JP6818328B2 - Static electricity measuring device - Google Patents

Static electricity measuring device Download PDF

Info

Publication number
JP6818328B2
JP6818328B2 JP2018193682A JP2018193682A JP6818328B2 JP 6818328 B2 JP6818328 B2 JP 6818328B2 JP 2018193682 A JP2018193682 A JP 2018193682A JP 2018193682 A JP2018193682 A JP 2018193682A JP 6818328 B2 JP6818328 B2 JP 6818328B2
Authority
JP
Japan
Prior art keywords
detection electrode
detection
electrode
charged object
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018193682A
Other languages
Japanese (ja)
Other versions
JP2020060529A (en
Inventor
光石 崔
光石 崔
鈴木 輝夫
輝夫 鈴木
信雄 野村
信雄 野村
最上 智史
智史 最上
一紀 右田
一紀 右田
和樹 峯村
和樹 峯村
裕生 長田
裕生 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasuga Denki Inc
Japan Organization of Occupational Health and Safety JOHAS
Original Assignee
Kasuga Denki Inc
Japan Organization of Occupational Health and Safety JOHAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasuga Denki Inc, Japan Organization of Occupational Health and Safety JOHAS filed Critical Kasuga Denki Inc
Priority to JP2018193682A priority Critical patent/JP6818328B2/en
Publication of JP2020060529A publication Critical patent/JP2020060529A/en
Application granted granted Critical
Publication of JP6818328B2 publication Critical patent/JP6818328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Elimination Of Static Electricity (AREA)

Description

この発明は、帯電物体の帯電電位や、帯電物体に基づく静電電界などを検出する静電気測定装置に関する。 The present invention relates to an electrostatic measuring device that detects a charging potential of a charged object, an electrostatic electric field based on a charged object, and the like.

従来から、帯電物体の帯電電位に基づく静電界を検出する静電気測定装置が知られている。その検出原理は、帯電物体に検出電極を対向させると、この検出電極に、帯電物体の帯電電位と帯電物体までの距離とに応じた電荷が誘導されることを利用したものである。 Conventionally, an electrostatic measuring device that detects an electrostatic field based on the charging potential of a charged object has been known. The detection principle utilizes the fact that when a detection electrode is opposed to a charged object, an electric charge corresponding to the charging potential of the charged object and the distance to the charged object is induced in the detection electrode.

上記帯電物体には、例えば、サイロや輸送管内を浮遊・流動している粉体や液滴等がある。
これら粉体や液滴等の粒子群は、粒子どうしの摩擦や、サイロや輸送管の内壁との摩擦によってプラスまたはマイナスに帯電しやすい。このような摩擦による帯電量が大きくなると、静電気放電をおこす場合がある。この放電が着火性放電であると、可燃性粉体やガス・蒸気等の着火源となり、爆発や火災の発生する原因になる。そこで、上記静電気測定装置は、粒子群などの帯電状態を継続的に測定し、上記の着火性放電が起こらないように監視するために用いられている。
そのため、この種の静電気測定装置は、自身が着火原因となることがないように、防爆対策がされていた。
The charged objects include, for example, silos, powders and droplets floating and flowing in a transport pipe, and the like.
Particle groups such as powders and droplets are likely to be positively or negatively charged due to friction between the particles and friction with the inner wall of a silo or a transport pipe. If the amount of charge due to such friction becomes large, electrostatic discharge may occur. If this discharge is an ignitable discharge, it becomes an ignition source for flammable powder, gas, vapor, etc., and causes an explosion or fire. Therefore, the static electricity measuring device is used for continuously measuring the charged state of particles and the like and monitoring so that the ignitable discharge does not occur.
Therefore, this type of static electricity measuring device has been provided with explosion-proof measures so that it does not cause ignition by itself.

例えば、図5に示す従来の静電気測定装置は、筒状のケーシング1内に検出電極2を備え、ケーシング1の外部の帯電物体3の帯電電位に基づいて検出電極2に誘導された電荷に応じて発生する誘導電流を検出する装置である。
上記検出電極2は、図6に破線で示すように複数の扇形板2aを備えた電極で、それらを結合した中心O1に導電体からなる回転軸4を取り付けている。そして、この回転軸4は絶縁性の連結部材5を介して電動モータ6に連結され、この電動モータ6の駆動力で検出電極2を回転させるようにしている。そして、上記回転軸4は検出回路7に電気的に接続されている。
For example, the conventional static electricity measuring device shown in FIG. 5 includes a detection electrode 2 in a tubular casing 1 and responds to the charge induced in the detection electrode 2 based on the charge potential of the charged object 3 outside the casing 1. It is a device that detects the induced current generated.
The detection electrode 2 is an electrode provided with a plurality of fan-shaped plates 2a as shown by a broken line in FIG. 6, and a rotating shaft 4 made of a conductor is attached to a center O1 connecting them. The rotating shaft 4 is connected to the electric motor 6 via an insulating connecting member 5, and the detection electrode 2 is rotated by the driving force of the electric motor 6. The rotating shaft 4 is electrically connected to the detection circuit 7.

また、上記ケーシング1の開口1aは、接地電極8で塞がれているが、この接地電極8には、検出電極2の回転方向に等間隔を保った複数のスリット8aが形成されている。したがって、検出電極2の扇形板2aが回転すれば、検出電極2と帯電物体3とがスリット8aを介して対向したり、その対向が遮断されたりする。
さらに、上記導電体からなる回転軸4は、誘導電流を検出する検出回路7を介してアースに接続されている。したがって、検出電極2に誘導された電荷に応じて発生する誘導電流をこの検出回路7で検出することができる。
Further, the opening 1a of the casing 1 is closed by the ground electrode 8, and the ground electrode 8 is formed with a plurality of slits 8a kept at equal intervals in the rotation direction of the detection electrode 2. Therefore, when the fan-shaped plate 2a of the detection electrode 2 rotates, the detection electrode 2 and the charged object 3 face each other through the slit 8a, or the opposite is blocked.
Further, the rotating shaft 4 made of the conductor is connected to the ground via a detection circuit 7 that detects an induced current. Therefore, the detection circuit 7 can detect the induced current generated according to the electric charge induced in the detection electrode 2.

上記のように検出電極2と接地電極8とを相対回転させて、検出電極2と帯電物体3とをスリット8aを介して対向させたり、その対向を遮断したりするようにしているのは、次の理由からである。
上記のようにした装置では、検出電極2が接地電極8によって帯電物体3との対向を遮断された位置から徐々にスリット8aの方に移動して、帯電物体3と検出電極2との対向面積が徐々に大きくなると、それに伴い検出電極2内の電荷が検出電極2の表面に誘導される。例えば、図7(a)に示すように帯電物体3の帯電電位の極性が正であって、検出電極2と帯電物体3とがスリット8aを介して対向すると、検出電極2の帯電物体3との対向面に検出電極2内の負の電荷が引き付けられる。このように負の電荷が帯電物体3に引き付けられれば、この負の電荷と等量の正の電荷が上記検出回路7側の面に誘導される。
The reason why the detection electrode 2 and the ground electrode 8 are relatively rotated as described above so that the detection electrode 2 and the charged object 3 face each other through the slit 8a or the opposite is blocked is blocked. The reason is as follows.
In the device as described above, the detection electrode 2 gradually moves toward the slit 8a from the position where the contact electrode 2 is blocked from facing the charged object 3, and the facing area between the charged object 3 and the detection electrode 2 As the value gradually increases, the electric charge in the detection electrode 2 is guided to the surface of the detection electrode 2. For example, as shown in FIG. 7A, when the polarity of the charging potential of the charged object 3 is positive and the detection electrode 2 and the charged object 3 face each other through the slit 8a, the charged object 3 of the detection electrode 2 and the charged object 3 The negative charge in the detection electrode 2 is attracted to the facing surface of the detection electrode 2. When the negative charge is attracted to the charged object 3 in this way, a positive charge equal to the negative charge is induced on the surface on the detection circuit 7 side.

