot be captured at the same time, and if a general imaging method is used, multiple images must be captured by adjusting the objective lens for each focal position, etc. There is nothing.

さらに、複数の遠近位置に合焦した画像を取得するための多焦点撮像装置として、特許文献3〜5に開示されるようなものがあるが、いずれも異なる遠近位置の画像を得るために、複数の対物レンズを備え、各撮像レンズ毎に焦点位置を異ならせて撮像するものであり、複数の対物レンズからいずれかを選択して、所望の対物レンズによる撮像を行うのである。そのため、撮像装置としては、対物レンズを複数備えるという構成になり、また異なる遠近位置の画像を同時に撮像するものでもない。   Furthermore, as multifocal imaging devices for acquiring images focused on a plurality of perspective positions, there are those disclosed in Patent Documents 3 to 5, but in order to obtain images of different perspective positions, A plurality of objective lenses are provided, and imaging is performed by changing the focal position for each imaging lens. Any one of the plurality of objective lenses is selected, and imaging with a desired objective lens is performed. Therefore, the imaging apparatus is configured to include a plurality of objective lenses, and does not simultaneously capture images at different perspective positions.

如上のように、従来の異なる遠近位置の画像を取得する撮像装置ないし画像形成装置は、通常の撮像装置を用い、異なる遠近位置について複数回の撮像を行い、それをもとに画像の合成を行うというように画像処理を行うもの、あるいは、1つの撮像装置内に異なる遠近位置の画像を得るための対物レンズを複数備え、撮像レンズを選択的に用いて所望の遠近位置の画像を得るというものなどがあった。   As described above, a conventional imaging apparatus or image forming apparatus that acquires images at different perspective positions uses a normal imaging apparatus, performs imaging multiple times at different perspective positions, and synthesizes images based on the imaging. One that performs image processing such as performing, or having a plurality of objective lenses for obtaining images at different perspective positions in one imaging device, and obtaining an image at a desired perspective position by selectively using the imaging lens There were things.

画像処理によるものでは、複数回の撮像を行った上で画像処理を行うというように、複数の遠近位置の画像を得るために時間と人手を要するのに加え、画像処理のためのハードウェア及びソフトウェアの手段を備えることが必要とされる。   In the case of image processing, in addition to taking time and manpower to obtain images at a plurality of perspective positions, such as performing image processing after performing multiple imaging, hardware for image processing and It is necessary to provide software means.

特許文献3〜5のように、1つの撮像装置内に複数の対物レンズを備えるものは、実質的に複数の撮像装置を合わせたものに近くなり、装置が大規模なものになるとともに、遠近位置の異なる複数の画像を得るには、複数回の撮像を行う必要があった。
特許文献2のように、1つの対物レンズからの光を分光するものにおいても、対物レンズが1つであれば、異なる遠近位置の画像を選るには、複数回の撮像を行う必要があった。
As in Patent Documents 3 to 5, a device having a plurality of objective lenses in one image pickup device is substantially similar to a combination of a plurality of image pickup devices, and the device becomes large-scale and perspective. In order to obtain a plurality of images having different positions, it was necessary to perform imaging a plurality of times.
As in Patent Document 2, even in the case of splitting light from one objective lens, if there is only one objective lens, it is necessary to perform imaging a plurality of times in order to select images at different perspective positions. It was.

このように、従来の多焦点画像を得るための手法、装置は、1回の撮像により異なる遠近位置の画像を得ることができず、また、撮像装置や画像処理装置の規模が大きくなるものであったため、1回の撮像操作により異なる遠近位置の複数の画像が得られ、かつ簡易な構成で、コストが少なくてすむ撮像装置を提供することが求められていた。   As described above, the conventional method and apparatus for obtaining a multifocal image cannot obtain images at different perspective positions by one imaging, and the scale of the imaging apparatus and the image processing apparatus is increased. Therefore, there has been a demand for providing an imaging apparatus that can obtain a plurality of images at different perspective positions by one imaging operation, and that can be reduced in cost with a simple configuration.

また、本発明者は、1つの対物レンズを有し異なる遠近位置の複数の画像を同時に撮像する多焦点撮像装置の発明について特願2006−121497号として出願した。この発明では対物レンズを透過した光をビームスプリッタで分光し、分光されたそれぞれの光路中に光路長変更手段に備えて、異なる遠近位置の複数の画像を同時に撮像することができるが、この撮像装置での光路長の調整がそれほど容易でないという難点があった。   The present inventor has filed as Japanese Patent Application No. 2006-121497 for an invention of a multifocal imaging device that has one objective lens and simultaneously captures a plurality of images at different perspective positions. In the present invention, the light transmitted through the objective lens is split by the beam splitter, and the optical path length changing means is provided in each of the split optical paths so that a plurality of images at different perspective positions can be captured simultaneously. There is a problem that the adjustment of the optical path length in the apparatus is not so easy.

本発明は、前述した課題を解決すべくなしたものであり、本発明による多焦点撮像装置は、対物レンズと;該対物レンズを通り第1の光路を進む光の方向に対して傾斜した角度をなす分光面を有するビームスプリッタと、該ビームスプリッタで反射し第2の光路を進む光の方向に対して垂直な面内に間に第1のフィルタを介在して配設された第1のミラーと、前記ビームスプリッタの分光面を透過し第3の光路を進む光の方向に対して垂直な面内に間に第2のフィルタを介在して配設された第2のミラーとを有していて、前記第1のミラーで反射し前記ビームスプリッタの分光面を透過した光と前記第2のミラーで反射し前記ビームスプリッタの分光面で反射した光との両方の光が同一の結像面に結像するようにした分離光学系と、;を備えてなり、前記第1のフィルタと前記第2のフィルタとがそれぞれ互いに異なる色成分の光を透過するものであり、前記第1のミラーと前記第2のミラーとの少なくとも一方のミラーが光路の方向に移動可能に配設されていて、前記対物レンズから前記第1及び第2の光路を経由して前記結像面に至る光路の光路長と前記第1及び第3の光路を経由して前記結像面に至る光路の光路長とが異なるように調整して被撮像体の異なる位置に焦点が合った画像を1回の撮像操作により撮像できるようにしたものである。
The present invention has been made to solve the above-described problems, and a multifocal imaging device according to the present invention includes an objective lens; an angle inclined with respect to the direction of light passing through the objective lens and traveling through the first optical path. And a first splitter disposed with a first filter interposed in a plane perpendicular to the direction of the light reflected by the beam splitter and traveling on the second optical path. and mirror, and a second mirror disposed interposed the second filter between the plane perpendicular to the beam third direction of light traveling a light path through the spectral plane of the splitter Both the light reflected by the first mirror and transmitted through the spectral plane of the beam splitter and the light reflected by the second mirror and reflected by the spectral plane of the beam splitter are the same. A separation optical system configured to form an image on an image plane; And the first filter and the second filter transmit light of different color components, respectively, and at least one of the first mirror and the second mirror is in the direction of the optical path. The optical path length of the optical path from the objective lens through the first and second optical paths to the imaging plane and the first and third optical paths are used. By adjusting the optical path length of the optical path to the imaging plane to be different, an image focused on different positions of the imaging target can be captured by a single imaging operation.

また、対物レンズと;該対物レンズを通り第1の光路を進む光の方向に対して傾斜した角度をなす第1の分光面を有する第1のビームスプリッタと、該第1のビームスプリッタの第1の分光面で反射し第2の光路を進む光の方向に対して垂直な面内に間に第1のフィルタを介在して配設された第1のミラーと、前記第1のビームスプリッタの第1の分光面を透過し第3の光路を進む光の方向に対し傾斜した角度をなす第2の分光面を有する第2のビームスプリッタと、該第2のビームスプリッタで反射し第4の光路を進む光の方向に対して垂直な面内に間に第2のフィルタを介在して配設された第2のミラーと、前記第2のビームスプリッタの第2の分光面を透過し第5の光路を進む光の方向に対して垂直な面内に間に第3のフィルタを介在して配設された第3のミラーとを有していて、前記第1のミラーで反射し前記第1のビームスプリッタの第1の分光面を透過した光と前記第2のミラーで反射し前記第2のビームスプリッタの第2の分光面で反射しさらに前記第1のビームスプリッタの第1の分光面で反射した光と前記第3のミラーで反射し前記第2のビームスプリッタの第2の分光面を透過し前記第1のビームスプリッタの第1の分光面で反射した光とが同一の結像面に結像するようにした分離光学系と;を備えてなり、前記第1のフィルタと前記第2のフィルタと前記第3のフィルタとがそれぞれ互いに異なる色成分の光を透過するものであり、前記第1〜第3のミラーのうちの少なくとも2つのミラーが光路の方向に移動可能に配設されていて、前記対物レンズから前記第1の光路及び第2の光路を経由して前記結像面に至る光路の光路長と、前記第1の光路、第3の光路及び第4の光路を経由して前記結像面に至る光路の光路長と、前記第1の光路、第3の光路及び第5の光路を経由する光路の光路長と、がそれぞれ異なるように調整することにより被撮像体の複数の位置に焦点の合った画像を1回の撮像操作により撮像できるようにしてもよい。   An objective lens; a first beam splitter having a first spectroscopic surface that forms an angle with respect to a direction of light traveling through the objective lens and on the first optical path; and a first beam splitter of the first beam splitter. A first mirror disposed with a first filter interposed in a plane perpendicular to the direction of light reflected on one spectral plane and traveling on a second optical path; and the first beam splitter A second beam splitter having a second spectral plane that is inclined with respect to the direction of light passing through the first spectral plane and traveling on the third optical path, and is reflected by the second beam splitter and is reflected by the fourth beam splitter. A second mirror disposed with a second filter interposed in a plane perpendicular to the direction of light traveling in the optical path, and the second spectral plane of the second beam splitter. A third filter is interposed in a plane perpendicular to the direction of light traveling along the fifth optical path. A third mirror disposed on the first beam splitter, reflected by the first mirror and transmitted through the first spectral plane of the first beam splitter, and reflected by the second mirror. Light reflected by the second spectral plane of the second beam splitter and further reflected by the first spectral plane of the first beam splitter and the second mirror of the second beam splitter reflected by the third mirror A separation optical system configured to form an image on the same imaging plane with light transmitted through the spectral plane and reflected by the first spectral plane of the first beam splitter. And the second filter and the third filter transmit light of different color components, respectively, and at least two of the first to third mirrors can move in the direction of the optical path Arranged in front of the objective lens The optical path length of the optical path reaching the imaging plane via the first optical path and the second optical path, and the imaging plane via the first optical path, the third optical path, and the fourth optical path By adjusting the optical path length of the optical path and the optical path lengths of the optical paths passing through the first optical path, the third optical path, and the fifth optical path to be different from each other, the plurality of positions of the imaging target are focused. The captured image may be captured by a single imaging operation.

また、被撮像体からの入射光路となる第1の光路を進む光の方向に対して傾斜した角度をなす分光面を有するビームスプリッタと、該ビームスプリッタで反射し第2の光路を進む光の方向に対して垂直な面内に間に第1のフィルタを介在して配設された第1のミラーと、前記ビームスプリッタの分光面を透過し第3の光路を進む光の方向に対して垂直な面内に間に第2のフィルタを介在して配設された第2のミラーとを有していて、前記第1のミラーで反射し前記ビームスプリッタの分光面を透過した光と前記第2のミラーで反射し前記ビームスプリッタの分光面で反射した光との両方の光が合一するようにした分離光学系と;該分離光学系で合一した光が入射し前記被撮像体の像を同一の結像面に結像するための対物レンズと;を備えてなり、前記第1のフィルタと前記第2のフィルタとが互いに異なる色成分の光を透過するものであり、前記第1のミラーと前記第2のミラーとの少なくとも一方のミラーが光路の方向に移動可能に配設されていて、前記被撮像体から前記第1及び第2の光路を経由して前記対物レンズに至る光路の光路長と、前記被撮像体から前記第1及び第3の光路を経由して前記対物レンズに至る光路の光路長と、が異なるように調整することにより被撮像体の異なる位置に焦点が合った画像を1回の撮像操作により撮像できるようにしてもよい。   In addition, a beam splitter having a spectral plane that forms an angle with respect to the direction of light traveling through the first optical path, which is an incident optical path from the object to be imaged, and the light reflected by the beam splitter and traveling through the second optical path A first mirror disposed with a first filter interposed in a plane perpendicular to the direction, and a direction of light passing through the spectral plane of the beam splitter and traveling on the third optical path A second mirror disposed in a vertical plane with a second filter interposed therebetween, and the light reflected by the first mirror and transmitted through the spectral plane of the beam splitter; A separation optical system in which both the light reflected by the second mirror and the light reflected by the spectral plane of the beam splitter are combined; the light combined by the separation optical system is incident and the imaged object An objective lens for forming an image of the same image on the same image plane. The first filter and the second filter transmit light of different color components, and at least one of the first mirror and the second mirror moves in the direction of the optical path. An optical path length of an optical path from the imaged body through the first and second optical paths to the objective lens, and the first and third optical paths from the imaged body. By adjusting so that the optical path length of the optical path to the objective lens via the path differs, an image focused on a different position of the imaging target may be captured by a single imaging operation.

