JP6819504B2 - Steel member - Google Patents

Steel member Download PDF

Info

Publication number
JP6819504B2
JP6819504B2 JP2017146406A JP2017146406A JP6819504B2 JP 6819504 B2 JP6819504 B2 JP 6819504B2 JP 2017146406 A JP2017146406 A JP 2017146406A JP 2017146406 A JP2017146406 A JP 2017146406A JP 6819504 B2 JP6819504 B2 JP 6819504B2
Authority
JP
Japan
Prior art keywords
surface layer
steel member
less
steel
layer portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017146406A
Other languages
Japanese (ja)
Other versions
JP2019026882A (en
Inventor
真吾 山▲崎▼
真吾 山▲崎▼
洋輝 成宮
洋輝 成宮
隆一 西村
隆一 西村
大輔 平上
大輔 平上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2017146406A priority Critical patent/JP6819504B2/en
Publication of JP2019026882A publication Critical patent/JP2019026882A/en
Application granted granted Critical
Publication of JP6819504B2 publication Critical patent/JP6819504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、焼入れ焼戻した耐水素脆化特性に優れる鋼部材に関するものである。 The present invention relates to a steel member having excellent hydrogen embrittlement resistance after quenching and tempering.

機械、自動車等に使用される鋼部材のうち、特に高強度を必要とするものは、例えばJIS G 4104、JIS G 4105規定のクロム鋼、クロムモリブデン鋼を焼入れ・焼戻し処理して使用している。歯車のように、浸炭を行ってから焼入れを行い、高強度を得る鋼部材もある。浸炭材は、鋼材をオーステナイト相となる高温に加熱した後に焼入れ、低温で焼戻し、表層を750HV以上の高硬度にすることが普通である。このような表層硬化部材には、歯車、CVT、軸受け等があり、潤滑環境下で高い面圧を受けながら使用される。このような環境下では、潤滑油や潤滑油に混入した水分から部材中に水素が浸入し、水素に起因する割れを引き起こす場合がある。 Among the steel members used in machines, automobiles, etc., those that require particularly high strength are used by quenching and tempering, for example, JIS G 4104, JIS G 4105 stipulated chrome steel and chrome molybdenum steel. .. Some steel members, such as gears, are carburized and then hardened to obtain high strength. The carburized material is usually a steel material heated to a high temperature which becomes an austenite phase, then quenched and tempered at a low temperature to make the surface layer having a high hardness of 750 HV or more. Such surface-hardened members include gears, CVTs, bearings, etc., and are used while receiving high surface pressure in a lubricating environment. In such an environment, hydrogen may infiltrate into the member from the lubricating oil or the water mixed in the lubricating oil, causing cracks due to hydrogen.

高強度鋼の耐水素脆化特性に関する従来の知見として、例えば、特許文献1には、V、Nb、Tiを鋼に添加して旧オーステナイト粒を微細化させることが耐遅れ破壊特性を向上させることに有効であることが記載されている。 As a conventional finding regarding hydrogen embrittlement resistance of high-strength steel, for example, in Patent Document 1, adding V, Nb, and Ti to steel to make old austenite grains finer improves delayed fracture resistance. It is stated that it is particularly effective.

特許文献2には、焼入れ後に高温焼戻しすることで水素トラップ能を発現する微細析出物を鋼中に分散させて耐遅れ破壊特性を向上させる技術が記載されている。 Patent Document 2 describes a technique for improving delayed fracture resistance by dispersing fine precipitates exhibiting hydrogen trapping ability in steel by tempering at a high temperature after quenching.

一方、従来の技術では、焼入れ後に低温焼戻しを施すような高強度鋼部材の耐遅れ破壊特性を抜本的に向上させることには限界があった。 On the other hand, in the conventional technique, there is a limit in drastically improving the delayed fracture resistance of a high-strength steel member that is tempered at a low temperature after quenching.

特開平3−243745号公報Japanese Unexamined Patent Publication No. 3-243745 特許第4267126号公報Japanese Patent No. 4267126

本発明は、耐水素脆化特性と靭性に優れた部品、特に、耐水素脆化特性が良好で且つ表層硬さが750HV以上である高強度鋼部材を提供することを課題とする。 An object of the present invention is to provide a component having excellent hydrogen embrittlement resistance and toughness, particularly a high-strength steel member having good hydrogen embrittlement resistance and a surface hardness of 750 HV or more.

浸炭材など高硬度の焼入れ焼き戻し部材を、歯車や軸受として使用した場合、潤滑環境下で高い面圧を受ける。このような環境下では、例えば軸受けでは、白層と呼ばれる組織が出現して早期破壊が発生する事が知られており、白層の出現は潤滑油や潤滑油に混入した水分から部材中に浸入した水素に起因すると考えられている。 When a hardened tempered member such as a carburized material is used as a gear or a bearing, it receives a high surface pressure in a lubricating environment. In such an environment, for example, in bearings, it is known that a structure called a white layer appears and early destruction occurs, and the appearance of the white layer is caused by lubricating oil or moisture mixed in the lubricating oil in the member. It is believed to be due to the infiltrated hydrogen.

本発明者らは、焼入れ焼き戻しした高硬度部材において白層組織の発生を防止するには、二次硬化現象を示すMC系炭化物もしくはMC系炭窒化物を適切に析出させることが有効であると共に、高い面圧を受ける高硬度の表層部を薄くすることが重用であるとの知見を得た。高硬度の表層部を薄くすることは、部材に優れた靱性を与える利点もある。 In order to prevent the formation of a white layer structure in a hardened and tempered high hardness member, the present inventors are effective in appropriately precipitating MC-based carbides or MC-based carbonitrides exhibiting a secondary curing phenomenon. At the same time, it was found that it is important to thin the surface layer of high hardness that receives high surface pressure. Thinning the surface layer portion with high hardness also has an advantage of giving excellent toughness to the member.