そして、検出電極2と帯電物体3との対向面積が大きくなれば、その分帯電物体3に引き付けられる負の電荷が多くなり、図7(b)に示すように、検出電極2がスリット8aの全開口と重なる位置になると、帯電物体3に引き付けられた負の電荷が最大となる。このように、帯電物体3側に引き付けられる負の電荷の量が増加する過程で、検出回路7側に誘導される正の電荷も増加する。
また、図7(b)状態から検出電極2が移動して帯電物体3と検出電極2の対向面積が徐々に小さくなる過程では、接地電極8によって帯電物体3との対向が遮断された部分に引き付けられていた負の電荷がフリーになるので検出電極7側の正の電荷と中和する。そのため、図7(c)に示すように検出電極2の表面に誘導されていた誘導電荷が減少することになる。
Then, as the facing area between the detection electrode 2 and the charged object 3 increases, the negative charge attracted to the charged object 3 increases accordingly, and as shown in FIG. 7B, the detection electrode 2 has the slit 8a. When the position overlaps with all the openings, the negative charge attracted to the charged object 3 becomes maximum. In this way, in the process of increasing the amount of negative charge attracted to the charged object 3 side, the positive charge induced to the detection circuit 7 side also increases.
Further, in the process in which the detection electrode 2 moves from the state of FIG. 7B and the facing area between the charged object 3 and the detection electrode 2 gradually decreases, the contact with the charged object 3 is blocked by the ground electrode 8. Since the attracted negative charge becomes free, it is neutralized with the positive charge on the detection electrode 7 side. Therefore, as shown in FIG. 7C, the induced charge induced on the surface of the detection electrode 2 is reduced.

さらに、検出電極2が移動して接地電極8が検出電極2と帯電物体3との対向を完全に遮断すると、検出電極2は帯電物体3の影響を受けなくなり、誘導電荷はゼロになる。
上記のような検出電極2の検出回路7側表面に誘導される電荷の変化は図8に示すようになる。この図8は、検出電極2において検出回路7側の面に誘導される誘導電荷qを示したものである。そして、この誘導電荷qは検出電極2と帯電物体3との対向面積が最大のときにピーク値となり、対向面積が最小のとき最小値となり、その極性は帯電物体3の帯電極性と一致する。
Further, when the detection electrode 2 moves and the ground electrode 8 completely blocks the opposition between the detection electrode 2 and the charged object 3, the detection electrode 2 is not affected by the charged object 3 and the induced charge becomes zero.
The change in charge induced on the surface of the detection electrode 2 on the detection circuit 7 side as described above is shown in FIG. FIG. 8 shows the induced charge q induced on the surface of the detection electrode 2 on the side of the detection circuit 7. The induced charge q has a peak value when the facing area between the detection electrode 2 and the charged object 3 is maximum, and a minimum value when the facing area is minimum, and the polarity matches the charging polarity of the charged object 3.

上記誘導電荷qは、検出回路7を介してアースへ流れるので、この誘導電荷qに基づく誘導電流Iを検出回路7で検出できる。この誘導電流Iは上記誘導電荷qの時間微分値になるので、図8に示す誘導電荷qの変化に対し位相差を生じ、例えば検出電極2からアースへ流れる電流を正の電流とし、アースから検出電極2へ流れる電流を負の電流として、図9に示すような信号波形となる。 Since the induced charge q flows to the ground via the detection circuit 7, the induced current I based on the induced charge q can be detected by the detection circuit 7. Since this induced current I is the time derivative value of the induced charge q, a phase difference is generated with respect to the change in the induced charge q shown in FIG. 8, for example, the current flowing from the detection electrode 2 to the ground is regarded as a positive current, and the current flows from the ground The signal waveform as shown in FIG. 9 is obtained by using the current flowing through the detection electrode 2 as a negative current.

このように検出電極2と帯電物体3とをスリット8aを介して対向させたり、その対向を遮断したりするたびに、検出回路7は上記誘導電流を検出することができる。そして、検出回数を多くすればするほど、その検出精度を上げることができる。
この検出回数は、スリット8aの回転方向の間隔と検出電極2の回転数とで決まる。このように検出回数を多くするために、検出電極2と接地電極8とを相対回転させるようにしているのである。
In this way, the detection circuit 7 can detect the induced current each time the detection electrode 2 and the charged object 3 are opposed to each other through the slit 8a or the opposite is cut off. Then, as the number of detections increases, the detection accuracy can be improved.
The number of detections is determined by the interval in the rotation direction of the slit 8a and the rotation speed of the detection electrode 2. In order to increase the number of detections in this way, the detection electrode 2 and the ground electrode 8 are relatively rotated.

また、上記誘導電流の大きさは、検出電極2と帯電物体3との対向面積、すなわちスリット8aの開口面積に依存することになる。
上記のことからも明らかなように、誘導電流の検出精度は、検出電極2と接地電極8との相対回転数及びスリット8aの開口面積に依存する。
したがって、スリット8aの開口面積が小さければ誘導電流の検出精度が低くなってしまう。
なお、上記では帯電物体3の極性が正の場合について説明したが、帯電物体3が負の場合には、誘導電流の方向が上記とは反対になる。
Further, the magnitude of the induced current depends on the facing area between the detection electrode 2 and the charged object 3, that is, the opening area of the slit 8a.
As is clear from the above, the detection accuracy of the induced current depends on the relative rotation speed between the detection electrode 2 and the ground electrode 8 and the opening area of the slit 8a.
Therefore, if the opening area of the slit 8a is small, the detection accuracy of the induced current will be low.
In the above description, the case where the polarity of the charged object 3 is positive has been described, but when the charged object 3 is negative, the direction of the induced current is opposite to the above.

米国特許第8536879号公報U.S. Pat. No. 8,536,879 特開2003−021656号公報Japanese Unexamined Patent Publication No. 2003-021656

また、上記従来の静電気測定装置では、検出電極2と接地電極8とを相対回転させる駆動源として電動モータ6を用いていたが、この電動モータ6がショートして火花を発生することを想定して防爆対策が施されていた。つまり、ケーシング1の内圧を外部の圧力よりも高くして、外部の可燃性物質がケーシング1内に侵入しないようにしていた。
このようにケーシング1の内圧を高く維持するために、ケーシング1に防爆用気体供給源9から高圧の気体を供給している。しかし、防爆用気体供給源9を設けたとしても、上記スリット8aの開口が大きければ、内圧を高くすることはできない。
Further, in the above-mentioned conventional static electricity measuring device, an electric motor 6 is used as a drive source for relatively rotating the detection electrode 2 and the ground electrode 8, but it is assumed that the electric motor 6 is short-circuited to generate sparks. Explosion-proof measures were taken. That is, the internal pressure of the casing 1 is made higher than the external pressure to prevent external flammable substances from entering the casing 1.
In this way, in order to maintain the internal pressure of the casing 1 high, a high-pressure gas is supplied to the casing 1 from the explosion-proof gas supply source 9. However, even if the explosion-proof gas supply source 9 is provided, the internal pressure cannot be increased if the opening of the slit 8a is large.