また、被撮像体からの入射光路となる第1の光路を進む光の方向に対して傾斜した角度をなす第1の分光面を有する第1のビームスプリッタと、該第1のビームスプリッタの第1の分光面で反射し第2の光路を進む光の方向に対して垂直な面内に間に第1のフィルタを介在して配設された第1のミラーと、前記第1のビームスプリッタの第1の分光面を透過し第3の光路を進む光の方向に対して傾斜した角度をなす第2の分光面を有する第2のビームスプリッタと、該第2のビームスプリッタで反射し第4の光路を進む光の方向に対して垂直な面内に間に第2のフィルタを介在して配設された第2のミラーと、前記第2のビームスプリッタの第2の分光面を透過し第5の光路を進む光の方向に対して垂直な面内に間に第3のフィルタを介在して配設された第3のミラーとを有していて、前記第1のミラーで反射し前記第1のビームスプリッタの第1の分光面を透過した光と前記第2のミラーで反射し前記第2のビームスプリッタの第2の分光面で反射しさらに前記第1のビームスプリッタの第1の分光面で反射した光と前記第3のミラーで反射し前記第2のビームスプリッタの第2の分光面を透過し前記第1のビームスプリッタの第1の分光面で反射した光との3つの光が合一するようにした分離光学系と;該分離光学系で合一した光が入射し前記被撮像体の像を同一の結像面に結像するための対物レンズと;を備えてなり、前記第1のフィルタと前記第2のフィルタと前記第3のフィルタとがそれぞれ互いに異なる色成分の光を透過するものであり、前記第1〜第3のミラーのうちの少なくとも2つのミラーが光路の方向に移動可能に配設されていて、前記被撮像体から前記第1の光路及び第2の光路を経由して前記対物レンズに至る光路の光路長と、前記第1の光路、第3の光路及び第4の光路を経由して前記対物レンズに至る光路の光路長と、前記第1の光路、第3の光路及び第5の光路を経由する光路の光路長と、がそれぞれ異なるように調整することにより被撮像体の複数の位置に焦点の合った画像を1回の撮像操作により撮像できるようにしてもよい。   In addition, a first beam splitter having a first spectral plane that forms an angle with respect to the direction of light traveling through the first optical path that is an incident optical path from the imaging target, and the first beam splitter of the first beam splitter. A first mirror disposed with a first filter interposed in a plane perpendicular to the direction of light reflected on one spectral plane and traveling on a second optical path; and the first beam splitter A second beam splitter having a second spectral plane that forms an angle with respect to the direction of light that passes through the first spectral plane and travels along the third optical path, and is reflected by the second beam splitter and reflected by the second beam splitter. A second mirror disposed with a second filter interposed in a plane perpendicular to the direction of light traveling in the optical path 4, and transmitted through the second spectral plane of the second beam splitter And a third filter is interposed in the plane perpendicular to the direction of the light traveling along the fifth optical path. A third mirror disposed, the light reflected by the first mirror and transmitted through the first spectral plane of the first beam splitter, and reflected by the second mirror and the first mirror. Light reflected by the second spectral plane of the second beam splitter and further reflected by the first spectral plane of the first beam splitter, and reflected by the third mirror and the second spectral of the second beam splitter. A separation optical system in which three lights, which are transmitted through the surface and reflected by the first spectral surface of the first beam splitter, are combined; and the light combined by the separation optical system is incident and An objective lens for forming an image of the imaged object on the same imaging plane, and the first filter, the second filter, and the third filter are different from each other. Of the first and third mirrors. At least two mirrors are arranged so as to be movable in the direction of the optical path, and the optical path length of the optical path from the imaging target to the objective lens via the first optical path and the second optical path, The optical path length of the optical path that reaches the objective lens via the first optical path, the third optical path, and the fourth optical path, and the optical path of the optical path that passes through the first optical path, the third optical path, and the fifth optical path By adjusting the length so as to be different from each other, an image focused on a plurality of positions of the imaging target may be captured by a single imaging operation.

前記結像面に配設した撮像素子をさらに備えていて、該撮像素子により得られた画像の信号を取り出し外部の処理装置により画像処理ができるようにしてもよく、あるいは、前記結像面に配設した撮像素子と、該撮像素子により得られた複数の色成分の画像を含む画像をもとの複数の色成分の画像に分解する処理を行う撮像制御部をさらに備えるようにしてもよく、さらに、前記撮像制御部が複数の色成分の画像に分解された画像に対し1つの画像に合成する画像処理を行うようにしてもよい。   The image pickup device may further include an image pickup device disposed on the image formation surface, and an image signal obtained by the image pickup device may be taken out and processed by an external processing device. The image pickup device may be further provided with an image pickup control unit that performs processing for decomposing an image including a plurality of color component images obtained by the image pickup device into a plurality of color component images. Further, the image pickup control unit may perform image processing for combining an image separated into a plurality of color component images into one image.

また、本発明の多焦点撮像装置は、対物レンズと;該対物レンズを通り第1の光路を進む光の方向に対して傾斜した角度をなす分光面を有するビームスプリッタと、該ビームスプリッタの分光面で反射し第2の光路を進む光の方向に対して垂直な面内に間に第1の偏光板を介在して配設された第1のミラーと、前記ビームスプリッタの分光面を透過し第3の光路を進む光の方向に対して垂直な面内に間に第2の偏光板を介在して配設された第2のミラーとを有していて、前記第1のミラーで反射し前記ビームスプリッタの分光面を透過した光と、前記第2のミラーで反射し前記ビームスプリッタの分光面で反射した光との両方の光が同一の結像面に結像するようにした分離光学系と;偏光方向がそれぞれ異なる第1の偏光方向及び第2の偏光方向の光で被撮像体を所定の時間をおいて順次照明する発光手段と;を備えてなり、前記分離光学系における第1の偏光板は前記発光手段による第1の偏光方向の光を透過させるとともに前記第2の偏光板は前記第2の偏光方向の光を透過させるものであり、前記第1のミラーと前記第2のミラーとの少なくとも一方のミラーが光路の方向に移動可能に配設されていて、前記対物レンズから前記第1及び第2の光路を経由して前記結像面に至る光路の光路長と前記第1及び第3の光路を経由して前記結像面に至る光路の光路長とが異なるように調整した上で、前記発光手段での1回目の発光による前記第1及び第2の光路を経由して前記結像面に至る一方の偏光方向の光での撮像と、前記発光手段での2回目の発光による前記第1及び第3の光路を経由して前記結像面に至る他方の偏光方向の光での撮像とを行い、被撮像体における異なる位置に焦点が合った画像を一連の撮像操作で撮像できるようにしたものとしてもよい。   The multifocal imaging device of the present invention includes: an objective lens; a beam splitter having a spectral plane that forms an angle with respect to the direction of light that passes through the objective lens and travels along the first optical path; A first mirror disposed with a first polarizing plate interposed in a plane perpendicular to the direction of light reflected by the surface and traveling on the second optical path, and transmitted through the spectral plane of the beam splitter And a second mirror disposed with a second polarizing plate interposed in a plane perpendicular to the direction of the light traveling on the third optical path, the first mirror Both the light reflected and transmitted through the spectral plane of the beam splitter and the light reflected by the second mirror and reflected by the spectral plane of the beam splitter are imaged on the same imaging plane. A separation optical system; a first polarization direction and a second polarization with different polarization directions And light emitting means for sequentially illuminating the imaging target with predetermined light at a predetermined time, and the first polarizing plate in the separation optical system transmits light in the first polarization direction by the light emitting means. And the second polarizing plate transmits light in the second polarization direction, and at least one of the first mirror and the second mirror is arranged to be movable in the direction of the optical path. An optical path length from the objective lens to the imaging plane via the first and second optical paths and to the imaging plane via the first and third optical paths. After adjusting so that the optical path length of the optical path is different, the light with one polarization direction reaching the imaging plane via the first and second optical paths by the first light emission by the light emitting means. The first and third by imaging and second light emission by the light emitting means It is also possible to perform imaging with light of the other polarization direction that reaches the imaging plane via a path, and to capture images in focus at different positions on the imaging target by a series of imaging operations. Good.

また、被撮像体からの光の入射光路となる第1の光路を進む光の方向に対して傾斜した角度をなす分光面を有するビームスプリッタと、該ビームスプリッタの分光面で反射し第2の光路を進む光の方向に対して垂直な面内に間に第1の偏光板を介在して配設された第1のミラーと、前記ビームスプリッタの分光面を透過し第3の光路を進む光の方向に対して垂直な面内に間に第2の偏光板を介在して配設された第2のミラーとを有していて、前記第1のミラーで反射し前記ビームスプリッタの分光面を透過した光と前記第2のミラーで反射し前記ビームスプリッタの分光面で反射した光との両方の光が合一するようにした分離光学系と;該分離光学系で合一した光が入射し前記被撮像体の像を同一の結像面に結像するための対物レンズと;偏光方向がそれぞれ異なる第1の偏光方向及び第2の偏光方向の光で被撮像体を所定の時間をおいて順次照明する発光手段と;を備えてなり、前記分離光学系における第1の偏光板は前記発光手段による第1の偏光方向の光を透過させるとともに前記第2の偏光板は前記第2の偏光方向の光を透過させるものであり、前記第1のミラーと前記第2のミラーとの少なくとも一方のミラーが光路の方向に移動可能に配設されていて、前記被撮像体から前記第1及び第2の光路を経由して前記対物レンズに至る光路の光路長と前記第1及び第3の光路を経由して前記対物レンズに至る光路の光路長とが異なるように調整した上で、前記発光手段での1回目の発光による前記第1及び第2の光路を経由して前記結像面に至る一方の偏光方向の光での撮像と、前記発光手段での2回目の発光による前記第1及び第3の光路を経由して前記結像面に至る他方の偏光方向の光での撮像とを行い、被撮像体における異なる位置に焦点が合った画像を一連の撮像操作で撮像できるようにしてもよい。   A beam splitter having a spectral plane that forms an angle with respect to the direction of the light traveling in the first optical path, which is an incident optical path of light from the imaging target, and the second beam reflected by the spectral plane of the beam splitter; A first mirror disposed with a first polarizing plate interposed in a plane perpendicular to the direction of light traveling in the optical path and the spectral plane of the beam splitter are transmitted through the third optical path. A second mirror disposed in a plane perpendicular to the direction of light with a second polarizing plate interposed therebetween, reflected by the first mirror, and spectrally separated by the beam splitter. A separation optical system in which both the light transmitted through the surface and the light reflected by the second mirror and reflected by the spectral surface of the beam splitter are combined; and the light combined by the separation optical system An objective lens for forming an image of the imaged object on the same image plane; Light emitting means for sequentially illuminating the imaging target with light of a first polarization direction and a second polarization direction that are different from each other at a predetermined time, and the first polarizing plate in the separation optical system Transmits the light in the first polarization direction by the light emitting means, and the second polarizing plate transmits the light in the second polarization direction. The first mirror, the second mirror, At least one of the mirrors is disposed so as to be movable in the direction of the optical path, and the optical path length of the optical path from the imaging target to the objective lens via the first and second optical paths, and the first and second After adjusting so that the optical path length of the optical path leading to the objective lens via the third optical path is different, the first and second optical paths due to the first light emission by the light emitting means are Imaging with light in one polarization direction to the image plane , Imaging with light of the other polarization direction that reaches the imaging plane via the first and third optical paths by the second light emission by the light emitting means, and focuses at different positions on the imaging target You may enable it to image a suitable image by a series of imaging operations.

また、対物レンズと、;該対物レンズを通り第1の光路を進む光の方向に対して傾斜した角度をなす偏光分離面を有する偏光ビームスプリッタと、該偏光ビームスプリッタでの偏光分離面で反射し第2の光路を進む光の方向に対して垂直な面内に配設された第1のミラーと、前記偏光ビームスプリッタの偏光分離面を透過し第3の光路を進む光の方向に対して垂直な面内に配設された第2のミラーと、を有していて、前記第1のミラーで反射し前記偏光ビームスプリッタの偏光分離面を透過した光と前記第2のミラーで反射し前記偏光ビームスプリッタの偏光分離面で反射した光との両方の光が同一の結像面に結像するようにした分離光学系と、;偏光方向がそれぞれ異なる第1の偏光方向及び第2の偏光の光で被撮像体を所定の時間をおいて順次照明する発光手段と、;を備えてなり、前記分離光学系の偏光ビームスプリッタにおける偏光分離面は直交する偏光方向のうちの一方の偏光方向の光を透過させるともにこれに直角な他方の偏光方向の光を反射するものであり、前記第1のミラーと前記第2のミラーとの少なくとも一方のミラーが光路の方向に移動可能に配設されていて、前記対物レンズから前記第1及び第2の光路を経由して前記結像面に至る光路の光路長と前記第1及び第3の光路を経由して前記結像面に至る光路の光路長とが異なるように調整した上で、前記発光手段での1回目の発光による前記第1及び第2の光路を経由して前記結像面に至る一方の偏光方向の光での撮像と、前記発光手段での2回目の発光による前記第1及び第3の光路を経由して前記結像面に至る他方の偏光方向の光での撮像とを行い、被撮像体における異なる位置に焦点が合った画像を一連の撮像操作で撮像できるようにしてもよい。
An objective lens; a polarization beam splitter having a polarization separation surface that forms an angle with respect to the direction of light passing through the objective lens and the first optical path; and reflected by the polarization separation surface of the polarization beam splitter And a first mirror disposed in a plane perpendicular to the direction of light traveling in the second optical path, and the direction of light traveling through the polarization separation plane of the polarization beam splitter and traveling through the third optical path. And a second mirror disposed in a vertical plane, the light reflected by the first mirror and transmitted through the polarization separation surface of the polarization beam splitter, and reflected by the second mirror A separation optical system in which both the light reflected by the polarization separation surface of the polarization beam splitter forms an image on the same image formation surface; a first polarization direction and a second polarization direction different from each other ; Hold the object to be imaged for a predetermined time with the polarized light. Light emitting means for successively illuminating; it includes a said separating optical system polarization separation surface while the other both perpendicular thereto to transmit light in the polarization direction of the polarization of the polarization direction orthogonal in polarizing beam splitter Direction light is reflected , and at least one of the first mirror and the second mirror is arranged so as to be movable in the direction of the optical path, and the first and first mirrors from the objective lens. After adjusting so that the optical path length of the optical path reaching the imaging plane via two optical paths and the optical path length of the optical path reaching the imaging plane via the first and third optical paths are different, Imaging with light of one polarization direction reaching the imaging plane via the first and second optical paths by the first light emission by the light emitting means, and the second light emission by the light emitting means. The imaging through the first and third optical paths Perform the imaging in the other polarization direction of light reaching the, it may be an image-focus in different positions in the imaged subject can be imaged by a series of imaging operations.