さらに、高硬度が必要でない内部については、さらに低C組成の鋼材として、鋼部材の靱性が向上することも明らかになった。靱性が向上することで、衝撃的な入力による破壊を防止することができると考えられる。 Furthermore, it has been clarified that the toughness of the steel member is improved as a steel material having a lower C composition in the inside where high hardness is not required. It is considered that the improvement in toughness can prevent fracture due to impact input.

本発明は以上の知見に基づいてなされたものであって、その要旨とするところは、下記の通りである。すなわち、
(1)
質量%で、C :0.8〜1.20%、Si:0.02〜2.00%、Mn:0.05〜2.0%、Cr:0.10〜2.0%、Al:0.005〜0.1%、V:0.2〜2.0%、N:0.003〜0.05%を含有し、残部がFeおよび不純物からなり、ビッカース硬さが750HV以上であり、焼戻しマルテンサイト組織の面積率が80%以上であり、Vを含む平均粒径200nm以下のMC系炭化物もしくはMC系炭窒化物を、個数密度で10個/μm以上含有する、表面から厚さ0.5〜2.0mmの表層部と、質量%で、C:0.10〜0.50%、Si:0.02〜2.00%、Mn:0.05〜2.0%、Cr:0.10〜2.0%、Al:0.005〜0.1%、V:0.1%以下、N:0.003〜0.05%を含有し、残部がFeおよび不純物からなり、ビッカース硬さが600HV以下、300HV以上である内部を有することを特徴とする鋼部材。
(2)
さらに、前記表層部または前記内部の少なくとも一方が、質量%で、Nb:0.01〜0.5%、Mo:0.01〜1.0%、Ti:0.01〜0.5%の1種または2種以上を含有することを特徴とする(1)の鋼部材。
(3)
さらに、前記表層部または前記内部の少なくとも一方が、質量%で、B:0.0003〜0.01%を含有することを特徴とする(1)または(2)の鋼部材。
(4)
さらに、前記表層部または前記内部の少なくとも一方が、耐圧表層部およびまたは内部が、質量%で、Ni:0.05〜3.0%、Cu:0.05〜2.0%の1種または2種を含有することを特徴とする(1)〜(3)のいずれか一つに記載の鋼部材。
(5)
さらに、前記表層部または前記内部の少なくとも一方が、質量%で、REM:0.0050%以下(0%を含まない)を含有することを特徴とする(1)〜(4)のいずれか一つに記載の鋼部材。

(6)
ラジアル玉軸受け、スラスト玉軸受け、ラジアルころ軸受け、スラストころ軸受けのいずれかである、(1)〜(5)のいずれか一つに記載の鋼部材。
The present invention has been made based on the above findings, and the gist thereof is as follows. That is,
(1)
By mass%, C: 0.8 to 1.20%, Si: 0.02 to 2.00%, Mn: 0.05 to 2.0%, Cr: 0.10 to 2.0%, Al: It contains 0.005 to 0.1%, V: 0.2 to 2.0%, N: 0.003 to 0.05%, the balance is composed of Fe and impurities, and the Vickers hardness is 750 HV or more. , The area ratio of the tempered martensite structure is 80% or more, and the MC-based carbide or MC-based carbonitride having an average particle size of 200 nm or less including V is contained in a number density of 10 pieces / μm 2 or more. C: 0.10 to 0.50%, Si: 0.02 to 2.00%, Mn: 0.05 to 2.0%, in terms of surface layer portion of 0.5 to 2.0 mm and mass%. It contains Cr: 0.10 to 2.0%, Al: 0.005 to 0.1%, V: 0.1% or less, N: 0.003 to 0.05%, and the balance is from Fe and impurities. A steel member having an internal Vickers hardness of 600 HV or less and 300 HV or more.
(2)
Further, at least one of the surface layer portion or the inside thereof is Nb: 0.01 to 0.5%, Mo: 0.01 to 1.0%, Ti: 0.01 to 0.5% in mass%. The steel member of (1), which contains one kind or two or more kinds.
(3)
Further, the steel member according to (1) or (2), wherein at least one of the surface layer portion or the inside thereof contains B: 0.0003 to 0.01% in mass%.
(4)
Further, at least one of the surface layer portion or the inside thereof, and the pressure resistant surface layer portion and / or the inside, in mass%, Ni: 0.05 to 3.0%, Cu: 0.05 to 2.0%, or one kind or The steel member according to any one of (1) to (3), which is characterized by containing two types.
(5)
Further, any one of (1) to (4), wherein at least one of the surface layer portion and the inside thereof contains REM: 0.0050% or less (not including 0%) in mass%. The steel member described in 1.

(6)
The steel member according to any one of (1) to (5), which is any one of a radial ball bearing, a thrust ball bearing, a radial roller bearing, and a thrust roller bearing.

本発明によれば、耐水素脆化特性と靭性に優れた高強度の鋼部材を提供することが可能となる。 According to the present invention, it is possible to provide a high-strength steel member having excellent hydrogen embrittlement resistance and toughness.

(鋼材成分)
本発明の対象とする鋼部材における成分の限定理由について述べる。成分についての%は、質量%である。
(Steel component)
The reason for limiting the components in the steel member targeted by the present invention will be described. The% for the component is mass%.

C:0.80〜1.20%(表層部)、0.10〜0.50%(内部)
Cは鋼材の強度を確保する上で必須の元素である。表層部において、750HV以上の硬さを満足するためには0.80%以上が必要であり、一方、1.20%を超えると鋳造・圧延時の延性を劣化させるために、表層部(表面から深さ0.5〜2.0mmの領域)においては0.80〜1.20%の範囲とした。内部においては、部材としての靭性と硬さのバランスが求められる。硬さとしては300〜600HVが必要であり、そのためにはC量は0.10%以上必要である。一方、0.50%を超えると十分な靭性を満足できないため、内部は0.10〜0.50%とする。
C: 0.80 to 1.20% (surface layer), 0.10 to 0.50% (inside)
C is an essential element for ensuring the strength of the steel material. In the surface layer portion, 0.80% or more is required to satisfy the hardness of 750 HV or more, while if it exceeds 1.20%, the ductility during casting / rolling is deteriorated, so that the surface layer portion (surface) In the range of 0.5 to 2.0 mm in depth), the range was 0.80 to 1.20%. Inside, a balance between toughness and hardness as a member is required. The hardness is required to be 300 to 600 HV, and for that purpose, the amount of C is required to be 0.10% or more. On the other hand, if it exceeds 0.50%, sufficient toughness cannot be satisfied, so the content is set to 0.10 to 0.50%.