このようにケーシング1の内圧を一定以上高く維持するために、従来の装置ではスリット8aの開口面積を小さくせざるをえなかった。しかし、上記したようにスリット8aの開口面積が小さければ、検出電極2と帯電物体3との対向面積が小さくなり、検出精度が低くなってしまうという問題があった。
なお、図5中符号10は圧力センサ、符号12は帯電物体3の帯電極性を判定する極性判定回路である。
In this way, in order to maintain the internal pressure of the casing 1 higher than a certain level, the opening area of the slit 8a has to be reduced in the conventional device. However, as described above, if the opening area of the slit 8a is small, the facing area between the detection electrode 2 and the charged object 3 becomes small, and there is a problem that the detection accuracy becomes low.
Reference numeral 10 in FIG. 5 is a pressure sensor, and reference numeral 12 is a polarity determination circuit for determining the charging polarity of the charged object 3.

上記圧力センサ10は、スリット8aと検出電極2との相対位置に応じて変化するケーシング1の内圧を検出する。検出電極2と帯電物体3とがスリット8aを介して対向するときには、スリット8aが検出電極2で塞がれることになるので、ケーシング1の内圧が相対的に高くなり、検出電極2と帯電物体3との対向を接地電極8で遮断されるときには、スリット8aを介してケーシング1の内外が連通するので、ケーシング1の内圧が相対的に低くなる。 The pressure sensor 10 detects the internal pressure of the casing 1 that changes according to the relative position between the slit 8a and the detection electrode 2. When the detection electrode 2 and the charged object 3 face each other via the slit 8a, the slit 8a is blocked by the detection electrode 2, so that the internal pressure of the casing 1 becomes relatively high, and the detection electrode 2 and the charged object 3 are opposed to each other. When the contact with 3 is blocked by the ground electrode 8, the inside and outside of the casing 1 communicate with each other through the slit 8a, so that the internal pressure of the casing 1 becomes relatively low.

上記のようなケーシング1の内圧の変化から、検出電極2が帯電物体3と対向しているときなのか、対向が遮断されているときなのかを判定できる。したがって、極性判定回路12は圧力センサ10の検出信号と検出回路7からの検出信号とに基づいて帯電物体3の帯電極性を判定することができる。
この発明の目的は、例えば可燃性雰囲気のような防爆仕様を必要とするような環境でも使用でき、誘導電流の検出感度が高い静電気測定装置を提供することである。
From the change in the internal pressure of the casing 1 as described above, it can be determined whether the detection electrode 2 is facing the charged object 3 or the facing is blocked. Therefore, the polarity determination circuit 12 can determine the charge polarity of the charged object 3 based on the detection signal of the pressure sensor 10 and the detection signal from the detection circuit 7.
An object of the present invention is to provide an electrostatic measuring device that can be used in an environment that requires explosion-proof specifications such as a flammable atmosphere and has a high detection sensitivity of an induced current.

第1の発明は、ケーシングと、このケーシング内に設けられ、対向する帯電物体の帯電電位に応じて誘導される誘導電流を出力する検出電極と、このケーシングにおいて上記検出電極と上記帯電物体との間に設けられた接地電極と、上記検出電極と接地電極とを相対回転させるエアモータと、上記検出電極と上記接地電極との相対位置を検出する回転位置センサと、上記検出電極から出力される誘導電流を検出する検出回路と、上記検出回路の信号と上記回転位置センサの信号とから極性を特定する極性判定回路とが設けられ、上記エアモータを駆動して上記検出電極と接地電極とを相対回転させ、その相対回転の過程で、上記検出電極と帯電物体との対向面積を一定の周期で変化させる。 The first invention comprises a casing, a detection electrode provided in the casing and outputting an induced current induced according to the charging potential of an opposing charged object, and the detection electrode and the charged object in the casing. An air motor that relatively rotates the ground electrode provided between them, the detection electrode and the ground electrode, a rotation position sensor that detects the relative position between the detection electrode and the ground electrode, and an induction output from the detection electrode. A detection circuit for detecting the current and a polarity determination circuit for specifying the polarity from the signal of the detection circuit and the signal of the rotation position sensor are provided, and the air motor is driven to rotate the detection electrode and the ground electrode relative to each other. In the process of the relative rotation, the facing area between the detection electrode and the charged object is changed at a constant cycle.

さらに、上記エアモータからの排気の一部もしくは全部を上記ケーシング内に導く導入部が設けられるとともに、上記導入部から導かれた上記排気を排出する排出孔が上記検出電極の周囲に形成されている。 Further , an introduction portion for guiding a part or all of the exhaust gas from the air motor into the casing is provided, and an exhaust hole for discharging the exhaust gas guided from the introduction portion is formed around the detection electrode. ..

の発明は、上記検出電極が扇形板を備え、上記接地電極には上記検出電極の扇形板と同一形状同一寸法の扇形板あるいは扇形開口のいずれか一方を備え、上記検出電極と接地電極との相対回転の過程で、上記検出電極における扇形板の合計面積が、上記検出電極と帯電物体との対向面積の最大値になるとともに、上記検出電極の扇形板の合計面積が、上記検出電極の外周が描く円の面積の二分の一になる寸法を保っている。
なお、上記検出電極の扇形円は、半円であってもよいし、半円よりも小さい複数の扇形で形成されていてもよい。
また、検出電極と帯電物体との対向面積が最大となるのは、検出電極の扇形板と接地電極の扇形板との重なりがない状態、もしくは接地電極の扇形開口とが完全に重なった状態である。
In the second invention, the detection electrode includes a fan-shaped plate, and the ground electrode includes either a fan-shaped plate having the same shape and the same size as the fan-shaped plate of the detection electrode or a fan-shaped opening, and the detection electrode and the ground electrode In the process of relative rotation with, the total area of the sector plate on the detection electrode becomes the maximum value of the facing area between the detection electrode and the charged object, and the total area of the sector plate of the detection electrode becomes the detection electrode. It keeps the size that is half of the area of the circle drawn by the outer circumference of.
The fan-shaped circle of the detection electrode may be a semicircle, or may be formed by a plurality of fan shapes smaller than the semicircle.
The facing area between the detection electrode and the charged object is maximized when the fan-shaped plate of the detection electrode and the fan-shaped plate of the ground electrode do not overlap, or when the fan-shaped opening of the ground electrode completely overlaps. is there.