また、被撮像体からの入射光路となる第1の光路を進む光の方向に対して傾斜した角度をなす偏光分離面を有する偏光ビームスプリッタと、該偏光ビームスプリッタでの偏光分離面で反射し第2の光路を進む光の方向に対して垂直な面内に配設された第1のミラーと、前記偏光ビームスプリッタの偏光分離面を透過し第3の光路を進む光の方向に対して垂直な面内に配設された第2のミラーと、を有していて、前記第1のミラーで反射し前記偏光ビームスプリッタの偏光分離面を透過した光と前記第2のミラーで反射し前記偏光ビームスプリッタの偏光分離面で反射した光との両方の光が合一するようにした分離光学系と、;該分離光学系で合一した光が入射し前記被撮像体の像を同一の結像面に結像するための対物レンズと、;偏光方向がそれぞれ異なる第1の偏光方向及び第2の偏光方向の光で被撮像体を所定の時間をおいて順次照明する発光手段と、;を備えてなり、前記分離光学系の偏光ビームスプリッタにおける偏光分離面は直交する偏光方向のうちの一方の偏光方向の光を透過させるともにこれに直角な他方の偏光方向の光を反射するものであり、前記第1のミラーと前記第2のミラーとの少なくとも一方のミラーが光路の方向に移動可能に配設されていて、前記被撮像体から前記第1及び第2の光路を経由して前記対物レンズに至る光路の光路長と前記第1及び第3の光路を経由して前記対物レンズに至る光路の光路長とが異なるように調整した上で、前記発光手段での1回目の発光による前記第1及び第2の光路を経由して前記結像面に至る一方の偏光方向の光での撮像と、前記発光手段での2回目の発光による前記第1及び第3の光路を経由して前記結像面に至る他方の偏光方向の光での撮像とを行い、被撮像体における異なる位置に焦点が合った画像を一連の撮像操作で撮像できるようにしてもよい。 In addition, a polarization beam splitter having a polarization separation surface that forms an angle with respect to the direction of light traveling along the first optical path that is an incident light path from the imaging target, and the light reflected by the polarization separation surface of the polarization beam splitter. A first mirror disposed in a plane perpendicular to the direction of the light traveling on the second optical path, and the direction of the light transmitted through the polarization separation surface of the polarization beam splitter and traveling on the third optical path A second mirror disposed in a vertical plane, and the light reflected by the first mirror and transmitted through the polarization separation surface of the polarization beam splitter and reflected by the second mirror. A separation optical system in which both the light reflected by the polarization separation surface of the polarization beam splitter and the light combined by the separation optical system are incident, and the image of the object to be imaged is the same An objective lens for forming an image on the imaging plane; Light emitting means for illuminating the object to be imaged sequentially at a predetermined time respective in light of different first polarization direction and the second polarization direction Re; be provided with, in the polarization beam splitter of said separating optical system The polarization separation surface transmits light in one of the orthogonal polarization directions and reflects light in the other polarization direction perpendicular thereto , and the first mirror, the second mirror, At least one of the mirrors is disposed so as to be movable in the direction of the optical path, and the optical path length of the optical path from the imaging target to the objective lens via the first and second optical paths, and the first and second After adjusting so that the optical path length of the optical path leading to the objective lens via the third optical path is different, the first and second optical paths due to the first light emission by the light emitting means are With light in one polarization direction that reaches the image plane Different positions on the imaged object are obtained by imaging and imaging with light of the other polarization direction that reaches the imaging plane via the first and third optical paths by the second light emission by the light emitting means. An image that is focused on may be captured by a series of imaging operations.

前記結像面に配設した撮像素子をさらに備えていて、該撮像素子により得られた画像の信号を取り出し外部の処理装置により画像処理ができるようにしてもよく、あるいは、前記結像面に配設した撮像素子と、該撮像素子により得られた画像を記憶保持するためのメモリー及び撮像制御部をさらに備え、一連の撮像操作で前記撮像素子により得られた被撮像体における異なる位置に焦点が合った複数の画像を別個に記憶保持できるようにしてもよく、さらに、前記撮像制御部が別個に記憶保持された前記複数の画像を1つの画像として合成する画像処理を行うようにしてもよい。   The image pickup device may further include an image pickup device disposed on the image formation surface, and an image signal obtained by the image pickup device may be taken out and processed by an external processing device. An image pickup device provided, a memory for storing and holding an image obtained by the image pickup device, and an image pickup control unit; and focusing on different positions in the object to be picked up obtained by the image pickup device by a series of image pickup operations. A plurality of images that match each other may be stored and held separately, and the imaging control unit may perform image processing for combining the plurality of images stored and held separately as one image. Good.

また、前記第1のミラー及び第2のミラーのうちの一方のミラーを光路の方向に移動させる駆動源としてのモータを備え、前記撮像制御部において前記モータの回転角から前記ミラーの移動による光路長の変化量を求め、該光路長の変化量から前記光路長が変化する前と後とでの被撮像体における位置の差としての高さを求める演算を行い、被撮像体の異なる位置に焦点の合った画像の撮像を1回または一連の撮像操作で行うとともに被撮像体における高さを測定できるようにしてもよい。   A motor serving as a drive source for moving one of the first mirror and the second mirror in the direction of the optical path, and the optical path by the movement of the mirror from the rotation angle of the motor in the imaging control unit; The amount of change in the length is obtained, and from the amount of change in the optical path length, a calculation is performed to obtain the height as a difference in position on the imaged object before and after the change of the optical path length. You may enable it to measure the height in a to-be-photographed object while performing the imaging of the focused image by one time or a series of imaging operation.

本発明の多焦点撮像装置では、ビームスプリッタにより分光された複数の光路中において光路長をそれぞれ異なるようにした上で1つの撮像素子に結像させることにより、1回の撮像操作により複数の異なる位置に焦点の合った1つの画像が得られ、この1つの画像を複数の画像に分解し、また画像処理、画像合成の処理を行って1つの画像として合成することができる。分離光学系としてマイケルソン干渉計型のものを用いることにより光路長の調整が容易になされる。また、光路長の変化量から被撮像体の撮像とともに被撮像体における高さを測定することができる。   In the multifocal imaging device of the present invention, the optical path lengths are made different in a plurality of optical paths dispersed by the beam splitter, and then imaged on one imaging element, so that a plurality of different ones are obtained by one imaging operation. One image focused on the position can be obtained, and the one image can be decomposed into a plurality of images, and can be combined as one image by performing image processing and image composition processing. By using a Michelson interferometer type separation optical system, the optical path length can be easily adjusted. In addition, the height of the imaging target can be measured together with the imaging of the imaging target from the amount of change in the optical path length.

本発明による多焦点撮像装置は、撮像光学系において光を複数の光路に分光し、分光された各光路の光路長が互いに異なるようにした上で1つの光路に合一させて撮像素子に導く分離光学系を有し、この分離光学系の前側に対物レンズを有する場合と、分離光学系と撮像素子との間に対物レンズを有する場合がある。分離光学系としてはマイケルソン干渉計型のものを用いる。   In the multifocal imaging device according to the present invention, light is split into a plurality of optical paths in the imaging optical system, and the optical path lengths of the split optical paths are made different from each other, and then combined into one optical path and guided to the imaging device. There are cases where a separation optical system is provided and an objective lens is provided on the front side of the separation optical system, and an objective lens is provided between the separation optical system and the image sensor. A Michelson interferometer type is used as the separation optical system.

図1は、分離光学系の前側に対物レンズを有する形態の例を示すものであり、多焦点撮像装置Aの撮像部は、対物レンズ1を通った光の方向に対し例えば45°の角度をなし一部の光を反射し他の光を透過する分光面を有するビームスプリッタ2と、ビームスプリッタ2の分光面で反射した光の方向に対して垂直な面内に間にフィルタ4aを介在して配設されたミラー3aと、ビームスプリッタ2の分光面を透過した光の方向に対して垂直な面内に間にフィルタ4bを介在して配設されたミラー3bと、ミラー3aで反射しビームスプリッタの分光面を透過した光とミラー3bで反射しビームスプリッタ2の分光面で反射した光との両方の光の結像面に配設された撮像素子7とを有している。   FIG. 1 shows an example of a form having an objective lens on the front side of a separation optical system. The imaging unit of the multifocal imaging device A makes an angle of, for example, 45 ° with respect to the direction of light passing through the objective lens 1. None A beam splitter 2 having a spectral plane that reflects some light and transmits other light, and a filter 4a interposed in a plane perpendicular to the direction of the light reflected by the spectral plane of the beam splitter 2 The mirror 3a disposed in a plane, the mirror 3b disposed in the plane perpendicular to the direction of the light transmitted through the spectral surface of the beam splitter 2 with a filter 4b interposed therebetween, and reflected by the mirror 3a. The imaging device 7 is disposed on the imaging plane of both the light transmitted through the spectral surface of the beam splitter and the light reflected by the mirror 3 b and reflected by the spectral surface of the beam splitter 2.

14は撮像制御部、15は撮像素子7で生成した画像データを保持するメモリーであり、16は画像を表示するモニター部である。撮像制御部14は撮像の動作の制御を行うとともに画像を色成分により複数の画像に分解しそれぞれの画像データをメモリー15に保持し、またモニター16に表示する制御を行う。ビームスプリッタ2の分光面入射光に対して45°の角度をなす例について示したが、特に45°とせずに、適宜他の傾斜角度としてもよい。また、撮像部の光学系では対物レンズ1から撮像素子7までの固定した距離を基本的に考え、撮像部と被撮像体との間隔を変えることにより焦点位置合わせを行う顕微鏡型の結像光学系になっている。このような光学系で被撮像体を照明する手段として、撮像部の前部に入射光の光軸方向の照明光を被撮像体に与える落射照明手段(図示せず)を備えるようにしてもよい。   Reference numeral 14 denotes an image pickup control unit, 15 denotes a memory for holding image data generated by the image pickup device 7, and 16 denotes a monitor unit for displaying an image. The imaging control unit 14 controls the imaging operation, and controls the image to be decomposed into a plurality of images by color components, and each image data is held in the memory 15 and displayed on the monitor 16. Although an example in which an angle of 45 ° is formed with respect to the light incident on the spectral plane of the beam splitter 2 is shown, other inclination angles may be appropriately set without being particularly 45 °. In addition, in the optical system of the image pickup unit, a fixed distance from the objective lens 1 to the image sensor 7 is basically considered, and a microscope-type image forming optical system that performs focus position adjustment by changing the distance between the image pickup unit and the imaging target. It is a system. As means for illuminating the object to be imaged with such an optical system, epi-illumination means (not shown) for providing illumination light in the direction of the optical axis of incident light to the object to be imaged may be provided at the front part of the imaging unit. Good.

ミラー3aは固定ミラーであり、ミラー3bは光の方向に移動可能なステージに取り付けられ、ねじ6によりミラー3bを光の方向に位置調節できるようにしてあり、光路長変更手段となっている。ミラー3bを光の方向に移動させることにより、対物レンズから撮像素子7に至る光路の光路長を調節することができる。フィルタ4aは例えばR成分の光を透過するフィルタであり、フィルタ4bはG成分の光を透過するフィルタであるとする。   The mirror 3a is a fixed mirror, and the mirror 3b is attached to a stage that can move in the direction of light, and the position of the mirror 3b can be adjusted in the direction of light by means of a screw 6, which serves as an optical path length changing means. The optical path length of the optical path from the objective lens to the image sensor 7 can be adjusted by moving the mirror 3b in the light direction. For example, the filter 4a is a filter that transmits R component light, and the filter 4b is a filter that transmits G component light.

このような光学系を有する撮像部で、被撮像体BのPの位置からの光が対物レンズを通り、ビームスプリッタ2の分光面で反射しミラー3aで反射したR成分の光がビームスプリッタ2の分光面を透過して撮像部と被撮像体との位撮像素子7に結像するように撮像部と被撮像体との位置を調節し、さらにねじ6によりミラー3bの位置を調節して被撮像体BのPの位置からの光が撮像素子7に結像するようにさせる。この結像状態の確認はモニター16でR成分、G成分の光の色成分分解画像を見ながら行うことができる。 In the imaging unit having such an optical system, light from the position P 0 of the imaging target B passes through the objective lens, and the R component light reflected by the spectral surface of the beam splitter 2 and reflected by the mirror 3a is reflected by the beam splitter. The position of the imaging unit and the imaging target is adjusted so as to form an image on the imaging device 7 between the imaging unit and the imaging target through the two spectral planes, and the position of the mirror 3b is adjusted by the screw 6. Thus, light from the position P 0 of the imaging target B is imaged on the imaging element 7. This image formation state can be confirmed while viewing the color component separation image of the R component and G component light on the monitor 16.

この状態でミラー3bで反射して撮像素子7に達する光の光路長はミラー3aで反射して撮像素子7に達する光の光路長と同じである。この被撮像体BのPの位置が撮像素子7に結像するミラー3bの位置を基準位置として、ねじ6によりミラー3bがビームスプリッタ2から離れる方向に移動させると、被撮像体の位置Pからの光が撮像素子7に結像する状態になる。ねじ6によりミラーがビームスプリッタ2に近づく方向に移動させると、被撮像体の位置Pからの光が撮像素子7に結像する状態になる。 In this state, the optical path length of the light that reaches the image sensor 7 after being reflected by the mirror 3b is the same as the optical path length of the light that is reflected by the mirror 3a and reaches the image sensor 7. When this relative position the position of the mirror 3b the position of P 0 is formed on the image sensor 7 of the imaged subject B, the mirror 3b moves in the direction away from the beam splitter 2 by screws 6, the position P of the object to be imaged The light from 1 forms an image on the image sensor 7. When the mirror 6 is moved in the direction approaching the beam splitter 2 by the screw 6, the light from the position P 2 of the imaging target is imaged on the imaging element 7.