Si:0.02〜2.0%(表層部および内部)
Siは固溶体硬化作用によって硬さを高める作用がある。0.02%未満では前記作用が発揮できず、一方、2.0%を超えると添加量に見合う効果が期待できないこと、加熱時の粒界酸化を促進し、表層のマルテンサイト分率が低下するため、0.02〜2.0%とする。
Si: 0.02 to 2.0% (surface layer and inside)
Si has an action of increasing hardness by a solid solution hardening action. If it is less than 0.02%, the above-mentioned effect cannot be exhibited, while if it exceeds 2.0%, the effect commensurate with the amount of addition cannot be expected, intergranular oxidation during heating is promoted, and the martensite fraction in the surface layer is lowered. Therefore, it is set to 0.02 to 2.0%.

Mn:0.05〜2.0%(表層部および内部)
Mnは脱酸、脱硫のために必要であるばかりでなく、マルテンサイト組織を得るための焼入性を高めるために有効な元素であるが、0.05%未満では上記の効果が得られず、一方、2.0%を超えるとオーステナイト域加熱時に粒界に偏析し、粒界を脆化させると共に、耐遅れ破壊特性を劣化させるために、0.05〜2.0%とする。
Mn: 0.05 to 2.0% (surface layer and inside)
Mn is not only necessary for deoxidation and desulfurization, but is also an effective element for enhancing hardenability to obtain a martensite structure, but if it is less than 0.05%, the above effect cannot be obtained. On the other hand, if it exceeds 2.0%, it segregates at the grain boundaries when heated in the austenite region, making the grain boundaries brittle and deteriorating the delayed fracture resistance, so that the content is set to 0.05 to 2.0%.

Cr:0.10〜2.0%(表層部および内部)
Crは焼入性の向上および焼戻し処理時の軟化抵抗を増加させるために有効な元素であるが、0.10%未満ではその効果が十分に発揮できず、一方、2.0%を超えると靭性の劣化、冷間加工性の劣化を招く。さらに、過剰に添加するとMs温度が低下し、残留オーステナイトが増加するため、十分な硬さが得られないために、0.10〜2.0%に限定する。
Cr: 0.10 to 2.0% (surface layer and inside)
Cr is an element effective for improving hardenability and increasing softening resistance during tempering treatment, but if it is less than 0.10%, the effect cannot be sufficiently exhibited, while if it exceeds 2.0%, it cannot be sufficiently exerted. It causes deterioration of toughness and cold workability. Further, if it is added excessively, the Ms temperature is lowered and the retained austenite is increased, so that sufficient hardness cannot be obtained.

Al:0.005〜0.1%(表層部および内部)
Alは脱酸および熱処理時においてAlNを形成することによりオーステナイト粒の粗大化を防止する効果とともにNを固定する効果も有しているが、0.005%未満ではこれらの効果が発揮されず、0.1%を超えても効果が飽和するのみならず、酸化物が過剰に生成し、疲労や衝撃特性を劣化させるため0.005〜0.1%に限定する。
Al: 0.005 to 0.1% (surface layer and inside)
Al has an effect of preventing coarsening of austenite grains by forming AlN during deoxidation and heat treatment and also has an effect of fixing N, but these effects are not exhibited when the percentage is less than 0.005%. If it exceeds 0.1%, not only the effect is saturated, but also oxides are excessively generated, which deteriorates fatigue and impact characteristics, so the ratio is limited to 0.005 to 0.1%.

V:0.2〜2.0%(表層部)、0.1%以下(0%を含む)(内部)
Vは、Nb,Moなどと共にFCC構造(面心立方格子構造)の炭化物や炭窒化物を生成することにより、部材に浸入してきた水素のトラップサイトとして機能することで、耐水素脆化特性を向上させる。その効果を発揮するには0.2%以上が必要であり、2.0%以上では飽和するため、特に耐水素脆化特性が求められる表層部においては、0.2〜2.0%とする。
V: 0.2 to 2.0% (surface layer), 0.1% or less (including 0%) (inside)
V functions as a trap site for hydrogen that has penetrated into the member by forming carbides and carbonitrides with an FCC structure (face-centered cubic lattice structure) together with Nb, Mo, etc., thereby providing hydrogen embrittlement resistance. Improve. 0.2% or more is required to exert the effect, and 2.0% or more is saturated. Therefore, it is 0.2 to 2.0% especially in the surface layer portion where hydrogen embrittlement resistance is required. To do.

一方、FCC構造の炭化物は靭性を劣化させる要因となるため、上記より内部の部位においては、炭化物の析出量を抑制するため、Vを0.1%以下に制限した。 On the other hand, since carbides having an FCC structure cause deterioration of toughness, V was limited to 0.1% or less in order to suppress the amount of carbides precipitated in the internal portion from the above.

N:0.003〜0.05%(表層部および内部)
Nは、Al、V、Nb、Tiの窒化物を形成することによって旧オーステナイト粒の微細化、降伏強度の増加の効果がある。0.003%未満ではその効果が小さく、0.05%を超えても効果が飽和するのみならず、窒化物が過剰に生成し、疲労や衝撃特性を劣化させるため、0.003〜0.05%に限定した。好ましくは0.003〜0.02%とする。
N: 0.003 to 0.05% (surface layer and inside)
N has the effect of making the former austenite grains finer and increasing the yield strength by forming nitrides of Al, V, Nb and Ti. If it is less than 0.003%, the effect is small, and if it exceeds 0.05%, not only the effect is saturated, but also nitride is excessively generated, which deteriorates fatigue and impact characteristics. Therefore, 0.003 to 0. Limited to 05%. It is preferably 0.003 to 0.02%.