第1の発明によれば、検出電極と接地電極とを相対回転させるためにエアモータを用いているので、エアモータから放電火花などが発生する心配がない。そのため、電動モータを用いた従来のように、ケーシングの内圧を一定以上に高く維持して内圧防爆を実現する必要がなくなった。
このようにケーシング内の圧力を一定値以上に維持する必要がないので、例えば接地電極の開口面積を大きくして、その開口を介して検出電極と帯電物体とが対向する対向面積を十分に大きくすることができる。帯電物体との対向面積が大きくなれば、誘導電流値が大きくなって検出感度を上げることができる。
しかも、エアモータを用いることで検出回路等を本質安全防爆化するだけで、防爆構造の静電気測定装置を実現でき、この装置を防爆仕様が必要な環境でも用いることができる。
According to the first invention, since the air motor is used to rotate the detection electrode and the ground electrode relative to each other, there is no concern that discharge sparks or the like are generated from the air motor. Therefore, it is no longer necessary to maintain the internal pressure of the casing higher than a certain level to realize internal pressure explosion-proof as in the conventional case using an electric motor.
Since it is not necessary to maintain the pressure inside the casing above a certain value in this way, for example, the opening area of the ground electrode is increased, and the facing area where the detection electrode and the charged object face each other through the opening is sufficiently large. can do. If the area facing the charged object becomes large, the induced current value becomes large and the detection sensitivity can be increased.
Moreover, by using an air motor, it is possible to realize an explosion-proof static electricity measuring device simply by making the detection circuit or the like intrinsically safe and explosion-proof, and this device can be used even in an environment requiring explosion-proof specifications.

また、この発明では、検出電極側から圧縮エアを噴出させることが必須ではない。そのため、例えば、空間に浮遊している帯電した粉体の静電気の測定にも使用できる。もし、内圧防爆を実現するためにケーシングから防爆用のガスを噴出させ、そのガスが粉体を攪拌してしまえば、静電気の状態も変化して正確な測定ができない可能性があるが、この発明の測定装置なら、そのような心配はない。 Further, in the present invention, it is not essential to eject compressed air from the detection electrode side. Therefore, for example, it can be used for measuring the static electricity of charged powder floating in space. If explosion-proof gas is ejected from the casing in order to realize internal pressure explosion-proof, and the gas agitates the powder, the state of static electricity may change and accurate measurement may not be possible. With the measuring device of the invention, there is no such concern.

さらに、この発明によれば、エアモータの排気を検出電極の周囲に導くことができるので、この排気流によって検出電極に付着した塵などの異物を吹き飛ばして検出電極を清掃することができる。検出電極の表面に絶縁体が付着すれば、帯電物体による誘導電流が変化して測定精度が落ちてしまう。この発明では、エアモータの排気によって検出電極の表面を清浄に保てるので、検出精度を保つことができる。 Further, according to the present invention, since the exhaust gas of the air motor can be guided around the detection electrode, the detection electrode can be cleaned by blowing off foreign matter such as dust adhering to the detection electrode by this exhaust flow. If an insulator adheres to the surface of the detection electrode, the induced current due to the charged object changes and the measurement accuracy deteriorates. In the present invention, the surface of the detection electrode can be kept clean by the exhaust of the air motor, so that the detection accuracy can be maintained.

の発明によれば、検出電極の全面を周期的に帯電物体に対向させることができ、検出感度を十分に上げることができる。 According to the second invention, the entire surface of the detection electrode can be periodically opposed to the charged object, and the detection sensitivity can be sufficiently increased.

この発明の第1実施形態の静電気測定装置のブロック図である。It is a block diagram of the static electricity measuring apparatus of 1st Embodiment of this invention. 第1実施形態の検出電極の平面図である。It is a top view of the detection electrode of 1st Embodiment. 第1実施形態の接地電極の平面図である。It is a top view of the ground electrode of 1st Embodiment. 第2実施形態の接地電極の平面図である。It is a top view of the ground electrode of the 2nd Embodiment. 従来の静電気測定装置のブロック図である。It is a block diagram of the conventional static electricity measuring apparatus. 従来の接地電極の平面図である。It is a top view of the conventional ground electrode. 誘導電流の検出原理を説明するための概略図である。It is the schematic for demonstrating the detection principle of an induced current. 誘導電荷の変化の一例である。This is an example of a change in induced charge. 誘導電流の検出波形の一例である。This is an example of the detected waveform of the induced current.

図1〜3を用いてこの発明の第1実施形態を説明する。なお、図1において従来と同様の構成要素には、図5と同じ符号を用い、個々についての説明は省略する。
この第1実施形態は、円筒形のケーシング1の開口1a側に検出電極13が固定されている。
The first embodiment of the present invention will be described with reference to FIGS. In FIG. 1, the same reference numerals as those in FIG. 5 are used for the same components as in the conventional case, and the description of each is omitted.
In this first embodiment, the detection electrode 13 is fixed to the opening 1a side of the cylindrical casing 1.

検出電極13は、図2に示すように中心角を45°とした4枚の扇形板13aからなり、図2では省略しているが、絶縁性の支持板14の表面に後で説明する接地電極15との相対回転方向に等間隔を保っている。したがって、これら扇形板13aの合計面積が検出電極13の外周が描く円の二分の一の面積を占めている。
また、上記支持板14は円盤状でその外周がケーシング1の内壁に固定されている。この支持板14は、ケーシング1に対して固定されていればよく、その全外周がケーシング1の内壁に密着する必要はない。さらに、この支持板14に開口が形成されていてもよく、後で説明するエアモータ18や検出回路7などが設けられた空間とケーシング1の外部とが連通し、ケーシング1内に異物が侵入するようなことがあってもかまわない。
As shown in FIG. 2, the detection electrode 13 is composed of four fan-shaped plates 13a having a central angle of 45 °, and although omitted in FIG. 2, the surface of the insulating support plate 14 is grounded as described later. It is kept at equal intervals in the relative rotation direction with the electrode 15. Therefore, the total area of these sector plates 13a occupies half the area of the circle drawn by the outer circumference of the detection electrode 13.
Further, the support plate 14 has a disk shape and its outer circumference is fixed to the inner wall of the casing 1. The support plate 14 may be fixed to the casing 1, and its entire outer circumference need not be in close contact with the inner wall of the casing 1. Further, an opening may be formed in the support plate 14, and the space provided with the air motor 18 and the detection circuit 7 described later communicates with the outside of the casing 1, and foreign matter enters the casing 1. It doesn't matter if something like this happens.

また、検出電極13の上記扇形板13aを結合した中心には、接地電極15に取り付けられた回転軸16を貫通させる軸孔13bが形成されている。そして、支持板14の中心には、上記軸孔13bに一致する軸孔14aが形成されるとともに、この軸孔14aに上記回転軸16を回転自在に支持する軸受部材17が設けられている。 Further, a shaft hole 13b is formed at the center of the detection electrode 13 to which the fan-shaped plate 13a is connected so as to penetrate the rotating shaft 16 attached to the ground electrode 15. A shaft hole 14a corresponding to the shaft hole 13b is formed in the center of the support plate 14, and a bearing member 17 that rotatably supports the rotating shaft 16 is provided in the shaft hole 14a.