このようにミラー3bを基準位置から移動調節した上で、撮像制御部14により撮像操作を行うと、被撮像体BのPの位置に焦点の合ったR成分光の画像と、PまたはPのように別の遠近位置に焦点の合ったG成分光の画像とが同時に結像する。この2つの色成分画像を撮像制御部14において色成分により分解することにより、Pの位置に焦点の合ったR成分の画像とPまたはPの位置に焦点の合ったG成分の画像との2つの画像への分解がなされる。さらに必要に応じて、R、Gの各成分光の画像を白黒画像に変換するようにしてもよい。また、光路長変更手段として、ミラー3bを移動調節可能として示したが、ミラー3a及びミラー3bの両方を調節可能にしてもよい。 Thus after having moved modulating mirror 3b from the reference position, when the imaging operation by the imaging control unit 14, and the image of the R component light focused on the position of P 0 of the imaged subject B, P 1 or an image of the G component light focused in a different perspective position as P 2 is imaged simultaneously. The two color component images are decomposed by the color component in the imaging control unit 14 so that the R component image focused on the position P 0 and the G component image focused on the position P 1 or P 2. Are decomposed into two images. Furthermore, if necessary, the image of each of the R and G component lights may be converted into a black and white image. In addition, although the mirror 3b is shown as being movable adjustable as the optical path length changing means, both the mirror 3a and the mirror 3b may be adjustable.

図2はビームスプリッタを追加して3つの位置に焦点が合った画像が得られるようにする分離光学系を備えた撮像装置を示し、分離光学系の前側に対物レンズを有する形のものを示している。図2の多焦点撮像装置Aの撮像部は、対物レンズ1を通った光の方向に対し例えば45°の角度をなし一部の光を反射し他の光を透過する分光面を有するビームスプリッタ2aと、ビームスプリッタ2aの分光面で反射した光の方向に対して垂直な面内に間にフィルタ4aを介在して配設されたミラー3aと、ビームスプリッタ2aの分光面を透過した光の方向に対して例えば45°の角度をなし一部の光を反射し他の光を透過する分光面を有するビームスプリッタ2bと、ビームスプリッタ2bの分光面で反射した光の方向に対して垂直な面内に間にフィルタ4bを介在して配設されたミラー3bと、ビームスプリッタ2bの分光面を透過した光の方向に対して垂直な面内に間にフィルタ4cを介して配設されたミラー3cと、ミラー3aで反射しビームスプリッタ2aの分光面を透過した光と、ミラー3bで反射しビームスプリッタ2bの分光面及びビームスプリッタ2aの分光面で反射した光と、ミラー3cで反射しビームスプリッタ2bの分光面を透過しビームスプリッタ2aの分光面で反射した光とが結像する位置に配設された撮像素子7とを有している。ビームスプリッタ2a、2bの分光面がそれぞれ入射光に対して45°の角度をなす例について示したが、適宜他の角度をなすものとしてもよい。   FIG. 2 shows an image pickup apparatus having a separation optical system in which a beam splitter is added so that an image focused at three positions can be obtained. The image pickup apparatus includes an objective lens on the front side of the separation optical system. ing. The imaging unit of the multifocal imaging device A in FIG. 2 has a beam splitter having a spectral plane that forms an angle of, for example, 45 ° with respect to the direction of light passing through the objective lens 1 and reflects some light and transmits other light. 2a, a mirror 3a disposed in a plane perpendicular to the direction of light reflected by the spectral plane of the beam splitter 2a, with a filter 4a interposed therebetween, and light transmitted through the spectral plane of the beam splitter 2a. For example, a beam splitter 2b having a spectral plane that forms an angle of 45 ° with respect to the direction and reflects some light and transmits other light, and is perpendicular to the direction of the light reflected by the spectral plane of the beam splitter 2b A mirror 3b disposed in the plane with a filter 4b interposed therebetween, and a plane perpendicular to the direction of light transmitted through the spectral surface of the beam splitter 2b with a filter 4c interposed therebetween. With mirror 3c and mirror 3a The light reflected and transmitted through the spectral plane of the beam splitter 2a, the light reflected by the mirror 3b and reflected by the spectral plane of the beam splitter 2b and the spectral plane of the beam splitter 2a, and the spectral plane of the beam splitter 2b reflected by the mirror 3c. And an image pickup device 7 disposed at a position where an image of light transmitted through and reflected by the spectral surface of the beam splitter 2a is imaged. Although an example in which the spectral planes of the beam splitters 2a and 2b are each at an angle of 45 ° with respect to the incident light has been shown, other angles may be appropriately formed.

14は撮像動作の制御を行うとともに画像を色成分により複数の画像に分解しそれぞれの画像のデータを保持するメモリーを備えた撮像制御部であり、16は画像を表示するモニター部である。   Reference numeral 14 denotes an imaging control unit including a memory that controls the imaging operation and separates the image into a plurality of images by color components and holds data of each image, and 16 is a monitor unit that displays the image.

ミラー3a〜3cの少なくとも2つは光の方向に移動可能なステージに取り付けられ(図2ではミラー3b、3cが可動になっている。)、ねじ6b、6cによりミラー3b、ミラー3cをそれぞれ光の方向に位置調節できるようにしてある。ミラー3b、ミラー3cを光の方向に移動させることにより、対物レンズからそれぞれの可動のミラーで反射し撮像素子7に至る光路の光路長を調節することができる。フィルタ4aは例えばR成分の光を透過するフィルタであり、フィルタ4bはG成分の光を透過するフィルタであり、フィルタ4cはB成分の光を透過するフィルタであるとする。   At least two of the mirrors 3a to 3c are attached to a stage that can move in the direction of light (in FIG. 2, the mirrors 3b and 3c are movable), and the mirrors 3b and 3c are respectively lighted by screws 6b and 6c. The position can be adjusted in the direction of. By moving the mirror 3b and the mirror 3c in the direction of light, the optical path length of the optical path reflected from the objective lens by the respective movable mirrors and reaching the image sensor 7 can be adjusted. For example, the filter 4a is a filter that transmits R component light, the filter 4b is a filter that transmits G component light, and the filter 4c is a filter that transmits B component light.

このような光学系を有する撮像部で、被撮像体BのPの位置からの光が対物レンズを通り、ビームスプリッタ2aの分光面で反射しミラー3aで反射したR成分の光が撮像素子7に結像するように撮像部と被撮像体との位置を調節し、次にねじ6bによりミラー3bの位置を調節して被撮像体BのPの位置からの光のうちミラー3bで反射したG成分の光が撮像素子7に結像し、さらにねじ6cによりミラー3cの位置を調節して被撮像体BのPの位置からの光のうちB成分の光が撮像素子7に結像するようにさせる。これらの結像状態の確認はモニター部16でR成分、G成分、B成分の光の分解画像を見て行うことができる。このようにミラー3b、ミラー3cの位置を調整した状態でミラー3a、ミラー3b、ミラー3cでそれぞれ反射して撮像素子7に達する光の光路長は同じである。 In the imaging unit having such an optical system, the light from the position P 0 of the imaging target B passes through the objective lens, the R component light reflected by the spectral surface of the beam splitter 2a and reflected by the mirror 3a is captured by the imaging device. 7, the position of the imaging unit and the object to be imaged is adjusted, and then the position of the mirror 3 b is adjusted by the screw 6 b, and the mirror 3 b out of the light from the position P 0 of the object B to be imaged. The reflected G component light forms an image on the image sensor 7, and the position of the mirror 3 c is adjusted by the screw 6 c, so that the B component light out of the light from the position P 0 of the imaging target B is applied to the image sensor 7. Let them image. Confirmation of these imaging states can be performed by viewing the decomposed images of the R component, G component, and B component light on the monitor unit 16. Thus, the optical path lengths of the light beams that are reflected by the mirror 3a, the mirror 3b, and the mirror 3c and reach the image sensor 7 are the same with the positions of the mirrors 3b and 3c adjusted.

この被撮像体BのPの位置が撮像素子7に結像するミラー3b、ミラー3cの位置を基準位置として、ねじ6bによりミラー3bを移動調節することにより、例えば被撮像体の位置Pからの光が撮像素子7に結像するようにさせる。同様に、ねじ6cによりミラー3cを移動調節することにより、被撮像体の位置Pからの光が撮像素子7に結像するようにさせる。 Mirror 3b the position of P 0 of the object to be imaged B is formed on the imaging device 7, as a reference position a position of the mirror 3c, by the mirror 3b moves adjusted by screws 6b, for example, the position P 1 of the object to be imaged The light from the light is imaged on the image sensor 7. Similarly, by the mirror 3c moves adjusted by screws 6c, the light from the position P 2 of the object to be imaged is cause to image on the imaging element 7.

このようにミラー3b、ミラー3cを基準位置から移動調節することにより、被撮像体BのPの位置に焦点が合ったR成分光の画像と、Pの位置に焦点が合ったG成分光の画像と、Pの位置に焦点が合ったB成分光の画像とが同時に結像した1つの画像が得られる。この3つの色成分画像を撮像制御部14の機能により各色成分により分解すれば、Pの位置に焦点が合ったR成分光の画像、Pの位置に焦点が合ったG成分光の画像、Pの位置に焦点が合ったB成分光の画像への分解がなされる。さらに必要に応じて、R、G、Bの各成分光の画像を白黒画像に変換するようにしてもよい。さらに、分解された各画像に対して画像処理を行い、1つの画像として合成することもできる。 Thus mirror 3b, by moving adjusting the mirror 3c from the reference position, the image of the R component light-focus to the position of P 0 of the imaged subject B, G component-focus to the position of P 1 One image is obtained in which the light image and the B component light image focused on the position of P 2 are simultaneously formed. If degradation by each color component of the three color component images by the function of the imaging control unit 14, P R component light image-focus at the position of 0, the image of the G component light focused on the position of P 1 decomposition of the image of the B component light focused on the position of P 2 is made. Furthermore, the R, G, and B component light images may be converted into black and white images as necessary. Furthermore, it is possible to perform image processing on each decomposed image and combine them as one image.

図3(a)、(b)は撮像部の光学系の形態を示すものである。図1に示す撮像装置の撮像部では、対物レンズ1からの光がビームスプリッタ2aで二分され、ミラー3a、ミラー3bで反射した後ビームスプリッタ2aの分光面を透過または反射し合一してから撮像素子7に至るという形であり、ビームスプリッタ2aとミラー3a及びミラー3bとを含む部分を分離光学系SPとしてみると、図3(a)のようになっている。この場合に分離光学系の光路中の光路長変更手段により像空間での光路長を調整することになる。図3(b)では、光が分離光学系SPで分離し合一した後に対物レンズを通って撮像素子に至るという形になっている。この場合に分離光学系の光路中の光路長変更手段により物空間での光路長を調整することになる。   3A and 3B show the configuration of the optical system of the imaging unit. In the image pickup unit of the image pickup apparatus shown in FIG. 1, the light from the objective lens 1 is divided into two by the beam splitter 2a, reflected by the mirror 3a and the mirror 3b, and then transmitted or reflected by the spectral plane of the beam splitter 2a and united. When the portion including the beam splitter 2a, the mirror 3a, and the mirror 3b is viewed as the separation optical system SP, it is as shown in FIG. In this case, the optical path length in the image space is adjusted by the optical path length changing means in the optical path of the separation optical system. In FIG. 3B, the light is separated and united by the separation optical system SP, and then passes through the objective lens and reaches the image sensor. In this case, the optical path length in the object space is adjusted by the optical path length changing means in the optical path of the separation optical system.

撮像装置の構成として、図3(a)、(b)のように対物レンズ1、分離光学系SP、撮像素子、制御部を含めて一体的な装置なものとして形成する場合と、例えば図3(c)のように対物レンズ1と分離光学系SPとをユニットとして形成し、撮像素子、制御部を含む一眼レフ型撮像カメラのボディに取り付けるという構成としてもよい。またそのほかに、分離光学系SPの要素だけのユニットとして、対物レンズを備える撮像カメラのねじマウントに装着するアタッチメント型の構成としてもよい。また、図1、2のような分離光学系において各色成分に分解された後に合一して撮像素子に結像して得られた画像を色分解や白黒変換等の画像処理を撮像装置において行う必要があるが、撮像制御部14がそのための処理装置を行うための処理回路を含む構成としてもよく、あるいは、汎用パーソナルコンピュータの機能として行うようにしてもよい。   As a configuration of the imaging device, as shown in FIGS. 3A and 3B, the objective lens 1, the separation optical system SP, the imaging device, and the control unit are formed as an integrated device. As shown in (c), the objective lens 1 and the separation optical system SP may be formed as a unit and attached to the body of a single-lens reflex imaging camera including an imaging device and a control unit. In addition, an attachment type configuration that is mounted on a screw mount of an imaging camera including an objective lens as a unit having only the elements of the separation optical system SP may be employed. In addition, the image pickup apparatus performs image processing such as color separation and black-and-white conversion on an image obtained by combining the image components after separation into color components in the separation optical system as shown in FIGS. Although it is necessary, the imaging control unit 14 may include a processing circuit for performing a processing device therefor, or may be performed as a function of a general-purpose personal computer.

撮像装置に関して、対物レンズ及び分離光学系からなる撮像部の光学系において被撮像体からの光の結像面に撮像素子を配設した形態のものとして説明している。ここで、撮像素子は、結像した画像を画像データに変換し、モニター画面を見ながら焦点位置合わせや、光路長の調整等を行い、さらに画像データをメモリーに記憶保持する等のために用いられる要素であるが、焦点位置合わせや光路長の調整等の操作のためには結像している画像を確認できればよいのであり、例えば結像面と共役な位置にマット面等による表示面を有する光学的ファインダーによってもなされる。それゆえ、本発明としては、結像面に撮像素子を配設することは実施形態として考慮するものであり、不可欠なものではない。   The image pickup apparatus is described as having a configuration in which an image pickup element is disposed on an image formation surface of light from an object to be picked in an optical system of an image pickup unit including an objective lens and a separation optical system. Here, the image sensor converts the formed image into image data, performs focus position adjustment, adjustment of the optical path length, etc. while looking at the monitor screen, and further stores the image data in a memory. However, it is only necessary to be able to confirm the image that is being imaged for operations such as focusing and adjusting the optical path length.For example, a display surface such as a matte surface is provided at a position conjugate to the imaging surface. It is also made with an optical viewfinder. Therefore, in the present invention, disposing an image sensor on the image plane is considered as an embodiment and is not indispensable.