以上が本発明の対象とする鋼の基本成分であるが、本発明においては、さらにこの鋼部材の表層部または内部の少なくとも一方に、Nb:0.01〜0.5%、Mo:0.01〜1.0%、Ti:0.01〜0.5%の1種または2種以上を含有することができる。また、B:0.0003〜0.01%を含有することができる。また、Ni:0.05〜3.0%、Cu:0.05〜2.0%の1種または2種を含有することができる。また、REM:0.0050%以下(0%を含まない)を含有することができる。なお、これらの任意成分は、鋼部材の表層部と内部の両方に含有しても良いし、表層部と内部のどちらか一方のみに含有しても良い。 The above are the basic components of the steel that is the subject of the present invention. In the present invention, Nb: 0.01 to 0.5% and Mo: 0. Are further applied to at least one of the surface layer portion and the inside of the steel member. It can contain one or more of 01 to 1.0% and Ti: 0.01 to 0.5%. Further, B: 0.0003 to 0.01% can be contained. Further, one or two kinds of Ni: 0.05 to 3.0% and Cu: 0.05 to 2.0% can be contained. Further, REM: 0.0050% or less (not including 0%) can be contained. It should be noted that these optional components may be contained in both the surface layer portion and the inside of the steel member, or may be contained in only one of the surface layer portion and the inside.

Nb:0.01〜0.5%
NbはVと炭化物または炭窒化物として複合析出する。Nbは析出物の微細分散に寄与する元素である。また、炭窒化物として析出するとオーステナイト粒を微細化させる。0.01%未満のNb添加では前記効果を発揮するのに不十分であり、一方、0.5%を超えるとこの効果が飽和するため、0.01〜0.5%とする。
Nb: 0.01-0.5%
Nb is compound-precipitated with V as a carbide or carbonitride. Nb is an element that contributes to the fine dispersion of precipitates. Further, when it is precipitated as a carbonitride, the austenite grains are made finer. Addition of less than 0.01% of Nb is insufficient to exert the above effect, while if it exceeds 0.5%, this effect is saturated, so it is set to 0.01 to 0.5%.

Mo:0.01〜1.0%
MoもVと炭化物または炭窒化物として複合析出し、析出物の微細分散に寄与する元素である。ただしその効果は0.01%未満では不十分であり、1.0%で飽和するばかりでなく、それを超えて添加すると、変形抵抗の増大により加工性が損なわれるため、0.01〜1.0%とする。
Mo: 0.01-1.0%
Mo is also an element that is compound-precipitated with V as a carbide or carbonitride and contributes to fine dispersion of the precipitate. However, the effect is insufficient if it is less than 0.01%, and not only is it saturated at 1.0%, but if it is added in excess of that, workability is impaired due to an increase in deformation resistance, so 0.01 to 1 It is set to 0.0%.

Ti:0.01〜0.5%
TiもVと炭化物または炭窒化物として複合析出し、析出物の微細分散に寄与する元素である。その効果は0.01%未満では発揮されず、0.5%を超えると、未溶解の粗大な炭化物が残存することで切削性や靭性に悪影響を及ぼすため、0.01〜0.5%の範囲に限定した。
Ti: 0.01-0.5%
Ti is also an element that is compound-precipitated with V as a carbide or carbonitride and contributes to fine dispersion of the precipitate. The effect is not exhibited when it is less than 0.01%, and when it exceeds 0.5%, undissolved coarse carbide remains, which adversely affects machinability and toughness. Therefore, 0.01 to 0.5%. Limited to the range of.

B:0.0003〜0.01%
Bは粒界破壊を抑制し、耐遅れ破壊特性を向上させる効果がある。更に、Bはオーステナイト粒界に偏析することにより、焼入性を著しく高めるが、0.0003%未満では前記の効果が発揮されず、0.01%を超えても効果が飽和するため、0.0003〜0.01%に限定した。
B: 0.0003-0.01%
B has the effect of suppressing grain boundary fracture and improving delayed fracture resistance. Further, B significantly enhances hardenability by segregating at the austenite grain boundaries, but the above effect is not exhibited when it is less than 0.0003%, and the effect is saturated when it exceeds 0.01%. Limited to 0003 to 0.01%.

Ni:0.05〜3.0%
一般に高強度化に伴って延性は低下する。Niは鋼部品を強化すると共に延性を向上させる。また熱処理時の焼入性を向上させる効果がある。0.05%未満ではこれら効果が小さく、一方、3.0%を超えても添加量に見合う効果が発揮できないため、0.05〜3.0%に限定した。
Ni: 0.05-3.0%
Generally, the ductility decreases as the strength increases. Ni strengthens steel parts and improves ductility. It also has the effect of improving hardenability during heat treatment. If it is less than 0.05%, these effects are small, and if it exceeds 3.0%, the effect commensurate with the amount of addition cannot be exhibited.

Cu:0.05〜2.0%
Cuは焼戻し軟化抵抗を高めるために有効な元素であるが、0.05%未満では効果が発揮できず、2.0%を超えると熱間加工性が劣化するため、0.05〜2.0%に限定した。
Cu: 0.05-2.0%
Cu is an element effective for increasing the temper softening resistance, but if it is less than 0.05%, the effect cannot be exhibited, and if it exceeds 2.0%, the hot workability deteriorates. Therefore, 0.05 to 2. Limited to 0%.