また、上記ケーシング1の開口1a側で、上記検出電極13と帯電物体3との間に位置する接地電極15が設けられている。
この接地電極15は、図3に示すように、外形を上記検出電極13と等しくした金属製の板部材である。つまり、検出電極13と同様に、複数の扇形板15aが回転方向に等間隔に配置されている。そして、この扇形板15aが、検出電極13の扇形板13aと一致する形状を備え、回転方向に隣り合う扇形板15aと15aとの間には、一点鎖線で示した扇形の空間部15bが介在し、この空間部15bは上記扇形板15a及び接地電極13の各扇形板13aと一致する。
Further, a ground electrode 15 located between the detection electrode 13 and the charged object 3 is provided on the opening 1a side of the casing 1.
As shown in FIG. 3, the ground electrode 15 is a metal plate member having an outer shape equal to that of the detection electrode 13. That is, similarly to the detection electrode 13, a plurality of fan-shaped plates 15a are arranged at equal intervals in the rotation direction. The fan-shaped plate 15a has a shape that matches the fan-shaped plate 13a of the detection electrode 13, and a fan-shaped space portion 15b indicated by a one-point chain line is interposed between the fan-shaped plates 15a and 15a adjacent to each other in the rotation direction. The space portion 15b coincides with the fan-shaped plate 15a and the fan-shaped plate 13a of the ground electrode 13.

さらに、上記複数の扇形板15aの中心O2には導電性の回転軸16を取り付け、この回転軸16に、連結部材5を介してエアモータ18の出力軸を連結している。このエアモータ18は、コンプレッサなどの圧縮エア供給源19に接続され、圧縮エアによって回転して接地電極15を回転させるようにしている。なお、接地電極15は、上記回転軸16を介して接地されている。 Further, a conductive rotating shaft 16 is attached to the center O2 of the plurality of fan-shaped plates 15a, and the output shaft of the air motor 18 is connected to the rotating shaft 16 via a connecting member 5. The air motor 18 is connected to a compressed air supply source 19 such as a compressor, and is rotated by the compressed air to rotate the ground electrode 15. The ground electrode 15 is grounded via the rotating shaft 16.

上記のように構成された静電気測定装置では、接地電極15が回転すると、扇形板15aと検出電極13の扇形板13aとの重なり面積が周期的に増減し、検出電極13と帯電物体3との対向面積が周期的に変化することになる。したがって、この対向面積と、帯電物体3の帯電電位に応じた誘導電荷が検出電極13の表面に誘導され、この誘導電荷に基づいた誘電電流Iを検出回路7が検出する。
そして、接地電極15の回転過程で、扇形板15aが扇形板13aと完全に重なったとき、帯電物体3と検出電極13との対向面積がゼロになり、上記空間部15bが検出電極13の扇形板13aと一致したとき、扇形板13aの全面積が帯電物体3との対向面積となる。
このように接地電極15の空間部15bと検出電極13とが重なったとき、検出電極13と帯電物体3との対向面積最大になり、検出電極13に誘導される誘導電荷qの量は最大になる。
In the static electricity measuring device configured as described above, when the ground electrode 15 rotates, the overlapping area between the fan-shaped plate 15a and the fan-shaped plate 13a of the detection electrode 13 periodically increases or decreases, and the detection electrode 13 and the charged object 3 The facing area will change periodically. Therefore, an induced charge corresponding to the facing area and the charging potential of the charged object 3 is induced on the surface of the detection electrode 13, and the detection circuit 7 detects the dielectric current I based on the induced charge.
Then, when the fan-shaped plate 15a completely overlaps the fan-shaped plate 13a in the rotation process of the ground electrode 15, the facing area between the charged object 3 and the detection electrode 13 becomes zero, and the space portion 15b becomes the fan shape of the detection electrode 13. When it coincides with the plate 13a, the entire area of the sector plate 13a becomes the area facing the charged object 3.
When the space 15b of the ground electrode 15 and the detection electrode 13 overlap in this way, the facing area between the detection electrode 13 and the charged object 3 is maximized, and the amount of induced charge q induced in the detection electrode 13 is maximized. Become.

一方、検出電極13とアースとの間を流れる誘導電流Iは、上記したように検出電極13の誘導電荷qを時間微分した値となるので、誘導電荷qの変化と位相差を生じた変化となる。その結果、この誘導電流Iのピーク値は、検出電極13の面積の半分が接地電極15の空間部15bを介して帯電物体3と対向したときになり、そのピーク電流値を検出回路7で検出することになる。この誘導電流Iのピーク値の大きさは、誘導電荷qのピーク値に対応するので、検出電極13と帯電物体3との対向面積の最大値が大きいほど大きくなる。そして、上記対向面積は、接地電極15の空間部15bの大きさで決まるので、空間部15bが大きければ大きいほど、誘導電流Iの検出感度が高くなる。 On the other hand, the induced current I flowing between the detection electrode 13 and the ground is a value obtained by time-differentiating the induced charge q of the detection electrode 13 as described above, so that the change of the induced charge q and the change causing the phase difference are generated. Become. As a result, the peak value of the induced current I is obtained when half of the area of the detection electrode 13 faces the charged object 3 via the space portion 15b of the ground electrode 15, and the peak current value is detected by the detection circuit 7. Will be done. Since the magnitude of the peak value of the induced current I corresponds to the peak value of the induced charge q, the larger the maximum value of the facing area between the detection electrode 13 and the charged object 3, the larger the magnitude. Since the facing area is determined by the size of the space portion 15b of the ground electrode 15, the larger the space portion 15b, the higher the detection sensitivity of the induced current I.

この第1実施形態では、検出電極13と接地電極15とを相対回転させるためにエアモータ18を利用している。そのため、従来のように電動モータ6の火花発生の可能性を考慮する必要がない。つまり、エアモータ18を用いることで、検出電極13と接地電極15とを相対回転させる駆動源が着火原因となることがなく、本質安全防爆が実現できる。したがって、従来のようにケーシング1の内圧を一定以上に高く維持して内圧防爆を実現する必要がない。このようにケーシング1の内圧を高く維持する必要がないので、ケーシング1の開口1aを接地電極15で塞がなくてもよく、上記空間部15bを図6のスリット8aと比べて十分に大きくすることができる。
その結果、上記空間部15bを介して対向する検出電極13と帯電物体3との対向面積を大きくすることができ、検出感度を高くすることができる。
In this first embodiment, the air motor 18 is used to rotate the detection electrode 13 and the ground electrode 15 relative to each other. Therefore, it is not necessary to consider the possibility of sparks of the electric motor 6 as in the conventional case. That is, by using the air motor 18, the drive source that relatively rotates the detection electrode 13 and the ground electrode 15 does not cause ignition, and intrinsically safe explosion-proof can be realized. Therefore, it is not necessary to maintain the internal pressure of the casing 1 higher than a certain level to realize the internal pressure explosion proof as in the conventional case. Since it is not necessary to maintain the internal pressure of the casing 1 high in this way, the opening 1a of the casing 1 does not have to be blocked by the ground electrode 15, and the space 15b is made sufficiently larger than the slit 8a of FIG. be able to.
As a result, the facing area between the detection electrode 13 and the charged object 3 facing each other via the space 15b can be increased, and the detection sensitivity can be increased.