図4は、図1のような光学系の構成において、フィルタの代わりに偏光板を用いた形態を示す。図1と異なるのはフィルタ4aに代えて偏光板5aが配設され、フィルタ4bに代えて偏光板5bが配設されることと、被撮像体を偏光方向の異なる光で照明装置10を備え、撮像制御部14において照明装置10の発光手段の発光と同期して撮像動作を制御することとであり、他の点では図1の場合と同様である。偏光板5aと偏光板5bとは透過させる光の偏光方向が直交する関係にあり、照明装置10は2つの同等の発光素子11a、11bと発光駆動部12を有し、発光素子11aには偏光板13aが付設され、また、発光素子11bには偏光板13bが付設されており、偏光板13aと13bとは透過させる光の偏光方向が直交する関係にあり、被検査体に対してそれぞれ偏光方向の異なる照明光を与える。発光駆動部13は撮像装置の撮像動作を撮像制御部14からの信号に応じて発光素子11a、11bが時間差をおいてパルス発光を行うように駆動制御する。この時間差は、少なくとも撮像素子7での前後する撮像動作に必要とされる時間間隔より大きくとるものとする。   FIG. 4 shows a configuration in which a polarizing plate is used instead of a filter in the configuration of the optical system as shown in FIG. 1 differs from FIG. 1 in that a polarizing plate 5a is provided in place of the filter 4a, a polarizing plate 5b is provided in place of the filter 4b, and the illumination device 10 is provided with light having a different polarization direction. The imaging control unit 14 controls the imaging operation in synchronization with the light emission of the light emitting means of the illumination device 10, and is otherwise the same as in the case of FIG. The polarizing plate 5a and the polarizing plate 5b are in a relationship in which the polarization directions of light to be transmitted are orthogonal to each other, and the illumination device 10 has two equivalent light emitting elements 11a and 11b and a light emission driving unit 12, and the light emitting element 11a has a polarization. A plate 13a is attached to the light emitting element 11b, and a polarizing plate 13b is attached to the light emitting element 11b. The polarizing plates 13a and 13b are in a relationship in which the directions of polarization of light to be transmitted are orthogonal to each other. Give illumination light in different directions. The light emission driving unit 13 drives and controls the imaging operation of the imaging apparatus so that the light emitting elements 11a and 11b emit pulsed light with a time difference according to a signal from the imaging control unit 14. This time difference is assumed to be larger than at least the time interval required for the preceding and following imaging operations in the imaging device 7.

図4の構成の撮像装置により異なる位置に焦点の合った画像を撮像する場合に、図1の場合と同様に、ミラー3aで反射する方の光路により被撮像体のPの位置に焦点が合うように撮像部と被撮像体との位置間隔を調節し、また、ねじ6によりミラー3bを調節して被撮像体Bの同じPの位置に焦点が合うようにする。この焦点合わせの調節、ミラー3bの調節に際しては、照明装置10により被撮像体を照明しモニター16における表示画像をみながら調節を行う。このように調整したミラー3bの位置を基準位置として、ねじ6を操作することにより、ミラー3bで反射する方の光により被撮像体のPまたはPの位置に焦点が合うようにする。その後に、撮像制御部14からの信号に応じて発光素子11aを発光させると撮像素子7にはこの光を透過する方の偏光板を経由する光路での画像が形成され、さらに時間差をおいて発光素子11bを発光させると撮像素子7にはこの光を透過する方の偏光板を経由する光路での画像が形成される。撮像制御部14では両方の画像を逐次メモリー15に別個に保持するように制御を行う。 When an image focused at a different position is picked up by the image pickup apparatus having the configuration shown in FIG. 4, as in the case of FIG. 1, the focus is set at the position P 0 of the object to be picked up by the optical path reflected by the mirror 3a. The position interval between the imaging unit and the imaging target is adjusted so that they match, and the mirror 3 b is adjusted by the screw 6 so that the same position P 0 of the imaging target B is in focus. When adjusting the focus and adjusting the mirror 3b, the illumination device 10 is used to illuminate the object to be imaged and the display image on the monitor 16 is viewed. As the position reference position of the thus adjusted mirror 3b, by operating the screw 6, so that in focus on the position of P 1 or P 2 of the imaged subject by light towards the reflecting mirror 3b. After that, when the light emitting element 11a emits light according to the signal from the imaging control unit 14, an image is formed on the imaging element 7 in the optical path passing through the polarizing plate that transmits this light, with a time difference. When the light emitting element 11b emits light, an image is formed on the imaging element 7 in an optical path that passes through the polarizing plate that transmits this light. The imaging control unit 14 performs control so that both images are sequentially held in the memory 15.

図4の多焦点撮像装置において、被撮像体を偏光方向の異なる光で順次照明することにより得られた被撮像体の異なる位置に焦点が合った画像のデータは逐次メモリー15に蓄積保持される。この異なる位置に焦点の合った画像を別個のものとして取り出すことができ、さらに画像処理を行って、1つの画像として合成することができる。撮像装置としては、そのための複数の画像を合成する画像処理回路を撮像制御部が有する構成としてもよく、あるいは画像データを送出可能にし、外部装置としての汎用パーソナルコンピュータにより画像処理を行うようにしてもよい。   In the multifocal imaging device of FIG. 4, data of images focused on different positions of the imaging target obtained by sequentially illuminating the imaging target with light having different polarization directions are sequentially stored and held in the memory 15. . Images focused on the different positions can be taken out separately, and further image processing can be performed to combine them as one image. As the imaging device, the imaging control unit may have an image processing circuit for synthesizing a plurality of images for that purpose, or image data can be transmitted and image processing is performed by a general-purpose personal computer as an external device. Also good.

図4の撮像装置の光学系は図3(a)の形で、対物レンズ1が分離光学系SPの前側に配置されているが、図3(b)のように分離光学系SPと撮像素子7との間に対物レンズ1を配置する形態とすることもできる。図4のように偏光板を用いた形態のものでは、色成分に分光するフィルタを用いないので、モノクローム型(白黒型)の撮像素子を用いて被撮像体の異なる位置に焦点の合った画像を撮像することができる。また、被撮像体における異なる位置に焦点が合うように光路長を調整した後には、発光手段による1回目の発光と所定時間をおいてそれに続く2回目の発光とによる一連の動作として撮像がなされる。   The optical system of the image pickup apparatus of FIG. 4 is in the form of FIG. 3A, and the objective lens 1 is disposed on the front side of the separation optical system SP. However, as shown in FIG. The objective lens 1 can also be arranged between the two. In the configuration using a polarizing plate as shown in FIG. 4, a filter that separates the color components is not used, and therefore an image focused on different positions of the imaging target using a monochrome type (black and white type) imaging device. Can be imaged. In addition, after adjusting the optical path length so that different positions on the imaging target are in focus, imaging is performed as a series of operations by the first light emission by the light emitting means and the second light emission after a predetermined time. The

図4においては、対物レンズ1からの光がビームスプリッタ2aで反射する光路と透過する光路とにそれぞれ透過する光の偏光方向が直交関係にある偏光板5a、偏光板5bを配設しているが、このビームスプリッタ2aとして一方の偏光方向の光を透過し、偏光方向がこれに直角な他方の偏光方向の光を反射する偏光ビームスプリッタとしてもよい。この場合、図1、図2における二分された光路中には偏光板を配設しない。   In FIG. 4, a polarizing plate 5a and a polarizing plate 5b in which the polarization directions of light transmitted through the light path through which the light from the objective lens 1 is reflected and transmitted through the beam splitter 2a are orthogonal to each other are disposed. However, the beam splitter 2a may be a polarizing beam splitter that transmits light in one polarization direction and reflects light in the other polarization direction whose polarization direction is perpendicular thereto. In this case, no polarizing plate is provided in the bisected optical path in FIGS.

図5は、図1の光学系を有する撮像装置において、被撮像体における高さを測定する機能を備えるようにした例を示すものである。図5の構成で図1の場合と異なるのは、ミラー3bを移動させて光路長を調整するためにねじ6によるのでなく、ミラー3bを移動させるためのパルスモータ9を備えており、パルスモータ9に付随するエンコーダ9aからの信号を撮像制御部14に移送し、撮像制御部14でエンコーダ9aからの信号に基づきパルスモータ9の回転量から基台8bの移動距離から光路長の変化量を演算し求めるようにしたことである。   FIG. 5 shows an example in which the imaging apparatus having the optical system of FIG. 1 is provided with a function of measuring the height of an object to be imaged. The configuration of FIG. 5 differs from that of FIG. 1 in that a pulse motor 9 for moving the mirror 3b is provided instead of using the screw 6 for moving the mirror 3b to adjust the optical path length. 9 is transferred to the imaging control unit 14, and based on the signal from the encoder 9a, the imaging control unit 14 calculates the change amount of the optical path length from the rotation amount of the pulse motor 9 to the moving distance of the base 8b. That is to calculate and obtain.

図5の構成の撮像装置により被撮像体Bの異なる遠近位置に焦点の合った画像を撮像するとともにその高さを測定する場合、初めに図5においてビームスプリッタ2の分光面で分離されたそれぞれの光路での画像が被撮像体BのPの位置に焦点が合ったものになるように撮像装置と被撮像体との位置関係を設定し、このPの位置を高さの基準とする。その後に、パルスモータ9を回転させることによりミラー3bを移動させ右側の光路の光路長を変化させ、ミラー3bで反射する方の光路での画像がPの位置に焦点があったものとなるようにする。基準位置PとPの位置に焦点を合わせる操作は、それぞれの光路での画像をモニター16で確認しながら行う。また、撮像制御部においては、この時のパルスモータ9の回転角をパルスモータ9に付随するエンコーダ9aからの信号に基づいて求め、そのパルスモータ9の回転角からミラー3bの移動による光路長の変化量を求め、さらに光路長の変化量から被撮像体BにおけるPからPまでの距離が高さとして計算される。この高さの計算は、対物レンズ1の焦点距離f、被撮像体B上の点から対物レンズ1までの距離a、対物レンズ1から結像面(撮像素子7の面)までの距離bとの間の関係式を

Figure 0004565115
とし、光路長の変化量を±c(c>0)とした時にaが(a+Δa)になったとすると、
Figure 0004565115
の関係式になる(+cは光路長が長くなる場合、−cは光路長が短くなる場合)。f、bは撮像装置において既定の値であるので、式(1)、(2)から光路長の変化cに対する被撮像体における位置の差Δaが求められる。Δaが+の値であれば図でPはPより上側、Δaが−の値であればPはPより下側の位置である。bの値は最初に被撮像体に基準の位置に焦点を合わせる時の光路長を基準としてbの値とし、図1の場合のようにミラー3aを固定とした場合、固定されたミラー3aで反射する方の光路ではbの値は対物レンズから撮像素子に至る光路長であるが、ミラー3a、3bをともに移動可能にして両方の光路の光路長を可変とした場合には、パルスモータの回転角により対物レンズから撮像素子までの距離が割り出せる形にしておき、最初に被撮像体の基準位置に焦点を合わせた時の対物レンズから撮像素子までの距離をbの値とする。制御部14では式(1)、(2)とパルスモータの回転角から得られたcの値とからΔaの値を求める計算をし、結果をモニター15に表示する。一方で、撮像装置としては、一方の光路が被撮像体のPの位置に、他方の光路がP1の位置に焦点が合う状態になっており、1回の撮像操作でそれぞれ異なる位置に焦点の合った画像が撮像される。このように、図5に示す構成とすることにより、被撮像体の異なる遠近位置に焦点が合った画像が得られるとともに、その位置間の距離としての高さが求められる。 When the imaging apparatus having the configuration shown in FIG. 5 captures an image focused on different perspective positions of the imaging target B and measures the height thereof, each of the images is first separated on the spectral plane of the beam splitter 2 in FIG. The positional relationship between the imaging device and the imaging object is set so that the image on the optical path of the imaging object is in focus on the position of P 0 of the imaging object B, and the position of P 0 is used as a height reference. To do. Thereafter, by moving the mirror 3b by rotating the pulse motor 9 to change the optical path length of the optical path of the right image in the optical path towards the reflection it is assumed that there is a focus on the position of P 1 by the mirror 3b Like that. The operation of focusing on the positions of the reference positions P 0 and P 1 is performed while checking images on the respective optical paths on the monitor 16. The imaging control unit obtains the rotation angle of the pulse motor 9 at this time based on a signal from the encoder 9a attached to the pulse motor 9, and determines the optical path length due to the movement of the mirror 3b from the rotation angle of the pulse motor 9. The amount of change is obtained, and the distance from P 0 to P 1 in the image pickup object B is calculated as the height from the amount of change in the optical path length. The calculation of the height includes the focal length f of the objective lens 1, the distance a from the point on the image pickup object B to the objective lens 1, and the distance b from the objective lens 1 to the imaging plane (the surface of the imaging device 7). The relation between
Figure 0004565115
Suppose that a becomes (a + Δa) when the change amount of the optical path length is ± c (c> 0).
Figure 0004565115
(+ C is when the optical path length is long, -c is when the optical path length is short). Since f and b are predetermined values in the imaging apparatus, a difference Δa in position on the imaging object with respect to the change c of the optical path length is obtained from the equations (1) and (2). P 1 in FIG. If the value of .DELTA.a is + is above the P 0, .DELTA.a is -, P 1 If the value of the position of the lower side of the P 0. The value of b is the value of b based on the optical path length when the object is first focused on the reference position, and when the mirror 3a is fixed as in FIG. 1, the fixed mirror 3a is used. In the reflecting optical path, the value b is the optical path length from the objective lens to the image sensor. However, when both the optical paths of the mirrors 3a and 3b are movable and the optical path lengths of both optical paths are variable, The distance from the objective lens to the image sensor is determined by the rotation angle, and the distance from the objective lens to the image sensor when the focus is first set on the reference position of the object to be imaged is a value b. The control unit 14 calculates the value of Δa from the expressions (1) and (2) and the value of c obtained from the rotation angle of the pulse motor, and displays the result on the monitor 15. On the other hand, as an imaging device, one optical path is in focus at the position P 0 of the imaging target, and the other optical path is in focus at the position P 1. A suitable image is captured. As described above, with the configuration shown in FIG. 5, an image focused on different perspective positions of the imaging target is obtained, and the height as the distance between the positions is obtained.