REM:0.0050%以下(0%を含まない)
REMは希土類元素(Sc、Yと、原子番号57から71までの元素の総称)であり、通常、各種元素が混合された原料で鉄鋼に添加される。アルミナなどの粗大化し易い酸化物は転動負荷時の破壊起点となり易いが、REMを添加すると、REMを含有した微細な複合酸化物となるため、転動疲労破壊を抑制する。なお、REMは希土類元素の何れか1つを0.0050%以下含有しても良いし、2以上を合計で0.0050%以下含有しても良い。
REM: 0.0050% or less (not including 0%)
REM is a rare earth element (Sc, Y and a general term for elements having atomic numbers 57 to 71), and is usually added to steel as a raw material in which various elements are mixed. Oxides such as alumina, which tend to be coarsened, tend to be fracture starting points at the time of rolling load, but when REM is added, they become fine composite oxides containing REM, so that rolling fatigue fracture is suppressed. The REM may contain 0.0050% or less of any one of the rare earth elements, or 0.0050% or less in total of two or more.

残部:Feおよび不純物(表層部および内部)
本発明の鋼部材は、表層部および内部において以上の必須成分と任意成分を含有し、残部は、Feおよび不純物からなる。不純物には、製造過程において不可避的に混入されるP、Sなどが含まれる。
Remaining: Fe and impurities (surface and inside)
The steel member of the present invention contains the above essential components and optional components in the surface layer portion and inside, and the balance is composed of Fe and impurities. Impurities include P, S and the like that are inevitably mixed in during the manufacturing process.

(組織形態と硬さ)
本発明の鋼部材を歯車や軸受け等として用いるため、高面圧を受ける表面から0.5〜2.0mmの領域(表層部)において、硬さを750HV以上とする必要がある。この硬さを実現し、優れた転動疲労寿命を得るには、焼戻しマルテンサイト組織の面積率を80%以上とする必要がある。また、実験の結果より、上記の表層部に、金属成分としてVを主体とする、平均粒径200nm以下のMC系炭化物もしくは炭窒化物を、個数密度で10個/μm以上含有させることによって、疲労寿命が大幅に改善される。
(Tissue morphology and hardness)
Since the steel member of the present invention is used as a gear, a bearing, or the like, the hardness needs to be 750 HV or more in a region (surface layer portion) of 0.5 to 2.0 mm from the surface subject to high surface pressure. In order to achieve this hardness and obtain an excellent rolling fatigue life, it is necessary to set the area ratio of the tempered martensite structure to 80% or more. In addition, based on the results of the experiment, the above surface layer portion contains 10 pieces / μm 2 or more of MC-based carbides or carbonitrides having an average particle size of 200 nm or less, mainly V as a metal component, in terms of number density. , Fatigue life is greatly improved.

その効果は、表層部の降伏応力を高めることで、塑性変形を抑制し、塑性変形に伴う水素の侵入を抑制することと、侵入してきた水素をこれら析出物がトラップすることで無害化することと推定される。MC系炭化物もしくは炭窒化物とは、金属原子Mと(C+N)が1対1で結合した、FCC(面心立方格子)構造の炭化物である。 The effect is to suppress the plastic deformation by increasing the yield stress of the surface layer, suppress the invasion of hydrogen due to the plastic deformation, and detoxify the invading hydrogen by trapping these precipitates. It is estimated to be. The MC-based carbide or carbide is a carbide having an FCC (face-centered cubic) structure in which a metal atom M and (C + N) are bonded in a one-to-one manner.

表層部のMC系炭化物もしくは炭窒化物の観察と個数密度測定は、抽出レプリカ−TEM観察により行った。表層部断面を観察するように埋め込み研磨したサンプルを4%ナイタール腐食液で10秒エッチングした後、カーボンを蒸着させ、蒸着したカーボン膜を塩酸メタノール溶液中で対基準電位7.5Vで1分間通電し、その後、蒸留水中で洗浄しつつ遊離させ、Cuメッシュ上に載置し、TEM観察に供した。 Observation of MC-based carbides or carbonitrides on the surface layer and measurement of the number density were performed by extraction replica-TEM observation. A sample embedded and polished so as to observe the cross section of the surface layer is etched with a 4% nital corrosive solution for 10 seconds, then carbon is vapor-deposited, and the vapor-deposited carbon film is energized in a hydrochloric acid-methanol solution at a counter-reference potential of 7.5 V for 1 minute. Then, it was released while being washed in distilled water, placed on a Cu mesh, and subjected to TEM observation.

一方、部材全体が上記のような硬さおよび析出物量を有する場合、靭性が低下する。特に過剰な析出物の存在により靭性が低下するため、内部の領域においては、MC系炭化物を析出させないよう、Vの含有量が0.1%以下であり、ビッカース硬さが600HV以下であることとする。一方、部材としての強度を確保するため、内部の硬さは300HV以上であることとする。 On the other hand, when the entire member has the hardness and the amount of precipitates as described above, the toughness is lowered. In particular, since the toughness decreases due to the presence of excess precipitates, the V content should be 0.1% or less and the Vickers hardness should be 600 HV or less in the internal region so as not to precipitate MC-based carbides. And. On the other hand, in order to secure the strength as a member, the internal hardness is set to 300 HV or more.

(表層部の厚さ)
白層は、表面から厚さ0.2〜0.3mm程度の部位で生成する事が多いことから、厚みの下限値を0.5mmとした、厚みが大きすぎると、部品としての靭性確保が難しくなることから、実験より上限値を2.0mmとした。
(Thickness of surface layer)
Since the white layer is often formed at a portion having a thickness of about 0.2 to 0.3 mm from the surface, the lower limit of the thickness is set to 0.5 mm, and if the thickness is too large, the toughness of the part can be ensured. Since it becomes difficult, the upper limit was set to 2.0 mm from the experiment.

(製造方法)
本発明の鋼部材の素材となる鋼材においては、部材としての性能を満足するため、耐圧表層と内部で、異なるC量およびV量を与える必要がある。このような成分分布を有する鋼材の製造方法としては、例えば鋳造時に異鋼種の複合鋳込みを行う、鋼管に丸棒を挿入して、焼きばめ、あるいはリング状の部材と円盤状の部材を組み合わせ、圧入その他の手段で一体化した後に鍛造する等の手段を採る。
(Production method)
In the steel material used as the material of the steel member of the present invention, it is necessary to give different C amounts and V amounts to the pressure-resistant surface layer and the inside in order to satisfy the performance as the member. As a method for producing a steel material having such a component distribution, for example, composite casting of different steel types is performed at the time of casting, a round bar is inserted into a steel pipe, and shrink fitting is performed, or a ring-shaped member and a disk-shaped member are combined. , Press-fitting or other means to integrate and then forge.