また、上記したように、検出電極13が帯電物体3と対向しているときに検出回路7側に誘導される誘導電荷qの極性は帯電物体3の帯電極性と一致する。したがって、検出回路7が検出する誘導電流Iの流れ方向は帯電物体3の帯電極性によって異なる。しかし、検出回路7が検出する誘導電流Iは図9に示すように正負両方である。
そのため、帯電物体3の帯電極性を判定するためには、検出電極13と帯電物体3との対向面積が増加する過程を検出する必要がある。上記対向面積が増加する過程で検出された誘導電流Iの極性が帯電物体3の帯電極性と一致するからである。
この第1実施形態では、接地電極15と検出電極13との相対回転位置を検出するための回転位置センサ20を備え、その検出信号を、検出回路7からの誘導電流Iの検出信号とともに、極性判定回路12に入力するようにしている。
Further, as described above, the polarity of the induced charge q induced toward the detection circuit 7 when the detection electrode 13 faces the charged object 3 matches the polarity of the charged object 3. Therefore, the flow direction of the induced current I detected by the detection circuit 7 differs depending on the charging polarity of the charged object 3. However, the induced current I detected by the detection circuit 7 is both positive and negative as shown in FIG.
Therefore, in order to determine the charging polarity of the charged object 3, it is necessary to detect the process of increasing the facing area between the detection electrode 13 and the charged object 3. This is because the polarity of the induced current I detected in the process of increasing the facing area matches the charging polarity of the charged object 3.
In this first embodiment, the rotation position sensor 20 for detecting the relative rotation position between the ground electrode 15 and the detection electrode 13 is provided, and the detection signal thereof is polarized together with the detection signal of the induced current I from the detection circuit 7. It is input to the determination circuit 12.

この回転位置センサ20は、上記回転軸16に取り付けたマーカー20aと、回転するこのマーカー20aの位置を検出する検知部20bとからなる。例えば、マーカー20aが永久磁石で、検知部20bがホール素子を備えている場合、検知部20bは回転軸16の回転位置に応じて変化する磁界を検出し、その検出値に応じて回転軸16の回転角度が特定できる。ただし、接地電極15と検出電極13との位置関係が把握できれば、上記回転位置センサ20はどのような原理を利用したものでも構わない。
そして、極性判定回路12は、上記回転位置センサ20の検出信号から接地電極15の回転位置を特定し、検出電極13と帯電物体3との対向面積が増加する過程で検出回路7が検出した誘導電流Iの向き、すなわち検出値の極性に基づいて帯電物体3の極性を判定し、その結果を出力部11に出力するようにしている。
The rotation position sensor 20 includes a marker 20a attached to the rotation shaft 16 and a detection unit 20b that detects the position of the rotating marker 20a. For example, when the marker 20a is a permanent magnet and the detection unit 20b is provided with a Hall element, the detection unit 20b detects a magnetic field that changes according to the rotation position of the rotation shaft 16, and the rotation shaft 16 according to the detected value. The rotation angle of can be specified. However, the rotational position sensor 20 may use any principle as long as the positional relationship between the ground electrode 15 and the detection electrode 13 can be grasped.
Then, the polarity determination circuit 12 identifies the rotation position of the ground electrode 15 from the detection signal of the rotation position sensor 20, and the induction detected by the detection circuit 7 in the process of increasing the facing area between the detection electrode 13 and the charged object 3. The polarity of the charged object 3 is determined based on the direction of the current I, that is, the polarity of the detected value, and the result is output to the output unit 11.

また、この第1実施形態では上記エアモータ18の排気を、図1の矢印xのようにケーシング1外に噴出させているが、この排気をケーシング1に導くようにしてもよい。例えば、二点鎖線で示すようなパイプなどで排気の導入部を構成してもよいし、エアモータ18の排気口をケーシング1内に位置させてもよい。
そして、ケーシング1内に導いた排気を、検出電極13の周囲に設けた図示しない排出孔から排出させれば、検出電極13の表面を上記排気流によって清掃することができる。
Further, in the first embodiment, the exhaust gas of the air motor 18 is ejected to the outside of the casing 1 as shown by the arrow x in FIG. 1, but the exhaust gas may be guided to the casing 1. For example, the exhaust introduction portion may be configured by a pipe or the like as shown by the alternate long and short dash line, or the exhaust port of the air motor 18 may be located in the casing 1.
Then, if the exhaust guided into the casing 1 is discharged from a discharge hole (not shown) provided around the detection electrode 13, the surface of the detection electrode 13 can be cleaned by the exhaust flow.

検出電極13の表面に塵などが付着すれば、誘導電流などを正確に測定することができなくなってしまうが、検出電極13を排気流によって清浄に保てば、その検出精度を維持することができる。
なお、ケーシング1内に導いた排気を、検出電極13の周囲から排出させる排出孔は、例えば検出電極13を支持する支持板14に形成したり、支持板14とケーシング1の内壁との間に隙間として設けたりすればよい。
If dust or the like adheres to the surface of the detection electrode 13, it will not be possible to accurately measure the induced current or the like, but if the detection electrode 13 is kept clean by the exhaust flow, the detection accuracy can be maintained. it can.
The exhaust hole for discharging the exhaust gas guided into the casing 1 from the periphery of the detection electrode 13 may be formed in, for example, the support plate 14 supporting the detection electrode 13, or between the support plate 14 and the inner wall of the casing 1. It may be provided as a gap.

また、エアモータ18からの排気のうち一部を検出電極13の清掃用の流量とし、残りをケーシング1の外に直接噴出させるように上記導入部に分岐通路を設けてもよい。さらに、この分岐通路に、検出電極13側から噴出される排気流量を調整するためのバルブなどの流量調整手段を設けてもよい。
例えば、帯電物体が流動する粉体などの場合、検出電極13側から噴出する排気流量が多いと、排気の噴出圧によって上記粉体が吹き飛ばされてしまい、誘導電流などの検出値が変化してしまうことがあるが、帯電物体の形態に応じて検出電極13の表面を清掃する排気流の流量を調整できれば、常に正確な測定ができることになる。
Further, a branch passage may be provided in the introduction portion so that a part of the exhaust gas from the air motor 18 is used as the flow rate for cleaning the detection electrode 13 and the rest is directly ejected to the outside of the casing 1. Further, the branch passage may be provided with a flow rate adjusting means such as a valve for adjusting the exhaust flow rate ejected from the detection electrode 13 side.
For example, in the case of powder in which a charged object flows, if the exhaust flow rate ejected from the detection electrode 13 side is large, the powder is blown off by the ejection pressure of the exhaust, and the detected value such as the induced current changes. However, if the flow rate of the exhaust flow for cleaning the surface of the detection electrode 13 can be adjusted according to the form of the charged object, accurate measurement can always be performed.

図4は、第2実施形態の接地電極21の平面図である。この第2実施形態は、第1実施形態の接地電極15を接地電極21に換えたもので、その他の構成は第1実施形態と同じである。
この接地電極21は、円盤状の金属板の中心03の周囲に、上記検出電極13の各扇形板13aと同形及び同一寸法を備えた扇形開口21aを形成したものである。そして、上記中心O3に導電性の回転軸16を取り付け、エアモータ18によってこの接地電極21を回転させるようにしている。
FIG. 4 is a plan view of the ground electrode 21 of the second embodiment. In this second embodiment, the ground electrode 15 of the first embodiment is replaced with the ground electrode 21, and other configurations are the same as those of the first embodiment.
The ground electrode 21 has a fan-shaped opening 21a having the same shape and dimensions as each fan-shaped plate 13a of the detection electrode 13 formed around the center 03 of the disk-shaped metal plate. Then, a conductive rotating shaft 16 is attached to the center O3, and the ground electrode 21 is rotated by the air motor 18.