式(2)は、図3(a)の形の撮像光学系の場合であり、像空間における光路長を調整して被撮像体における高さを測定するものであるが、図3(b)の形の撮像光学系の場合にも同様に被撮像体における高さを測定することがてきる。この場合、図4の撮像光学系と異なるのは、対物レンズが分離光学系の後側に配設されていることだけであり、分離光学系では物空間における光路長の調整を行うことになる。その際、結像関係を表す式は、

Figure 0004565115
の形になり、光路長がcだけ変化したとすれば、この変化分は被撮像体における高さΔaになっている。パルスモータの回転角に応じて求められた光路長の変化量±cに対して、制御部において式(1)、(3)を用いて被撮像体における位置の差としての高さΔaを求める演算がなされ、モニターでの表示がなされる。 Expression (2) is a case of the imaging optical system in the form of FIG. 3A, and measures the height of the imaging target by adjusting the optical path length in the image space. Similarly, in the case of the imaging optical system of the shape, it is possible to measure the height of the object to be imaged. In this case, the only difference from the imaging optical system in FIG. 4 is that the objective lens is disposed on the rear side of the separation optical system, and the separation optical system adjusts the optical path length in the object space. . At that time, the expression representing the imaging relationship is
Figure 0004565115
If the optical path length changes by c, the amount of change is the height Δa in the imaged body. With respect to the optical path length variation ± c obtained according to the rotation angle of the pulse motor, the control unit obtains the height Δa as the difference in position on the image pickup body using the equations (1) and (3). Calculations are made and displayed on the monitor.

本発明による多焦点撮像装置の1つの形態を示す図である。It is a figure which shows one form of the multifocal imaging device by this invention. 本発明による多焦点撮像装置の他の形態を示す図である。It is a figure which shows the other form of the multifocal imaging device by this invention. 撮像部の光学系の形態を主に示す図である。It is a figure which mainly shows the form of the optical system of an imaging part. 本発明による 多焦点撮像装置のさらに他の形態を示す図である。It is a figure which shows the further another form of the multifocal imaging device by this invention. 被撮像体における高さを測定する機能を備えた撮像装置の例を示す図である。It is a figure which shows the example of the imaging device provided with the function to measure the height in a to-be-photographed body.

符号の説明Explanation of symbols

A 撮像装置
B 被撮像体
1 対物レンズ
2,2a,2b ビームスプリッタ
3a、3b、3c ミラー
4a、4b、4c フィルタ
5a,5b 偏光板
6,6b,6c ねじ
7 撮像素子
9 パルスモータ
10 照明装置
11a、11b 発光素子
12 発光駆動部
13a、13b 偏光板
14 撮像制御部
15 メモリー
16 モニター
A Imaging device B Object 1 Objective lens
2, 2a, 2b Beam splitter 3a, 3b, 3c Mirror 4a, 4b, 4c Filter 5a, 5b Polarizing plate 6, 6b, 6c Screw 7 Imaging element 9 Pulse motor 10 Illumination device 11a, 11b Light emitting element 12 Light emitting drive part 13a, 13b Polarizing plate 14 Imaging control unit 15 Memory 16 Monitor

Claims (15)