(鋼部材の一例)
本発明の鋼部材は、機械、自動車等に使用される鋼部材に広く適用できるが、例えば、ラジアル玉軸受け、スラスト玉軸受け、ラジアルころ軸受け、スラストころ軸受けのいずれかにおいて好適に利用される。
(Example of steel member)
The steel member of the present invention can be widely applied to steel members used in machines, automobiles, etc., and is preferably used in any one of, for example, a radial ball bearing, a thrust ball bearing, a radial roller bearing, and a thrust roller bearing.

以下、実施例により本発明の効果をさらに具体的に説明する。表1の「表層」(表層部)に示す化学組成を有する供試材を外径22mm−内径20〜14mmのリング状に加工した部材1に、このリングの内径に等しい外径を有する、「内部」に示す化学成分を有する鋼材をディスク状に加工した部材2を嵌め合わせ、950℃以上に加熱後、熱間にて直径13mmに押し出し加工して棒状に成形し圧着させた。その後、一旦200℃以下に急冷後、再度加熱するに際して650℃〜700℃にて一旦30〜60s保持し更に800〜860℃に加熱後焼入れ後、180℃にて焼戻を行った。この棒材を用い、転動疲労寿命試験片と衝撃試験片を作製した。 Hereinafter, the effects of the present invention will be described in more detail with reference to Examples. A member 1 obtained by processing a test material having the chemical composition shown in the "surface layer" (surface layer portion) of Table 1 into a ring shape having an outer diameter of 22 mm and an inner diameter of 20 to 14 mm has an outer diameter equal to the inner diameter of this ring. A member 2 made by processing a steel material having a chemical component shown in "Inside" into a disk shape was fitted, heated to 950 ° C. or higher, extruded to a diameter of 13 mm while hot, formed into a rod shape, and crimped. Then, after quenching to 200 ° C. or lower, the mixture was once held at 650 ° C. to 700 ° C. for 30 to 60 seconds, further heated to 800 to 860 ° C., quenched, and then quenched at 180 ° C. Using this bar, a rolling fatigue life test piece and an impact test piece were prepared.

転動疲労寿命試験片として、直径12mm×長さ22mmの円筒形のサンプルを切削加工にて作製した。これに、最大接触面圧荷重を5880MPa、応力負荷速度46240cpmの条件で転動疲労試験を行った。 As a rolling fatigue life test piece, a cylindrical sample having a diameter of 12 mm and a length of 22 mm was prepared by cutting. A rolling fatigue test was carried out under the conditions of a maximum contact surface pressure load of 5880 MPa and a stress load rate of 46240 cpm.

一方、衝撃試験片として、上記の直径13mm押し出し加工材を熱処理した棒材より、4面の内の上面を押し出し材の表面とし、底面の幅が10mm、長さが55mmであるようなサンプルを作製し、押し出し材の表面側の中央部に、長手方向に垂直に、深さ0.5mm、角度45度の切り欠きを入れ、シャルピー試験に供した。 On the other hand, as an impact test piece, a sample in which the upper surface of the four surfaces is the surface of the extruded material and the width of the bottom surface is 10 mm and the length is 55 mm is prepared from the bar material obtained by heat-treating the extruded material having a diameter of 13 mm. A notch having a depth of 0.5 mm and an angle of 45 degrees was made in the central portion of the extruded material on the surface side in the longitudinal direction, and the material was subjected to a Charpy test.

表層部のMC系炭化物もしくは炭窒化物の観察と測定は、表層部断面を観察するように埋め込み研磨したサンプルを4%ナイタール腐食液で10秒エッチングし、カーボン蒸着させ、カーボン膜を、塩酸メタノール溶液中で基準電位に対し7.5Vの電位で1分間、通電し、その後に蒸留水中で洗浄することで遊離させ、Cuメッシュでサンプリングし、TEM観察に供した。TEM観察は、5000倍の倍率で5視野撮影し、Vを含有する析出物のサイズと面積率、個数密度を測定した。 To observe and measure MC-based carbides or carbonitrides on the surface layer, a sample embedded and polished so as to observe the cross section of the surface layer is etched with a 4% nital corrosive solution for 10 seconds, carbon-deposited, and the carbon film is made of methanol hydrochloride. The solution was energized at a potential of 7.5 V with respect to the reference potential for 1 minute, then released by washing in distilled water, sampled with a Cu mesh, and subjected to TEM observation. In the TEM observation, 5 fields of view were taken at a magnification of 5000 times, and the size, area ratio, and number density of the deposit containing V were measured.

表層部分の鋼組織分率の測定はSEM(走査電子顕微鏡)とSEM付属のEBSD(電子線後方散乱回折法)装置を用いて行った。対象となる表層部断面を観察するように埋め込み、研磨およびナイタールエッチングを行って試験片を作製し、表層部断面の大きさ100μm×100μmの領域をEBSD解析して、焼戻しマルテンサイト組織と残部組織の各面積率を測定した。 The steel structure fraction of the surface layer was measured using an SEM (scanning electron microscope) and an EBSD (electron backscatter diffraction method) device attached to the SEM. A test piece is prepared by embedding so as to observe the cross section of the surface layer to be observed, polishing and nighting etching, and EBSD analysis is performed on a region having a cross section of the surface layer of 100 μm × 100 μm, and the tempered martensite structure and the balance are obtained. Each area ratio of the tissue was measured.