この接地電極21において、回転方向で隣り合う開口21aと21aとの間の扇形の閉鎖部21bが、第1実施形態の接地電極15の扇形板15aに相当する。そして、この接地電極21と検出電極13との相対回転過程で、検出電極13の扇形板13aが、上記扇形開口21aとぴったり重なったとき、検出電極13と帯電物体3との対向面積が最大となり、検出電極13と上記閉鎖部21bとがぴったり重なったとき、検出電極13と帯電物体3との対向面積がゼロになる。そして、上記対向面積が変化する過程で、検出電極13の表面に誘導される誘導電荷の変化に応じて流れ方向が周期的に変化する誘導電流Iを検出回路7が検出する。 In the ground electrode 21, the fan-shaped closing portion 21b between the openings 21a and 21a adjacent to each other in the rotation direction corresponds to the fan-shaped plate 15a of the ground electrode 15 of the first embodiment. Then, in the relative rotation process between the ground electrode 21 and the detection electrode 13, when the fan-shaped plate 13a of the detection electrode 13 exactly overlaps the fan-shaped opening 21a, the facing area between the detection electrode 13 and the charged object 3 becomes maximum. When the detection electrode 13 and the closed portion 21b are exactly overlapped with each other, the facing area between the detection electrode 13 and the charged object 3 becomes zero. Then, in the process of changing the facing area, the detection circuit 7 detects the induced current I whose flow direction periodically changes according to the change of the induced charge induced on the surface of the detection electrode 13.

この第2実施形態でも、電動モータに換えてエアモータ18を用いているので、ケーシング1の内圧を一定以上に高く維持する必要がない。そのため、扇形開口21aの面積を十分に大きくして、検出感度を上げることができる。しかも、防爆仕様を必要とする環境でも使用することができる。
また、この第2実施形態の接地電極21は、全体形状が円盤状なので、第1実施形態のように複数の扇形板で羽根状にしたものと比べて、回転時に外周がぶれにくく、より安定して回転させることができる。接地電極21の回転にぶれがなければ、検出電極13と帯電物体3との対向面積にも誤差が発生することなく、検出値の再現性がより高くなる。
Also in this second embodiment, since the air motor 18 is used instead of the electric motor, it is not necessary to maintain the internal pressure of the casing 1 higher than a certain level. Therefore, the area of the fan-shaped opening 21a can be sufficiently increased to increase the detection sensitivity. Moreover, it can be used in an environment that requires explosion-proof specifications.
Further, since the ground electrode 21 of the second embodiment has a disk shape as a whole, the outer circumference is less likely to shake during rotation and is more stable than the one formed by a plurality of fan-shaped plates as in the first embodiment. Can be rotated. If there is no deviation in the rotation of the ground electrode 21, the reproducibility of the detected value becomes higher without causing an error in the area facing the detection electrode 13 and the charged object 3.

なお、上記第1,2実施形態では、検出電極13が4枚の扇形板13aで構成され、接地電極15,21の開口を上記扇形板13aと同一形状にしているが、検出電極13と接地電極15,21との相対回転によって、検出電極13と帯電物体3との対向面積がゼロから最大値まで周期的に変化するのであれば、検出電極13の形状や、接地電極15,21の形状や大きさは限定されない。
ただし、接地電極15の空間部15bや接地電極21の扇形開口21aの形状および寸法を検出電極13と一致させれば、検出電極13と帯電物体3との最大対向面積を検出電極13の面積と等しくすることができ、検出電極13の表面全体を帯電物体3と対向させることができる。
In the first and second embodiments, the detection electrode 13 is composed of four fan-shaped plates 13a, and the openings of the ground electrodes 15 and 21 have the same shape as the fan-shaped plate 13a, but the detection electrode 13 and the ground are grounded. If the facing area between the detection electrode 13 and the charged object 3 periodically changes from zero to the maximum value due to the relative rotation with the electrodes 15 and 21, the shape of the detection electrode 13 and the shape of the ground electrodes 15 and 21 And size are not limited.
However, if the shape and dimensions of the space portion 15b of the ground electrode 15 and the fan-shaped opening 21a of the ground electrode 21 match the detection electrode 13, the maximum facing area between the detection electrode 13 and the charged object 3 is defined as the area of the detection electrode 13. It can be made equal, and the entire surface of the detection electrode 13 can be opposed to the charged object 3.

また、検出電極13において、複数の扇形板13aの合計面積を上記検出電極13の外周が描く円の面積の二分の一になるように等間隔に配置しているので、検出電極13と帯電物体3との対向面積をゼロから最大面積まで連続的に変化させながら、帯電物体3との対向時間を最大にすることができる。そして、検出回路7が検出する誘電電流Iは、図8のようなバランスの良い波形になる。 Further, in the detection electrode 13, the total area of the plurality of fan-shaped plates 13a is arranged at equal intervals so as to be half the area of the circle drawn by the outer circumference of the detection electrode 13, so that the detection electrode 13 and the charged object are charged. The facing time with the charged object 3 can be maximized while continuously changing the facing area with 3 from zero to the maximum area. Then, the dielectric current I detected by the detection circuit 7 has a well-balanced waveform as shown in FIG.

また、上記第1,2実施形態では、固定された検出電極13に対して接地電極15,21を回転させるようにしているが、接地電極15,21を固定して、検出電極13を回転させるようにしてもよい。ただし、検出電極13を回転させる場合には、誘導電流Iを取り出すための接点と回転軸16とを摺動させなければならない。接点部分が摺動すれば、検出回路7にノイズが入り込む可能性がある。したがって、検出電極13を回転させるよりも固定した方が、ノイズの影響を排除して検出精度を上げることができる。 Further, in the first and second embodiments, the ground electrodes 15 and 21 are rotated with respect to the fixed detection electrodes 13, but the ground electrodes 15 and 21 are fixed and the detection electrodes 13 are rotated. You may do so. However, when rotating the detection electrode 13, the contact for extracting the induced current I and the rotating shaft 16 must be slid. If the contact portion slides, noise may enter the detection circuit 7. Therefore, it is possible to eliminate the influence of noise and improve the detection accuracy by fixing the detection electrode 13 rather than rotating it.

さらに、上記検出回路7は、検出電極13に誘導される誘導電流Iを検出しているが、この静電気測定装置では、誘導電流Iだけでなく、検出電極に誘導される誘導電荷量、帯電物体3の帯電電位や表面電荷量、帯電物体3によって形成される電界強度などを測定することもできる。
なお、上記実施形態では、測定装置を本質安全防爆とするために、ケーシング1内に設けられる検出回路7及び極性判定回路12を、微弱な電源で動作可能にするとともに、回路内の配線間での短絡が発生ないように設計している。
Further, the detection circuit 7 detects the induced current I induced in the detection electrode 13. In this static electricity measuring device, not only the induced current I but also the induced charge amount induced in the detection electrode and the charged object are charged. It is also possible to measure the charging potential, the amount of surface charge, the electric field strength formed by the charged object 3, and the like.
In the above embodiment, in order to make the measuring device intrinsically safe and explosion-proof, the detection circuit 7 and the polarity determination circuit 12 provided in the casing 1 can be operated with a weak power source, and between the wirings in the circuit. It is designed so that a short circuit does not occur.