対物レンズと、
該対物レンズを通り第1の光路を進む光の方向に対して傾斜した角度をなす分光面を有するビームスプリッタと、該ビームスプリッタで反射し第2の光路を進む光の方向に対して垂直な面内に間に第1のフィルタを介在して配設された第1のミラーと、前記ビームスプリッタの分光面を透過し第3の光路を進む光の方向に対して垂直な面内に間に第2のフィルタを介在して配設された第2のミラーとを有していて、前記第1のミラーで反射し前記ビームスプリッタの分光面を透過した光と前記第2のミラーで反射し前記ビームスプリッタの分光面で反射した光との両方の光が同一の結像面に結像するようにした分離光学系と、
を備えてなり、前記第1のフィルタと前記第2のフィルタとがそれぞれ互いに異なる色成分の光を透過するものであり、前記第1のミラーと前記第2のミラーとの少なくとも一方のミラーが光路の方向に移動可能に配設されていて、前記対物レンズから前記第1及び第2の光路を経由して前記結像面に至る光路の光路長と前記第1及び第3の光路を経由して前記結像面に至る光路の光路長とが異なるように調整して被撮像体の異なる位置に焦点が合った画像を1回の撮像操作により撮像できるようにしたことを特徴とする多焦点撮像装置。
An objective lens;
A beam splitter having a spectral plane inclined at an angle with respect to the direction of light passing through the objective lens and traveling on the first optical path, and perpendicular to the direction of light reflected by the beam splitter and traveling on the second optical path a first mirror disposed by interposing a first filter between the plane, in a plane perpendicular to the direction of the transmitted through the spectral plane of the beam splitter third light traveling the optical path A second mirror disposed with a second filter interposed therebetween, and the light reflected by the first mirror and transmitted through the spectral plane of the beam splitter and the second mirror A separation optical system in which both the light reflected and reflected by the spectral plane of the beam splitter are imaged on the same imaging plane;
The first filter and the second filter transmit light of different color components, respectively, and at least one of the first mirror and the second mirror is Arranged so as to be movable in the direction of the optical path, the optical path length of the optical path from the objective lens through the first and second optical paths to the imaging plane and the first and third optical paths The optical path length to the imaging plane is adjusted to be different so that images focused on different positions of the imaging target can be captured by one imaging operation. Focus imaging device.
対物レンズと、
該対物レンズを通り第1の光路を進む光の方向に対して傾斜した角度をなす第1の分光面を有する第1のビームスプリッタと、該第1のビームスプリッタの第1の分光面で反射し第2の光路を進む光の方向に対して垂直な面内に間に第1のフィルタを介在して配設された第1のミラーと、前記第1のビームスプリッタの第1の分光面を透過し第3の光路を進む光の方向に対し傾斜した角度をなす第2の分光面を有する第2のビームスプリッタと、該第2のビームスプリッタで反射し第4の光路を進む光の方向に対して垂直な面内に間に第2のフィルタを介在して配設された第2のミラーと、前記第2のビームスプリッタの第2の分光面を透過し第5の光路を進む光の方向に対して垂直な面内に間に第3のフィルタを介在して配設された第3のミラーとを有していて、前記第1のミラーで反射し前記第1のビームスプリッタの第1の分光面を透過した光と前記第2のミラーで反射し前記第2のビームスプリッタの第2の分光面で反射しさらに前記第1のビームスプリッタの第1の分光面で反射した光と前記第3のミラーで反射し前記第2のビームスプリッタの第2の分光面を透過し前記第1のビームスプリッタの第1の分光面で反射した光とが同一の結像面に結像するようにした分離光学系と、
を備えてなり、前記第1のフィルタと前記第2のフィルタと前記第3のフィルタとがそれぞれ互いに異なる色成分の光を透過するものであり、前記第1〜第3のミラーのうちの少なくとも2つのミラーが光路の方向に移動可能に配設されていて、前記対物レンズから前記第1の光路及び第2の光路を経由して前記結像面に至る光路の光路長と、前記第1の光路、第3の光路及び第4の光路を経由して前記結像面に至る光路の光路長と、前記第1の光路、第3の光路及び第5の光路を経由する光路の光路長と、がそれぞれ異なるように調整することにより被撮像体の複数の位置に焦点の合った画像を1回の撮像操作により撮像できるようにしたことを特徴とする多焦点撮像装置。
An objective lens;
A first beam splitter having a first spectroscopic surface that forms an angle with respect to the direction of light traveling through the objective lens and the first optical path, and reflected by the first spectroscopic surface of the first beam splitter; A first mirror disposed with a first filter interposed in a plane perpendicular to the direction of light traveling in the second optical path, and a first spectral plane of the first beam splitter. And a second beam splitter having a second spectral plane that forms an angle with respect to the direction of light traveling through the third optical path and reflected by the second beam splitter and traveling along the fourth optical path. A second mirror disposed with a second filter interposed in a plane perpendicular to the direction, and the second light splitting surface of the second beam splitter, passing through a fifth optical path. A third filter disposed in a plane perpendicular to the direction of light with a third filter interposed therebetween; Light reflected by the first mirror and transmitted through the first spectral plane of the first beam splitter, and reflected by the second mirror and second of the second beam splitter. And reflected by the first spectral plane of the first beam splitter and reflected by the third mirror and transmitted through the second spectral plane of the second beam splitter. A separation optical system configured such that the light reflected by the first spectral plane of the beam splitter forms an image on the same imaging plane;
And the first filter, the second filter, and the third filter transmit light of different color components, respectively, and at least one of the first to third mirrors Two mirrors are disposed so as to be movable in the direction of the optical path, the optical path length of the optical path from the objective lens to the imaging plane via the first optical path and the second optical path, and the first , The third optical path, the fourth optical path, the optical path length of the optical path reaching the imaging plane, and the optical path length of the optical path passing through the first optical path, the third optical path, and the fifth optical path. And a multi-focal imaging device that can adjust an image focused on a plurality of positions of the imaging target by a single imaging operation.
被撮像体からの入射光路となる第1の光路を進む光の方向に対して傾斜した角度をなす分光面を有するビームスプリッタと、該ビームスプリッタで反射し第2の光路を進む光の方向に対して垂直な面内に間に第1のフィルタを介在して配設された第1のミラーと、前記ビームスプリッタの分光面を透過し第3の光路を進む光の方向に対して垂直な面内に間に第2のフィルタを介在して配設された第2のミラーとを有していて、前記第1のミラーで反射し前記ビームスプリッタの分光面を透過した光と前記第2のミラーで反射し前記ビームスプリッタの分光面で反射した光との両方の光が合一するようにした分離光学系と、
該分離光学系で合一した光が入射し前記被撮像体の像を同一の結像面に結像するための対物レンズと、
を備えてなり、前記第1のフィルタと前記第2のフィルタとが互いに異なる色成分の光を透過するものであり、前記第1のミラーと前記第2のミラーとの少なくとも一方のミラーが光路の方向に移動可能に配設されていて、前記被撮像体から前記第1及び第2の光路を経由して前記対物レンズに至る光路の光路長と、前記被撮像体から前記第1及び第3の光路を経由して前記対物レンズに至る光路の光路長と、が異なるように調整することにより被撮像体の異なる位置に焦点が合った画像を1回の撮像操作により撮像できるようにしたことを特徴とする多焦点撮像装置。
A beam splitter having a spectral plane that forms an angle with respect to the direction of light traveling through the first optical path that is the incident optical path from the imaging target, and in the direction of light reflected by the beam splitter and traveling through the second optical path A first mirror disposed in a plane perpendicular to the first mirror, and a direction perpendicular to the direction of light passing through the spectral plane of the beam splitter and traveling on the third optical path. A second mirror disposed in the plane with a second filter interposed therebetween, the light reflected by the first mirror and transmitted through the spectral plane of the beam splitter, and the second mirror A separation optical system in which both the light reflected by the mirror and the light reflected by the spectral plane of the beam splitter are combined,
An objective lens for forming the image of the imaged body on the same image plane when the light combined by the separation optical system is incident;
The first filter and the second filter transmit light of different color components, and at least one of the first mirror and the second mirror has an optical path And an optical path length of an optical path from the image pickup body through the first and second optical paths to the objective lens, and from the image pickup body to the first and the first optical paths. By adjusting so that the optical path length of the optical path leading to the objective lens via the optical path 3 is different, an image focused on different positions of the imaging target can be captured by a single imaging operation. A multifocal imaging device.
被撮像体からの入射光路となる第1の光路を進む光の方向に対して傾斜した角度をなす第1の分光面を有する第1のビームスプリッタと、該第1のビームスプリッタの第1の分光面で反射し第2の光路を進む光の方向に対して垂直な面内に間に第1のフィルタを介在して配設された第1のミラーと、前記第1のビームスプリッタの第1の分光面を透過し第3の光路を進む光の方向に対して傾斜した角度をなす第2の分光面を有する第2のビームスプリッタと、該第2のビームスプリッタで反射し第4の光路を進む光の方向に対して垂直な面内に間に第2のフィルタを介在して配設された第2のミラーと、前記第2のビームスプリッタの第2の分光面を透過し第5の光路を進む光の方向に対して垂直な面内に間に第3のフィルタを介在して配設された第3のミラーとを有していて、前記第1のミラーで反射し前記第1のビームスプリッタの第1の分光面を透過した光と前記第2のミラーで反射し前記第2のビームスプリッタの第2の分光面で反射しさらに前記第1のビームスプリッタの第1の分光面で反射した光と前記第3のミラーで反射し前記第2のビームスプリッタの第2の分光面を透過し前記第1のビームスプリッタの第1の分光面で反射した光との3つの光が合一するようにした分離光学系と、
該分離光学系で合一した光が入射し前記被撮像体の像を同一の結像面に結像するための対物レンズと、
を備えてなり、前記第1のフィルタと前記第2のフィルタと前記第3のフィルタとがそれぞれ互いに異なる色成分の光を透過するものであり、前記第1〜第3のミラーのうちの少なくとも2つのミラーが光路の方向に移動可能に配設されていて、前記被撮像体から前記第1の光路及び第2の光路を経由して前記対物レンズに至る光路の光路長と、前記第1の光路、第3の光路及び第4の光路を経由して前記対物レンズに至る光路の光路長と、前記第1の光路、第3の光路及び第5の光路を経由する光路の光路長と、がそれぞれ異なるように調整することにより被撮像体の複数の位置に焦点が合った画像を1回の撮像操作により撮像できるようにしたことを特徴とする多焦点撮像装置。
A first beam splitter having a first spectroscopic surface that forms an angle with respect to the direction of light traveling along a first optical path as an incident optical path from the imaging target; and a first beam splitter of the first beam splitter A first mirror disposed with a first filter interposed in a plane perpendicular to the direction of light reflected on the spectroscopic surface and traveling on the second optical path; and a first mirror of the first beam splitter. A second beam splitter having a second spectral plane that forms an angle with respect to the direction of light passing through the first spectral plane and traveling through the third optical path, and is reflected by the second beam splitter and is reflected by the fourth beam splitter. A second mirror disposed with a second filter interposed in a plane perpendicular to the direction of light traveling in the optical path and the second spectral plane of the second beam splitter are transmitted through the second mirror. 5 with a third filter interposed in a plane perpendicular to the direction of light traveling along the optical path 5 A third mirror that is reflected by the first mirror and transmitted through the first spectral plane of the first beam splitter and reflected by the second mirror and the second mirror. The light reflected by the second spectral plane of the beam splitter, reflected by the first spectral plane of the first beam splitter, and reflected by the third mirror and reflected by the second spectral plane of the second beam splitter. A separation optical system in which three lights, which are transmitted and reflected by the first spectral surface of the first beam splitter, are combined,
An objective lens for forming the image of the imaged body on the same image plane when the light combined by the separation optical system is incident;
And the first filter, the second filter, and the third filter transmit light of different color components, respectively, and at least one of the first to third mirrors Two mirrors are disposed so as to be movable in the direction of the optical path, and the optical path length of the optical path from the imaging target to the objective lens via the first optical path and the second optical path, and the first The optical path length of the optical path passing through the first optical path, the third optical path, and the fourth optical path to the objective lens, and the optical path length of the optical path passing through the first optical path, the third optical path, and the fifth optical path, A multi-focus imaging apparatus characterized in that an image focused on a plurality of positions of an imaging target can be captured by a single imaging operation by adjusting so as to be different from each other.
前記結像面に配設した撮像素子をさらに備えていて、該撮像素子により得られた画像の信号を取り出し外部の処理装置により画像処理ができるようにしたことを特徴とする請求項1〜4のいずれか1項に記載の多焦点撮像装置。   5. An image pickup device disposed on the imaging surface is further provided, and an image signal obtained by the image pickup device can be taken out and processed by an external processing device. The multifocal imaging device according to any one of the above. 前記結像面に配設した撮像素子と、該撮像素子により得られた複数の色成分の画像を含む画像をもとの複数の色成分の画像に分解する処理を行う撮像制御部をさらに備えていることを特徴とする請求項1〜4のいずれか1項に記載の多焦点撮像装置。   An image pickup device disposed on the imaging plane; and an image pickup control unit that performs processing for decomposing an image including a plurality of color component images obtained by the image pickup device into a plurality of color component images. The multifocal imaging device according to claim 1, wherein the multifocal imaging device is provided. 前記撮像制御部が複数の色成分の画像に分解された画像に対し1つの画像に合成する画像処理を行うものであることを特徴とする請求項6に記載の多焦点撮像装置。   The multifocal imaging apparatus according to claim 6, wherein the imaging control unit performs image processing for combining an image decomposed into a plurality of color component images into one image. 対物レンズと、
該対物レンズを通り第1の光路を進む光の方向に対して傾斜した角度をなす分光面を有するビームスプリッタと、該ビームスプリッタの分光面で反射し第2の光路を進む光の方向に対して垂直な面内に間に第1の偏光板を介在して配設された第1のミラーと、前記ビームスプリッタの分光面を透過し第3の光路を進む光の方向に対して垂直な面内に間に第2の偏光板を介在して配設された第2のミラーとを有していて、前記第1のミラーで反射し前記ビームスプリッタの分光面を透過した光と、前記第2のミラーで反射し前記ビームスプリッタの分光面で反射した光との両方の光が同一の結像面に結像するようにした分離光学系と、
偏光方向がそれぞれ異なる第1の偏光方向及び第2の偏光方向の光で被撮像体を所定の時間をおいて順次照明する発光手段と、
を備えてなり、前記分離光学系における第1の偏光板は前記発光手段による第1の偏光方向の光を透過させるとともに前記第2の偏光板は前記第2の偏光方向の光を透過させるものであり、前記第1のミラーと前記第2のミラーとの少なくとも一方のミラーが光路の方向に移動可能に配設されていて、前記対物レンズから前記第1及び第2の光路を経由して前記結像面に至る光路の光路長と前記第1及び第3の光路を経由して前記結像面に至る光路の光路長とが異なるように調整した上で、前記発光手段での1回目の発光による前記第1及び第2の光路を経由して前記結像面に至る一方の偏光方向の光での撮像と、前記発光手段での2回目の発光による前記第1及び第3の光路を経由して前記結像面に至る他方の偏光方向の光での撮像とを行い、被撮像体における異なる位置に焦点が合った画像を一連の撮像操作で撮像できるようにしたことを特徴とする多焦点撮像装置。
An objective lens;
A beam splitter having a spectral plane inclined at an angle with respect to the direction of light traveling through the first optical path through the objective lens, and the direction of light reflected by the spectral plane of the beam splitter and traveling through the second optical path A first mirror disposed in a plane perpendicular to the first polarizing plate, and a direction perpendicular to the direction of light passing through the spectral plane of the beam splitter and traveling on the third optical path A second mirror disposed in the plane with a second polarizing plate interposed therebetween, light reflected by the first mirror and transmitted through the spectral plane of the beam splitter, A separation optical system in which both the light reflected by the second mirror and the light reflected by the spectral surface of the beam splitter are imaged on the same imaging plane;
A light emitting means for sequentially illuminating the imaging target with a predetermined time with light of a first polarization direction and a second polarization direction different in polarization direction;
The first polarizing plate in the separation optical system transmits light in the first polarization direction by the light emitting means, and the second polarizing plate transmits light in the second polarization direction. And at least one of the first mirror and the second mirror is disposed so as to be movable in the direction of the optical path, and passes from the objective lens via the first and second optical paths. After adjusting the optical path length of the optical path leading to the imaging plane and the optical path length of the optical path reaching the imaging plane via the first and third optical paths to be different from each other, Imaging with light in one polarization direction reaching the imaging plane via the first and second optical paths by the emission of light and the first and third optical paths by the second light emission by the light emitting means Imaging with light of the other polarization direction that reaches the imaging plane via , Multifocal imaging apparatus being characterized in that as the image focus on different positions meet the imaged subject can be imaged by a series of imaging operations.
被撮像体からの光の入射光路となる第1の光路を進む光の方向に対して傾斜した角度をなす分光面を有するビームスプリッタと、該ビームスプリッタの分光面で反射し第2の光路を進む光の方向に対して垂直な面内に間に第1の偏光板を介在して配設された第1のミラーと、前記ビームスプリッタの分光面を透過し第3の光路を進む光の方向に対して垂直な面内に間に第2の偏光板を介在して配設された第2のミラーとを有していて、前記第1のミラーで反射し前記ビームスプリッタの分光面を透過した光と前記第2のミラーで反射し前記ビームスプリッタの分光面で反射した光との両方の光が合一するようにした分離光学系と、
該分離光学系で合一した光が入射し前記被撮像体の像を同一の結像面に結像するための対物レンズと、
偏光方向がそれぞれ異なる第1の偏光方向及び第2の偏光方向の光で被撮像体を所定の時間をおいて順次照明する発光手段と、
を備えてなり、前記分離光学系における第1の偏光板は前記発光手段による第1の偏光方向の光を透過させるとともに前記第2の偏光板は前記第2の偏光方向の光を透過させるものであり、前記第1のミラーと前記第2のミラーとの少なくとも一方のミラーが光路の方向に移動可能に配設されていて、前記被撮像体から前記第1及び第2の光路を経由して前記対物レンズに至る光路の光路長と前記第1及び第3の光路を経由して前記対物レンズに至る光路の光路長とが異なるように調整した上で、前記発光手段での1回目の発光による前記第1及び第2の光路を経由して前記結像面に至る一方の偏光方向の光での撮像と、前記発光手段での2回目の発光による前記第1及び第3の光路を経由して前記結像面に至る他方の偏光方向の光での撮像とを行い、被撮像体における異なる位置に焦点が合った画像を一連の撮像操作で撮像できるようにしたことを特徴とする多焦点撮像装置。
A beam splitter having a spectral plane that forms an angle with respect to the direction of the light traveling along the first optical path that is the incident optical path of light from the imaging target, and the second optical path reflected by the spectral plane of the beam splitter A first mirror disposed with a first polarizing plate interposed in a plane perpendicular to the direction of traveling light, and light traveling through the third optical path through the spectral plane of the beam splitter. A second mirror disposed in a plane perpendicular to the direction with a second polarizing plate interposed therebetween, and is reflected by the first mirror so that the spectral plane of the beam splitter is A separation optical system in which both the transmitted light and the light reflected by the second mirror and reflected by the spectral surface of the beam splitter are combined,
An objective lens for forming the image of the imaged object on the same image plane when the light combined by the separation optical system is incident;
A light emitting means for sequentially illuminating the imaging target with a predetermined time with light of a first polarization direction and a second polarization direction, each having a different polarization direction;
The first polarizing plate in the separation optical system transmits light in the first polarization direction by the light emitting means, and the second polarizing plate transmits light in the second polarization direction. And at least one of the first mirror and the second mirror is disposed so as to be movable in the direction of the optical path, and passes through the first and second optical paths from the imaging target. The optical path length of the optical path to the objective lens and the optical path length of the optical path to the objective lens via the first and third optical paths are adjusted to be different from each other. Imaging the light with one polarization direction that reaches the imaging plane via the first and second optical paths by light emission, and the first and third optical paths by the second light emission by the light emitting means. Imaging with light of the other polarization direction that reaches the imaging plane via Was carried out, multifocal imaging apparatus being characterized in that as the image focus on different positions meet the imaged subject can be imaged by a series of imaging operations.
対物レンズと、
該対物レンズを通り第1の光路を進む光の方向に対して傾斜した角度をなす偏光分離面を有する偏光ビームスプリッタと、該偏光ビームスプリッタでの偏光分離面で反射し第2の光路を進む光の方向に対して垂直な面内に配設された第1のミラーと、前記偏光ビームスプリッタの偏光分離面を透過し第3の光路を進む光の方向に対して垂直な面内に配設された第2のミラーと、を有していて、前記第1のミラーで反射し前記偏光ビームスプリッタの偏光分離面を透過した光と前記第2のミラーで反射し前記偏光ビームスプリッタの偏光分離面で反射した光との両方の光が同一の結像面に結像するようにした分離光学系と、
偏光方向がそれぞれ異なる第1の偏光方向及び第2の偏光の光で被撮像体を所定の時間をおいて順次照明する発光手段と、
を備えてなり、前記分離光学系の偏光ビームスプリッタにおける偏光分離面は直交する偏光方向のうちの一方の偏光方向の光を透過させるともにこれに直角な他方の偏光方向の光を反射するものであり、前記第1のミラーと前記第2のミラーとの少なくとも一方のミラーが光路の方向に移動可能に配設されていて、前記対物レンズから前記第1及び第2の光路を経由して前記結像面に至る光路の光路長と前記第1及び第3の光路を経由して前記結像面に至る光路の光路長とが異なるように調整した上で、前記発光手段での1回目の発光による前記第1及び第2の光路を経由して前記結像面に至る一方の偏光方向の光での撮像と、前記発光手段での2回目の発光による前記第1及び第3の光路を経由して前記結像面に至る他方の偏光方向の光での撮像とを行い、被撮像体における異なる位置に焦点が合った画像を一連の撮像操作で撮像できるようにしたことを特徴とする多焦点撮像装置。
An objective lens;
A polarization beam splitter having a polarization separation surface that forms an inclined angle with respect to the direction of light traveling through the objective lens and the first light path, and reflected by the polarization separation surface of the polarization beam splitter and traveling along the second light path A first mirror disposed in a plane perpendicular to the direction of light and a plane perpendicular to the direction of light transmitted through the polarization separation surface of the polarization beam splitter and traveling on the third optical path; A second mirror provided, the light reflected by the first mirror and transmitted through the polarization separation surface of the polarization beam splitter, and the light reflected by the second mirror and polarized by the polarization beam splitter. A separation optical system in which both the light reflected by the separation surface and the light reflected on the separation surface are imaged on the same imaging surface;
Light emitting means for sequentially illuminating the imaging target with a predetermined time with light of a first polarization direction and a second polarization light each having a different polarization direction;
The polarization separation surface of the polarization beam splitter of the separation optical system transmits light in one of the orthogonal polarization directions and reflects light in the other polarization direction perpendicular thereto . And at least one of the first mirror and the second mirror is disposed so as to be movable in the direction of an optical path, and the first and second optical paths are passed from the objective lens through the first and second optical paths. After adjusting the optical path length of the optical path to the imaging plane and the optical path length of the optical path to the imaging plane via the first and third optical paths to be different from each other, Imaging the light with one polarization direction that reaches the imaging plane via the first and second optical paths by light emission, and the first and third optical paths by the second light emission by the light emitting means. With the light of the other polarization direction that reaches the imaging plane via Performs an imaging, multifocal imaging apparatus being characterized in that as the image focus on different positions meet the imaged subject can be imaged by a series of imaging operations.
被撮像体からの入射光路となる第1の光路を進む光の方向に対して傾斜した角度をなす偏光分離面を有する偏光ビームスプリッタと、該偏光ビームスプリッタでの偏光分離面で反射し第2の光路を進む光の方向に対して垂直な面内に配設された第1のミラーと、前記偏光ビームスプリッタの偏光分離面を透過し第3の光路を進む光の方向に対して垂直な面内に配設された第2のミラーと、を有していて、前記第1のミラーで反射し前記偏光ビームスプリッタの偏光分離面を透過した光と前記第2のミラーで反射し前記偏光ビームスプリッタの偏光分離面で反射した光との両方の光が合一するようにした分離光学系と、
該分離光学系で合一した光が入射し前記被撮像体の像を同一の結像面に結像するための対物レンズと、
偏光方向がそれぞれ異なる第1の偏光方向及び第2の偏光方向の光で被撮像体を所定の時間をおいて順次照明する発光手段と、
を備えてなり、前記分離光学系の偏光ビームスプリッタにおける偏光分離面は直交する偏光方向のうちの一方の偏光方向の光を透過させるともにこれに直角な他方の偏光方向の光を反射するものであり、前記第1のミラーと前記第2のミラーとの少なくとも一方のミラーが光路の方向に移動可能に配設されていて、前記被撮像体から前記第1及び第2の光路を経由して前記対物レンズに至る光路の光路長と前記第1及び第3の光路を経由して前記対物レンズに至る光路の光路長とが異なるように調整した上で、前記発光手段での1回目の発光による前記第1及び第2の光路を経由して前記結像面に至る一方の偏光方向の光での撮像と、前記発光手段での2回目の発光による前記第1及び第3の光路を経由して前記結像面に至る他方の偏光方向の光での撮像とを行い、被撮像体における異なる位置に焦点が合った画像を一連の撮像操作で撮像できるようにしたことを特徴とする多焦点撮像装置。
A polarization beam splitter having a polarization separation surface that forms an angle with respect to the direction of light traveling along a first optical path that is an incident light path from the imaging target, and a second light reflected by the polarization separation surface of the polarization beam splitter. A first mirror disposed in a plane perpendicular to the direction of the light traveling on the optical path of the polarization beam splitter and a direction perpendicular to the direction of the light transmitted through the polarization separation surface of the polarization beam splitter and traveling on the third optical path A second mirror disposed in a plane, the light reflected by the first mirror and transmitted through the polarization separation surface of the polarization beam splitter, and reflected by the second mirror and the polarized light A separation optical system in which both the light reflected by the polarization separation surface of the beam splitter and the light are combined,
An objective lens for forming the image of the imaged body on the same image plane when the light combined by the separation optical system is incident;
A light emitting means for sequentially illuminating the imaging target with a predetermined time with light of a first polarization direction and a second polarization direction different in polarization direction;
The polarization separation surface of the polarization beam splitter of the separation optical system transmits light in one of the orthogonal polarization directions and reflects light in the other polarization direction perpendicular thereto . And at least one of the first mirror and the second mirror is disposed so as to be movable in the direction of the optical path, and passes through the first and second optical paths from the imaging target. First light emission by the light emitting means after adjusting the optical path length of the optical path to the objective lens and the optical path length of the optical path to the objective lens via the first and third optical paths. Through the first and second optical paths by the light emission in one polarization direction reaching the imaging plane via the first and second optical paths and the second light emission by the light emitting means. The other polarization direction to the image plane Perform the imaging in the light, multifocal imaging apparatus being characterized in that as the image focus on different positions meet the imaged subject can be imaged by a series of imaging operations.
前記結像面に配設した撮像素子をさらに備えていて、該撮像素子により得られた画像の信号を取り出し外部の処理装置により画像処理ができるようにしたことを特徴とする請求項8〜11のいずれか1項に記載の多焦点撮像装置。   12. An image pickup device disposed on the imaging surface is further provided, and an image signal obtained by the image pickup device can be taken out and processed by an external processing device. The multifocal imaging device according to any one of the above. 前記結像面に配設した撮像素子と、該撮像素子により得られた画像を記憶保持するためのメモリー及び撮像制御部をさらに備え、一連の撮像操作で前記撮像素子により得られた被撮像体における異なる位置に焦点が合った複数の画像を別個に記憶保持できるようにしたことを特徴とする請求項8〜11のいずれか1項に記載の多焦点撮像装置。   An imaging device disposed on the imaging surface, a memory for storing and holding an image obtained by the imaging device, and an imaging control unit, and an imaging target obtained by the imaging device by a series of imaging operations The multi-focus imaging apparatus according to claim 8, wherein a plurality of images in focus at different positions in the camera can be stored and held separately. 前記撮像制御部が別個に記憶保持された前記複数の画像を1つの画像として合成する画像処理を行うようにしたことを特徴とする請求項13に記載の多焦点撮像装置。   14. The multifocal imaging apparatus according to claim 13, wherein the imaging control unit performs image processing for combining the plurality of images stored and held separately as one image. 前記第1のミラー及び第2のミラーのうちの一方のミラーを光路の方向に移動させる駆動源としてのモータを備え、前記撮像制御部において前記モータの回転角から前記ミラーの移動による光路長の変化量を求め、該光路長の変化量から前記光路長が変化する前と後とでの被撮像体における位置の差としての高さを求める演算を行い、被撮像体の異なる位置に焦点の合った画像の撮像を1回または一連の撮像操作で行うとともに被撮像体における高さを測定できるようにしたことを特徴とする請求項1、3、8〜14のいずれか1項に記載の多焦点撮像装置。   A motor serving as a drive source for moving one of the first mirror and the second mirror in the direction of the optical path, and the optical path length by the movement of the mirror from the rotation angle of the motor in the imaging control unit; An amount of change is obtained, and a calculation is performed to obtain a height as a position difference in the imaged object before and after the change of the optical path length from the amount of change in the optical path length. 15. The apparatus according to claim 1, wherein the combined image is captured once or in a series of imaging operations, and the height of the imaging target can be measured. Multifocal imaging device.
JP2006233346A 2006-08-30 2006-08-30 Multifocal imaging device Expired - Fee Related JP4565115B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006233346A JP4565115B2 (en) 2006-08-30 2006-08-30 Multifocal imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233346A JP4565115B2 (en) 2006-08-30 2006-08-30 Multifocal imaging device