硬さは、試験力0.98mNのマクロビッカース試験機を用い、表層部分と表層から3mmの深さの内部において、各々5点測定し、その平均値を試験値とした。なお、本発明では転動疲労によるf50寿命が40×10以上であり、衝撃値が7J以上である。 The hardness was measured at 5 points each in the surface layer portion and the inside at a depth of 3 mm from the surface layer using a macro Vickers tester having a test force of 0.98 mN, and the average value was used as the test value. In the present invention has at f50 life due rolling fatigue 40 × 10 7 or more, the impact value is greater than or equal to 7J.

Figure 0006819504
Figure 0006819504

Figure 0006819504
Figure 0006819504

表1、2のNo.1〜21が本発明例で、その他は比較例である。
比較例であるNo.22は表層のC濃度が高く、残留γ量が多くなったため、所定のマルテンサイト量を確保できず、硬さも低くなった例である。
No.23は、内部のC濃度が高く、硬さを満足できず、靭性も低下した例である。
No.24は、表層および内部のSi量が過剰であり、表層のマルテンサイト分率と硬さを満足できず、靭性も低下した例である。
No.25は、表層のMn濃度が過剰であり、転動疲労寿命が低下した例である。
No.26は、内部のMn濃度が過剰であり、靭性が低下した例である。
No.27は、表層のCr量が過剰であり、表層のマルテンサイト分率および硬さを満足できなかった例である。
No.28は、内部のCr濃度が過剰であり、靭性が低下した例である。
No.29は、表層および内部のAl量が過剰であり、転動疲労寿命と靭性が低下した例である。
No.30は、表層のV量が過剰であり、転動疲労寿命が低下した例である。
No.31は、内部のV濃度が過剰であり、靭性が低下した例である。
No.32は、表層のN量が過剰であり、転動疲労寿命が低下した例である。
No.33は、内部のN量が過剰であり、靭性が低下した例である。
No.34は、表層の硬質層深さが所定の値より浅いため、転動疲労試験後に変形が大きかった例である。
No.35は、内部のC量が不足しており、所定の硬さを満足できなかった例である。
No.36は、表層のV量が不足しており、転動疲労寿命が低下した例である。
No.37は、表層の硬化層厚みが大きすぎ、靭性が低下した例である。
Tables 1 and 2 No. 1 to 21 are examples of the present invention, and the others are comparative examples.
No. which is a comparative example. In No. 22, the C concentration in the surface layer was high and the amount of residual γ was large, so that the predetermined amount of martensite could not be secured and the hardness was also low.
No. No. 23 is an example in which the internal C concentration is high, the hardness cannot be satisfied, and the toughness is also lowered.
No. No. 24 is an example in which the amount of Si in the surface layer and the inside is excessive, the martensite fraction and hardness of the surface layer cannot be satisfied, and the toughness is also lowered.
No. No. 25 is an example in which the Mn concentration in the surface layer is excessive and the rolling fatigue life is reduced.
No. No. 26 is an example in which the internal Mn concentration is excessive and the toughness is lowered.
No. No. 27 is an example in which the amount of Cr in the surface layer was excessive and the martensite fraction and hardness of the surface layer could not be satisfied.
No. No. 28 is an example in which the internal Cr concentration is excessive and the toughness is lowered.
No. No. 29 is an example in which the amount of Al in the surface layer and the inside is excessive, and the rolling fatigue life and toughness are lowered.
No. Reference numeral 30 denotes an example in which the amount of V in the surface layer is excessive and the rolling fatigue life is reduced.
No. No. 31 is an example in which the internal V concentration is excessive and the toughness is lowered.
No. No. 32 is an example in which the amount of N in the surface layer is excessive and the rolling fatigue life is reduced.
No. No. 33 is an example in which the amount of N inside is excessive and the toughness is lowered.
No. Reference numeral 34 denotes an example in which the deformation was large after the rolling fatigue test because the depth of the hard layer on the surface layer was shallower than a predetermined value.
No. Reference numeral 35 denotes an example in which the amount of C inside is insufficient and the predetermined hardness cannot be satisfied.
No. No. 36 is an example in which the amount of V in the surface layer is insufficient and the rolling fatigue life is reduced.
No. No. 37 is an example in which the thickness of the hardened layer on the surface layer is too large and the toughness is lowered.

Claims (6)

質量%で、
C:0.80〜1.20%、
Si:0.02〜2.00%、
Mn:0.05〜2.0%、
Cr:0.10〜2.0%、
Al:0.005〜0.1%、
V:0.2〜2.0%、
N:0.003〜0.05%
を含有し、残部がFeおよび不純物からなり、
ビッカース硬さが750HV以上であり、
焼戻しマルテンサイト組織の面積率が80%以上であり、
Vを含む平均粒径200nm以下のMC系炭化物もしくはMC系炭窒化物を、個数密度で10個/μm以上含有する、表面から厚さ0.5〜2.0mmの表層部と、
質量%で、
C:0.10〜0.50%、
Si:0.02〜2.00%、
Mn:0.05〜2.0%、
Cr:0.10〜2.0%、
Al:0.005〜0.1%、
V:0.1%以下(0%を含む)、
N:0.003〜0.05%
を含有し、残部がFeおよび不純物からなり、
ビッカース硬さが600HV以下、300HV以上である内部を有することを特徴とする鋼部材。
By mass%
C: 0.80-1.20%,
Si: 0.02-2.00%,
Mn: 0.05-2.0%,
Cr: 0.10 to 2.0%,
Al: 0.005-0.1%,
V: 0.2-2.0%,
N: 0.003 to 0.05%
Containing, the balance consists of Fe and impurities,
Vickers hardness is 750 HV or more,
The area ratio of tempered martensite structure is 80% or more,
A surface layer portion having a thickness of 0.5 to 2.0 mm from the surface, which contains 10 pieces / μm 2 or more of MC-based carbides or MC-based carbonitrides having an average particle size of 200 nm or less including V.
By mass%
C: 0.10 to 0.50%,
Si: 0.02-2.00%,
Mn: 0.05-2.0%,
Cr: 0.10 to 2.0%,
Al: 0.005-0.1%,
V: 0.1% or less (including 0%),
N: 0.003 to 0.05%
Containing, the balance consists of Fe and impurities,
A steel member having an internal Vickers hardness of 600 HV or less and 300 HV or more.
さらに、前記表層部または前記内部の少なくとも一方が、
質量%で、
Nb:0.01〜0.5%、
Mo:0.01〜1.0%、
Ti:0.01〜0.5%
の1種または2種以上を含有することを特徴とする請求項1の鋼部材。
Further, at least one of the surface layer portion or the inside thereof
By mass%
Nb: 0.01-0.5%,
Mo: 0.01-1.0%,
Ti: 0.01-0.5%
The steel member according to claim 1, characterized in that it contains one or more of the above.
さらに、前記表層部または前記内部の少なくとも一方が、
質量%で、
B:0.0003〜0.01%
を含有することを特徴とする請求項1または2に記載の鋼部材。
Further, at least one of the surface layer portion or the inside thereof
By mass%
B: 0.0003-0.01%
The steel member according to claim 1 or 2, wherein the steel member contains.
さらに、前記表層部または前記内部の少なくとも一方が、
質量%で、
Ni:0.05〜3.0%、
Cu:0.05〜2.0%
の1種または2種を含有することを特徴とする請求項1〜3のいずれか一つに記載の鋼部材。
Further, at least one of the surface layer portion or the inside thereof
By mass%
Ni: 0.05-3.0%,
Cu: 0.05-2.0%
The steel member according to any one of claims 1 to 3, wherein the steel member contains one or two of the above.
さらに、前記表層部または前記内部の少なくとも一方が、
質量%で、REM:0.0050%以下(0%を含まない)を含有することを特徴とする請求項1〜4のいずれか一つに記載の鋼部材。
Further, at least one of the surface layer portion or the inside thereof
The steel member according to any one of claims 1 to 4, wherein the steel member contains REM: 0.0050% or less (not including 0%) in mass%.
ラジアル玉軸受け、スラスト玉軸受け、ラジアルころ軸受け、スラストころ軸受けのいずれかである、請求項1〜5のいずれか一つに記載の鋼部材。 The steel member according to any one of claims 1 to 5, which is any one of a radial ball bearing, a thrust ball bearing, a radial roller bearing, and a thrust roller bearing.
JP2017146406A 2017-07-28 2017-07-28 Steel member Active JP6819504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017146406A JP6819504B2 (en) 2017-07-28 2017-07-28 Steel member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017146406A JP6819504B2 (en) 2017-07-28 2017-07-28 Steel member

Publications (2)

Publication Number Publication Date
JP2019026882A JP2019026882A (en) 2019-02-21
JP6819504B2 true JP6819504B2 (en) 2021-01-27

Family

ID=65475620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017146406A Active JP6819504B2 (en) 2017-07-28 2017-07-28 Steel member

Country Status (1)

Country Link
JP (1) JP6819504B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110157988B (en) * 2019-06-27 2020-10-27 锦州金科高新技术发展有限责任公司 Steel alloy material for high-purity homogeneous rare earth cold roll and preparation method thereof
KR102327930B1 (en) * 2019-12-20 2021-11-17 주식회사 포스코 High carbon steel and manufacturing method thereof
CN115725892B (en) * 2021-08-25 2023-11-14 宝山钢铁股份有限公司 Brinell hardness 550 HB-grade wear-resistant steel and production method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2509640A1 (en) * 1981-07-17 1983-01-21 Creusot Loire PROCESS FOR PRODUCING A COMPOSITE METAL PART AND PRODUCTS OBTAINED
JPS6286148A (en) * 1985-10-11 1987-04-20 Nippon Steel Corp High tension steel wire
JP2005290496A (en) * 2004-04-01 2005-10-20 Ntn Corp Rolling parts and rolling bearing
JP2006213981A (en) * 2005-02-04 2006-08-17 Ntn Corp Environment resistant bearing steel having excellent hydrogen embrittlement resistance
CN101915273A (en) * 2010-08-13 2010-12-15 新兴铸管股份有限公司 Novel bearing ring material and production process thereof
WO2013156091A1 (en) * 2012-04-20 2013-10-24 Aktiebolaget Skf Steel Alloy

Also Published As

Publication number Publication date
JP2019026882A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
CN108350537B (en) Steel wire for spring and spring
KR102021216B1 (en) Wire rods for bolts with excellent delayed fracture resistance after pickling and quenching tempering, and bolts
KR101671133B1 (en) Case-hardened steel and carburized material
JP4868935B2 (en) High strength spring steel wire with excellent sag resistance
JP4385019B2 (en) Manufacturing method for steel nitrocarburized machine parts
JP4050829B2 (en) Carburized material with excellent rolling fatigue characteristics
JP6819504B2 (en) Steel member
JP7152832B2 (en) machine parts
JP2009127095A (en) Case-hardening steel for power transmission component
CN107614723B (en) Spring steel
JP4970811B2 (en) High surface pressure parts and manufacturing method thereof
JP4631618B2 (en) Manufacturing method of steel parts for bearings with excellent fatigue characteristics
JP4847681B2 (en) Ti-containing case-hardened steel
JP2008088484A (en) Steel component for bearing having excellent fatigue property, and its production method
JP2008174810A (en) Inner ring and outer ring of bearing, having excellent rolling fatigue characteristic, and bearing
JP6819503B2 (en) Steel member
JP6205960B2 (en) Steel for bearing
JP4487748B2 (en) Manufacturing method of bearing parts
JP7422527B2 (en) Rolling parts and their manufacturing method
JP6835095B2 (en) Manufacturing method of steel parts
JP6635100B2 (en) Case hardened steel
TW201604290A (en) Soft-nitriding steel sheet, method for manufacturing same, and soft-nitrided steel
JP2007204803A (en) Steel parts for bearing, and manufacturing method therefor
JP7243859B2 (en) steel parts
JP7180300B2 (en) Steel parts and manufacturing method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201214

R151 Written notification of patent or utility model registration

Ref document number: 6819504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151