防爆仕様を必要とする環境で用いる静電気測定装置として最適である。 It is most suitable as an electrostatic measurement device used in environments that require explosion-proof specifications.

1 ケーシング
3 帯電物体
7 検出回路
12 極性判定回路
13 検出電極
15 接地電極
15b (接地電極の開口)空間部
18 エアモータ
20 回転位置センサ
21 接地電極
21a 開口
1 Casing 3 Charged object 7 Detection circuit 12 Polarity determination circuit 13 Detection electrode 15 Ground electrode 15b (Opening of ground electrode) Space 18 Air motor 20 Rotational position sensor 21 Ground electrode 21a Opening

Claims (2)

ケーシングと、
このケーシング内に設けられ、対向する帯電物体の帯電電位に応じて誘導される誘導電流を出力する検出電極と、
このケーシングにおいて上記検出電極と上記帯電物体との間に設けられた接地電極と、
上記検出電極と接地電極とを相対回転させるエアモータと、
上記検出電極と上記接地電極との相対位置を検出する回転位置センサと、
上記検出電極から出力される誘導電流を検出する検出回路と、
上記検出回路の信号と上記回転位置センサの信号とから極性を特定する極性判定回路と
が設けられ、
上記エアモータを駆動して上記検出電極と接地電極とを相対回転させ、その相対回転の過程で、上記検出電極と帯電物体との対向面積を一定の周期で変化させる静電気測定装置であって、
上記エアモータからの排気の一部もしくは全部を上記ケーシング内に導く導入部が設けられるとともに、上記導入部から導かれた上記排気を排出する排出孔が上記検出電極の周囲に形成された静電気測定装置。
Casing and
A detection electrode provided in the casing and outputting an induced current induced according to the charging potential of the opposing charged object,
In this casing, a ground electrode provided between the detection electrode and the charged object, and
An air motor that relatively rotates the detection electrode and the ground electrode,
A rotation position sensor that detects the relative position between the detection electrode and the ground electrode, and
A detection circuit that detects the induced current output from the detection electrode and
A polarity determination circuit for specifying the polarity from the signal of the detection circuit and the signal of the rotation position sensor is provided.
An electrostatic measuring device that drives the air motor to rotate the detection electrode and the ground electrode relative to each other, and changes the facing area between the detection electrode and the charged object in a fixed cycle in the process of the relative rotation .
An static electricity measuring device in which an introduction portion for guiding a part or all of the exhaust gas from the air motor into the casing is provided, and an exhaust hole for discharging the exhaust gas guided from the introduction portion is formed around the detection electrode. ..
上記検出電極が扇形板を備え、
上記接地電極には上記検出電極の扇形板と同一形状同一寸法の扇形板あるいは扇形開口のいずれか一方を備え、
上記検出電極と接地電極との相対回転の過程で、上記検出電極における扇形板の合計面積が、上記検出電極と帯電物体との対向面積の最大値になるとともに、
上記検出電極の扇形板の合計面積が、上記検出電極の外周が描く円の面積の二分の一になる寸法を保った請求項1に記載の静電気測定装置。
The detection electrode has a fan-shaped plate,
The ground electrode is provided with either a fan-shaped plate or a fan-shaped opening having the same shape and dimensions as the fan-shaped plate of the detection electrode.
In the process of relative rotation between the detection electrode and the ground electrode, the total area of the fan-shaped plate in the detection electrode becomes the maximum value of the facing area between the detection electrode and the charged object, and at the same time.
The static electricity measuring device according to claim 1, wherein the total area of the fan-shaped plates of the detection electrodes is halved from the area of the circle drawn by the outer circumference of the detection electrodes .
JP2018193682A 2018-10-12 2018-10-12 Static electricity measuring device Active JP6818328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018193682A JP6818328B2 (en) 2018-10-12 2018-10-12 Static electricity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018193682A JP6818328B2 (en) 2018-10-12 2018-10-12 Static electricity measuring device

Publications (2)

Publication Number Publication Date
JP2020060529A JP2020060529A (en) 2020-04-16
JP6818328B2 true JP6818328B2 (en) 2021-01-20

Family

ID=70219657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018193682A Active JP6818328B2 (en) 2018-10-12 2018-10-12 Static electricity measuring device

Country Status (1)

Country Link
JP (1) JP6818328B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107782A (en) * 1978-02-10 1979-08-23 Ricoh Co Ltd Ac type surface electrometer making use of fan
JPS5984478U (en) * 1982-11-22 1984-06-07 川瀬 研一 static electricity meter
JPS6329263A (en) * 1986-07-23 1988-02-06 Saginomiya Seisakusho Inc Direct current electric field measuring instrument
US6608483B1 (en) * 2001-11-13 2003-08-19 John P. Hill Quadrature differential charge commutation sensor enabling wide bandwith field mills and other electrostatic field measuring devices

Also Published As

Publication number Publication date
JP2020060529A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
US5214386A (en) Apparatus and method for measuring particles in polydispersed systems and particle concentrations of monodispersed aerosols
EP2803055B1 (en) Method and apparatus for detecting smoke in an ion chamber
KR101784905B1 (en) Electrostatic projector comprising a rotation speed detection device
JP6842328B2 (en) Vacuum pump, main sensor, and thread groove stator
JP2016118559A (en) Electromechanical apparatus comprising capacitive device for detection of angular position of wheel set, and method for detection of angular position of wheel set
JP6818328B2 (en) Static electricity measuring device
CN105807085A (en) Bearing rotation measuring device based on piezoelectric properties and electrostatic induction
JP2019027949A (en) Electric field measuring device
EP3091564B1 (en) Corona discharge assembly, ion mobility spectrometer, computer program, and storage medium
Dinh et al. Two-axis tilt angle detection based on dielectric liquid capacitive sensor
US3754471A (en) Pneumatic shaft speed sensor
CN102236028B (en) Flow measuring device for powder granules
CN109932291B (en) Electrostatic induction dust concentration detection device based on vortex street
JP2008096322A (en) Particle classifier
RU2401427C1 (en) Sensor for contactless measurement of electric charge of moving mineral particles (versions)
SU1004902A1 (en) Device for measuring powder material particle charge
JP2018179900A (en) Electric field intensity measurement device
US3224271A (en) Mass flow meter using difference between torques
JP2887744B2 (en) Static electricity detection device
JP2017216174A (en) Static eliminator
JP2002022703A (en) Powder and granular material concentration meter
SU1303897A1 (en) Capacitive transducer for measuring air dustiness
SU365647A1 (en)
SU842495A1 (en) Method of determination aerosol particle mass and charge
JP2011149532A (en) Rolling bearing device with rotation sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201021

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201218

R150 Certificate of patent or registration of utility model

Ref document number: 6818328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250