Publications (2)

Publication Number Publication Date
JP2008059121A JP2008059121A (en) 2008-03-13
JP4565115B2 true JP4565115B2 (en) 2010-10-20

Family

ID=39241807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233346A Expired - Fee Related JP4565115B2 (en) 2006-08-30 2006-08-30 Multifocal imaging device

Country Status (1)

Country Link
JP (1) JP4565115B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5565001B2 (en) * 2010-03-04 2014-08-06 株式会社Jvcケンウッド Stereoscopic imaging device, stereoscopic video processing device, and stereoscopic video imaging method
US9185387B2 (en) 2012-07-03 2015-11-10 Gopro, Inc. Image blur based on 3D depth information
US9685194B2 (en) 2014-07-23 2017-06-20 Gopro, Inc. Voice-based video tagging
US10074013B2 (en) 2014-07-23 2018-09-11 Gopro, Inc. Scene and activity identification in video summary generation
US9734870B2 (en) 2015-01-05 2017-08-15 Gopro, Inc. Media identifier generation for camera-captured media
US9639560B1 (en) 2015-10-22 2017-05-02 Gopro, Inc. Systems and methods that effectuate transmission of workflow between computing platforms
US9871994B1 (en) 2016-01-19 2018-01-16 Gopro, Inc. Apparatus and methods for providing content context using session metadata
US9787862B1 (en) 2016-01-19 2017-10-10 Gopro, Inc. Apparatus and methods for generating content proxy
US10078644B1 (en) 2016-01-19 2018-09-18 Gopro, Inc. Apparatus and methods for manipulating multicamera content using content proxy
US10129464B1 (en) 2016-02-18 2018-11-13 Gopro, Inc. User interface for creating composite images
US9972066B1 (en) 2016-03-16 2018-05-15 Gopro, Inc. Systems and methods for providing variable image projection for spherical visual content
US10402938B1 (en) 2016-03-31 2019-09-03 Gopro, Inc. Systems and methods for modifying image distortion (curvature) for viewing distance in post capture
US9838730B1 (en) 2016-04-07 2017-12-05 Gopro, Inc. Systems and methods for audio track selection in video editing
US10229719B1 (en) 2016-05-09 2019-03-12 Gopro, Inc. Systems and methods for generating highlights for a video
US9953679B1 (en) 2016-05-24 2018-04-24 Gopro, Inc. Systems and methods for generating a time lapse video
US9967515B1 (en) 2016-06-15 2018-05-08 Gopro, Inc. Systems and methods for bidirectional speed ramping
US9922682B1 (en) 2016-06-15 2018-03-20 Gopro, Inc. Systems and methods for organizing video files
US10045120B2 (en) 2016-06-20 2018-08-07 Gopro, Inc. Associating audio with three-dimensional objects in videos
US10395119B1 (en) 2016-08-10 2019-08-27 Gopro, Inc. Systems and methods for determining activities performed during video capture
US9953224B1 (en) 2016-08-23 2018-04-24 Gopro, Inc. Systems and methods for generating a video summary
US10282632B1 (en) 2016-09-21 2019-05-07 Gopro, Inc. Systems and methods for determining a sample frame order for analyzing a video
US10268898B1 (en) 2016-09-21 2019-04-23 Gopro, Inc. Systems and methods for determining a sample frame order for analyzing a video via segments
US10044972B1 (en) 2016-09-30 2018-08-07 Gopro, Inc. Systems and methods for automatically transferring audiovisual content
US10397415B1 (en) 2016-09-30 2019-08-27 Gopro, Inc. Systems and methods for automatically transferring audiovisual content
US11106988B2 (en) 2016-10-06 2021-08-31 Gopro, Inc. Systems and methods for determining predicted risk for a flight path of an unmanned aerial vehicle
US10002641B1 (en) 2016-10-17 2018-06-19 Gopro, Inc. Systems and methods for determining highlight segment sets
US9916863B1 (en) 2017-02-24 2018-03-13 Gopro, Inc. Systems and methods for editing videos based on shakiness measures
US10339443B1 (en) 2017-02-24 2019-07-02 Gopro, Inc. Systems and methods for processing convolutional neural network operations using textures
WO2018163231A1 (en) * 2017-03-06 2018-09-13 オリンパス株式会社 Imaging device and endoscope
US10360663B1 (en) 2017-04-07 2019-07-23 Gopro, Inc. Systems and methods to create a dynamic blur effect in visual content
US10395122B1 (en) 2017-05-12 2019-08-27 Gopro, Inc. Systems and methods for identifying moments in videos
US10402698B1 (en) 2017-07-10 2019-09-03 Gopro, Inc. Systems and methods for identifying interesting moments within videos
US10614114B1 (en) 2017-07-10 2020-04-07 Gopro, Inc. Systems and methods for creating compilations based on hierarchical clustering

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11508688A (en) * 1995-06-30 1999-07-27 スティックティング・フォール・デ・テクニッシェ・ウェーテンスハッペン Imaging and characterization of the focal field of a lens by spatial autocorrelation
JP2002077696A (en) * 2000-09-05 2002-03-15 Minolta Co Ltd Image pickup device
JP2002158919A (en) * 2000-11-17 2002-05-31 Minolta Co Ltd Imaging device and image acquisition step
JP2003078802A (en) * 2001-09-04 2003-03-14 Nippon Hoso Kyokai <Nhk> Imaging apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06300633A (en) * 1993-04-16 1994-10-28 Fuji Photo Film Co Ltd Fourier spectrometric image measuring equipment
JPH06347324A (en) * 1993-06-11 1994-12-22 Res Dev Corp Of Japan Parallel multiple image fourier-transform spectroscopic imaging method
JPH08233658A (en) * 1995-02-24 1996-09-13 Olympus Optical Co Ltd Spectroscope and spectral image recorder
JP4011704B2 (en) * 1997-01-10 2007-11-21 オリンパス株式会社 Image input device
JPH10254055A (en) * 1997-03-10 1998-09-25 Minolta Co Ltd Multifocus camera
JPH10260471A (en) * 1997-03-19 1998-09-29 Minolta Co Ltd Multifocus camera
JPH11311832A (en) * 1998-04-28 1999-11-09 Sony Corp Multi focus camera

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11508688A (en) * 1995-06-30 1999-07-27 スティックティング・フォール・デ・テクニッシェ・ウェーテンスハッペン Imaging and characterization of the focal field of a lens by spatial autocorrelation
JP2002077696A (en) * 2000-09-05 2002-03-15 Minolta Co Ltd Image pickup device
JP2002158919A (en) * 2000-11-17 2002-05-31 Minolta Co Ltd Imaging device and image acquisition step
JP2003078802A (en) * 2001-09-04 2003-03-14 Nippon Hoso Kyokai <Nhk> Imaging apparatus

Also Published As

Publication number Publication date
JP2008059121A (en) 2008-03-13

Similar Documents

Publication Publication Date Title
JP4565115B2 (en) Multifocal imaging device
JP4469956B2 (en) Multifocal imaging device
US8908026B2 (en) Imaging method and microscope device
JP4845607B2 (en) Three-dimensional shape measuring method and apparatus
JP6503221B2 (en) Three-dimensional information acquisition apparatus and three-dimensional information acquisition method
JP6562626B2 (en) Microscope system
JP2001280916A (en) Instrument for three-dimensional measurement
JP2009053209A (en) Three-dimensional shape measuring apparatus
US10067058B1 (en) Auto-focus system
EP3230785B1 (en) Microscope system and control method thereof
JPH10290389A (en) Multi-focus image formation method and image formation device
WO2016092818A1 (en) Microscope system, control method, and program
JP4522754B2 (en) Surveying instrument
JP7288226B2 (en) ranging camera
JP4447970B2 (en) Object information generation apparatus and imaging apparatus
JP2002517742A (en) Method and apparatus for obtaining photoelectric of a shape by axial illumination
WO2015107872A1 (en) Image acquisition apparatus and control method thereof
JP2010151697A (en) Apparatus and method for three-dimensional shape measurement
US20210132356A1 (en) Image Conversion Module with a Microelectromechanical Optical System and Method for Applying the Same
JPWO2016194179A1 (en) Imaging apparatus, endoscope apparatus, and imaging method
JP2021165672A (en) Laser raster scan type three-dimensional image acquisition device
CN111272101A (en) Four-dimensional hyperspectral depth imaging system
JP4538611B2 (en) Multi-focus image capturing method and multi-focus image capturing apparatus
US20060257141A1 (en) Camera, image processing apparatus, image data processing method, and program
JP2003014430A (en) Three-dimensional measuring method and three- dimensional measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100625

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees